summaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/backend.h
blob: 93835d9ce5fed4a17f13181ade4588d072852068 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
// backend.h -- Go frontend interface to backend  -*- C++ -*-

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef GO_BACKEND_H
#define GO_BACKEND_H

#include <gmp.h>
#include <mpfr.h>
#include <mpc.h>

#include "operator.h"

// Pointers to these types are created by the backend, passed to the
// frontend, and passed back to the backend.  The types must be
// defined by the backend using these names.

// The backend representation of a type.
class Btype;

// The backend represention of an expression.
class Bexpression;

// The backend representation of a statement.
class Bstatement;

// The backend representation of a function definition or declaration.
class Bfunction;

// The backend representation of a block.
class Bblock;

// The backend representation of a variable.
class Bvariable;

// The backend representation of a label.
class Blabel;

// The backend interface.  This is a pure abstract class that a
// specific backend will implement.

class Backend
{
 public:
  virtual ~Backend() { }

  // Name/type/location.  Used for function parameters, struct fields,
  // interface methods.
  struct Btyped_identifier
  {
    std::string name;
    Btype* btype;
    Location location;

    Btyped_identifier()
        : name(), btype(NULL), location(Linemap::unknown_location())
    { }

    Btyped_identifier(const std::string& a_name, Btype* a_btype,
		     Location a_location)
      : name(a_name), btype(a_btype), location(a_location)
    { }
  };

  // Types.

  // Produce an error type.  Actually the backend could probably just
  // crash if this is called.
  virtual Btype*
  error_type() = 0;

  // Get a void type.  This is used in (at least) two ways: 1) as the
  // return type of a function with no result parameters; 2)
  // unsafe.Pointer is represented as *void.
  virtual Btype*
  void_type() = 0;

  // Get the unnamed boolean type.
  virtual Btype*
  bool_type() = 0;

  // Get an unnamed integer type with the given signedness and number
  // of bits.
  virtual Btype*
  integer_type(bool is_unsigned, int bits) = 0;

  // Get an unnamed floating point type with the given number of bits
  // (32 or 64).
  virtual Btype*
  float_type(int bits) = 0;

  // Get an unnamed complex type with the given number of bits (64 or 128).
  virtual Btype*
  complex_type(int bits) = 0;

  // Get a pointer type.
  virtual Btype*
  pointer_type(Btype* to_type) = 0;

  // Get a function type.  The receiver, parameter, and results are
  // generated from the types in the Function_type.  The Function_type
  // is provided so that the names are available.  This should return
  // not the type of a Go function (which is a pointer to a struct)
  // but the type of a C function pointer (which will be used as the
  // type of the first field of the struct).  If there is more than
  // one result, RESULT_STRUCT is a struct type to hold the results,
  // and RESULTS may be ignored; if there are zero or one results,
  // RESULT_STRUCT is NULL.
  virtual Btype*
  function_type(const Btyped_identifier& receiver,
		const std::vector<Btyped_identifier>& parameters,
		const std::vector<Btyped_identifier>& results,
		Btype* result_struct,
		Location location) = 0;

  // Get a struct type.
  virtual Btype*
  struct_type(const std::vector<Btyped_identifier>& fields) = 0;

  // Get an array type.
  virtual Btype*
  array_type(Btype* element_type, Bexpression* length) = 0;

  // Create a placeholder pointer type.  This is used for a named
  // pointer type, since in Go a pointer type may refer to itself.
  // NAME is the name of the type, and the location is where the named
  // type is defined.  This function is also used for unnamed function
  // types with multiple results, in which case the type has no name
  // and NAME will be empty.  FOR_FUNCTION is true if this is for a C
  // pointer to function type.  A Go func type is represented as a
  // pointer to a struct, and the first field of the struct is a C
  // pointer to function.  The return value will later be passed as
  // the first parameter to set_placeholder_pointer_type or
  // set_placeholder_function_type.
  virtual Btype*
  placeholder_pointer_type(const std::string& name, Location,
			   bool for_function) = 0;

