summaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/gogo.h
blob: a04a1a36ee31ef07b861cd3b887f7e0c2e180550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
// gogo.h -- Go frontend parsed representation.     -*- C++ -*-

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef GO_GOGO_H
#define GO_GOGO_H

#include "go-linemap.h"

class Traverse;
class Statement_inserter;
class Type;
class Type_hash_identical;
class Type_equal;
class Type_identical;
class Typed_identifier;
class Typed_identifier_list;
class Function_type;
class Expression;
class Expression_list;
class Statement;
class Temporary_statement;
class Block;
class Function;
class Bindings;
class Bindings_snapshot;
class Package;
class Variable;
class Pointer_type;
class Struct_type;
class Struct_field;
class Struct_field_list;
class Array_type;
class Map_type;
class Channel_type;
class Interface_type;
class Named_type;
class Forward_declaration_type;
class Named_object;
class Label;
class Translate_context;
class Backend;
class Export;
class Import;
class Bexpression;
class Btype;
class Bstatement;
class Bblock;
class Bvariable;
class Blabel;
class Bfunction;
class Escape_context;
class Node;

// This file declares the basic classes used to hold the internal
// representation of Go which is built by the parser.

// An initialization function for an imported package.  This is a
// magic function which initializes variables and runs the "init"
// function.

class Import_init
{
 public:
  Import_init(const std::string& package_name, const std::string& init_name,
	      int priority)
    : package_name_(package_name), init_name_(init_name), priority_(priority)
  { }

  // The name of the package being imported.
  const std::string&
  package_name() const
  { return this->package_name_; }

  // The name of the package's init function.
  const std::string&
  init_name() const
  { return this->init_name_; }

  // Older V1 export data uses a priority scheme to order
  // initialization functions; functions with a lower priority number
  // must be run first. This value will be set to -1 for current
  // generation objects, and will take on a non-negative value only
  // when importing a V1-vintage object.
  int
  priority() const
  { return this->priority_; }

  // Reset priority.
  void
  set_priority(int new_priority)
  { this->priority_ = new_priority; }

  // Record the fact that some other init fcn must be run before this init fcn.
  void
  record_precursor_fcn(std::string init_fcn_name)
  { this->precursor_functions_.insert(init_fcn_name); }

  // Return the list of precursor fcns for this fcn (must be run before it).
  const std::set<std::string>&
  precursors() const
  { return this->precursor_functions_; }

 private:
  // The name of the package being imported.
  std::string package_name_;
  // The name of the package's init function.
  std::string init_name_;
  // Names of init functions that must be run before this fcn.
  std::set<std::string> precursor_functions_;
  // Priority for this function. See note above on obsolescence.
  int priority_;
};

// For sorting purposes.

struct Import_init_lt {
  bool operator()(const Import_init* i1, const Import_init* i2)
  {
    return i1->init_name() < i2->init_name();
  }
};

// Set of import init objects.
class Import_init_set : public std::set<Import_init*, Import_init_lt> {
};

inline bool
priority_compare(const Import_init* i1, const Import_init* i2)
{
  if (i1->priority() < i2->priority())
    return true;
  if (i1->priority() > i2->priority())
    return false;
  if (i1->package_name() != i2->package_name())
    return i1->package_name() < i2->package_name();
  return i1->init_name() < i2->init_name();
}

// The holder for the internal representation of the entire
// compilation unit.

class Gogo
{
 public:
  // Create the IR, passing in the sizes of the types "int" and
  // "uintptr" in bits.
  Gogo(Backend* backend, Linemap *linemap, int int_type_size, int pointer_size);

  // Get the backend generator.
  Backend*
  backend()
  { return this->backend_; }

  // Get the Location generator.
  Linemap*
  linemap()
  { return this->linemap_; }

  // Get the package name.
  const std::string&
  package_name() const;

  // Set the package name.
  void
  set_package_name(const std::string&, Location);

  // Return whether this is the "main" package.
  bool
  is_main_package() const;

  // If necessary, adjust the name to use for a hidden symbol.  We add
  // the package name, so that hidden symbols in different packages do
  // not collide.
  std::string
  pack_hidden_name(const std::string& name, bool is_exported) const
  {
    return (is_exported
	    ? name
	    : '.' + this->pkgpath() + '.' + name);
  }

  // Unpack a name which may have been hidden.  Returns the
  // user-visible name of the object.
  static std::string
  unpack_hidden_name(const std::string& name)
  { return name[0] != '.' ? name : name.substr(name.rfind('.') + 1); }

  // Return whether a possibly packed name is hidden.
  static bool
  is_hidden_name(const std::string& name)
  { return name[0] == '.'; }

  // Return the package path of a hidden name.
  static std::string
  hidden_name_pkgpath(const std::string& name)
  {
    go_assert(Gogo::is_hidden_name(name));
    return name.substr(1, name.rfind('.') - 1);
  }

  // Given a name which may or may not have been hidden, return the
  // name to use within a mangled symbol name.
  static std::string
  mangle_possibly_hidden_name(const std::string& name)
  { 
    // FIXME: This adds in pkgpath twice for hidden symbols, which is
    // less than ideal.
    std::string n;
    if (!Gogo::is_hidden_name(name))
      n = name;
    else
      {
        n = ".";
        std::string pkgpath = Gogo::hidden_name_pkgpath(name);
        n.append(Gogo::pkgpath_for_symbol(pkgpath));
        n.append(1, '.');
        n.append(Gogo::unpack_hidden_name(name));
      }
    return n;
  }

  // Given a name which may or may not have been hidden, return the
  // name to use in an error message.
  static std::string
  message_name(const std::string& name);

  // Return whether a name is the blank identifier _.
  static bool
  is_sink_name(const std::string& name)
  {
    return (name[0] == '.'
	    && name[name.length() - 1] == '_'
	    && name[name.length() - 2] == '.');
  }

  // Convert a pkgpath into a string suitable for a symbol
  static std::string
  pkgpath_for_symbol(const std::string& pkgpath);

  // Return the package path to use for reflect.Type.PkgPath.
  const std::string&
  pkgpath() const;

  // Return the package path to use for a symbol name.
  const std::string&
  pkgpath_symbol() const;

  // Set the package path from a command line option.
  void
  set_pkgpath(const std::string&);

  // Set the prefix from a command line option.
  void
  set_prefix(const std::string&);

  // Return whether pkgpath was set from a command line option.
  bool
  pkgpath_from_option() const
  { return this->pkgpath_from_option_; }

  // Return the relative import path as set from the command line.
  // Returns an empty string if it was not set.
  const std::string&
  relative_import_path() const
  { return this->relative_import_path_; }

  // Set the relative import path from a command line option.
  void
  set_relative_import_path(const std::string& s)
  { this->relative_import_path_ = s; }

  // Set the C header file to write.  This is used for the runtime
  // package.
  void
  set_c_header(const std::string& s)
  { this->c_header_ = s; }

  // Return whether to check for division by zero in binary operations.
  bool
  check_divide_by_zero() const
  { return this->check_divide_by_zero_; }

  // Set the option to check division by zero from a command line option.
  void
  set_check_divide_by_zero(bool b)
  { this->check_divide_by_zero_ = b; }

  // Return whether to check for division overflow in binary operations.
  bool
  check_divide_overflow() const
  { return this->check_divide_overflow_; }

  // Set the option to check division overflow from a command line option.
  void
  set_check_divide_overflow(bool b)
  { this->check_divide_overflow_ = b; }

  // Return whether we are compiling the runtime package.
  bool
  compiling_runtime() const
  { return this->compiling_runtime_; }

  // Set whether we are compiling the runtime package.
  void
  set_compiling_runtime(bool b)
  { this->compiling_runtime_ = b; }

  // Return the level of escape analysis debug information to emit.
  int
  debug_escape_level() const
  { return this->debug_escape_level_; }

  // Set the level of escape analysis debugging from a command line option.
  void
  set_debug_escape_level(int level)
  { this->debug_escape_level_ = level; }

  // Import a package.  FILENAME is the file name argument, LOCAL_NAME
  // is the local name to give to the package.  If LOCAL_NAME is empty
  // the declarations are added to the global scope.
  void
  import_package(const std::string& filename, const std::string& local_name,
		 bool is_local_name_exported, bool must_exist, Location);

  // Whether we are the global binding level.
  bool
  in_global_scope() const;

  // Look up a name in the current binding contours.
  Named_object*
  lookup(const std::string&, Named_object** pfunction) const;

  // Look up a name in the current block.
  Named_object*
  lookup_in_block(const std::string&) const;

  // Look up a name in the global namespace--the universal scope.
  Named_object*
  lookup_global(const char*) const;

  // Add a new imported package.  REAL_NAME is the real name of the
  // package.  ALIAS is the alias of the package; this may be the same
  // as REAL_NAME.  This sets *PADD_TO_GLOBALS if symbols added to
  // this package should be added to the global namespace; this is
  // true if the alias is ".".  LOCATION is the location of the import
  // statement.  This returns the new package, or NULL on error.
  Package*
  add_imported_package(const std::string& real_name, const std::string& alias,
		       bool is_alias_exported,
		       const std::string& pkgpath,
		       const std::string& pkgpath_symbol,
		       Location location,
		       bool* padd_to_globals);

  // Register a package.  This package may or may not be imported.
  // This returns the Package structure for the package, creating if
  // it necessary.
  Package*
  register_package(const std::string& pkgpath,
		   const std::string& pkgpath_symbol, Location);

  // Look up a package by pkgpath, and return its pkgpath_symbol.
  std::string
  pkgpath_symbol_for_package(const std::string&);

  // Start compiling a function.  ADD_METHOD_TO_TYPE is true if a
  // method function should be added to the type of its receiver.
  Named_object*
  start_function(const std::string& name, Function_type* type,
		 bool add_method_to_type, Location);

  // Finish compiling a function.
  void
  finish_function(Location);

  // Return the current function.
  Named_object*
  current_function() const;

  // Return the current block.
  Block*
  current_block();

  // Start a new block.  This is not initially associated with a
  // function.
  void
  start_block(Location);

  // Finish the current block and return it.
  Block*
  finish_block(Location);

  // Declare an erroneous name.  This is used to avoid knock-on errors
  // after a parsing error.
  Named_object*
  add_erroneous_name(const std::string& name);

  // Declare an unknown name.  This is used while parsing.  The name
  // must be resolved by the end of the parse.  Unknown names are
  // always added at the package level.
  Named_object*
  add_unknown_name(const std::string& name, Location);

