summaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/expressions.h
blob: 0a3f2050dd4ab7c3562f363fb3437787fa2e4962 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
// expressions.h -- Go frontend expression handling.     -*- C++ -*-

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef GO_EXPRESSIONS_H
#define GO_EXPRESSIONS_H

#include <gmp.h>
#include <mpfr.h>

#include "operator.h"

class Gogo;
class Translate_context;
class Traverse;
class Statement_inserter;
class Type;
struct Type_context;
class Function_type;
class Map_type;
class Struct_type;
class Struct_field;
class Expression_list;
class Var_expression;
class Temporary_reference_expression;
class Set_and_use_temporary_expression;
class String_expression;
class Binary_expression;
class Call_expression;
class Func_expression;
class Unknown_expression;
class Index_expression;
class Map_index_expression;
class Bound_method_expression;
class Field_reference_expression;
class Interface_field_reference_expression;
class Type_guard_expression;
class Receive_expression;
class Named_object;
class Export;
class Import;
class Temporary_statement;
class Label;
class Ast_dump_context;
class String_dump;

// The base class for all expressions.

class Expression
{
 public:
  // The types of expressions.
  enum Expression_classification
  {
    EXPRESSION_ERROR,
    EXPRESSION_TYPE,
    EXPRESSION_UNARY,
    EXPRESSION_BINARY,
    EXPRESSION_CONST_REFERENCE,
    EXPRESSION_VAR_REFERENCE,
    EXPRESSION_TEMPORARY_REFERENCE,
    EXPRESSION_SET_AND_USE_TEMPORARY,
    EXPRESSION_SINK,
    EXPRESSION_FUNC_REFERENCE,
    EXPRESSION_UNKNOWN_REFERENCE,
    EXPRESSION_BOOLEAN,
    EXPRESSION_STRING,
    EXPRESSION_INTEGER,
    EXPRESSION_FLOAT,
    EXPRESSION_COMPLEX,
    EXPRESSION_NIL,
    EXPRESSION_IOTA,
    EXPRESSION_CALL,
    EXPRESSION_CALL_RESULT,
    EXPRESSION_BOUND_METHOD,
    EXPRESSION_INDEX,
    EXPRESSION_ARRAY_INDEX,
    EXPRESSION_STRING_INDEX,
    EXPRESSION_MAP_INDEX,
    EXPRESSION_SELECTOR,
    EXPRESSION_FIELD_REFERENCE,
    EXPRESSION_INTERFACE_FIELD_REFERENCE,
    EXPRESSION_ALLOCATION,
    EXPRESSION_TYPE_GUARD,
    EXPRESSION_CONVERSION,
    EXPRESSION_UNSAFE_CONVERSION,
    EXPRESSION_STRUCT_CONSTRUCTION,
    EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
    EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
    EXPRESSION_MAP_CONSTRUCTION,
    EXPRESSION_COMPOSITE_LITERAL,
    EXPRESSION_HEAP_COMPOSITE,
    EXPRESSION_RECEIVE,
    EXPRESSION_TYPE_DESCRIPTOR,
    EXPRESSION_TYPE_INFO,
    EXPRESSION_STRUCT_FIELD_OFFSET,
    EXPRESSION_MAP_DESCRIPTOR,
    EXPRESSION_LABEL_ADDR
  };

  Expression(Expression_classification, Location);

  virtual ~Expression();

  // Make an error expression.  This is used when a parse error occurs
  // to prevent cascading errors.
  static Expression*
  make_error(Location);

  // Make an expression which is really a type.  This is used during
  // parsing.
  static Expression*
  make_type(Type*, Location);

  // Make a unary expression.
  static Expression*
  make_unary(Operator, Expression*, Location);

  // Make a binary expression.
  static Expression*
  make_binary(Operator, Expression*, Expression*, Location);

  // Make a reference to a constant in an expression.
  static Expression*
  make_const_reference(Named_object*, Location);

  // Make a reference to a variable in an expression.
  static Expression*
  make_var_reference(Named_object*, Location);

  // Make a reference to a temporary variable.  Temporary variables
  // are always created by a single statement, which is what we use to
  // refer to them.
  static Temporary_reference_expression*
  make_temporary_reference(Temporary_statement*, Location);

  // Make an expressions which sets a temporary variable and then
  // evaluates to a reference to that temporary variable.  This is
  // used to set a temporary variable while retaining the order of
  // evaluation.
  static Set_and_use_temporary_expression*
  make_set_and_use_temporary(Temporary_statement*, Expression*, Location);

  // Make a sink expression--a reference to the blank identifier _.
  static Expression*
  make_sink(Location);

  // Make a reference to a function in an expression.
  static Expression*
  make_func_reference(Named_object*, Expression* closure, Location);

  // Make a reference to an unknown name.  In a correct program this
  // will always be lowered to a real const/var/func reference.
  static Unknown_expression*
  make_unknown_reference(Named_object*, Location);

  // Make a constant bool expression.
  static Expression*
  make_boolean(bool val, Location);

  // Make a constant string expression.
  static Expression*
  make_string(const std::string&, Location);

  // Make a character constant expression.  TYPE should be NULL for an
  // abstract type.
  static Expression*
  make_character(const mpz_t*, Type*, Location);

  // Make a constant integer expression.  TYPE should be NULL for an
  // abstract type.
  static Expression*
  make_integer(const mpz_t*, Type*, Location);

  // Make a constant float expression.  TYPE should be NULL for an
  // abstract type.
  static Expression*
  make_float(const mpfr_t*, Type*, Location);

  // Make a constant complex expression.  TYPE should be NULL for an
  // abstract type.
  static Expression*
  make_complex(const mpfr_t* real, const mpfr_t* imag, Type*, Location);

  // Make a nil expression.
  static Expression*
  make_nil(Location);

  // Make an iota expression.  This is used for the predeclared
  // constant iota.
  static Expression*
  make_iota();

  // Make a call expression.
  static Call_expression*
  make_call(Expression* func, Expression_list* args, bool is_varargs,
	    Location);

  // Make a reference to a specific result of a call expression which
  // returns a tuple.
  static Expression*
  make_call_result(Call_expression*, unsigned int index);