  // Fill in a placeholder pointer type as a pointer.  This takes a
  // type returned by placeholder_pointer_type and arranges for it to
  // point to the type that TO_TYPE points to (that is, PLACEHOLDER
  // becomes the same type as TO_TYPE).  Returns true on success,
  // false on failure.
  virtual bool
  set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0;

  // Fill in a placeholder pointer type as a function.  This takes a
  // type returned by placeholder_pointer_type and arranges for it to
  // become a real Go function type (which corresponds to a C/C++
  // pointer to function type).  FT will be something returned by the
  // function_type method.  Returns true on success, false on failure.
  virtual bool
  set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0;

  // Create a placeholder struct type.  This is used for a named
  // struct type, as with placeholder_pointer_type.  It is also used
  // for interface types, in which case NAME will be the empty string.
  virtual Btype*
  placeholder_struct_type(const std::string& name, Location) = 0;

  // Fill in a placeholder struct type.  This takes a type returned by
  // placeholder_struct_type and arranges for it to become a real
  // struct type.  The parameter is as for struct_type.  Returns true
  // on success, false on failure.
  virtual bool
  set_placeholder_struct_type(Btype* placeholder,
			      const std::vector<Btyped_identifier>& fields)
  			= 0;

  // Create a placeholder array type.  This is used for a named array
  // type, as with placeholder_pointer_type, to handle cases like
  // type A []*A.
  virtual Btype*
  placeholder_array_type(const std::string& name, Location) = 0;

  // Fill in a placeholder array type.  This takes a type returned by
  // placeholder_array_type and arranges for it to become a real array
  // type.  The parameters are as for array_type.  Returns true on
  // success, false on failure.
  virtual bool
  set_placeholder_array_type(Btype* placeholder, Btype* element_type,
			     Bexpression* length) = 0;

  // Return a named version of a type.  The location is the location
  // of the type definition.  This will not be called for a type
  // created via placeholder_pointer_type, placeholder_struct_type, or
  // placeholder_array_type..  (It may be called for a pointer,
  // struct, or array type in a case like "type P *byte; type Q P".)
  virtual Btype*
  named_type(const std::string& name, Btype*, Location) = 0;

  // Create a marker for a circular pointer type.  Go pointer and
  // function types can refer to themselves in ways that are not
  // permitted in C/C++.  When a circular type is found, this function
  // is called for the circular reference.  This permits the backend
  // to decide how to handle such a type.  PLACEHOLDER is the
  // placeholder type which has already been created; if the backend
  // is prepared to handle a circular pointer type, it may simply
  // return PLACEHOLDER.  FOR_FUNCTION is true if this is for a
  // function type.
  //
  // For "type P *P" the sequence of calls will be
  //   bt1 = placeholder_pointer_type();
  //   bt2 = circular_pointer_type(bt1, false);
  //   set_placeholder_pointer_type(bt1, bt2);
  virtual Btype*
  circular_pointer_type(Btype* placeholder, bool for_function) = 0;

  // Return whether the argument could be a special type created by
  // circular_pointer_type.  This is used to introduce explicit type
  // conversions where needed.  If circular_pointer_type returns its
  // PLACEHOLDER parameter, this may safely always return false.
  virtual bool
  is_circular_pointer_type(Btype*) = 0;

  // Return the size of a type.
  virtual int64_t
  type_size(Btype*) = 0;

  // Return the alignment of a type.
  virtual int64_t
  type_alignment(Btype*) = 0;

  // Return the alignment of a struct field of this type.  This is
  // normally the same as type_alignment, but not always.
  virtual int64_t
  type_field_alignment(Btype*) = 0;

  // Return the offset of field INDEX in a struct type.  INDEX is the
  // entry in the FIELDS std::vector parameter of struct_type or
  // set_placeholder_struct_type.
  virtual int64_t
  type_field_offset(Btype*, size_t index) = 0;

  // Expressions.