  // Declare a function.
  Named_object*
  declare_function(const std::string&, Function_type*, Location);

  // Declare a function at the package level.  This is used for
  // functions generated for a type.
  Named_object*
  declare_package_function(const std::string&, Function_type*, Location);

  // Add a label.
  Label*
  add_label_definition(const std::string&, Location);

  // Add a label reference.  ISSUE_GOTO_ERRORS is true if we should
  // report errors for a goto from the current location to the label
  // location.
  Label*
  add_label_reference(const std::string&, Location,
		      bool issue_goto_errors);

  // An analysis set is a list of functions paired with a boolean that indicates
  // whether the list of functions are recursive.
  typedef std::pair<std::vector<Named_object*>, bool> Analysis_set;

  // Add a GROUP of possibly RECURSIVE functions to the Analysis_set for this
  // package.
  void
  add_analysis_set(const std::vector<Named_object*>& group, bool recursive)
  { this->analysis_sets_.push_back(std::make_pair(group, recursive)); }

  // Return a snapshot of the current binding state.
  Bindings_snapshot*
  bindings_snapshot(Location);

  // Add a statement to the current block.
  void
  add_statement(Statement*);

  // Add a block to the current block.
  void
  add_block(Block*, Location);

  // Add a constant.
  Named_object*
  add_constant(const Typed_identifier&, Expression*, int iota_value);

  // Add a type.
  void
  add_type(const std::string&, Type*, Location);

  // Add a named type.  This is used for builtin types, and to add an
  // imported type to the global scope.
  void
  add_named_type(Named_type*);

  // Declare a type.
  Named_object*
  declare_type(const std::string&, Location);

  // Declare a type at the package level.  This is used when the
  // parser sees an unknown name where a type name is required.
  Named_object*
  declare_package_type(const std::string&, Location);

  // Define a type which was already declared.
  void
  define_type(Named_object*, Named_type*);

  // Add a variable.
  Named_object*
  add_variable(const std::string&, Variable*);

  // Add a sink--a reference to the blank identifier _.
  Named_object*
  add_sink();

  // Add a type which needs to be verified.  This is used for sink
  // types, just to give appropriate error messages.
  void
  add_type_to_verify(Type* type);

  // Add a named object to the current namespace.  This is used for
  // import . "package".
  void
  add_dot_import_object(Named_object*);

  // Add an identifier to the list of names seen in the file block.
  void
  add_file_block_name(const std::string& name, Location location)
  { this->file_block_names_[name] = location; }

  // Add a linkname, from the go:linkname compiler directive.  This
  // changes the externally visible name of go_name to be ext_name.
  void
  add_linkname(const std::string& go_name, bool is_exported,
	       const std::string& ext_name, Location location);

  // Mark all local variables in current bindings as used.  This is
  // used when there is a parse error to avoid useless errors.
  void
  mark_locals_used();

  // Return a name to use for an error case.  This should only be used
  // after reporting an error, and is used to avoid useless knockon
  // errors.
  static std::string
  erroneous_name();

  // Return whether the name indicates an error.
  static bool
  is_erroneous_name(const std::string&);

  // Return a name to use for a thunk function.  A thunk function is
  // one we create during the compilation, for a go statement or a
  // defer statement or a method expression.
  static std::string
  thunk_name();

  // Return whether an object is a thunk.
  static bool
  is_thunk(const Named_object*);

  // Note that we've seen an interface type.  This is used to build
  // all required interface method tables.
  void
  record_interface_type(Interface_type*);

  // Note that we need an initialization function.
  void
  set_need_init_fn()
  { this->need_init_fn_ = true; }

  // Return whether the current file imported the unsafe package.
  bool
  current_file_imported_unsafe() const
  { return this->current_file_imported_unsafe_; }

  // Clear out all names in file scope.  This is called when we start
  // parsing a new file.
  void
  clear_file_scope();

  // Record that VAR1 must be initialized after VAR2.  This is used
  // when VAR2 does not appear in VAR1's INIT or PREINIT.
  void
  record_var_depends_on(Variable* var1, Named_object* var2)
  {
    go_assert(this->var_deps_.find(var1) == this->var_deps_.end());
    this->var_deps_[var1] = var2;
  }

  // Return the variable that VAR depends on, or NULL if none.
  Named_object*
  var_depends_on(Variable* var) const
  {
    Var_deps::const_iterator p = this->var_deps_.find(var);
    return p != this->var_deps_.end() ? p->second : NULL;
  }

  // Queue up a type-specific function to be written out.  This is
  // used when a type-specific function is needed when not at the top
  // level.
  void
  queue_specific_type_function(Type* type, Named_type* name, int64_t size,
			       const std::string& hash_name,
			       Function_type* hash_fntype,
			       const std::string& equal_name,
			       Function_type* equal_fntype);

  // Write out queued specific type functions.
  void
  write_specific_type_functions();

  // Whether we are done writing out specific type functions.
  bool
  specific_type_functions_are_written() const
  { return this->specific_type_functions_are_written_; }

  // Add a pointer that needs to be added to the list of objects
  // traversed by the garbage collector.  This should be an expression
  // of pointer type that points to static storage.  It's not
  // necessary to add global variables to this list, just global
  // variable initializers that would otherwise not be seen.
  void
  add_gc_root(Expression* expr)
  {
    this->set_need_init_fn();
    this->gc_roots_.push_back(expr);
  }

  // Traverse the tree.  See the Traverse class.
  void
  traverse(Traverse*);

  // Define the predeclared global names.
  void
  define_global_names();

  // Verify and complete all types.
  void
  verify_types();

  // Lower the parse tree.
  void
  lower_parse_tree();

  // Lower all the statements in a block.
  void
  lower_block(Named_object* function, Block*);

  // Lower an expression.
  void
  lower_expression(Named_object* function, Statement_inserter*, Expression**);

  // Lower a constant.
  void
  lower_constant(Named_object*);

  // Flatten all the statements in a block.
  void
  flatten_block(Named_object* function, Block*);

  // Flatten an expression.
  void
  flatten_expression(Named_object* function, Statement_inserter*, Expression**);

  // Create all necessary function descriptors.
  void
  create_function_descriptors();

  // Finalize the method lists and build stub methods for named types.
  void
  finalize_methods();

  // Work out the types to use for unspecified variables and
  // constants.
  void
  determine_types();

  // Type check the program.
  void
  check_types();

  // Check the types in a single block.  This is used for complicated
  // go statements.
  void
  check_types_in_block(Block*);

  // Check for return statements.
  void
  check_return_statements();

  // Analyze the program flow for escape information.
  void
  analyze_escape();

  // Discover the groups of possibly recursive functions in this package.
  void
  discover_analysis_sets();

  // Build a connectivity graph between the objects in each analyzed function.
  void
  assign_connectivity(Escape_context*, Named_object*);

  // Traverse the objects in the connecitivty graph from the sink, adjusting the
  // escape levels of each object.
  void
  propagate_escape(Escape_context*, Node*);

  // Add notes about the escape level of a function's input and output
  // parameters for exporting and importing top level functions. 
  void
  tag_function(Escape_context*, Named_object*);

  // Do all exports.
  void
  do_exports();

  // Add an import control function for an imported package to the
  // list.
  void
  add_import_init_fn(const std::string& package_name,
		     const std::string& init_name, int prio);

  // Return the Import_init for a given init name.
  Import_init*
  lookup_init(const std::string& init_name);

  // Turn short-cut operators (&&, ||) into explicit if statements.
  void
  remove_shortcuts();

  // Use temporary variables to force order of evaluation.
  void
  order_evaluations();

  // Add write barriers as needed.
  void
  add_write_barriers();

  // Return whether an assignment that sets LHS to RHS needs a write
  // barrier.
  bool
  assign_needs_write_barrier(Expression* lhs);

  // Return an assignment that sets LHS to RHS using a write barrier.
  // This returns an if statement that checks whether write barriers
  // are enabled.  If not, it does LHS = RHS, otherwise it calls the
  // appropriate write barrier function.
  Statement*
  assign_with_write_barrier(Function*, Block*, Statement_inserter*,
			    Expression* lhs, Expression* rhs, Location);

  // Flatten parse tree.
  void
  flatten();

  // Build thunks for functions which call recover.
  void
  build_recover_thunks();

  // Return a declaration for __builtin_return_address or
  // __builtin_frame_address.
  static Named_object*
  declare_builtin_rf_address(const char* name);

  // Simplify statements which might use thunks: go and defer
  // statements.
  void
  simplify_thunk_statements();

  // Dump AST if -fgo-dump-ast is set 
  void
  dump_ast(const char* basename);

  // Dump Call Graph if -fgo-dump-calls is set.
  void
  dump_call_graph(const char* basename);

  // Dump Connection Graphs if -fgo-dump-connections is set.
  void
  dump_connection_graphs(const char* basename);

  // Convert named types to the backend representation.
  void
  convert_named_types();

  // Convert named types in a list of bindings.
  void
  convert_named_types_in_bindings(Bindings*);

  // True if named types have been converted to the backend
  // representation.
  bool
  named_types_are_converted() const
  { return this->named_types_are_converted_; }

  // Give an error if the initialization of VAR depends on itself.
  void
  check_self_dep(Named_object*);

  // Write out the global values.
  void
  write_globals();

  // Build a call to the runtime error function.
  Expression*
  runtime_error(int code, Location);

  // Build required interface method tables.
  void
  build_interface_method_tables();

  // Return an expression which allocates memory to hold values of type TYPE.
  Expression*
  allocate_memory(Type *type, Location);

  // Get the name of the magic initialization function.
  const std::string&
  get_init_fn_name();

 private:
  // During parsing, we keep a stack of functions.  Each function on
  // the stack is one that we are currently parsing.  For each
  // function, we keep track of the current stack of blocks.
  struct Open_function
  {
    // The function.
    Named_object* function;
    // The stack of active blocks in the function.
    std::vector<Block*> blocks;
  };

  // The stack of functions.
  typedef std::vector<Open_function> Open_functions;

  // Set up the built-in unsafe package.
  void
  import_unsafe(const std::string&, bool is_exported, Location);

  // Return the current binding contour.
  Bindings*
  current_bindings();

  const Bindings*
  current_bindings() const;

  void
  write_c_header();

  // Get the decl for the magic initialization function.
  Named_object*
  initialization_function_decl();

  // Create the magic initialization function.
  Named_object*
  create_initialization_function(Named_object* fndecl, Bstatement* code_stmt);

  // Initialize imported packages. BFUNCTION is the function
  // into which the package init calls will be placed.
  void
  init_imports(std::vector<Bstatement*>&, Bfunction* bfunction);