  // Make an expression which is a method bound to its first
  // parameter.
  static Bound_method_expression*
  make_bound_method(Expression* object, Named_object* method, Location);

  // Make an index or slice expression.  This is a parser expression
  // which represents LEFT[START:END].  END may be NULL, meaning an
  // index rather than a slice.  At parse time we may not know the
  // type of LEFT.  After parsing this is lowered to an array index, a
  // string index, or a map index.
  static Expression*
  make_index(Expression* left, Expression* start, Expression* end,
	     Location);

  // Make an array index expression.  END may be NULL, in which case
  // this is an lvalue.
  static Expression*
  make_array_index(Expression* array, Expression* start, Expression* end,
		   Location);

  // Make a string index expression.  END may be NULL.  This is never
  // an lvalue.
  static Expression*
  make_string_index(Expression* string, Expression* start, Expression* end,
		    Location);

  // Make a map index expression.  This is an lvalue.
  static Map_index_expression*
  make_map_index(Expression* map, Expression* val, Location);

  // Make a selector.  This is a parser expression which represents
  // LEFT.NAME.  At parse time we may not know the type of the left
  // hand side.
  static Expression*
  make_selector(Expression* left, const std::string& name, Location);

  // Make a reference to a field in a struct.
  static Field_reference_expression*
  make_field_reference(Expression*, unsigned int field_index, Location);

  // Make a reference to a field of an interface, with an associated
  // object.
  static Expression*
  make_interface_field_reference(Expression*, const std::string&,
				 Location);

  // Make an allocation expression.
  static Expression*
  make_allocation(Type*, Location);

  // Make a type guard expression.
  static Expression*
  make_type_guard(Expression*, Type*, Location);

  // Make a type cast expression.
  static Expression*
  make_cast(Type*, Expression*, Location);

  // Make an unsafe type cast expression.  This is only used when
  // passing parameter to builtin functions that are part of the Go
  // runtime.
  static Expression*
  make_unsafe_cast(Type*, Expression*, Location);

  // Make a composite literal.  The DEPTH parameter is how far down we
  // are in a list of composite literals with omitted types.
  static Expression*
  make_composite_literal(Type*, int depth, bool has_keys, Expression_list*,
			 Location);

  // Make a struct composite literal.
  static Expression*
  make_struct_composite_literal(Type*, Expression_list*, Location);

  // Make a slice composite literal.
  static Expression*
  make_slice_composite_literal(Type*, Expression_list*, Location);

  // Take a composite literal and allocate it on the heap.
  static Expression*
  make_heap_composite(Expression*, Location);

  // Make a receive expression.  VAL is NULL for a unary receive.
  static Receive_expression*
  make_receive(Expression* channel, Location);

  // Make an expression which evaluates to the address of the type
  // descriptor for TYPE.
  static Expression*
  make_type_descriptor(Type* type, Location);

  // Make an expression which evaluates to some characteristic of a
  // type.  These are only used for type descriptors, so there is no
  // location parameter.
  enum Type_info
    {
      // The size of a value of the type.
      TYPE_INFO_SIZE,
      // The required alignment of a value of the type.
      TYPE_INFO_ALIGNMENT,
      // The required alignment of a value of the type when used as a
      // field in a struct.
      TYPE_INFO_FIELD_ALIGNMENT
    };

  static Expression*
  make_type_info(Type* type, Type_info);

  // Make an expression which evaluates to the offset of a field in a
  // struct.  This is only used for type descriptors, so there is no
  // location parameter.
  static Expression*
  make_struct_field_offset(Struct_type*, const Struct_field*);

  // Make an expression which evaluates to the address of the map
  // descriptor for TYPE.
  static Expression*
  make_map_descriptor(Map_type* type, Location);

  // Make an expression which evaluates to the address of an unnamed
  // label.
  static Expression*
  make_label_addr(Label*, Location);

  // Return the expression classification.
  Expression_classification
  classification() const
  { return this->classification_; }

  // Return the location of the expression.
  Location
  location() const
  { return this->location_; }

  // Return whether this is a constant expression.
  bool
  is_constant() const
  { return this->do_is_constant(); }

  // If this is not a constant expression with integral type, return
  // false.  If it is one, return true, and set VAL to the value.  VAL
  // should already be initialized.  If this returns true, it sets
  // *PTYPE to the type of the value, or NULL for an abstract type.
  // If IOTA_IS_CONSTANT is true, then an iota expression is assumed
  // to have its final value.
  bool
  integer_constant_value(bool iota_is_constant, mpz_t val, Type** ptype) const;

  // If this is not a constant expression with floating point type,
  // return false.  If it is one, return true, and set VAL to the
  // value.  VAL should already be initialized.  If this returns true,
  // it sets *PTYPE to the type of the value, or NULL for an abstract
  // type.
  bool
  float_constant_value(mpfr_t val, Type** ptype) const;

  // If this is not a constant expression with complex type, return
  // false.  If it is one, return true, and set REAL and IMAG to the
  // value.  REAL and IMAG should already be initialized.  If this
  // return strue, it sets *PTYPE to the type of the value, or NULL
  // for an abstract type.
  bool
  complex_constant_value(mpfr_t real, mpfr_t imag, Type** ptype) const;

  // If this is not a constant expression with string type, return
  // false.  If it is one, return true, and set VAL to the value.
  bool
  string_constant_value(std::string* val) const
  { return this->do_string_constant_value(val); }

  // This is called if the value of this expression is being
  // discarded.  This issues warnings about computed values being
  // unused.
  void
  discarding_value()
  { this->do_discarding_value(); }

  // Return whether this is an error expression.
  bool
  is_error_expression() const
  { return this->classification_ == EXPRESSION_ERROR; }

  // Return whether this expression really represents a type.
  bool
  is_type_expression() const
  { return this->classification_ == EXPRESSION_TYPE; }

  // If this is a variable reference, return the Var_expression
  // structure.  Otherwise, return NULL.  This is a controlled dynamic
  // cast.
  Var_expression*
  var_expression()
  { return this->convert<Var_expression, EXPRESSION_VAR_REFERENCE>(); }

  const Var_expression*
  var_expression() const
  { return this->convert<const Var_expression, EXPRESSION_VAR_REFERENCE>(); }