  // Return an expression for a zero value of the given type.  This is
  // used for cases such as local variable initialization and
  // converting nil to other types.
  virtual Bexpression*
  zero_expression(Btype*) = 0;

  // Create an error expression. This is used for cases which should
  // not occur in a correct program, in order to keep the compilation
  // going without crashing.
  virtual Bexpression*
  error_expression() = 0;

  // Create a nil pointer expression.
  virtual Bexpression*
  nil_pointer_expression() = 0;

  // Create a reference to a variable.
  virtual Bexpression*
  var_expression(Bvariable* var, Varexpr_context in_lvalue_pos, Location) = 0;

  // Create an expression that indirects through the pointer expression EXPR
  // (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer
  // is known to point to a valid memory location.  BTYPE is the expected type
  // of the indirected EXPR.
  virtual Bexpression*
  indirect_expression(Btype* btype, Bexpression* expr, bool known_valid,
		      Location) = 0;

  // Return an expression that declares a constant named NAME with the
  // constant value VAL in BTYPE.
  virtual Bexpression*
  named_constant_expression(Btype* btype, const std::string& name,
                             Bexpression* val, Location) = 0;

  // Return an expression for the multi-precision integer VAL in BTYPE.
  virtual Bexpression*
  integer_constant_expression(Btype* btype, mpz_t val) = 0;

  // Return an expression for the floating point value VAL in BTYPE.
  virtual Bexpression*
  float_constant_expression(Btype* btype, mpfr_t val) = 0;

  // Return an expression for the complex value VAL in BTYPE.
  virtual Bexpression*
  complex_constant_expression(Btype* btype, mpc_t val) = 0;

  // Return an expression for the string value VAL.
  virtual Bexpression*
  string_constant_expression(const std::string& val) = 0;

  // Return an expression for the boolean value VAL.
  virtual Bexpression*
  boolean_constant_expression(bool val) = 0;

  // Return an expression for the real part of BCOMPLEX.
  virtual Bexpression*
  real_part_expression(Bexpression* bcomplex, Location) = 0;

  // Return an expression for the imaginary part of BCOMPLEX.
  virtual Bexpression*
  imag_part_expression(Bexpression* bcomplex, Location) = 0;

  // Return an expression for the complex number (BREAL, BIMAG).
  virtual Bexpression*
  complex_expression(Bexpression* breal, Bexpression* bimag, Location) = 0;

  // Return an expression that converts EXPR to TYPE.
  virtual Bexpression*
  convert_expression(Btype* type, Bexpression* expr, Location) = 0;

  // Create an expression for the address of a function.  This is used to
  // get the address of the code for a function.
  virtual Bexpression*
  function_code_expression(Bfunction*, Location) = 0;

  // Create an expression that takes the address of an expression.
  virtual Bexpression*
  address_expression(Bexpression*, Location) = 0;

  // Return an expression for the field at INDEX in BSTRUCT.
  virtual Bexpression*
  struct_field_expression(Bexpression* bstruct, size_t index, Location) = 0;

  // Create an expression that executes BSTAT before BEXPR.
  virtual Bexpression*
  compound_expression(Bstatement* bstat, Bexpression* bexpr, Location) = 0;

  // Return an expression that executes THEN_EXPR if CONDITION is true, or
  // ELSE_EXPR otherwise and returns the result as type BTYPE, within the
  // specified function FUNCTION.  ELSE_EXPR may be NULL.  BTYPE may be NULL.
  virtual Bexpression*
  conditional_expression(Bfunction* function, Btype* btype,
                         Bexpression* condition, Bexpression* then_expr,
                         Bexpression* else_expr, Location) = 0;

  // Return an expression for the unary operation OP EXPR.
  // Supported values of OP are (from operators.h):
  //    MINUS, NOT, XOR.
  virtual Bexpression*
  unary_expression(Operator op, Bexpression* expr, Location) = 0;

  // Return an expression for the binary operation LEFT OP RIGHT.
  // Supported values of OP are (from operators.h):
  //    EQEQ, NOTEQ, LT, LE, GT, GE, PLUS, MINUS, OR, XOR, MULT, DIV, MOD,
  //    LSHIFT, RSHIFT, AND, NOT.
  virtual Bexpression*
  binary_expression(Operator op, Bexpression* left, Bexpression* right,
                    Location) = 0;

