1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
|
/* Translation of CLAST (CLooG AST) to Gimple.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "langhooks.h"
#include "sese.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-cloog-util.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-dependences.h"
#include "graphite-cloog-compat.h"
/* This flag is set when an error occurred during the translation of
CLAST to Gimple. */
static bool gloog_error;
/* Verifies properties that GRAPHITE should maintain during translation. */
static inline void
graphite_verify (void)
{
#ifdef ENABLE_CHECKING
verify_loop_structure ();
verify_dominators (CDI_DOMINATORS);
verify_loop_closed_ssa (true);
#endif
}
/* Stores the INDEX in a vector for a given clast NAME. */
typedef struct clast_name_index {
int index;
const char *name;
} *clast_name_index_p;
/* Returns a pointer to a new element of type clast_name_index_p built
from NAME and INDEX. */
static inline clast_name_index_p
new_clast_name_index (const char *name, int index)
{
clast_name_index_p res = XNEW (struct clast_name_index);
res->name = name;
res->index = index;
return res;
}
/* For a given clast NAME, returns -1 if it does not correspond to any
parameter, or otherwise, returns the index in the PARAMS or
SCATTERING_DIMENSIONS vector. */
static inline int
clast_name_to_index (clast_name_p name, htab_t index_table)
{
struct clast_name_index tmp;
PTR *slot;
#ifdef CLOOG_ORG
gcc_assert (name->type == clast_expr_name);
tmp.name = ((const struct clast_name*) name)->name;
#else
tmp.name = name;
#endif
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
if (slot && *slot)
return ((struct clast_name_index *) *slot)->index;
return -1;
}
/* Records in INDEX_TABLE the INDEX for NAME. */
static inline void
save_clast_name_index (htab_t index_table, const char *name, int index)
{
struct clast_name_index tmp;
PTR *slot;
tmp.name = name;
slot = htab_find_slot (index_table, &tmp, INSERT);
if (slot)
{
if (*slot)
free (*slot);
*slot = new_clast_name_index (name, index);
}
}
/* Computes a hash function for database element ELT. */
static inline hashval_t
clast_name_index_elt_info (const void *elt)
{
return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
}
/* Compares database elements E1 and E2. */
static inline int
eq_clast_name_indexes (const void *e1, const void *e2)
{
const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
return (elt1->name == elt2->name);
}
/* For a given scattering dimension, return the new induction variable
associated to it. */
static inline tree
newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
{
return VEC_index (tree, newivs, depth);
}
/* Returns the tree variable from the name NAME that was given in
Cloog representation. */
static tree
clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int index;
VEC (tree, heap) *params = SESE_PARAMS (region);
if (params && params_index)
{
index = clast_name_to_index (name, params_index);
if (index >= 0)
return VEC_index (tree, params, index);
}
gcc_assert (newivs && newivs_index);
index = clast_name_to_index (name, newivs_index);
gcc_assert (index >= 0);
return newivs_to_depth_to_newiv (newivs, index);
}
/* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
static tree
max_signed_precision_type (tree type1, tree type2)
{
int p1 = TYPE_PRECISION (type1);
int p2 = TYPE_PRECISION (type2);
int precision;
tree type;
enum machine_mode mode;
if (p1 > p2)
precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
else
precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
if (precision > BITS_PER_WORD)
{
gloog_error = true;
return integer_type_node;
}
mode = smallest_mode_for_size (precision, MODE_INT);
precision = GET_MODE_PRECISION (mode);
type = build_nonstandard_integer_type (precision, false);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
static tree
max_precision_type (tree type1, tree type2)
{
if (POINTER_TYPE_P (type1))
return type1;
if (POINTER_TYPE_P (type2))
return type2;
if (!TYPE_UNSIGNED (type1)
|| !TYPE_UNSIGNED (type2))
return max_signed_precision_type (type1, type2);
return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
}
static tree
clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
htab_t, htab_t);
/* Converts a Cloog reduction expression R with reduction operation OP
to a GCC expression tree of type TYPE. */
static tree
clast_to_gcc_expression_red (tree type, enum tree_code op,
struct clast_reduction *r,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int i;
tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
newivs_index, params_index);
tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
for (i = 1; i < r->n; i++)
{
tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
newivs, newivs_index, params_index);
res = fold_build2 (op, type, res, t);
}
return res;
}
/* Converts a Cloog AST expression E back to a GCC expression tree of
type TYPE. */
static tree
clast_to_gcc_expression (tree type, struct clast_expr *e,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
switch (e->type)
{
case clast_expr_term:
{
struct clast_term *t = (struct clast_term *) e;
if (t->var)
{