  // Register variables with the garbage collector.
  void
  register_gc_vars(const std::vector<Named_object*>&,
                   std::vector<Bstatement*>&,
                   Bfunction* init_bfunction);

  Named_object*
  write_barrier_variable();

  Statement*
  check_write_barrier(Block*, Statement*, Statement*);

  // Type used to map import names to packages.
  typedef std::map<std::string, Package*> Imports;

  // Type used to map package names to packages.
  typedef std::map<std::string, Package*> Packages;

  // Type used to map variables to the function calls that set them.
  // This is used for initialization dependency analysis.
  typedef std::map<Variable*, Named_object*> Var_deps;

  // Type used to map identifiers in the file block to the location
  // where they were defined.
  typedef Unordered_map(std::string, Location) File_block_names;

  // Type used to queue writing a type specific function.
  struct Specific_type_function
  {
    Type* type;
    Named_type* name;
    int64_t size;
    std::string hash_name;
    Function_type* hash_fntype;
    std::string equal_name;
    Function_type* equal_fntype;

    Specific_type_function(Type* atype, Named_type* aname, int64_t asize,
			   const std::string& ahash_name,
			   Function_type* ahash_fntype,
			   const std::string& aequal_name,
			   Function_type* aequal_fntype)
      : type(atype), name(aname), size(asize), hash_name(ahash_name),
	hash_fntype(ahash_fntype), equal_name(aequal_name),
	equal_fntype(aequal_fntype)
    { }
  };

  // Recompute init priorities.
  void
  recompute_init_priorities();

  // Recursive helper used by the routine above.
  void
  update_init_priority(Import_init* ii,
                       std::set<const Import_init *>* visited);

  // The backend generator.
  Backend* backend_;
  // The object used to keep track of file names and line numbers.
  Linemap* linemap_;
  // The package we are compiling.
  Package* package_;
  // The list of currently open functions during parsing.
  Open_functions functions_;
  // The global binding contour.  This includes the builtin functions
  // and the package we are compiling.
  Bindings* globals_;
  // The list of names we have seen in the file block.
  File_block_names file_block_names_;
  // Mapping from import file names to packages.
  Imports imports_;
  // Whether the magic unsafe package was imported.
  bool imported_unsafe_;
  // Whether the magic unsafe package was imported by the current file.
  bool current_file_imported_unsafe_;
  // Mapping from package names we have seen to packages.  This does
  // not include the package we are compiling.
  Packages packages_;
  // The functions named "init", if there are any.
  std::vector<Named_object*> init_functions_;
  // A mapping from variables to the function calls that initialize
  // them, if it is not stored in the variable's init or preinit.
  // This is used for dependency analysis.
  Var_deps var_deps_;
  // Whether we need a magic initialization function.
  bool need_init_fn_;
  // The name of the magic initialization function.
  std::string init_fn_name_;
  // A list of import control variables for packages that we import.
  Import_init_set imported_init_fns_;
  // The package path used for reflection data.
  std::string pkgpath_;
  // The package path to use for a symbol name.
  std::string pkgpath_symbol_;
  // The prefix to use for symbols, from the -fgo-prefix option.
  std::string prefix_;
  // Whether pkgpath_ has been set.
  bool pkgpath_set_;
  // Whether an explicit package path was set by -fgo-pkgpath.
  bool pkgpath_from_option_;
  // Whether an explicit prefix was set by -fgo-prefix.
  bool prefix_from_option_;
  // The relative import path, from the -fgo-relative-import-path
  // option.
  std::string relative_import_path_;
  // The C header file to write, from the -fgo-c-header option.
  std::string c_header_;
  // Whether or not to check for division by zero, from the
  // -fgo-check-divide-zero option.
  bool check_divide_by_zero_;
  // Whether or not to check for division overflow, from the
  // -fgo-check-divide-overflow option.
  bool check_divide_overflow_;
  // Whether we are compiling the runtime package, from the
  // -fgo-compiling-runtime option.
  bool compiling_runtime_;
  // The level of escape analysis debug information to emit, from the
  // -fgo-debug-escape option.
  int debug_escape_level_;
  // A list of types to verify.
  std::vector<Type*> verify_types_;
  // A list of interface types defined while parsing.
  std::vector<Interface_type*> interface_types_;
  // Type specific functions to write out.
  std::vector<Specific_type_function*> specific_type_functions_;
  // Whether we are done writing out specific type functions.
  bool specific_type_functions_are_written_;
  // Whether named types have been converted.
  bool named_types_are_converted_;
  // A list containing groups of possibly mutually recursive functions to be
  // considered during escape analysis.
  std::vector<Analysis_set> analysis_sets_;
  // A list of objects to add to the GC roots.
  std::vector<Expression*> gc_roots_;
};

// A block of statements.

class Block
{
 public:
  Block(Block* enclosing, Location);

  // Return the enclosing block.
  const Block*
  enclosing() const
  { return this->enclosing_; }

  // Return the bindings of the block.
  Bindings*
  bindings()
  { return this->bindings_; }

  const Bindings*
  bindings() const
  { return this->bindings_; }

  // Look at the block's statements.
  const std::vector<Statement*>*
  statements() const
  { return &this->statements_; }

  // Return the start location.  This is normally the location of the
  // left curly brace which starts the block.
  Location
  start_location() const
  { return this->start_location_; }

  // Return the end location.  This is normally the location of the
  // right curly brace which ends the block.
  Location
  end_location() const
  { return this->end_location_; }

  // Add a statement to the block.
  void
  add_statement(Statement*);

  // Add a statement to the front of the block.
  void
  add_statement_at_front(Statement*);

  // Replace a statement in a block.
  void
  replace_statement(size_t index, Statement*);

  // Add a Statement before statement number INDEX.
  void
  insert_statement_before(size_t index, Statement*);

  // Add a Statement after statement number INDEX.
  void
  insert_statement_after(size_t index, Statement*);

  // Set the end location of the block.
  void
  set_end_location(Location location)
  { this->end_location_ = location; }

  // Traverse the tree.
  int
  traverse(Traverse*);

  // Set final types for unspecified variables and constants.
  void
  determine_types();

  // Return true if execution of this block may fall through to the
  // next block.
  bool
  may_fall_through() const;

  // Convert the block to the backend representation.
  Bblock*
  get_backend(Translate_context*);

  // Iterate over statements.

  typedef std::vector<Statement*>::iterator iterator;

  iterator
  begin()
  { return this->statements_.begin(); }

  iterator
  end()
  { return this->statements_.end(); }

 private:
  // Enclosing block.
  Block* enclosing_;
  // Statements in the block.
  std::vector<Statement*> statements_;
  // Binding contour.
  Bindings* bindings_;
  // Location of start of block.
  Location start_location_;
  // Location of end of block.
  Location end_location_;
};

// A function.

class Function
{
 public:
  Function(Function_type* type, Named_object*, Block*, Location);

  // Return the function's type.
  Function_type*
  type() const
  { return this->type_; }

  // Return the enclosing function if there is one.
  Named_object*
  enclosing() const
  { return this->enclosing_; }

  // Set the enclosing function.  This is used when building thunks
  // for functions which call recover.
  void
  set_enclosing(Named_object* enclosing)
  {
    go_assert(this->enclosing_ == NULL);
    this->enclosing_ = enclosing;
  }

  // The result variables.
  typedef std::vector<Named_object*> Results;

  // Create the result variables in the outer block.
  void
  create_result_variables(Gogo*);

  // Update the named result variables when cloning a function which
  // calls recover.
  void
  update_result_variables();

  // Return the result variables.
  Results*
  result_variables()
  { return this->results_; }

  bool
  is_sink() const
  { return this->is_sink_; }

  void
  set_is_sink()
  { this->is_sink_ = true; }

  // Whether the result variables have names.
  bool
  results_are_named() const
  { return this->results_are_named_; }

  // Set the assembler name.
  void
  set_asm_name(const std::string& asm_name)
  { this->asm_name_ = asm_name; }

  // Return the pragmas for this function.
  unsigned int
  pragmas() const
  { return this->pragmas_; }

  // Set the pragmas for this function.
  void
  set_pragmas(unsigned int pragmas)
  {
    this->pragmas_ = pragmas;
  }

  // Whether this method should not be included in the type
  // descriptor.
  bool
  nointerface() const;

  // Record that this method should not be included in the type
  // descriptor.
  void
  set_nointerface();

  // Record that this function is a stub method created for an unnamed
  // type.
  void
  set_is_unnamed_type_stub_method()
  {
    go_assert(this->is_method());
    this->is_unnamed_type_stub_method_ = true;
  }

  // Return the amount of enclosed variables in this closure.
  size_t
  closure_field_count() const
  { return this->closure_fields_.size(); }

  // Add a new field to the closure variable.
  void
  add_closure_field(Named_object* var, Location loc)
  { this->closure_fields_.push_back(std::make_pair(var, loc)); }

  // Whether this function needs a closure.
  bool
  needs_closure() const
  { return !this->closure_fields_.empty(); }

  // Return the closure variable, creating it if necessary.  This is
  // passed to the function as a static chain parameter.
  Named_object*
  closure_var();

  // Set the closure variable.  This is used when building thunks for
  // functions which call recover.
  void
  set_closure_var(Named_object* v)
  {
    go_assert(this->closure_var_ == NULL);
    this->closure_var_ = v;
  }

  // Return the variable for a reference to field INDEX in the closure
  // variable.
  Named_object*
  enclosing_var(unsigned int index)
  {
    go_assert(index < this->closure_fields_.size());
    return closure_fields_[index].first;
  }

  // Set the type of the closure variable if there is one.
  void
  set_closure_type();

  // Get the block of statements associated with the function.
  Block*
  block() const
  { return this->block_; }

  // Get the location of the start of the function.
  Location
  location() const
  { return this->location_; }

  // Return whether this function is actually a method.
  bool
  is_method() const;

  // Add a label definition to the function.
  Label*
  add_label_definition(Gogo*, const std::string& label_name, Location);

  // Add a label reference to a function.  ISSUE_GOTO_ERRORS is true
  // if we should report errors for a goto from the current location
  // to the label location.
  Label*
  add_label_reference(Gogo*, const std::string& label_name,
		      Location, bool issue_goto_errors);

  // Warn about labels that are defined but not used.
  void
  check_labels() const;

  // Note that a new local type has been added.  Return its index.
  unsigned int
  new_local_type_index()
  { return this->local_type_count_++; }