  // Return an expression that constructs BTYPE with VALS.  BTYPE must be the
  // backend representation a of struct.  VALS must be in the same order as the
  // corresponding fields in BTYPE.
  virtual Bexpression*
  constructor_expression(Btype* btype, const std::vector<Bexpression*>& vals,
                         Location) = 0;

  // Return an expression that constructs an array of BTYPE with INDEXES and
  // VALS.  INDEXES and VALS must have the same amount of elements. Each index
  // in INDEXES must be in the same order as the corresponding value in VALS.
  virtual Bexpression*
  array_constructor_expression(Btype* btype,
                               const std::vector<unsigned long>& indexes,
                               const std::vector<Bexpression*>& vals,
                               Location) = 0;

  // Return an expression for the address of BASE[INDEX].
  // BASE has a pointer type.  This is used for slice indexing.
  virtual Bexpression*
  pointer_offset_expression(Bexpression* base, Bexpression* index,
                            Location) = 0;

  // Return an expression for ARRAY[INDEX] as an l-value.  ARRAY is a valid
  // fixed-length array, not a slice.
  virtual Bexpression*
  array_index_expression(Bexpression* array, Bexpression* index, Location) = 0;

  // Create an expression for a call to FN with ARGS.
  virtual Bexpression*
  call_expression(Bexpression* fn, const std::vector<Bexpression*>& args,
		  Bexpression* static_chain, Location) = 0;

  // Return an expression that allocates SIZE bytes on the stack.
  virtual Bexpression*
  stack_allocation_expression(int64_t size, Location) = 0;

  // Statements.

  // Create an error statement.  This is used for cases which should
  // not occur in a correct program, in order to keep the compilation
  // going without crashing.
  virtual Bstatement*
  error_statement() = 0;

  // Create an expression statement within the specified function.
  virtual Bstatement*
  expression_statement(Bfunction*, Bexpression*) = 0;

  // Create a variable initialization statement in the specified
  // function.  This initializes a local variable at the point in the
  // program flow where it is declared.
  virtual Bstatement*
  init_statement(Bfunction*, Bvariable* var, Bexpression* init) = 0;

  // Create an assignment statement within the specified function.
  virtual Bstatement*
  assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
		       Location) = 0;

  // Create a return statement, passing the representation of the
  // function and the list of values to return.
  virtual Bstatement*
  return_statement(Bfunction*, const std::vector<Bexpression*>&,
		   Location) = 0;

  // Create an if statement within a function.  ELSE_BLOCK may be NULL.
  virtual Bstatement*
  if_statement(Bfunction*, Bexpression* condition,
               Bblock* then_block, Bblock* else_block,
	       Location) = 0;

  // Create a switch statement where the case values are constants.
  // CASES and STATEMENTS must have the same number of entries.  If
  // VALUE matches any of the list in CASES[i], which will all be
  // integers, then STATEMENTS[i] is executed.  STATEMENTS[i] will
  // either end with a goto statement or will fall through into
  // STATEMENTS[i + 1].  CASES[i] is empty for the default clause,
  // which need not be last.  FUNCTION is the current function.
  virtual Bstatement*
  switch_statement(Bfunction* function, Bexpression* value,
		   const std::vector<std::vector<Bexpression*> >& cases,
		   const std::vector<Bstatement*>& statements,
		   Location) = 0;

  // Create a single statement from two statements.
  virtual Bstatement*
  compound_statement(Bstatement*, Bstatement*) = 0;

  // Create a single statement from a list of statements.
  virtual Bstatement*
  statement_list(const std::vector<Bstatement*>&) = 0;

  // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if
  // an exception occurs. EXCEPT_STMT may be NULL.  FINALLY_STMT may be NULL and
  // if not NULL, it will always be executed.  This is used for handling defers
  // in Go functions.  In C++, the resulting code is of this form:
  //   try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
  virtual Bstatement*
  exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
                              Bstatement* finally_stmt, Location) = 0;

  // Blocks.