  // If this is a reference to a temporary variable, return the
  // Temporary_reference_expression.  Otherwise, return NULL.
  Temporary_reference_expression*
  temporary_reference_expression()
  {
    return this->convert<Temporary_reference_expression,
			 EXPRESSION_TEMPORARY_REFERENCE>();
  }

  // If this is a set-and-use-temporary, return the
  // Set_and_use_temporary_expression.  Otherwise, return NULL.
  Set_and_use_temporary_expression*
  set_and_use_temporary_expression()
  {
    return this->convert<Set_and_use_temporary_expression,
			 EXPRESSION_SET_AND_USE_TEMPORARY>();
  }

  // Return whether this is a sink expression.
  bool
  is_sink_expression() const
  { return this->classification_ == EXPRESSION_SINK; }

  // If this is a string expression, return the String_expression
  // structure.  Otherwise, return NULL.
  String_expression*
  string_expression()
  { return this->convert<String_expression, EXPRESSION_STRING>(); }

  // Return whether this is the expression nil.
  bool
  is_nil_expression() const
  { return this->classification_ == EXPRESSION_NIL; }

  // If this is an indirection through a pointer, return the
  // expression being pointed through.  Otherwise return this.
  Expression*
  deref();

  // If this is a binary expression, return the Binary_expression
  // structure.  Otherwise return NULL.
  Binary_expression*
  binary_expression()
  { return this->convert<Binary_expression, EXPRESSION_BINARY>(); }

  // If this is a call expression, return the Call_expression
  // structure.  Otherwise, return NULL.  This is a controlled dynamic
  // cast.
  Call_expression*
  call_expression()
  { return this->convert<Call_expression, EXPRESSION_CALL>(); }

  // If this is an expression which refers to a function, return the
  // Func_expression structure.  Otherwise, return NULL.
  Func_expression*
  func_expression()
  { return this->convert<Func_expression, EXPRESSION_FUNC_REFERENCE>(); }

  const Func_expression*
  func_expression() const
  { return this->convert<const Func_expression, EXPRESSION_FUNC_REFERENCE>(); }

  // If this is an expression which refers to an unknown name, return
  // the Unknown_expression structure.  Otherwise, return NULL.
  Unknown_expression*
  unknown_expression()
  { return this->convert<Unknown_expression, EXPRESSION_UNKNOWN_REFERENCE>(); }

  const Unknown_expression*
  unknown_expression() const
  {
    return this->convert<const Unknown_expression,
			 EXPRESSION_UNKNOWN_REFERENCE>();
  }

  // If this is an index expression, return the Index_expression
  // structure.  Otherwise, return NULL.
  Index_expression*
  index_expression()
  { return this->convert<Index_expression, EXPRESSION_INDEX>(); }

  // If this is an expression which refers to indexing in a map,
  // return the Map_index_expression structure.  Otherwise, return
  // NULL.
  Map_index_expression*
  map_index_expression()
  { return this->convert<Map_index_expression, EXPRESSION_MAP_INDEX>(); }

  // If this is a bound method expression, return the
  // Bound_method_expression structure.  Otherwise, return NULL.
  Bound_method_expression*
  bound_method_expression()
  { return this->convert<Bound_method_expression, EXPRESSION_BOUND_METHOD>(); }

  // If this is a reference to a field in a struct, return the
  // Field_reference_expression structure.  Otherwise, return NULL.
  Field_reference_expression*
  field_reference_expression()
  {
    return this->convert<Field_reference_expression,
			 EXPRESSION_FIELD_REFERENCE>();
  }

  // If this is a reference to a field in an interface, return the
  // Interface_field_reference_expression structure.  Otherwise,
  // return NULL.
  Interface_field_reference_expression*
  interface_field_reference_expression()
  {
    return this->convert<Interface_field_reference_expression,
			 EXPRESSION_INTERFACE_FIELD_REFERENCE>();
  }

  // If this is a type guard expression, return the
  // Type_guard_expression structure.  Otherwise, return NULL.
  Type_guard_expression*
  type_guard_expression()
  { return this->convert<Type_guard_expression, EXPRESSION_TYPE_GUARD>(); }

  // If this is a receive expression, return the Receive_expression
  // structure.  Otherwise, return NULL.
  Receive_expression*
  receive_expression()
  { return this->convert<Receive_expression, EXPRESSION_RECEIVE>(); }

  // Return true if this is a composite literal.
  bool
  is_composite_literal() const;

  // Return true if this is a composite literal which is not constant.
  bool
  is_nonconstant_composite_literal() const;

  // Return true if this is a reference to a local variable.
  bool
  is_local_variable() const;

  // Traverse an expression.
  static int
  traverse(Expression**, Traverse*);

  // Traverse subexpressions of this expression.
  int
  traverse_subexpressions(Traverse*);

  // Lower an expression.  This is called immediately after parsing.
  // FUNCTION is the function we are in; it will be NULL for an
  // expression initializing a global variable.  INSERTER may be used
  // to insert statements before the statement or initializer
  // containing this expression; it is normally used to create
  // temporary variables.  IOTA_VALUE is the value that we should give
  // to any iota expressions.  This function must resolve expressions
  // which could not be fully parsed into their final form.  It
  // returns the same Expression or a new one.
  Expression*
  lower(Gogo* gogo, Named_object* function, Statement_inserter* inserter,
	int iota_value)
  { return this->do_lower(gogo, function, inserter, iota_value); }

  // Determine the real type of an expression with abstract integer,
  // floating point, or complex type.  TYPE_CONTEXT describes the
  // expected type.
  void
  determine_type(const Type_context*);

  // Check types in an expression.
  void
  check_types(Gogo* gogo)
  { this->do_check_types(gogo); }

  // Determine the type when there is no context.
  void
  determine_type_no_context();

  // Return the current type of the expression.  This may be changed
  // by determine_type.
  Type*
  type()
  { return this->do_type(); }

  // Return a copy of an expression.
  Expression*
  copy()
  { return this->do_copy(); }

  // Return whether the expression is addressable--something which may
  // be used as the operand of the unary & operator.
  bool
  is_addressable() const
  { return this->do_is_addressable(); }