  // Whether this function calls the predeclared recover function.
  bool
  calls_recover() const
  { return this->calls_recover_; }

  // Record that this function calls the predeclared recover function.
  // This is set during the lowering pass.
  void
  set_calls_recover()
  { this->calls_recover_ = true; }

  // Whether this is a recover thunk function.
  bool
  is_recover_thunk() const
  { return this->is_recover_thunk_; }

  // Record that this is a thunk built for a function which calls
  // recover.
  void
  set_is_recover_thunk()
  { this->is_recover_thunk_ = true; }

  // Whether this function already has a recover thunk.
  bool
  has_recover_thunk() const
  { return this->has_recover_thunk_; }

  // Record that this function already has a recover thunk.
  void
  set_has_recover_thunk()
  { this->has_recover_thunk_ = true; }

  // Record that this function is a thunk created for a defer
  // statement that calls the __go_set_defer_retaddr runtime function.
  void
  set_calls_defer_retaddr()
  { this->calls_defer_retaddr_ = true; }

  // Whether this is a type hash or equality function created by the
  // compiler.
  bool
  is_type_specific_function()
  { return this->is_type_specific_function_; }

  // Record that this function is a type hash or equality function
  // created by the compiler.
  void
  set_is_type_specific_function()
  { this->is_type_specific_function_ = true; }

  // Mark the function as going into a unique section.
  void
  set_in_unique_section()
  { this->in_unique_section_ = true; }

  // Swap with another function.  Used only for the thunk which calls
  // recover.
  void
  swap_for_recover(Function *);

  // Traverse the tree.
  int
  traverse(Traverse*);

  // Determine types in the function.
  void
  determine_types();

  // Return an expression for the function descriptor, given the named
  // object for this function.  This may only be called for functions
  // without a closure.  This will be an immutable struct with one
  // field that points to the function's code.
  Expression*
  descriptor(Gogo*, Named_object*);

  // Set the descriptor for this function.  This is used when a
  // function declaration is followed by a function definition.
  void
  set_descriptor(Expression* descriptor)
  {
    go_assert(this->descriptor_ == NULL);
    this->descriptor_ = descriptor;
  }

  // Return the backend representation.
  Bfunction*
  get_or_make_decl(Gogo*, Named_object*);

  // Return the function's decl after it has been built.
  Bfunction*
  get_decl() const;

  // Set the function decl to hold a backend representation of the function
  // code.
  void
  build(Gogo*, Named_object*);

  // Get the statement that assigns values to this function's result struct.
  Bstatement*
  return_value(Gogo*, Named_object*, Location) const;

  // Get an expression for the variable holding the defer stack.
  Expression*
  defer_stack(Location);

  // Export the function.
  void
  export_func(Export*, const std::string& name) const;

  // Export a function with a type.
  static void
  export_func_with_type(Export*, const std::string& name,
			const Function_type*);

  // Import a function.
  static void
  import_func(Import*, std::string* pname, Typed_identifier** receiver,
	      Typed_identifier_list** pparameters,
	      Typed_identifier_list** presults, bool* is_varargs);

 private:
  // Type for mapping from label names to Label objects.
  typedef Unordered_map(std::string, Label*) Labels;

  void
  build_defer_wrapper(Gogo*, Named_object*, Bstatement**, Bstatement**);

  typedef std::vector<std::pair<Named_object*,
				Location> > Closure_fields;

  // The function's type.
  Function_type* type_;
  // The enclosing function.  This is NULL when there isn't one, which
  // is the normal case.
  Named_object* enclosing_;
  // The result variables, if any.
  Results* results_;
  // If there is a closure, this is the list of variables which appear
  // in the closure.  This is created by the parser, and then resolved
  // to a real type when we lower parse trees.
  Closure_fields closure_fields_;
  // The closure variable, passed as a parameter using the static
  // chain parameter.  Normally NULL.
  Named_object* closure_var_;
  // The outer block of statements in the function.
  Block* block_;
  // The source location of the start of the function.
  Location location_;
  // Labels defined or referenced in the function.
  Labels labels_;
  // The number of local types defined in this function.
  unsigned int local_type_count_;
  // The assembler name: this is the name that will be put in the object file.
  // Set by the go:linkname compiler directive.  This is normally empty.
  std::string asm_name_;
  // The function descriptor, if any.
  Expression* descriptor_;
  // The function decl.
  Bfunction* fndecl_;
  // The defer stack variable.  A pointer to this variable is used to
  // distinguish the defer stack for one function from another.  This
  // is NULL unless we actually need a defer stack.
  Temporary_statement* defer_stack_;
  // Pragmas for this function.  This is a set of GOPRAGMA bits.
  unsigned int pragmas_;
  // True if this function is sink-named.  No code is generated.
  bool is_sink_ : 1;
  // True if the result variables are named.
  bool results_are_named_ : 1;
  // True if this function is a stub method created for an unnamed
  // type.
  bool is_unnamed_type_stub_method_ : 1;
  // True if this function calls the predeclared recover function.
  bool calls_recover_ : 1;
  // True if this a thunk built for a function which calls recover.
  bool is_recover_thunk_ : 1;
  // True if this function already has a recover thunk.
  bool has_recover_thunk_ : 1;
  // True if this is a thunk built for a defer statement that calls
  // the __go_set_defer_retaddr runtime function.
  bool calls_defer_retaddr_ : 1;
  // True if this is a function built by the compiler to as a hash or
  // equality function for some type.
  bool is_type_specific_function_ : 1;
  // True if this function should be put in a unique section.  This is
  // turned on for field tracking.
  bool in_unique_section_ : 1;
};

// A snapshot of the current binding state.

class Bindings_snapshot
{
 public:
  Bindings_snapshot(const Block*, Location);

  // Report any errors appropriate for a goto from the current binding
  // state of B to this one.
  void
  check_goto_from(const Block* b, Location);

  // Report any errors appropriate for a goto from this binding state
  // to the current state of B.
  void
  check_goto_to(const Block* b);

 private:
  bool
  check_goto_block(Location, const Block*, const Block*, size_t*);

  void
  check_goto_defs(Location, const Block*, size_t, size_t);

  // The current block.
  const Block* block_;
  // The number of names currently defined in each open block.
  // Element 0 is this->block_, element 1 is
  // this->block_->enclosing(), etc.
  std::vector<size_t> counts_;
  // The location where this snapshot was taken.
  Location location_;
};

// A function declaration.

class Function_declaration
{
 public:
  Function_declaration(Function_type* fntype, Location location)
    : fntype_(fntype), location_(location), asm_name_(), descriptor_(NULL),
      fndecl_(NULL), pragmas_(0)
  { }

  Function_type*
  type() const
  { return this->fntype_; }

  Location
  location() const
  { return this->location_; }

  const std::string&
  asm_name() const
  { return this->asm_name_; }

  // Set the assembler name.
  void
  set_asm_name(const std::string& asm_name)
  { this->asm_name_ = asm_name; }

  // Set the pragmas for this function.
  void
  set_pragmas(unsigned int pragmas)
  {
    this->pragmas_ = pragmas;
  }

  // Return an expression for the function descriptor, given the named
  // object for this function.  This may only be called for functions
  // without a closure.  This will be an immutable struct with one
  // field that points to the function's code.
  Expression*
  descriptor(Gogo*, Named_object*);

  // Return true if we have created a descriptor for this declaration.
  bool
  has_descriptor() const
  { return this->descriptor_ != NULL; }

  // Return a backend representation.
  Bfunction*
  get_or_make_decl(Gogo*, Named_object*);

  // If there is a descriptor, build it into the backend
  // representation.
  void
  build_backend_descriptor(Gogo*);

  // Export a function declaration.
  void
  export_func(Export* exp, const std::string& name) const
  { Function::export_func_with_type(exp, name, this->fntype_); }

  // Check that the types used in this declaration's signature are defined.
  void
  check_types() const;

 private:
  // The type of the function.
  Function_type* fntype_;
  // The location of the declaration.
  Location location_;
  // The assembler name: this is the name to use in references to the
  // function.  This is normally empty.
  std::string asm_name_;
  // The function descriptor, if any.
  Expression* descriptor_;
  // The function decl if needed.
  Bfunction* fndecl_;
  // Pragmas for this function.  This is a set of GOPRAGMA bits.
  unsigned int pragmas_;
};

// A variable.

class Variable
{
 public:
  Variable(Type*, Expression*, bool is_global, bool is_parameter,
	   bool is_receiver, Location);

  // Get the type of the variable.
  Type*
  type();

  Type*
  type() const;

  // Return whether the type is defined yet.
  bool
  has_type() const;

  // Get the initial value.
  Expression*
  init() const
  { return this->init_; }

  // Return whether there are any preinit statements.
  bool
  has_pre_init() const
  { return this->preinit_ != NULL; }

  // Return the preinit statements if any.
  Block*
  preinit() const
  { return this->preinit_; }

  // Return whether this is a global variable.
  bool
  is_global() const
  { return this->is_global_; }

  // Return whether this is a function parameter.
  bool
  is_parameter() const
  { return this->is_parameter_; }

  // Return whether this is a closure (static chain) parameter.
  bool
  is_closure() const
  { return this->is_closure_; }

  // Change this parameter to be a closure.
  void
  set_is_closure()
  {
    this->is_closure_ = true;
  }

  // Return whether this is the receiver parameter of a method.
  bool
  is_receiver() const
  { return this->is_receiver_; }

  // Change this parameter to be a receiver.  This is used when
  // creating the thunks created for functions which call recover.
  void
  set_is_receiver()
  {
    go_assert(this->is_parameter_);
    this->is_receiver_ = true;
  }

  // Change this parameter to not be a receiver.  This is used when
  // creating the thunks created for functions which call recover.
  void
  set_is_not_receiver()
  {
    go_assert(this->is_parameter_);
    this->is_receiver_ = false;
  }

  // Return whether this is the varargs parameter of a function.
  bool
  is_varargs_parameter() const
  { return this->is_varargs_parameter_; }

  // Whether this variable's address is taken.
  bool
  is_address_taken() const
  { return this->is_address_taken_; }

  // Whether this variable should live in the heap.
  bool
  is_in_heap() const
  {
    return this->is_address_taken_ 
      && this->escapes_
      && !this->is_global_;
  }

  // Note that something takes the address of this variable.
  void
  set_address_taken()
  { this->is_address_taken_ = true; }

  // Return whether the address is taken but does not escape.
  bool
  is_non_escaping_address_taken() const
  { return this->is_non_escaping_address_taken_; }