  // Create a block.  The frontend will call this function when it
  // starts converting a block within a function.  FUNCTION is the
  // current function.  ENCLOSING is the enclosing block; it will be
  // NULL for the top-level block in a function.  VARS is the list of
  // local variables defined within this block; each entry will be
  // created by the local_variable function.  START_LOCATION is the
  // location of the start of the block, more or less the location of
  // the initial curly brace.  END_LOCATION is the location of the end
  // of the block, more or less the location of the final curly brace.
  // The statements will be added after the block is created.
  virtual Bblock*
  block(Bfunction* function, Bblock* enclosing,
	const std::vector<Bvariable*>& vars,
	Location start_location, Location end_location) = 0;

  // Add the statements to a block.  The block is created first.  Then
  // the statements are created.  Then the statements are added to the
  // block.  This will called exactly once per block.  The vector may
  // be empty if there are no statements.
  virtual void
  block_add_statements(Bblock*, const std::vector<Bstatement*>&) = 0;

  // Return the block as a statement.  This is used to include a block
  // in a list of statements.
  virtual Bstatement*
  block_statement(Bblock*) = 0;

  // Variables.

  // Create an error variable.  This is used for cases which should
  // not occur in a correct program, in order to keep the compilation
  // going without crashing.
  virtual Bvariable*
  error_variable() = 0;

  // Create a global variable. NAME is the package-qualified name of
  // the variable.  ASM_NAME is the encoded identifier for the
  // variable, incorporating the package, and made safe for the
  // assembler.  BTYPE is the type of the variable.  IS_EXTERNAL is
  // true if the variable is defined in some other package.  IS_HIDDEN
  // is true if the variable is not exported (name begins with a lower
  // case letter).  IN_UNIQUE_SECTION is true if the variable should
  // be put into a unique section if possible; this is intended to
  // permit the linker to garbage collect the variable if it is not
  // referenced.  LOCATION is where the variable was defined.
  virtual Bvariable*
  global_variable(const std::string& name,
                  const std::string& asm_name,
		  Btype* btype,
		  bool is_external,
		  bool is_hidden,
		  bool in_unique_section,
		  Location location) = 0;

  // A global variable will 1) be initialized to zero, or 2) be
  // initialized to a constant value, or 3) be initialized in the init
  // function.  In case 2, the frontend will call
  // global_variable_set_init to set the initial value.  If this is
  // not called, the backend should initialize a global variable to 0.
  // The init function may then assign a value to it.
  virtual void
  global_variable_set_init(Bvariable*, Bexpression*) = 0;

  // Create a local variable.  The frontend will create the local
  // variables first, and then create the block which contains them.
  // FUNCTION is the function in which the variable is defined.  NAME
  // is the name of the variable.  TYPE is the type.  IS_ADDRESS_TAKEN
  // is true if the address of this variable is taken (this implies
  // that the address does not escape the function, as otherwise the
  // variable would be on the heap).  LOCATION is where the variable
  // is defined.  For each local variable the frontend will call
  // init_statement to set the initial value.
  virtual Bvariable*
  local_variable(Bfunction* function, const std::string& name, Btype* type,
		 bool is_address_taken, Location location) = 0;

  // Create a function parameter.  This is an incoming parameter, not
  // a result parameter (result parameters are treated as local
  // variables).  The arguments are as for local_variable.
  virtual Bvariable*
  parameter_variable(Bfunction* function, const std::string& name,
		     Btype* type, bool is_address_taken,
		     Location location) = 0;

  // Create a static chain parameter.  This is the closure parameter.
  virtual Bvariable*
  static_chain_variable(Bfunction* function, const std::string& name,
		        Btype* type, Location location) = 0;

  // Create a temporary variable.  A temporary variable has no name,
  // just a type.  We pass in FUNCTION and BLOCK in case they are
  // needed.  If INIT is not NULL, the variable should be initialized
  // to that value.  Otherwise the initial value is irrelevant--the
  // backend does not have to explicitly initialize it to zero.
  // ADDRESS_IS_TAKEN is true if the programs needs to take the
  // address of this temporary variable.  LOCATION is the location of
  // the statement or expression which requires creating the temporary
  // variable, and may not be very useful.  This function should
  // return a variable which can be referenced later and should set
  // *PSTATEMENT to a statement which initializes the variable.
  virtual Bvariable*
  temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init,
		     bool address_is_taken, Location location,
		     Bstatement** pstatement) = 0;