  // Note that we are taking the address of this expression.  ESCAPES
  // is true if this address escapes the current function.
  void
  address_taken(bool escapes)
  { this->do_address_taken(escapes); }

  // Return whether this expression must be evaluated in order
  // according to the order of evaluation rules.  This is basically
  // true of all expressions with side-effects.
  bool
  must_eval_in_order() const
  { return this->do_must_eval_in_order(); }

  // Return whether subexpressions of this expression must be
  // evaluated in order.  This is true of index expressions and
  // pointer indirections.  This sets *SKIP to the number of
  // subexpressions to skip during traversing, as index expressions
  // only requiring moving the index, not the array.
  bool
  must_eval_subexpressions_in_order(int* skip) const
  {
    *skip = 0;
    return this->do_must_eval_subexpressions_in_order(skip);
  }

  // Return the tree for this expression.
  tree
  get_tree(Translate_context*);

  // Return a tree handling any conversions which must be done during
  // assignment.
  static tree
  convert_for_assignment(Translate_context*, Type* lhs_type, Type* rhs_type,
			 tree rhs_tree, Location location);

  // Return a tree converting a value of one interface type to another
  // interface type.  If FOR_TYPE_GUARD is true this is for a type
  // assertion.
  static tree
  convert_interface_to_interface(Translate_context*, Type* lhs_type,
				 Type* rhs_type, tree rhs_tree,
				 bool for_type_guard, Location);

  // Return a tree implementing the comparison LHS_TREE OP RHS_TREE.
  // TYPE is the type of both sides.
  static tree
  comparison_tree(Translate_context*, Operator op, Type* left_type,
		  tree left_tree, Type* right_type, tree right_tree,
		  Location);

  // Return a tree for the multi-precision integer VAL in TYPE.
  static tree
  integer_constant_tree(mpz_t val, tree type);

  // Return a tree for the floating point value VAL in TYPE.
  static tree
  float_constant_tree(mpfr_t val, tree type);

  // Return a tree for the complex value REAL/IMAG in TYPE.
  static tree
  complex_constant_tree(mpfr_t real, mpfr_t imag, tree type);

  // Export the expression.  This is only used for constants.  It will
  // be used for things like values of named constants and sizes of
  // arrays.
  void
  export_expression(Export* exp) const
  { this->do_export(exp); }

  // Import an expression.
  static Expression*
  import_expression(Import*);

  // Return a tree which checks that VAL, of arbitrary integer type,
  // is non-negative and is not more than the maximum value of
  // BOUND_TYPE.  If SOFAR is not NULL, it is or'red into the result.
  // The return value may be NULL if SOFAR is NULL.
  static tree
  check_bounds(tree val, tree bound_type, tree sofar, Location);

  // Dump an expression to a dump constext.
  void
  dump_expression(Ast_dump_context*) const;

 protected:
  // May be implemented by child class: traverse the expressions.
  virtual int
  do_traverse(Traverse*);

  // Return a lowered expression.
  virtual Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int)
  { return this; }

  // Return whether this is a constant expression.
  virtual bool
  do_is_constant() const
  { return false; }

  // Return whether this is a constant expression of integral type,
  // and set VAL to the value.
  virtual bool
  do_integer_constant_value(bool, mpz_t, Type**) const
  { return false; }

  // Return whether this is a constant expression of floating point
  // type, and set VAL to the value.
  virtual bool
  do_float_constant_value(mpfr_t, Type**) const
  { return false; }

  // Return whether this is a constant expression of complex type, and
  // set REAL and IMAGE to the value.
  virtual bool
  do_complex_constant_value(mpfr_t, mpfr_t, Type**) const
  { return false; }

  // Return whether this is a constant expression of string type, and
  // set VAL to the value.
  virtual bool
  do_string_constant_value(std::string*) const
  { return false; }

  // Called by the parser if the value is being discarded.
  virtual void
  do_discarding_value();

  // Child class holds type.
  virtual Type*
  do_type() = 0;

  // Child class implements determining type information.
  virtual void
  do_determine_type(const Type_context*) = 0;

  // Child class implements type checking if needed.
  virtual void
  do_check_types(Gogo*)
  { }

  // Child class implements copying.
  virtual Expression*
  do_copy() = 0;

  // Child class implements whether the expression is addressable.
  virtual bool
  do_is_addressable() const
  { return false; }

  // Child class implements taking the address of an expression.
  virtual void
  do_address_taken(bool)
  { }

  // Child class implements whether this expression must be evaluated
  // in order.
  virtual bool
  do_must_eval_in_order() const
  { return false; }

  // Child class implements whether this expressions requires that
  // subexpressions be evaluated in order.  The child implementation
  // may set *SKIP if it should be non-zero.
  virtual bool
  do_must_eval_subexpressions_in_order(int* /* skip */) const
  { return false; }

  // Child class implements conversion to tree.
  virtual tree
  do_get_tree(Translate_context*) = 0;

  // Child class implements export.
  virtual void
  do_export(Export*) const;

  // For children to call to give an error for an unused value.
  void
  unused_value_error();

  // For children to call when they detect that they are in error.
  void
  set_is_error();

  // For children to call to report an error conveniently.
  void
  report_error(const char*);

  // Child class implements dumping to a dump context.
  virtual void
  do_dump_expression(Ast_dump_context*) const = 0;

 private:
  // Convert to the desired statement classification, or return NULL.
  // This is a controlled dynamic cast.
  template<typename Expression_class,
	   Expression_classification expr_classification>
  Expression_class*
  convert()
  {
    return (this->classification_ == expr_classification
	    ? static_cast<Expression_class*>(this)
	    : NULL);
  }

  template<typename Expression_class,
	   Expression_classification expr_classification>
  const Expression_class*
  convert() const
  {
    return (this->classification_ == expr_classification
	    ? static_cast<const Expression_class*>(this)
	    : NULL);
  }

  static tree
  convert_type_to_interface(Translate_context*, Type*, Type*, tree,
			    Location);

  static tree
  get_interface_type_descriptor(Translate_context*, Type*, tree,
				Location);

  static tree
  convert_interface_to_type(Translate_context*, Type*, Type*, tree,
			    Location);