  // Note that something takes the address of this variable such that
  // the address does not escape the function.
  void
  set_non_escaping_address_taken()
  { this->is_non_escaping_address_taken_ = true; }

  // Return whether this variable escapes the function it is declared in.
  bool
  escapes()
  { return this->escapes_; }

  // Note that this variable does not escape the function it is declared in.
  void
  set_does_not_escape()
  { this->escapes_ = false; }

  // Get the source location of the variable's declaration.
  Location
  location() const
  { return this->location_; }

  // Record that this is the varargs parameter of a function.
  void
  set_is_varargs_parameter()
  {
    go_assert(this->is_parameter_);
    this->is_varargs_parameter_ = true;
  }

  // Return whether the variable has been used.
  bool
  is_used() const
  { return this->is_used_; }

  // Mark that the variable has been used.
  void
  set_is_used()
  { this->is_used_ = true; }

  // Clear the initial value; used for error handling and write barriers.
  void
  clear_init()
  { this->init_ = NULL; }

  // Set the initial value; used for converting shortcuts.
  void
  set_init(Expression* init)
  { this->init_ = init; }

  // Get the preinit block, a block of statements to be run before the
  // initialization expression.
  Block*
  preinit_block(Gogo*);

  // Add a statement to be run before the initialization expression.
  // This is only used for global variables.
  void
  add_preinit_statement(Gogo*, Statement*);

  // Lower the initialization expression after parsing is complete.
  void
  lower_init_expression(Gogo*, Named_object*, Statement_inserter*);

  // Flatten the initialization expression after ordering evaluations.
  void
  flatten_init_expression(Gogo*, Named_object*, Statement_inserter*);

  // A special case: the init value is used only to determine the
  // type.  This is used if the variable is defined using := with the
  // comma-ok form of a map index or a receive expression.  The init
  // value is actually the map index expression or receive expression.
  // We use this because we may not know the right type at parse time.
  void
  set_type_from_init_tuple()
  { this->type_from_init_tuple_ = true; }

  // Another special case: the init value is used only to determine
  // the type.  This is used if the variable is defined using := with
  // a range clause.  The init value is the range expression.  The
  // type of the variable is the index type of the range expression
  // (i.e., the first value returned by a range).
  void
  set_type_from_range_index()
  { this->type_from_range_index_ = true; }

  // Another special case: like set_type_from_range_index, but the
  // type is the value type of the range expression (i.e., the second
  // value returned by a range).
  void
  set_type_from_range_value()
  { this->type_from_range_value_ = true; }

  // Another special case: the init value is used only to determine
  // the type.  This is used if the variable is defined using := with
  // a case in a select statement.  The init value is the channel.
  // The type of the variable is the channel's element type.
  void
  set_type_from_chan_element()
  { this->type_from_chan_element_ = true; }

  // After we lower the select statement, we once again set the type
  // from the initialization expression.
  void
  clear_type_from_chan_element()
  {
    go_assert(this->type_from_chan_element_);
    this->type_from_chan_element_ = false;
  }

  // TRUE if this variable was created for a type switch clause.
  bool
  is_type_switch_var() const
  { return this->is_type_switch_var_; }

  // Note that this variable was created for a type switch clause.
  void
  set_is_type_switch_var()
  { this->is_type_switch_var_ = true; }

  // Mark the variable as going into a unique section.
  void
  set_in_unique_section()
  {
    go_assert(this->is_global_);
    this->in_unique_section_ = true;
  }

  // Traverse the initializer expression.
  int
  traverse_expression(Traverse*, unsigned int traverse_mask);

  // Determine the type of the variable if necessary.
  void
  determine_type();

  // Get the backend representation of the variable.
  Bvariable*
  get_backend_variable(Gogo*, Named_object*, const Package*,
		       const std::string&);

  // Get the initial value of the variable.  This may only
  // be called if has_pre_init() returns false.
  Bexpression*
  get_init(Gogo*, Named_object* function);

  // Return a series of statements which sets the value of the
  // variable in DECL.  This should only be called is has_pre_init()
  // returns true.  DECL may be NULL for a sink variable.
  Bstatement*
  get_init_block(Gogo*, Named_object* function, Bvariable* decl);

  // Export the variable.
  void
  export_var(Export*, const std::string& name) const;

  // Import a variable.
  static void
  import_var(Import*, std::string* pname, Type** ptype);

 private:
  // The type of a tuple.
  Type*
  type_from_tuple(Expression*, bool) const;

  // The type of a range.
  Type*
  type_from_range(Expression*, bool, bool) const;

  // The element type of a channel.
  Type*
  type_from_chan_element(Expression*, bool) const;

  // The variable's type.  This may be NULL if the type is set from
  // the expression.
  Type* type_;
  // The initial value.  This may be NULL if the variable should be
  // initialized to the default value for the type.
  Expression* init_;
  // Statements to run before the init statement.
  Block* preinit_;
  // Location of variable definition.
  Location location_;
  // Backend representation.
  Bvariable* backend_;
  // Whether this is a global variable.
  bool is_global_ : 1;
  // Whether this is a function parameter.
  bool is_parameter_ : 1;
  // Whether this is a closure parameter.
  bool is_closure_ : 1;
  // Whether this is the receiver parameter of a method.
  bool is_receiver_ : 1;
  // Whether this is the varargs parameter of a function.
  bool is_varargs_parameter_ : 1;
  // Whether this variable is ever referenced.
  bool is_used_ : 1;
  // Whether something takes the address of this variable.  For a
  // local variable this implies that the variable has to be on the
  // heap if it escapes from its function.
  bool is_address_taken_ : 1;
  // Whether something takes the address of this variable such that
  // the address does not escape the function.
  bool is_non_escaping_address_taken_ : 1;
  // True if we have seen this variable in a traversal.
  bool seen_ : 1;
  // True if we have lowered the initialization expression.
  bool init_is_lowered_ : 1;
  // True if we have flattened the initialization expression.
  bool init_is_flattened_ : 1;
  // True if init is a tuple used to set the type.
  bool type_from_init_tuple_ : 1;
  // True if init is a range clause and the type is the index type.
  bool type_from_range_index_ : 1;
  // True if init is a range clause and the type is the value type.
  bool type_from_range_value_ : 1;
  // True if init is a channel and the type is the channel's element type.
  bool type_from_chan_element_ : 1;
  // True if this is a variable created for a type switch case.
  bool is_type_switch_var_ : 1;
  // True if we have determined types.
  bool determined_type_ : 1;
  // True if this variable should be put in a unique section.  This is
  // used for field tracking.
  bool in_unique_section_ : 1;
  // Whether this variable escapes the function it is created in.  This is
  // true until shown otherwise.
  bool escapes_ : 1;
};

// A variable which is really the name for a function return value, or
// part of one.

class Result_variable
{
 public:
  Result_variable(Type* type, Function* function, int index,
		  Location location)
    : type_(type), function_(function), index_(index), location_(location),
      backend_(NULL), is_address_taken_(false),
      is_non_escaping_address_taken_(false), escapes_(true)
  { }

  // Get the type of the result variable.
  Type*
  type() const
  { return this->type_; }

  // Get the function that this is associated with.
  Function*
  function() const
  { return this->function_; }

  // Index in the list of function results.
  int
  index() const
  { return this->index_; }

  // The location of the variable definition.
  Location
  location() const
  { return this->location_; }

  // Whether this variable's address is taken.
  bool
  is_address_taken() const
  { return this->is_address_taken_; }

  // Note that something takes the address of this variable.
  void
  set_address_taken()
  { this->is_address_taken_ = true; }

  // Return whether the address is taken but does not escape.
  bool
  is_non_escaping_address_taken() const
  { return this->is_non_escaping_address_taken_; }

  // Note that something takes the address of this variable such that
  // the address does not escape the function.
  void
  set_non_escaping_address_taken()
  { this->is_non_escaping_address_taken_ = true; }
  
  // Return whether this variable escapes the function it is declared in.
  bool
  escapes()
  { return this->escapes_; }

  // Note that this variable does not escape the function it is declared in.
  void
  set_does_not_escape()
  { this->escapes_ = false; }

  // Whether this variable should live in the heap.
  bool
  is_in_heap() const
  {
    return this->is_address_taken_
      && this->escapes_;
  }

  // Set the function.  This is used when cloning functions which call
  // recover.
  void
  set_function(Function* function)
  { this->function_ = function; }

  // Get the backend representation of the variable.
  Bvariable*
  get_backend_variable(Gogo*, Named_object*, const std::string&);

 private:
  // Type of result variable.
  Type* type_;
  // Function with which this is associated.
  Function* function_;
  // Index in list of results.
  int index_;
  // Where the result variable is defined.
  Location location_;
  // Backend representation.
  Bvariable* backend_;
  // Whether something takes the address of this variable.
  bool is_address_taken_;
  // Whether something takes the address of this variable such that
  // the address does not escape the function.
  bool is_non_escaping_address_taken_;
  // Whether this variable escapes the function it is created in.  This is
  // true until shown otherwise.
  bool escapes_;
};

// The value we keep for a named constant.  This lets us hold a type
// and an expression.

class Named_constant
{
 public:
  Named_constant(Type* type, Expression* expr, int iota_value,
		 Location location)
    : type_(type), expr_(expr), iota_value_(iota_value), location_(location),
      lowering_(false), is_sink_(false), bconst_(NULL)
  { }

  Type*
  type() const
  { return this->type_; }

  Expression*
  expr() const
  { return this->expr_; }

  int
  iota_value() const
  { return this->iota_value_; }

  Location
  location() const
  { return this->location_; }

  // Whether we are lowering.
  bool
  lowering() const
  { return this->lowering_; }

  // Set that we are lowering.
  void
  set_lowering()
  { this->lowering_ = true; }

  // We are no longer lowering.
  void
  clear_lowering()
  { this->lowering_ = false; }

  bool
  is_sink() const
  { return this->is_sink_; }

  void
  set_is_sink()
  { this->is_sink_ = true; }

  // Traverse the expression.
  int
  traverse_expression(Traverse*);

  // Determine the type of the constant if necessary.
  void
  determine_type();

  // Indicate that we found and reported an error for this constant.
  void
  set_error();

  // Export the constant.
  void
  export_const(Export*, const std::string& name) const;

  // Import a constant.
  static void
  import_const(Import*, std::string*, Type**, Expression**);