if (mpz_cmp_si (t->val, 1) == 0)
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
return name;
}
else if (mpz_cmp_si (t->val, -1) == 0)
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
return fold_build1 (NEGATE_EXPR, type, name);
}
else
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
tree cst = gmp_cst_to_tree (type, t->val);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
if (!POINTER_TYPE_P (type))
return fold_build2 (MULT_EXPR, type, cst, name);
gloog_error = true;
return cst;
}
}
else
return gmp_cst_to_tree (type, t->val);
}
case clast_expr_red:
{
struct clast_reduction *r = (struct clast_reduction *) e;
switch (r->type)
{
case clast_red_sum:
return clast_to_gcc_expression_red
(type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
r, region, newivs, newivs_index, params_index);
case clast_red_min:
return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
newivs, newivs_index,
params_index);
case clast_red_max:
return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
newivs, newivs_index,
params_index);
default:
gcc_unreachable ();
}
break;
}
case clast_expr_bin:
{
struct clast_binary *b = (struct clast_binary *) e;
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
newivs_index, params_index);
tree tr = gmp_cst_to_tree (type, b->RHS);
switch (b->type)
{
case clast_bin_fdiv:
return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
case clast_bin_cdiv:
return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
case clast_bin_div:
return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
case clast_bin_mod:
return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
default:
gcc_unreachable ();
}
}
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Return the precision needed to represent the value VAL. */
static int
precision_for_value (mpz_t val)
{
mpz_t x, y, two;
int precision;
mpz_init (x);
mpz_init (y);
mpz_init (two);
mpz_set_si (x, 2);
mpz_set (y, val);
mpz_set_si (two, 2);
precision = 1;
if (mpz_sgn (y) < 0)
mpz_neg (y, y);
while (mpz_cmp (y, x) >= 0)
{
mpz_mul (x, x, two);
precision++;
}
mpz_clear (x);
mpz_clear (y);
mpz_clear (two);
return precision;
}
/* Return the precision needed to represent the values between LOW and
UP. */
static int
precision_for_interval (mpz_t low, mpz_t up)
{
mpz_t diff;
int precision;
gcc_assert (mpz_cmp (low, up) <= 0);
mpz_init (diff);
mpz_sub (diff, up, low);
precision = precision_for_value (diff);
mpz_clear (diff);
return precision;
}
/* Return a type that could represent the integer value VAL. */
static tree
gcc_type_for_interval (mpz_t low, mpz_t up)
{
bool unsigned_p = true;
int precision, prec_up, prec_int;
tree type;
enum machine_mode mode;
gcc_assert (mpz_cmp (low, up) <= 0);
prec_up = precision_for_value (up);
prec_int = precision_for_interval (low, up);
precision = MAX (prec_up, prec_int);
if (precision > BITS_PER_WORD)
{
gloog_error = true;
return integer_type_node;
}
if (mpz_sgn (low) <= 0)
unsigned_p = false;
else if (precision < BITS_PER_WORD)
{
unsigned_p = false;
precision++;
}
mode = smallest_mode_for_size (precision, MODE_INT);
precision = GET_MODE_PRECISION (mode);
type = build_nonstandard_integer_type (precision, unsigned_p);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
/* Return a type that could represent the integer value VAL, or
otherwise return NULL_TREE. */
static tree
gcc_type_for_value (mpz_t val)
{
return gcc_type_for_interval (val, val);
}
/* Return the type for the clast_term T used in STMT. */
static tree
gcc_type_for_clast_term (struct clast_term *t,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
gcc_assert (t->expr.type == clast_expr_term);
if (!t->var)
return gcc_type_for_value (t->val);
return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index));
}
static tree
gcc_type_for_clast_expr (struct clast_expr *, sese,
VEC (tree, heap) *, htab_t, htab_t);
/* Return the type for the clast_reduction R used in STMT. */
static tree
gcc_type_for_clast_red (struct clast_reduction *r, sese region,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int i;
tree type = NULL_TREE;
if (r->n == 1)
return gcc_type_for_clast_expr (r->elts[0], region, newivs,
newivs_index, params_index);
switch (r->type)
{
case clast_red_sum:
case clast_red_min:
case clast_red_max:
type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
newivs_index, params_index);
for (i = 1; i < r->n; i++)
type = max_precision_type (type, gcc_type_for_clast_expr
(r->elts[i], region, newivs,
newivs_index, params_index));
return type;
default:
break;
}
gcc_unreachable ();
return NULL_TREE;
}
/* Return the type for the clast_binary B used in STMT. */
static tree
gcc_type_for_clast_bin (struct clast_binary *b,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
newivs, newivs_index, params_index);
tree r = gcc_type_for_value (b->RHS);
return max_signed_precision_type (l, r);
}
/* Returns the type for the CLAST expression E when used in statement
STMT. */
static tree
gcc_type_for_clast_expr (struct clast_expr *e,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
switch (e->type)
{
case clast_expr_term:
return gcc_type_for_clast_term ((struct clast_term *) e, region,