  // The expression classification.
  Expression_classification classification_;
  // The location in the input file.
  Location location_;
};

// A list of Expressions.

class Expression_list
{
 public:
  Expression_list()
    : entries_()
  { }

  // Return whether the list is empty.
  bool
  empty() const
  { return this->entries_.empty(); }

  // Return the number of entries in the list.
  size_t
  size() const
  { return this->entries_.size(); }

  // Add an entry to the end of the list.
  void
  push_back(Expression* expr)
  { this->entries_.push_back(expr); }

  void
  append(Expression_list* add)
  { this->entries_.insert(this->entries_.end(), add->begin(), add->end()); }

  // Reserve space in the list.
  void
  reserve(size_t size)
  { this->entries_.reserve(size); }

  // Traverse the expressions in the list.
  int
  traverse(Traverse*);

  // Copy the list.
  Expression_list*
  copy();

  // Return true if the list contains an error expression.
  bool
  contains_error() const;

  // Return the first and last elements.
  Expression*&
  front()
  { return this->entries_.front(); }

  Expression*
  front() const
  { return this->entries_.front(); }

  Expression*&
  back()
  { return this->entries_.back(); }

  Expression*
  back() const
  { return this->entries_.back(); }

  // Iterators.

  typedef std::vector<Expression*>::iterator iterator;
  typedef std::vector<Expression*>::const_iterator const_iterator;

  iterator
  begin()
  { return this->entries_.begin(); }

  const_iterator
  begin() const
  { return this->entries_.begin(); }

  iterator
  end()
  { return this->entries_.end(); }

  const_iterator
  end() const
  { return this->entries_.end(); }

  // Erase an entry.
  void
  erase(iterator p)
  { this->entries_.erase(p); }

 private:
  std::vector<Expression*> entries_;
};

// An abstract base class for an expression which is only used by the
// parser, and is lowered in the lowering pass.

class Parser_expression : public Expression
{
 public:
  Parser_expression(Expression_classification classification,
		    Location location)
    : Expression(classification, location)
  { }

 protected:
  virtual Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int) = 0;

  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  { go_unreachable(); }

  void
  do_check_types(Gogo*)
  { go_unreachable(); }

  tree
  do_get_tree(Translate_context*)
  { go_unreachable(); }
};

// An expression which is simply a variable.

class Var_expression : public Expression
{
 public:
  Var_expression(Named_object* variable, Location location)
    : Expression(EXPRESSION_VAR_REFERENCE, location),
      variable_(variable)
  { }

  // Return the variable.
  Named_object*
  named_object() const
  { return this->variable_; }

 protected:
  Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int);

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  Expression*
  do_copy()
  { return this; }

  bool
  do_is_addressable() const
  { return true; }

  void
  do_address_taken(bool);

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The variable we are referencing.
  Named_object* variable_;
};

// A reference to a temporary variable.

class Temporary_reference_expression : public Expression
{
 public:
  Temporary_reference_expression(Temporary_statement* statement,
				 Location location)
    : Expression(EXPRESSION_TEMPORARY_REFERENCE, location),
      statement_(statement), is_lvalue_(false)
  { }

  // Indicate that this reference appears on the left hand side of an
  // assignment statement.
  void
  set_is_lvalue()
  { this->is_lvalue_ = true; }

 protected:
  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  { }

  Expression*
  do_copy()
  { return make_temporary_reference(this->statement_, this->location()); }

  bool
  do_is_addressable() const
  { return true; }

  void
  do_address_taken(bool);

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The statement where the temporary variable is defined.
  Temporary_statement* statement_;
  // Whether this reference appears on the left hand side of an
  // assignment statement.
  bool is_lvalue_;
};

// Set and use a temporary variable.

class Set_and_use_temporary_expression : public Expression
{
 public:
  Set_and_use_temporary_expression(Temporary_statement* statement,
				   Expression* expr, Location location)
    : Expression(EXPRESSION_SET_AND_USE_TEMPORARY, location),
      statement_(statement), expr_(expr)
  { }

  // Return the temporary.
  Temporary_statement*
  temporary() const
  { return this->statement_; }

  // Return the expression.
  Expression*
  expression() const
  { return this->expr_; }

 protected:
  int
  do_traverse(Traverse* traverse)
  { return Expression::traverse(&this->expr_, traverse); }

  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  { }

  Expression*
  do_copy()
  {
    return make_set_and_use_temporary(this->statement_, this->expr_,
				      this->location());
  }

  bool
  do_is_addressable() const
  { return true; }

  void
  do_address_taken(bool);

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The statement where the temporary variable is defined.
  Temporary_statement* statement_;
  // The expression to assign to the temporary.
  Expression* expr_;
};

// A string expression.

class String_expression : public Expression
{
 public:
  String_expression(const std::string& val, Location location)
    : Expression(EXPRESSION_STRING, location),
      val_(val), type_(NULL)
  { }

  const std::string&
  val() const
  { return this->val_; }

  static Expression*
  do_import(Import*);

 protected:
  bool
  do_is_constant() const
  { return true; }

  bool
  do_string_constant_value(std::string* val) const
  {
    *val = this->val_;
    return true;
  }

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  Expression*
  do_copy()
  { return this; }

  tree
  do_get_tree(Translate_context*);

  // Write string literal to a string dump.
  static void
  export_string(String_dump* exp, const String_expression* str);

  void
  do_export(Export*) const;

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The string value.  This is immutable.
  const std::string val_;
  // The type as determined by context.
  Type* type_;
};

// A binary expression.

class Binary_expression : public Expression
{
 public:
  Binary_expression(Operator op, Expression* left, Expression* right,
		    Location location)
    : Expression(EXPRESSION_BINARY, location),
      op_(op), left_(left), right_(right)
  { }

  // Return the operator.
  Operator
  op()
  { return this->op_; }

  // Return the left hand expression.
  Expression*
  left()
  { return this->left_; }

  // Return the right hand expression.
  Expression*
  right()
  { return this->right_; }

  // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
  // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
  // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL.  Return true
  // if this could be done, false if not.
  static bool
  eval_integer(Operator op, Type* left_type, mpz_t left_val,
	       Type* right_type, mpz_t right_val, Location,
	       mpz_t val);

  // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
  // Return true if this could be done, false if not.
  static bool
  eval_float(Operator op, Type* left_type, mpfr_t left_val,
	     Type* right_type, mpfr_t right_val, mpfr_t val,
	     Location);

  // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
  // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG.  Return true if this
  // could be done, false if not.
  static bool
  eval_complex(Operator op, Type* left_type, mpfr_t left_real,
	       mpfr_t left_imag, Type* right_type, mpfr_t right_real,
	       mpfr_t right_imag, mpfr_t real, mpfr_t imag, Location);

  // Compare integer constants according to OP.
  static bool
  compare_integer(Operator op, mpz_t left_val, mpz_t right_val);

  // Compare floating point constants according to OP.
  static bool
  compare_float(Operator op, Type* type, mpfr_t left_val, mpfr_t right_val);

  // Compare complex constants according to OP.
  static bool
  compare_complex(Operator op, Type* type, mpfr_t left_real, mpfr_t left_imag,
		  mpfr_t right_val, mpfr_t right_imag);

  static Expression*
  do_import(Import*);

  // Report an error if OP can not be applied to TYPE.  Return whether
  // it can.  OTYPE is the type of the other operand.
  static bool
  check_operator_type(Operator op, Type* type, Type* otype, Location);

 protected:
  int
  do_traverse(Traverse* traverse);

  Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int);

  bool
  do_is_constant() const
  { return this->left_->is_constant() && this->right_->is_constant(); }

  bool
  do_integer_constant_value(bool, mpz_t val, Type**) const;

  bool
  do_float_constant_value(mpfr_t val, Type**) const;

  bool
  do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;

  void
  do_discarding_value();

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_binary(this->op_, this->left_->copy(),
				   this->right_->copy(), this->location());
  }

  tree
  do_get_tree(Translate_context*);

  void
  do_export(Export*) const;

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  Expression*
  lower_struct_comparison(Gogo*, Statement_inserter*);

  Expression*
  lower_array_comparison(Gogo*, Statement_inserter*);

  Expression*
  lower_compare_to_memcmp(Gogo*, Statement_inserter*);

  Expression*
  operand_address(Statement_inserter*, Expression*);

  // The binary operator to apply.
  Operator op_;
  // The left hand side operand.
  Expression* left_;
  // The right hand side operand.
  Expression* right_;
};

// A call expression.  The go statement needs to dig inside this.

class Call_expression : public Expression
{
 public:
  Call_expression(Expression* fn, Expression_list* args, bool is_varargs,
		  Location location)
    : Expression(EXPRESSION_CALL, location),
      fn_(fn), args_(args), type_(NULL), results_(NULL), tree_(NULL),
      is_varargs_(is_varargs), are_hidden_fields_ok_(false),
      varargs_are_lowered_(false), types_are_determined_(false),
      is_deferred_(false), issued_error_(false)
  { }

  // The function to call.
  Expression*
  fn() const
  { return this->fn_; }

  // The arguments.
  Expression_list*
  args()
  { return this->args_; }

  const Expression_list*
  args() const
  { return this->args_; }

  // Get the function type.
  Function_type*
  get_function_type() const;

  // Return the number of values this call will return.
  size_t
  result_count() const;

  // Return the temporary variable which holds result I.  This is only
  // valid after the expression has been lowered, and is only valid
  // for calls which return multiple results.
  Temporary_statement*
  result(size_t i) const;

  // Return whether this is a call to the predeclared function
  // recover.
  bool
  is_recover_call() const;

  // Set the argument for a call to recover.
  void
  set_recover_arg(Expression*);

  // Whether the last argument is a varargs argument (f(a...)).
  bool
  is_varargs() const
  { return this->is_varargs_; }

  // Note that varargs have already been lowered.
  void
  set_varargs_are_lowered()
  { this->varargs_are_lowered_ = true; }

  // Note that it is OK for this call to set hidden fields when
  // passing arguments.
  void
  set_hidden_fields_are_ok()
  { this->are_hidden_fields_ok_ = true; }

  // Whether this call is being deferred.
  bool
  is_deferred() const
  { return this->is_deferred_; }

  // Note that the call is being deferred.
  void
  set_is_deferred()
  { this->is_deferred_ = true; }

  // We have found an error with this call expression; return true if
  // we should report it.
  bool
  issue_error();

 protected:
  int
  do_traverse(Traverse*);

  virtual Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int);

  void
  do_discarding_value()
  { }

  virtual Type*
  do_type();

  virtual void
  do_determine_type(const Type_context*);

  virtual void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_call(this->fn_->copy(),
				 (this->args_ == NULL
				  ? NULL
				  : this->args_->copy()),
				 this->is_varargs_, this->location());
  }

  bool
  do_must_eval_in_order() const;

  virtual tree
  do_get_tree(Translate_context*);

  virtual bool
  do_is_recover_call() const;

  virtual void
  do_set_recover_arg(Expression*);

  // Let a builtin expression change the argument list.
  void
  set_args(Expression_list* args)
  { this->args_ = args; }

  // Let a builtin expression lower varargs.
  void
  lower_varargs(Gogo*, Named_object* function, Statement_inserter* inserter,
		Type* varargs_type, size_t param_count);

  // Let a builtin expression check whether types have been
  // determined.
  bool
  determining_types();

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  bool
  check_argument_type(int, const Type*, const Type*, Location, bool);

  tree
  interface_method_function(Translate_context*,
			    Interface_field_reference_expression*,
			    tree*);

  tree
  set_results(Translate_context*, tree);

  // The function to call.
  Expression* fn_;
  // The arguments to pass.  This may be NULL if there are no
  // arguments.
  Expression_list* args_;
  // The type of the expression, to avoid recomputing it.
  Type* type_;
  // The list of temporaries which will hold the results if the
  // function returns a tuple.
  std::vector<Temporary_statement*>* results_;
  // The tree for the call, used for a call which returns a tuple.
  tree tree_;
  // True if the last argument is a varargs argument (f(a...)).
  bool is_varargs_;
  // True if this statement may pass hidden fields in the arguments.
  // This is used for generated method stubs.
  bool are_hidden_fields_ok_;
  // True if varargs have already been lowered.
  bool varargs_are_lowered_;
  // True if types have been determined.
  bool types_are_determined_;
  // True if the call is an argument to a defer statement.
  bool is_deferred_;
  // True if we reported an error about a mismatch between call
  // results and uses.  This is to avoid producing multiple errors
  // when there are multiple Call_result_expressions.
  bool issued_error_;
};