  // Get the backend representation of the constant value.
  Bexpression*
  get_backend(Gogo*, Named_object*);

 private:
  // The type of the constant.
  Type* type_;
  // The expression for the constant.
  Expression* expr_;
  // If the predeclared constant iota is used in EXPR_, this is the
  // value it will have.  We do this because at parse time we don't
  // know whether the name "iota" will refer to the predeclared
  // constant or to something else.  We put in the right value in when
  // we lower.
  int iota_value_;
  // The location of the definition.
  Location location_;
  // Whether we are currently lowering this constant.
  bool lowering_;
  // Whether this constant is blank named and needs only type checking.
  bool is_sink_;
  // The backend representation of the constant value.
  Bexpression* bconst_;
};

// A type declaration.

class Type_declaration
{
 public:
  Type_declaration(Location location)
    : location_(location), in_function_(NULL), in_function_index_(0),
      methods_(), issued_warning_(false)
  { }

  // Return the location.
  Location
  location() const
  { return this->location_; }

  // Return the function in which this type is declared.  This will
  // return NULL for a type declared in global scope.
  Named_object*
  in_function(unsigned int* pindex)
  {
    *pindex = this->in_function_index_;
    return this->in_function_;
  }

  // Set the function in which this type is declared.
  void
  set_in_function(Named_object* f, unsigned int index)
  {
    this->in_function_ = f;
    this->in_function_index_ = index;
  }

  // Add a method to this type.  This is used when methods are defined
  // before the type.
  Named_object*
  add_method(const std::string& name, Function* function);

  // Add a method declaration to this type.
  Named_object*
  add_method_declaration(const std::string& name, Package*,
			 Function_type* type, Location location);

  // Add an already created object as a method.
  void
  add_existing_method(Named_object* no)
  { this->methods_.push_back(no); }

  // Return whether any methods were defined.
  bool
  has_methods() const;

  // Return the methods.
  const std::vector<Named_object*>*
  methods() const
  { return &this->methods_; }

  // Define methods when the real type is known.
  void
  define_methods(Named_type*);

  // This is called if we are trying to use this type.  It returns
  // true if we should issue a warning.
  bool
  using_type();

 private:
  // The location of the type declaration.
  Location location_;
  // If this type is declared in a function, a pointer back to the
  // function in which it is defined.
  Named_object* in_function_;
  // The index of this type in IN_FUNCTION_.
  unsigned int in_function_index_;
  // Methods defined before the type is defined.
  std::vector<Named_object*> methods_;
  // True if we have issued a warning about a use of this type
  // declaration when it is undefined.
  bool issued_warning_;
};

// An unknown object.  These are created by the parser for forward
// references to names which have not been seen before.  In a correct
// program, these will always point to a real definition by the end of
// the parse.  Because they point to another Named_object, these may
// only be referenced by Unknown_expression objects.

class Unknown_name
{
 public:
  Unknown_name(Location location)
    : location_(location), real_named_object_(NULL)
  { }

  // Return the location where this name was first seen.
  Location
  location() const
  { return this->location_; }

  // Return the real named object that this points to, or NULL if it
  // was never resolved.
  Named_object*
  real_named_object() const
  { return this->real_named_object_; }

  // Set the real named object that this points to.
  void
  set_real_named_object(Named_object* no);

 private:
  // The location where this name was first seen.
  Location location_;
  // The real named object when it is known.
  Named_object*
  real_named_object_;
};

// A named object named.  This is the result of a declaration.  We
// don't use a superclass because they all have to be handled
// differently.

class Named_object
{
 public:
  enum Classification
  {
    // An uninitialized Named_object.  We should never see this.
    NAMED_OBJECT_UNINITIALIZED,
    // An erroneous name.  This indicates a parse error, to avoid
    // later errors about undefined references.
    NAMED_OBJECT_ERRONEOUS,
    // An unknown name.  This is used for forward references.  In a
    // correct program, these will all be resolved by the end of the
    // parse.
    NAMED_OBJECT_UNKNOWN,
    // A const.
    NAMED_OBJECT_CONST,
    // A type.
    NAMED_OBJECT_TYPE,
    // A forward type declaration.
    NAMED_OBJECT_TYPE_DECLARATION,
    // A var.
    NAMED_OBJECT_VAR,
    // A result variable in a function.
    NAMED_OBJECT_RESULT_VAR,
    // The blank identifier--the special variable named _.
    NAMED_OBJECT_SINK,
    // A func.
    NAMED_OBJECT_FUNC,
    // A forward func declaration.
    NAMED_OBJECT_FUNC_DECLARATION,
    // A package.
    NAMED_OBJECT_PACKAGE
  };

  // Return the classification.
  Classification
  classification() const
  { return this->classification_; }

  // Classifiers.

  bool
  is_erroneous() const
  { return this->classification_ == NAMED_OBJECT_ERRONEOUS; }

  bool
  is_unknown() const
  { return this->classification_ == NAMED_OBJECT_UNKNOWN; }

  bool
  is_const() const
  { return this->classification_ == NAMED_OBJECT_CONST; }

  bool
  is_type() const
  { return this->classification_ == NAMED_OBJECT_TYPE; }

  bool
  is_type_declaration() const
  { return this->classification_ == NAMED_OBJECT_TYPE_DECLARATION; }

  bool
  is_variable() const
  { return this->classification_ == NAMED_OBJECT_VAR; }

  bool
  is_result_variable() const
  { return this->classification_ == NAMED_OBJECT_RESULT_VAR; }

  bool
  is_sink() const
  { return this->classification_ == NAMED_OBJECT_SINK; }

  bool
  is_function() const
  { return this->classification_ == NAMED_OBJECT_FUNC; }

  bool
  is_function_declaration() const
  { return this->classification_ == NAMED_OBJECT_FUNC_DECLARATION; }

  bool
  is_package() const
  { return this->classification_ == NAMED_OBJECT_PACKAGE; }

  // Creators.

  static Named_object*
  make_erroneous_name(const std::string& name)
  { return new Named_object(name, NULL, NAMED_OBJECT_ERRONEOUS); }

  static Named_object*
  make_unknown_name(const std::string& name, Location);

  static Named_object*
  make_constant(const Typed_identifier&, const Package*, Expression*,
		int iota_value);

  static Named_object*
  make_type(const std::string&, const Package*, Type*, Location);

  static Named_object*
  make_type_declaration(const std::string&, const Package*, Location);

  static Named_object*
  make_variable(const std::string&, const Package*, Variable*);

  static Named_object*
  make_result_variable(const std::string&, Result_variable*);

  static Named_object*
  make_sink();

  static Named_object*
  make_function(const std::string&, const Package*, Function*);

  static Named_object*
  make_function_declaration(const std::string&, const Package*, Function_type*,
			    Location);

  static Named_object*
  make_package(const std::string& alias, Package* package);

  // Getters.

  Unknown_name*
  unknown_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
    return this->u_.unknown_value;
  }

  const Unknown_name*
  unknown_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
    return this->u_.unknown_value;
  }

  Named_constant*
  const_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_CONST);
    return this->u_.const_value;
  }

  const Named_constant*
  const_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_CONST);
    return this->u_.const_value;
  }

  Named_type*
  type_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_TYPE);
    return this->u_.type_value;
  }

  const Named_type*
  type_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_TYPE);
    return this->u_.type_value;
  }

  Type_declaration*
  type_declaration_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
    return this->u_.type_declaration;
  }

  const Type_declaration*
  type_declaration_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
    return this->u_.type_declaration;
  }

  Variable*
  var_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_VAR);
    return this->u_.var_value;
  }

  const Variable*
  var_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_VAR);
    return this->u_.var_value;
  }

  Result_variable*
  result_var_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
    return this->u_.result_var_value;
  }

  const Result_variable*
  result_var_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
    return this->u_.result_var_value;
  }

  Function*
  func_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_FUNC);
    return this->u_.func_value;
  }

  const Function*
  func_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_FUNC);
    return this->u_.func_value;
  }

  Function_declaration*
  func_declaration_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
    return this->u_.func_declaration_value;
  }

  const Function_declaration*
  func_declaration_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
    return this->u_.func_declaration_value;
  }

  Package*
  package_value()
  {
    go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
    return this->u_.package_value;
  }

  const Package*
  package_value() const
  {
    go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
    return this->u_.package_value;
  }

  const std::string&
  name() const
  { return this->name_; }

  // Return the name to use in an error message.  The difference is
  // that if this Named_object is defined in a different package, this
  // will return PACKAGE.NAME.
  std::string
  message_name() const;

  const Package*
  package() const
  { return this->package_; }

  // Resolve an unknown value if possible.  This returns the same
  // Named_object or a new one.
  Named_object*
  resolve()
  {
    Named_object* ret = this;
    if (this->is_unknown())
      {
	Named_object* r = this->unknown_value()->real_named_object();
	if (r != NULL)
	  ret = r;
      }
    return ret;
  }

  const Named_object*
  resolve() const
  {
    const Named_object* ret = this;
    if (this->is_unknown())
      {
	const Named_object* r = this->unknown_value()->real_named_object();
	if (r != NULL)
	  ret = r;
      }
    return ret;
  }

  // The location where this object was defined or referenced.
  Location
  location() const;

  // Convert a variable to the backend representation.
  Bvariable*
  get_backend_variable(Gogo*, Named_object* function);

  // Return the external identifier for this object.
  std::string
  get_id(Gogo*);

  // Get the backend representation of this object.
  void
  get_backend(Gogo*, std::vector<Bexpression*>&, std::vector<Btype*>&,
              std::vector<Bfunction*>&);

  // Define a type declaration.
  void
  set_type_value(Named_type*);

  // Define a function declaration.
  void
  set_function_value(Function*);

  // Declare an unknown name as a type declaration.
  void
  declare_as_type();

  // Export this object.
  void
  export_named_object(Export*) const;

  // Mark this named object as an invalid redefinition of another object.
  void
  set_is_redefinition()
  { this->is_redefinition_ = true; }

  // Return whether or not this object is a invalid redefinition of another
  // object.
  bool
  is_redefinition() const
  { return this->is_redefinition_; }

 private:
  Named_object(const std::string&, const Package*, Classification);

  // The name of the object.
  std::string name_;
  // The package that this object is in.  This is NULL if it is in the
  // file we are compiling.
  const Package* package_;
  // The type of object this is.
  Classification classification_;
  // The real data.
  union
  {
    Unknown_name* unknown_value;
    Named_constant* const_value;
    Named_type* type_value;
    Type_declaration* type_declaration;
    Variable* var_value;
    Result_variable* result_var_value;
    Function* func_value;
    Function_declaration* func_declaration_value;
    Package* package_value;
  } u_;
  // True if this object is an invalid redefinition of another object.
  bool is_redefinition_;
};