  // Create an implicit variable that is compiler-defined.  This is
  // used when generating GC data and roots, when storing the values
  // of a slice constructor, and for the zero value of types.  This returns a
  // Bvariable because it corresponds to an initialized variable in C.
  //
  // NAME is the name to use for the initialized variable this will create.
  //
  // ASM_NAME is encoded assembler-friendly version of the name, or the
  // empty string if no encoding is needed.
  //
  // TYPE is the type of the implicit variable. 
  //
  // IS_HIDDEN will be true if the descriptor should only be visible
  // within the current object.
  //
  // IS_CONSTANT is true if the implicit variable should be treated like it is
  // immutable.  For slice initializers, if the values must be copied to the
  // heap, the variable IS_CONSTANT.
  //
  // IS_COMMON is true if the implicit variable should
  // be treated as a common variable (multiple definitions with
  // different sizes permitted in different object files, all merged
  // into the largest definition at link time); this will be true for
  // the zero value.  IS_HIDDEN and IS_COMMON will never both be true.
  //
  // If ALIGNMENT is not zero, it is the desired alignment of the variable.
  virtual Bvariable*
  implicit_variable(const std::string& name, const std::string& asm_name,
                    Btype* type, bool is_hidden, bool is_constant,
                    bool is_common, int64_t alignment) = 0;


  // Set the initial value of a variable created by implicit_variable.
  // This must be called even if there is no initializer, i.e., INIT is NULL.
  // The NAME, TYPE, IS_HIDDEN, IS_CONSTANT, and IS_COMMON parameters are
  // the same ones passed to implicit_variable.  INIT will be a composite
  // literal of type TYPE.  It will not contain any function calls or anything
  // else that can not be put into a read-only data section.
  // It may contain the address of variables created by implicit_variable.
  //
  // If IS_COMMON is true, INIT will be NULL, and the
  // variable should be initialized to all zeros.
  virtual void
  implicit_variable_set_init(Bvariable*, const std::string& name, Btype* type,
			     bool is_hidden, bool is_constant, bool is_common,
			     Bexpression* init) = 0;

  // Create a reference to a named implicit variable defined in some
  // other package.  This will be a variable created by a call to
  // implicit_variable with the same NAME, ASM_NAME and TYPE and with
  // IS_COMMON passed as false.  This corresponds to an extern global
  // variable in C.
  virtual Bvariable*
  implicit_variable_reference(const std::string& name,
                              const std::string& asm_name,
                              Btype* type) = 0;

  // Create a named immutable initialized data structure.  This is
  // used for type descriptors, map descriptors, and function
  // descriptors.  This returns a Bvariable because it corresponds to
  // an initialized const variable in C.
  //
  // NAME is the name to use for the initialized global variable which
  // this call will create.
  //
  // ASM_NAME is the encoded, assembler-friendly version of NAME, or
  // the empty string if no encoding is needed.
  //
  // IS_HIDDEN will be true if the descriptor should only be visible
  // within the current object.
  //
  // IS_COMMON is true if NAME may be defined by several packages, and
  // the linker should merge all such definitions.  If IS_COMMON is
  // false, NAME should be defined in only one file.  In general
  // IS_COMMON will be true for the type descriptor of an unnamed type
  // or a builtin type.  IS_HIDDEN and IS_COMMON will never both be
  // true.
  //
  // TYPE will be a struct type; the type of the returned expression
  // must be a pointer to this struct type.
  // 
  // We must create the named structure before we know its
  // initializer, because the initializer may refer to its own
  // address.  After calling this the frontend will call
  // immutable_struct_set_init.
  virtual Bvariable*
  immutable_struct(const std::string& name,
                   const std::string& asm_name,
                   bool is_hidden, bool is_common,
		   Btype* type, Location) = 0;