// An expression which represents a pointer to a function.

class Func_expression : public Expression
{
 public:
  Func_expression(Named_object* function, Expression* closure,
		  Location location)
    : Expression(EXPRESSION_FUNC_REFERENCE, location),
      function_(function), closure_(closure)
  { }

  // Return the object associated with the function.
  const Named_object*
  named_object() const
  { return this->function_; }

  // Return the closure for this function.  This will return NULL if
  // the function has no closure, which is the normal case.
  Expression*
  closure()
  { return this->closure_; }

  // Return a tree for this function without evaluating the closure.
  tree
  get_tree_without_closure(Gogo*);

 protected:
  int
  do_traverse(Traverse*);

  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  {
    if (this->closure_ != NULL)
      this->closure_->determine_type_no_context();
  }

  Expression*
  do_copy()
  {
    return Expression::make_func_reference(this->function_,
					   (this->closure_ == NULL
					    ? NULL
					    : this->closure_->copy()),
					   this->location());
  }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The function itself.
  Named_object* function_;
  // A closure.  This is normally NULL.  For a nested function, it may
  // be a heap-allocated struct holding pointers to all the variables
  // referenced by this function and defined in enclosing functions.
  Expression* closure_;
};

// A reference to an unknown name.

class Unknown_expression : public Parser_expression
{
 public:
  Unknown_expression(Named_object* named_object, Location location)
    : Parser_expression(EXPRESSION_UNKNOWN_REFERENCE, location),
      named_object_(named_object), no_error_message_(false),
      is_composite_literal_key_(false)
  { }

  // The associated named object.
  Named_object*
  named_object() const
  { return this->named_object_; }

  // The name of the identifier which was unknown.
  const std::string&
  name() const;

  // Call this to indicate that we should not give an error if this
  // name is never defined.  This is used to avoid knock-on errors
  // during an erroneous parse.
  void
  set_no_error_message()
  { this->no_error_message_ = true; }

  // Note that this expression is being used as the key in a composite
  // literal, so it may be OK if it is not resolved.
  void
  set_is_composite_literal_key()
  { this->is_composite_literal_key_ = true; }

  // Note that this expression should no longer be treated as a
  // composite literal key.
  void
  clear_is_composite_literal_key()
  { this->is_composite_literal_key_ = false; }

 protected:
  Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int);

  Expression*
  do_copy()
  { return new Unknown_expression(this->named_object_, this->location()); }

  void
  do_dump_expression(Ast_dump_context*) const;
  
 private:
  // The unknown name.
  Named_object* named_object_;
  // True if we should not give errors if this is undefined.  This is
  // used if there was a parse failure.
  bool no_error_message_;
  // True if this is the key in a composite literal.
  bool is_composite_literal_key_;
};

// An index expression.  This is lowered to an array index, a string
// index, or a map index.

class Index_expression : public Parser_expression
{
 public:
  Index_expression(Expression* left, Expression* start, Expression* end,
		   Location location)
    : Parser_expression(EXPRESSION_INDEX, location),
      left_(left), start_(start), end_(end), is_lvalue_(false)
  { }

  // Record that this expression is an lvalue.
  void
  set_is_lvalue()
  { this->is_lvalue_ = true; }

  // Dump an index expression, i.e. an expression of the form
  // expr[expr] or expr[expr:expr], to a dump context.
  static void
  dump_index_expression(Ast_dump_context*, const Expression* expr, 
                        const Expression* start, const Expression* end);

 protected:
  int
  do_traverse(Traverse*);

  Expression*
  do_lower(Gogo*, Named_object*, Statement_inserter*, int);

  Expression*
  do_copy()
  {
    return new Index_expression(this->left_->copy(), this->start_->copy(),
				(this->end_ == NULL
				 ? NULL
				 : this->end_->copy()),
				this->location());
  }

  bool
  do_must_eval_subexpressions_in_order(int* skip) const
  {
    *skip = 1;
    return true;
  }

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The expression being indexed.
  Expression* left_;
  // The first index.
  Expression* start_;
  // The second index.  This is NULL for an index, non-NULL for a
  // slice.
  Expression* end_;
  // Whether this is being used as an l-value.  We set this during the
  // parse because map index expressions need to know.
  bool is_lvalue_;
};

// An index into a map.

class Map_index_expression : public Expression
{
 public:
  Map_index_expression(Expression* map, Expression* index,
		       Location location)
    : Expression(EXPRESSION_MAP_INDEX, location),
      map_(map), index_(index), is_lvalue_(false),
      is_in_tuple_assignment_(false)
  { }

  // Return the map.
  Expression*
  map()
  { return this->map_; }

  const Expression*
  map() const
  { return this->map_; }

  // Return the index.
  Expression*
  index()
  { return this->index_; }

  const Expression*
  index() const
  { return this->index_; }

  // Get the type of the map being indexed.
  Map_type*
  get_map_type() const;

  // Record that this map expression is an lvalue.  The difference is
  // that an lvalue always inserts the key.
  void
  set_is_lvalue()
  { this->is_lvalue_ = true; }

  // Return whether this map expression occurs in an assignment to a
  // pair of values.
  bool
  is_in_tuple_assignment() const
  { return this->is_in_tuple_assignment_; }

  // Record that this map expression occurs in an assignment to a pair
  // of values.
  void
  set_is_in_tuple_assignment()
  { this->is_in_tuple_assignment_ = true; }

  // Return a tree for the map index.  This returns a tree which
  // evaluates to a pointer to a value in the map.  If INSERT is true,
  // the key will be inserted if not present, and the value pointer
  // will be zero initialized.  If INSERT is false, and the key is not
  // present in the map, the pointer will be NULL.
  tree
  get_value_pointer(Translate_context*, bool insert);

 protected:
  int
  do_traverse(Traverse*);

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_map_index(this->map_->copy(),
				      this->index_->copy(),
				      this->location());
  }

  bool
  do_must_eval_subexpressions_in_order(int* skip) const
  {
    *skip = 1;
    return true;
  }

  // A map index expression is an lvalue but it is not addressable.