// A binding contour.  This binds names to objects.

class Bindings
{
 public:
  // Type for mapping from names to objects.
  typedef Unordered_map(std::string, Named_object*) Contour;

  Bindings(Bindings* enclosing);

  // Add an erroneous name.
  Named_object*
  add_erroneous_name(const std::string& name)
  { return this->add_named_object(Named_object::make_erroneous_name(name)); }

  // Add an unknown name.
  Named_object*
  add_unknown_name(const std::string& name, Location location)
  {
    return this->add_named_object(Named_object::make_unknown_name(name,
								  location));
  }

  // Add a constant.
  Named_object*
  add_constant(const Typed_identifier& tid, const Package* package,
	       Expression* expr, int iota_value)
  {
    return this->add_named_object(Named_object::make_constant(tid, package,
							      expr,
							      iota_value));
  }

  // Add a type.
  Named_object*
  add_type(const std::string& name, const Package* package, Type* type,
	   Location location)
  {
    return this->add_named_object(Named_object::make_type(name, package, type,
							  location));
  }

  // Add a named type.  This is used for builtin types, and to add an
  // imported type to the global scope.
  Named_object*
  add_named_type(Named_type* named_type);

  // Add a type declaration.
  Named_object*
  add_type_declaration(const std::string& name, const Package* package,
		       Location location)
  {
    Named_object* no = Named_object::make_type_declaration(name, package,
							   location);
    return this->add_named_object(no);
  }

  // Add a variable.
  Named_object*
  add_variable(const std::string& name, const Package* package,
	       Variable* variable)
  {
    return this->add_named_object(Named_object::make_variable(name, package,
							      variable));
  }

  // Add a result variable.
  Named_object*
  add_result_variable(const std::string& name, Result_variable* result)
  {
    return this->add_named_object(Named_object::make_result_variable(name,
								     result));
  }

  // Add a function.
  Named_object*
  add_function(const std::string& name, const Package*, Function* function);

  // Add a function declaration.
  Named_object*
  add_function_declaration(const std::string& name, const Package* package,
			   Function_type* type, Location location);

  // Add a package.  The location is the location of the import
  // statement.
  Named_object*
  add_package(const std::string& alias, Package* package)
  {
    Named_object* no = Named_object::make_package(alias, package);
    return this->add_named_object(no);
  }

  // Define a type which was already declared.
  void
  define_type(Named_object*, Named_type*);

  // Add a method to the list of objects.  This is not added to the
  // lookup table.
  void
  add_method(Named_object*);

  // Add a named object to this binding.
  Named_object*
  add_named_object(Named_object* no)
  { return this->add_named_object_to_contour(&this->bindings_, no); }

  // Clear all names in file scope from the bindings.
  void
  clear_file_scope(Gogo*);

  // Look up a name in this binding contour and in any enclosing
  // binding contours.  This returns NULL if the name is not found.
  Named_object*
  lookup(const std::string&) const;

  // Look up a name in this binding contour without looking in any
  // enclosing binding contours.  Returns NULL if the name is not found.
  Named_object*
  lookup_local(const std::string&) const;

  // Remove a name.
  void
  remove_binding(Named_object*);

  // Mark all variables as used.  This is used for some types of parse
  // error.
  void
  mark_locals_used();

  // Traverse the tree.  See the Traverse class.
  int
  traverse(Traverse*, bool is_global);

  // Iterate over definitions.  This does not include things which
  // were only declared.

  typedef std::vector<Named_object*>::const_iterator
    const_definitions_iterator;

  const_definitions_iterator
  begin_definitions() const
  { return this->named_objects_.begin(); }

  const_definitions_iterator
  end_definitions() const
  { return this->named_objects_.end(); }

  // Return the number of definitions.
  size_t
  size_definitions() const
  { return this->named_objects_.size(); }

  // Return whether there are no definitions.
  bool
  empty_definitions() const
  { return this->named_objects_.empty(); }

  // Iterate over declarations.  This is everything that has been
  // declared, which includes everything which has been defined.

  typedef Contour::const_iterator const_declarations_iterator;

  const_declarations_iterator
  begin_declarations() const
  { return this->bindings_.begin(); }

  const_declarations_iterator
  end_declarations() const
  { return this->bindings_.end(); }

  // Return the number of declarations.
  size_t
  size_declarations() const
  { return this->bindings_.size(); }

  // Return whether there are no declarations.
  bool
  empty_declarations() const
  { return this->bindings_.empty(); }

  // Return the first declaration.
  Named_object*
  first_declaration()
  { return this->bindings_.empty() ? NULL : this->bindings_.begin()->second; }

 private:
  Named_object*
  add_named_object_to_contour(Contour*, Named_object*);

  Named_object*
  new_definition(Named_object*, Named_object*);

  // Enclosing bindings.
  Bindings* enclosing_;
  // The list of objects.
  std::vector<Named_object*> named_objects_;
  // The mapping from names to objects.
  Contour bindings_;
};

// A label.

class Label
{
 public:
  Label(const std::string& name)
    : name_(name), location_(Linemap::unknown_location()), snapshot_(NULL),
      refs_(), is_used_(false), blabel_(NULL), depth_(DEPTH_UNKNOWN)
  { }

  // Return the label's name.
  const std::string&
  name() const
  { return this->name_; }

  // Return whether the label has been defined.
  bool
  is_defined() const
  { return !Linemap::is_unknown_location(this->location_); }

  // Return whether the label has been used.
  bool
  is_used() const
  { return this->is_used_; }

  // Record that the label is used.
  void
  set_is_used()
  { this->is_used_ = true; }

  // Return whether this label is looping.
  bool
  looping() const
  { return this->depth_ == DEPTH_LOOPING; }

  // Set this label as looping.
  void
  set_looping()
  { this->depth_ = DEPTH_LOOPING; }

  // Return whether this label is nonlooping.
  bool
  nonlooping() const
  { return this->depth_ == DEPTH_NONLOOPING; }

  // Set this label as nonlooping.
  void
  set_nonlooping()
  { this->depth_ = DEPTH_NONLOOPING; }

  // Return the location of the definition.
  Location
  location() const
  { return this->location_; }

  // Return the bindings snapshot.
  Bindings_snapshot*
  snapshot() const
  { return this->snapshot_; }

  // Add a snapshot of a goto which refers to this label.
  void
  add_snapshot_ref(Bindings_snapshot* snapshot)
  {
    go_assert(Linemap::is_unknown_location(this->location_));
    this->refs_.push_back(snapshot);
  }

  // Return the list of snapshots of goto statements which refer to
  // this label.
  const std::vector<Bindings_snapshot*>&
  refs() const
  { return this->refs_; }

  // Clear the references.
  void
  clear_refs();

  // Define the label at LOCATION with the given bindings snapshot.
  void
  define(Location location, Bindings_snapshot* snapshot)
  {
    if (this->is_dummy_label())
      return;
    go_assert(Linemap::is_unknown_location(this->location_)
              && this->snapshot_ == NULL);
    this->location_ = location;
    this->snapshot_ = snapshot;
  }

  // Return the backend representation for this label.
  Blabel*
  get_backend_label(Translate_context*);

  // Return an expression for the address of this label.  This is used
  // to get the return address of a deferred function to see whether
  // the function may call recover.
  Bexpression*
  get_addr(Translate_context*, Location location);

  // Return a dummy label, representing any instance of the blank label.
  static Label*
  create_dummy_label();

  // Return TRUE if this is a dummy label.
  bool
  is_dummy_label() const
  { return this->name_ == "_"; }

  // A classification of a label's looping depth.
  enum Loop_depth
  {
    DEPTH_UNKNOWN,
    // A label never jumped to.
    DEPTH_NONLOOPING,
    // A label jumped to.
    DEPTH_LOOPING
  };

 private:
  // The name of the label.
  std::string name_;
  // The location of the definition.  This is 0 if the label has not
  // yet been defined.
  Location location_;
  // A snapshot of the set of bindings defined at this label, used to
  // issue errors about invalid goto statements.
  Bindings_snapshot* snapshot_;
  // A list of snapshots of goto statements which refer to this label.
  std::vector<Bindings_snapshot*> refs_;
  // Whether the label has been used.
  bool is_used_;
  // The backend representation.
  Blabel* blabel_;
  // The looping depth of this label, for escape analysis.
  Loop_depth depth_;
};

// An unnamed label.  These are used when lowering loops.

class Unnamed_label
{
 public:
  Unnamed_label(Location location)
    : location_(location), derived_from_(NULL), blabel_(NULL)
  { }

  // Get the location where the label is defined.
  Location
  location() const
  { return this->location_; }

  // Set the location where the label is defined.
  void
  set_location(Location location)
  { this->location_ = location; }

  // Get the top level statement this unnamed label is derived from.
  Statement*
  derived_from() const
  { return this->derived_from_; }

  // Set the top level statement this unnamed label is derived from.
  void
  set_derived_from(Statement* s)
  { this->derived_from_ = s; }

  // Return a statement which defines this label.
  Bstatement*
  get_definition(Translate_context*);

  // Return a goto to this label from LOCATION.
  Bstatement*
  get_goto(Translate_context*, Location location);

 private:
  // Return the backend representation.
  Blabel*
  get_blabel(Translate_context*);

  // The location where the label is defined.
  Location location_;
  // The top-level statement this unnamed label was derived/lowered from.
  // This is NULL is this label is not the top-level of a lowered statement.
  Statement* derived_from_;
  // The backend representation of this label.
  Blabel* blabel_;
};

// An alias for an imported package.

class Package_alias
{
 public:
  Package_alias(Location location)
      : location_(location), used_(0)
  { }

  // The location of the import statement.
  Location
  location()
  { return this->location_; }

  // How many symbols from the package were used under this alias.
  size_t
  used() const
  { return this->used_; }

  // Note that some symbol was used under this alias.
  void
  note_usage()
  { this->used_++; }

 private:
  // The location of the import statement.
  Location location_;
  // The amount of times some name from this package was used under this alias.
  size_t used_;
};

// An imported package.

class Package
{
 public:
  Package(const std::string& pkgpath, const std::string& pkgpath_symbol,
	  Location location);

  // Get the package path used for all symbols exported from this
  // package.
  const std::string&
  pkgpath() const
  { return this->pkgpath_; }

  // Return the package path to use for a symbol name.
  std::string
  pkgpath_symbol() const;

  // Set the package path symbol.
  void
  set_pkgpath_symbol(const std::string&);