  // Set the initial value of a variable created by immutable_struct.
  // The NAME, IS_HIDDEN, IS_COMMON, TYPE, and location parameters are
  // the same ones passed to immutable_struct.  INITIALIZER will be a
  // composite literal of type TYPE.  It will not contain any function
  // calls or anything else that can not be put into a read-only data
  // section.  It may contain the address of variables created by
  // immutable_struct.
  virtual void
  immutable_struct_set_init(Bvariable*, const std::string& name,
			    bool is_hidden, bool is_common, Btype* type,
			    Location, Bexpression* initializer) = 0;

  // Create a reference to a named immutable initialized data
  // structure defined in some other package.  This will be a
  // structure created by a call to immutable_struct with the same
  // NAME, ASM_NAME and TYPE and with IS_COMMON passed as false.  This
  // corresponds to an extern const global variable in C.
  virtual Bvariable*
  immutable_struct_reference(const std::string& name,
                             const std::string& asm_name,
                             Btype* type, Location) = 0;

  // Labels.
  
  // Create a new label.  NAME will be empty if this is a label
  // created by the frontend for a loop construct.  The location is
  // where the label is defined.
  virtual Blabel*
  label(Bfunction*, const std::string& name, Location) = 0;

  // Create a statement which defines a label.  This statement will be
  // put into the codestream at the point where the label should be
  // defined.
  virtual Bstatement*
  label_definition_statement(Blabel*) = 0;

  // Create a goto statement to a label.
  virtual Bstatement*
  goto_statement(Blabel*, Location) = 0;

  // Create an expression for the address of a label.  This is used to
  // get the return address of a deferred function which may call
  // recover.
  virtual Bexpression*
  label_address(Blabel*, Location) = 0;

  // Functions.

  // Create an error function.  This is used for cases which should
  // not occur in a correct program, in order to keep the compilation
  // going without crashing.
  virtual Bfunction*
  error_function() = 0;

  // Declare or define a function of FNTYPE.
  // NAME is the Go name of the function. ASM_NAME, if not the empty string, is
  // the name that should be used in the symbol table; this will be non-empty if
  // a magic extern comment is used.
  // IS_VISIBLE is true if this function should be visible outside of the
  // current compilation unit. IS_DECLARATION is true if this is a function
  // declaration rather than a definition; the function definition will be in
  // another compilation unit.
  // IS_INLINABLE is true if the function can be inlined.
  // DISABLE_SPLIT_STACK is true if this function may not split the stack; this
  // is used for the implementation of recover.
  // IN_UNIQUE_SECTION is true if this function should be put into a unique
  // location if possible; this is used for field tracking.
  virtual Bfunction*
  function(Btype* fntype, const std::string& name, const std::string& asm_name,
           bool is_visible, bool is_declaration, bool is_inlinable,
           bool disable_split_stack, bool in_unique_section, Location) = 0;

  // Create a statement that runs all deferred calls for FUNCTION.  This should
  // be a statement that looks like this in C++:
  //   finish:
  //     try { DEFER_RETURN; } catch { CHECK_DEFER; goto finish; }
  virtual Bstatement*
  function_defer_statement(Bfunction* function, Bexpression* undefer,
                           Bexpression* check_defer, Location) = 0;

  // Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
  // This will only be called for a function definition.  Returns true on
  // success, false on failure.
  virtual bool
  function_set_parameters(Bfunction* function,
                         const std::vector<Bvariable*>& param_vars) = 0;

  // Set the function body for FUNCTION using the code in CODE_STMT.  Returns
  // true on success, false on failure.
  virtual bool
  function_set_body(Bfunction* function, Bstatement* code_stmt) = 0;

  // Look up a named built-in function in the current backend implementation.
  // Returns NULL if no built-in function by that name exists.
  virtual Bfunction*
  lookup_builtin(const std::string&) = 0;

  // Utility.

  // Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
  // FUNCTION_DECLS, and VARIABLE_DECLS declared globally.
  virtual void
  write_global_definitions(const std::vector<Btype*>& type_decls,
                           const std::vector<Bexpression*>& constant_decls,
                           const std::vector<Bfunction*>& function_decls,
                           const std::vector<Bvariable*>& variable_decls) = 0;
};

#endif // !defined(GO_BACKEND_H)