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The map we are looking into.
  Expression* map_;
  // The index.
  Expression* index_;
  // Whether this is an lvalue.
  bool is_lvalue_;
  // Whether this is in a tuple assignment to a pair of values.
  bool is_in_tuple_assignment_;
};

// An expression which represents a method bound to its first
// argument.

class Bound_method_expression : public Expression
{
 public:
  Bound_method_expression(Expression* expr, Named_object* method,
			  Location location)
    : Expression(EXPRESSION_BOUND_METHOD, location),
      expr_(expr), expr_type_(NULL), method_(method)
  { }

  // Return the object which is the first argument.
  Expression*
  first_argument()
  { return this->expr_; }

  // Return the implicit type of the first argument.  This will be
  // non-NULL when using a method from an anonymous field without
  // using an explicit stub.
  Type*
  first_argument_type() const
  { return this->expr_type_; }

  // Return the method function.
  Named_object*
  method()
  { return this->method_; }

  // Set the implicit type of the expression.
  void
  set_first_argument_type(Type* type)
  { this->expr_type_ = type; }

 protected:
  int
  do_traverse(Traverse*);

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return new Bound_method_expression(this->expr_->copy(), this->method_,
				       this->location());
  }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The object used to find the method.  This is passed to the method
  // as the first argument.
  Expression* expr_;
  // The implicit type of the object to pass to the method.  This is
  // NULL in the normal case, non-NULL when using a method from an
  // anonymous field which does not require a stub.
  Type* expr_type_;
  // The method itself.
  Named_object* method_;
};

// A reference to a field in a struct.

class Field_reference_expression : public Expression
{
 public:
  Field_reference_expression(Expression* expr, unsigned int field_index,
			     Location location)
    : Expression(EXPRESSION_FIELD_REFERENCE, location),
      expr_(expr), field_index_(field_index)
  { }

  // Return the struct expression.
  Expression*
  expr() const
  { return this->expr_; }

  // Return the field index.
  unsigned int
  field_index() const
  { return this->field_index_; }

  // Set the struct expression.  This is used when parsing.
  void
  set_struct_expression(Expression* expr)
  {
    go_assert(this->expr_ == NULL);
    this->expr_ = expr;
  }

 protected:
  int
  do_traverse(Traverse* traverse)
  { return Expression::traverse(&this->expr_, traverse); }

  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  { this->expr_->determine_type_no_context(); }

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_field_reference(this->expr_->copy(),
					    this->field_index_,
					    this->location());
  }

  bool
  do_is_addressable() const
  { return this->expr_->is_addressable(); }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The expression we are looking into.  This should have a type of
  // struct.
  Expression* expr_;
  // The zero-based index of the field we are retrieving.
  unsigned int field_index_;
};

// A reference to a field of an interface.

class Interface_field_reference_expression : public Expression
{
 public:
  Interface_field_reference_expression(Expression* expr,
				       const std::string& name,
				       Location location)
    : Expression(EXPRESSION_INTERFACE_FIELD_REFERENCE, location),
      expr_(expr), name_(name)
  { }

  // Return the expression for the interface object.
  Expression*
  expr()
  { return this->expr_; }

  // Return the name of the method to call.
  const std::string&
  name() const
  { return this->name_; }

  // Return a tree for the pointer to the function to call, given a
  // tree for the expression.
  tree
  get_function_tree(Translate_context*, tree);

  // Return a tree for the first argument to pass to the interface
  // function, given a tree for the expression.  This is the real
  // object associated with the interface object.
  tree
  get_underlying_object_tree(Translate_context*, tree);

 protected:
  int
  do_traverse(Traverse* traverse);

  Type*
  do_type();

  void
  do_determine_type(const Type_context*);

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_interface_field_reference(this->expr_->copy(),
						      this->name_,
						      this->location());
  }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The expression for the interface object.  This should have a type
  // of interface or pointer to interface.
  Expression* expr_;
  // The field we are retrieving--the name of the method.
  std::string name_;
};

// A type guard expression.

class Type_guard_expression : public Expression
{
 public:
  Type_guard_expression(Expression* expr, Type* type, Location location)
    : Expression(EXPRESSION_TYPE_GUARD, location),
      expr_(expr), type_(type)
  { }

  // Return the expression to convert.
  Expression*
  expr()
  { return this->expr_; }

  // Return the type to which to convert.
  Type*
  type()
  { return this->type_; }

 protected:
  int
  do_traverse(Traverse* traverse);

  Type*
  do_type()
  { return this->type_; }

  void
  do_determine_type(const Type_context*)
  { this->expr_->determine_type_no_context(); }

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return new Type_guard_expression(this->expr_->copy(), this->type_,
				     this->location());
  }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The expression to convert.
  Expression* expr_;
  // The type to which to convert.
  Type* type_;
};

// A receive expression.

class Receive_expression : public Expression
{
 public:
  Receive_expression(Expression* channel, Location location)
    : Expression(EXPRESSION_RECEIVE, location),
      channel_(channel)
  { }

  // Return the channel.
  Expression*
  channel()
  { return this->channel_; }

 protected:
  int
  do_traverse(Traverse* traverse)
  { return Expression::traverse(&this->channel_, traverse); }

  void
  do_discarding_value()
  { }

  Type*
  do_type();

  void
  do_determine_type(const Type_context*)
  { this->channel_->determine_type_no_context(); }

  void
  do_check_types(Gogo*);

  Expression*
  do_copy()
  {
    return Expression::make_receive(this->channel_->copy(), this->location());
  }

  bool
  do_must_eval_in_order() const
  { return true; }

  tree
  do_get_tree(Translate_context*);

  void
  do_dump_expression(Ast_dump_context*) const;

 private:
  // The channel from which we are receiving.
  Expression* channel_;
};

#endif // !defined(GO_EXPRESSIONS_H)