  // Return the location of the most recent import statement.
  Location
  location() const
  { return this->location_; }

  // Return whether we know the name of this package yet.
  bool
  has_package_name() const
  { return !this->package_name_.empty(); }

  // The name that this package uses in its package clause.  This may
  // be different from the name in the associated Named_object if the
  // import statement used an alias.
  const std::string&
  package_name() const
  {
    go_assert(!this->package_name_.empty());
    return this->package_name_;
  }

  // Return the bindings.
  Bindings*
  bindings()
  { return this->bindings_; }

  // Type used to map import names to package aliases.
  typedef std::map<std::string, Package_alias*> Aliases;

  // Return the set of package aliases.
  const Aliases&
  aliases() const
  { return this->aliases_; }

  // Note that some symbol from this package was used and qualified by ALIAS.
  // For dot imports, the ALIAS should be ".PACKAGE_NAME".
  void
  note_usage(const std::string& alias) const;

  // Note that USAGE might be a fake usage of this package.
  void
  note_fake_usage(Expression* usage) const
  { this->fake_uses_.insert(usage); }

  // Forget a given USAGE of this package.
  void
  forget_usage(Expression* usage) const;

  // Clear the used field for the next file.
  void
  clear_used();

  // Look up a name in the package.  Returns NULL if the name is not
  // found.
  Named_object*
  lookup(const std::string& name) const
  { return this->bindings_->lookup(name); }

  // Set the name of the package.
  void
  set_package_name(const std::string& name, Location);

  // Set the location of the package.  This is used to record the most
  // recent import location.
  void
  set_location(Location location)
  { this->location_ = location; }

  // Add a package name as an ALIAS for this package.
  Package_alias*
  add_alias(const std::string& alias, Location);

  // Add a constant to the package.
  Named_object*
  add_constant(const Typed_identifier& tid, Expression* expr)
  { return this->bindings_->add_constant(tid, this, expr, 0); }

  // Add a type to the package.
  Named_object*
  add_type(const std::string& name, Type* type, Location location)
  { return this->bindings_->add_type(name, this, type, location); }

  // Add a type declaration to the package.
  Named_object*
  add_type_declaration(const std::string& name, Location location)
  { return this->bindings_->add_type_declaration(name, this, location); }

  // Add a variable to the package.
  Named_object*
  add_variable(const std::string& name, Variable* variable)
  { return this->bindings_->add_variable(name, this, variable); }

  // Add a function declaration to the package.
  Named_object*
  add_function_declaration(const std::string& name, Function_type* type,
			   Location loc)
  { return this->bindings_->add_function_declaration(name, this, type, loc); }

  // Determine types of constants.
  void
  determine_types();

 private:
  // The package path for type reflection data.
  std::string pkgpath_;
  // The package path for symbol names.
  std::string pkgpath_symbol_;
  // The name that this package uses in the package clause.  This may
  // be the empty string if it is not yet known.
  std::string package_name_;
  // The names in this package.
  Bindings* bindings_;
  // The location of the most recent import statement.
  Location location_;
  // The set of aliases associated with this package.
  Aliases aliases_;
  // A set of possibly fake uses of this package. This is mutable because we
  // can track fake uses of a package even if we have a const pointer to it.
  mutable std::set<Expression*> fake_uses_;
};

// Return codes for the traversal functions.  This is not an enum
// because we want to be able to declare traversal functions in other
// header files without including this one.

// Continue traversal as usual.
const int TRAVERSE_CONTINUE = -1;

// Exit traversal.
const int TRAVERSE_EXIT = 0;

// Continue traversal, but skip components of the current object.
// E.g., if this is returned by Traverse::statement, we do not
// traverse the expressions in the statement even if
// traverse_expressions is set in the traverse_mask.
const int TRAVERSE_SKIP_COMPONENTS = 1;

// This class is used when traversing the parse tree.  The caller uses
// a subclass which overrides functions as desired.

class Traverse
{
 public:
  // These bitmasks say what to traverse.
  static const unsigned int traverse_variables =    0x1;
  static const unsigned int traverse_constants =    0x2;
  static const unsigned int traverse_functions =    0x4;
  static const unsigned int traverse_blocks =       0x8;
  static const unsigned int traverse_statements =  0x10;
  static const unsigned int traverse_expressions = 0x20;
  static const unsigned int traverse_types =       0x40;

  Traverse(unsigned int traverse_mask)
    : traverse_mask_(traverse_mask), types_seen_(NULL), expressions_seen_(NULL)
  { }

  virtual ~Traverse();

  // The bitmask of what to traverse.
  unsigned int
  traverse_mask() const
  { return this->traverse_mask_; }

  // Record that we are going to traverse a type.  This returns true
  // if the type has already been seen in this traversal.  This is
  // required because types, unlike expressions, can form a circular
  // graph.
  bool
  remember_type(const Type*);

  // Record that we are going to see an expression.  This returns true
  // if the expression has already been seen in this traversal.  This
  // is only needed for cases where multiple expressions can point to
  // a single one.
  bool
  remember_expression(const Expression*);

  // These functions return one of the TRAVERSE codes defined above.

  // If traverse_variables is set in the mask, this is called for
  // every variable in the tree.
  virtual int
  variable(Named_object*);

  // If traverse_constants is set in the mask, this is called for
  // every named constant in the tree.  The bool parameter is true for
  // a global constant.
  virtual int
  constant(Named_object*, bool);

  // If traverse_functions is set in the mask, this is called for
  // every function in the tree.
  virtual int
  function(Named_object*);

  // If traverse_blocks is set in the mask, this is called for every
  // block in the tree.
  virtual int
  block(Block*);

  // If traverse_statements is set in the mask, this is called for
  // every statement in the tree.
  virtual int
  statement(Block*, size_t* index, Statement*);

  // If traverse_expressions is set in the mask, this is called for
  // every expression in the tree.
  virtual int
  expression(Expression**);

  // If traverse_types is set in the mask, this is called for every
  // type in the tree.
  virtual int
  type(Type*);

 private:
  // A hash table for types we have seen during this traversal.  Note
  // that this uses the default hash functions for pointers rather
  // than Type_hash_identical and Type_identical.  This is because for
  // traversal we care about seeing a specific type structure.  If
  // there are two separate instances of identical types, we want to
  // traverse both.
  typedef Unordered_set(const Type*) Types_seen;

  typedef Unordered_set(const Expression*) Expressions_seen;

  // Bitmask of what sort of objects to traverse.
  unsigned int traverse_mask_;
  // Types which have been seen in this traversal.
  Types_seen* types_seen_;
  // Expressions which have been seen in this traversal.
  Expressions_seen* expressions_seen_;
};

// A class which makes it easier to insert new statements before the
// current statement during a traversal.

class Statement_inserter
{
 public:
  // Empty constructor.
  Statement_inserter()
    : block_(NULL), pindex_(NULL), gogo_(NULL), var_(NULL)
  { }

  // Constructor for a statement in a block.
  Statement_inserter(Block* block, size_t *pindex)
    : block_(block), pindex_(pindex), gogo_(NULL), var_(NULL)
  { }

  // Constructor for a global variable.
  Statement_inserter(Gogo* gogo, Variable* var)
    : block_(NULL), pindex_(NULL), gogo_(gogo), var_(var)
  { go_assert(var->is_global()); }

  // We use the default copy constructor and assignment operator.

  // Insert S before the statement we are traversing, or before the
  // initialization expression of a global variable.
  void
  insert(Statement* s);

 private:
  // The block that the statement is in.
  Block* block_;
  // The index of the statement that we are traversing.
  size_t* pindex_;
  // The IR, needed when looking at an initializer expression for a
  // global variable.
  Gogo* gogo_;
  // The global variable, when looking at an initializer expression.
  Variable* var_;
};

// When translating the gogo IR into the backend data structure, this
// is the context we pass down the blocks and statements.

class Translate_context
{
 public:
  Translate_context(Gogo* gogo, Named_object* function, Block* block,
		    Bblock* bblock)
    : gogo_(gogo), backend_(gogo->backend()), function_(function),
      block_(block), bblock_(bblock), is_const_(false)
  { }

  // Accessors.

  Gogo*
  gogo()
  { return this->gogo_; }

  Backend*
  backend()
  { return this->backend_; }

  Named_object*
  function()
  { return this->function_; }

  Block*
  block()
  { return this->block_; }

  Bblock*
  bblock()
  { return this->bblock_; }

  bool
  is_const()
  { return this->is_const_; }

  // Make a constant context.
  void
  set_is_const()
  { this->is_const_ = true; }

 private:
  // The IR for the entire compilation unit.
  Gogo* gogo_;
  // The generator for the backend data structures.
  Backend* backend_;
  // The function we are currently translating.  NULL if not in a
  // function, e.g., the initializer of a global variable.
  Named_object* function_;
  // The block we are currently translating.  NULL if not in a
  // function.
  Block *block_;
  // The backend representation of the current block.  NULL if block_
  // is NULL.
  Bblock* bblock_;
  // Whether this is being evaluated in a constant context.  This is
  // used for type descriptor initializers.
  bool is_const_;
};

// Runtime error codes.  These must match the values in
// libgo/runtime/go-runtime-error.c.

// Slice index out of bounds: negative or larger than the length of
// the slice.
static const int RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS = 0;

// Array index out of bounds.
static const int RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS = 1;

// String index out of bounds.
static const int RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS = 2;

// Slice slice out of bounds: negative or larger than the length of
// the slice or high bound less than low bound.
static const int RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS = 3;

// Array slice out of bounds.
static const int RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS = 4;

// String slice out of bounds.
static const int RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS = 5;

// Dereference of nil pointer.  This is used when there is a
// dereference of a pointer to a very large struct or array, to ensure
// that a gigantic array is not used a proxy to access random memory
// locations.
static const int RUNTIME_ERROR_NIL_DEREFERENCE = 6;

// Slice length or capacity out of bounds in make: negative or
// overflow or length greater than capacity.
static const int RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS = 7;

// Map capacity out of bounds in make: negative or overflow.
static const int RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS = 8;

// Channel capacity out of bounds in make: negative or overflow.
static const int RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS = 9;

// Division by zero.
static const int RUNTIME_ERROR_DIVISION_BY_ZERO = 10;

// Go statement with nil function.
static const int RUNTIME_ERROR_GO_NIL = 11;

// This is used by some of the langhooks.
extern Gogo* go_get_gogo();

// Whether we have seen any errors.  FIXME: Replace with a backend
// interface.
extern bool saw_errors();

#endif // !defined(GO_GOGO_H)