newivs, newivs_index, params_index);
case clast_expr_red:
return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
newivs, newivs_index, params_index);
case clast_expr_bin:
return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
newivs, newivs_index, params_index);
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Returns the type for the equation CLEQ. */
static tree
gcc_type_for_clast_eq (struct clast_equation *cleq,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
newivs_index, params_index);
tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
newivs_index, params_index);
return max_precision_type (l, r);
}
/* Translates a clast equation CLEQ to a tree. */
static tree
graphite_translate_clast_equation (sese region,
struct clast_equation *cleq,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
enum tree_code comp;
tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
params_index);
tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
newivs_index, params_index);
tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
newivs_index, params_index);
if (cleq->sign == 0)
comp = EQ_EXPR;
else if (cleq->sign > 0)
comp = GE_EXPR;
else
comp = LE_EXPR;
return fold_build2 (comp, boolean_type_node, lhs, rhs);
}
/* Creates the test for the condition in STMT. */
static tree
graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond = NULL;
int i;
for (i = 0; i < stmt->n; i++)
{
tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
newivs, newivs_index,
params_index);
if (cond)
cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
else
cond = eq;
}
return cond;
}
/* Creates a new if region corresponding to Cloog's guard. */
static edge
graphite_create_new_guard (sese region, edge entry_edge,
struct clast_guard *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
newivs_index, params_index);
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
/* Compute the lower bound LOW and upper bound UP for the induction
variable at LEVEL for the statement PBB, based on the transformed
scattering of PBB: T|I|G|Cst, with T the scattering transform, I
the iteration domain, and G the context parameters. */
static void
compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
{
ppl_Pointset_Powerset_C_Polyhedron_t ps;
ppl_Linear_Expression_t le;
combine_context_id_scat (&ps, pbb, false);
/* Prepare the linear expression corresponding to the level that we
want to maximize/minimize. */
{
ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
+ pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, 2 * level + 1, 1);
}
ppl_max_for_le_pointset (ps, le, up);
ppl_min_for_le_pointset (ps, le, low);
ppl_delete_Linear_Expression (le);
ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
}
/* Compute the type for the induction variable at LEVEL for the
statement PBB, based on the transformed schedule of PBB. */
static tree
compute_type_for_level (poly_bb_p pbb, int level)
{
mpz_t low, up;
tree type;
mpz_init (low);
mpz_init (up);
compute_bounds_for_level (pbb, level, low, up);
type = gcc_type_for_interval (low, up);
mpz_clear (low);
mpz_clear (up);
return type;
}
/* Walks a CLAST and returns the first statement in the body of a
loop. */
static struct clast_user_stmt *
clast_get_body_of_loop (struct clast_stmt *stmt)
{
if (!stmt
|| CLAST_STMT_IS_A (stmt, stmt_user))
return (struct clast_user_stmt *) stmt;
if (CLAST_STMT_IS_A (stmt, stmt_for))
return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
if (CLAST_STMT_IS_A (stmt, stmt_guard))
return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
if (CLAST_STMT_IS_A (stmt, stmt_block))
return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
gcc_unreachable ();
}
/* Returns the type for the induction variable for the loop translated
from STMT_FOR. */
static tree
gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
tree lb_type, tree ub_type)
{
struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
CloogStatement *cs = body->statement;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
return max_signed_precision_type (lb_type, max_precision_type
(ub_type, compute_type_for_level
(pbb, level - 1)));
}
/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
induction variable for the new LOOP. New LOOP is attached to CFG
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
CLooG's scattering name to the induction variable created for the
loop of STMT. The new induction variable is inserted in the NEWIVS
vector. */
static struct loop *
graphite_create_new_loop (sese region, edge entry_edge,
struct clast_for *stmt,
loop_p outer, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t params_index, int level)
{
tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
newivs_index, params_index);
tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
newivs_index, params_index);
tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
newivs_index, params_index);
tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
newivs_index, params_index);
tree stride = gmp_cst_to_tree (type, stmt->stride);
tree ivvar = create_tmp_var (type, "graphite_IV");
tree iv, iv_after_increment;
loop_p loop = create_empty_loop_on_edge
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
outer ? outer : entry_edge->src->loop_father);
add_referenced_var (ivvar);
save_clast_name_index (newivs_index, stmt->iterator,
VEC_length (tree, *newivs));
VEC_safe_push (tree, heap, *newivs, iv);
return loop;
}
/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
induction variables of the loops around GBB in SESE. */
static void
build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
VEC (tree, heap) *newivs, htab_t newivs_index,
struct clast_user_stmt *user_stmt,
htab_t params_index)
{
struct clast_stmt *t;
int depth = 0;
CloogStatement *cs = user_stmt->statement;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
for (t = user_stmt->substitutions; t; t = t->next, depth++)
{
struct clast_expr *expr = (struct clast_expr *)
((struct clast_assignment *)t)->RHS;
tree type = gcc_type_for_clast_expr (expr, region, newivs,
newivs_index, params_index);
tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
newivs_index, params_index);
loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
VEC_replace (tree, iv_map, old_loop->num, new_name);
}
}
/* Construct bb_pbb_def with BB and PBB. */
static bb_pbb_def *
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
{
bb_pbb_def *bb_pbb_p;
bb_pbb_p = XNEW (bb_pbb_def);
bb_pbb_p->bb = bb;
bb_pbb_p->pbb = pbb;
return bb_pbb_p;
}
/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
static void
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
{
bb_pbb_def tmp;
PTR *x;
tmp.bb = bb;
x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
if (x && !*x)
*x = new_bb_pbb_def (bb, pbb);
}
/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
static poly_bb_p
find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
{
bb_pbb_def tmp;
PTR *slot;
tmp.bb = bb;
slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
if (slot && *slot)
return ((bb_pbb_def *) *slot)->pbb;
return NULL;
}
/* Check data dependency in LOOP at scattering level LEVEL.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
mapping. */
static bool
dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
{
unsigned i,j;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
if (pbb1 == NULL)
continue;
for (j = 0; j < loop->num_nodes; j++)
{
poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
if (pbb2 == NULL)
continue;
if (dependency_between_pbbs_p (pbb1, pbb2, level))
{
free (bbs);
return true;
}
}
}
free (bbs);
return false;
}
/* Translates a clast user statement STMT to gimple.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping,
htab_t params_index)
{
int i, nb_loops;
basic_block new_bb;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
VEC (tree, heap) *iv_map;
if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
return next_e;
nb_loops = number_of_loops ();
iv_map = VEC_alloc (tree, heap, nb_loops);
for (i = 0; i < nb_loops; i++)
VEC_quick_push (tree, iv_map, NULL_TREE);
build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
next_e, iv_map);
VEC_free (tree, heap, iv_map);
new_bb = next_e->src;
mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
update_ssa (TODO_update_ssa);
return next_e;
}
/* Creates a new if region protecting the loop to be executed, if the execution
count is zero (lb > ub). */
static edge
graphite_create_new_loop_guard (sese region, edge entry_edge,
struct clast_for *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond_expr;
edge exit_edge;
tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
newivs_index, params_index);
tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
newivs_index, params_index);
tree type = max_precision_type (lb_type, ub_type);
tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
newivs_index, params_index);
tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
newivs_index, params_index);
tree one = POINTER_TYPE_P (type) ? size_one_node
: fold_convert (type, integer_one_node);
/* Adding +1 and using LT_EXPR helps with loop latches that have a
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
However lb < ub + 1 is false, as expected. */
tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
: PLUS_EXPR, type, ub, one);
/* When ub + 1 wraps around, use lb <= ub. */
if (integer_zerop (ub_one))
cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
else
cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
static edge
translate_clast (sese, loop_p, struct clast_stmt *, edge,
VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
/* Create the loop for a clast for statement.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_for_loop (sese region, loop_p context_loop,
struct clast_for *stmt, edge next_e,
VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping,
int level, htab_t params_index)
{
struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
context_loop, newivs,
newivs_index, params_index,
level);
edge last_e = single_exit (loop);
edge to_body = single_succ_edge (loop->header);
basic_block after = to_body->dest;
/* Create a basic block for loop close phi nodes. */
last_e = single_succ_edge (split_edge (last_e));
/* Translate the body of the loop. */
next_e = translate_clast (region, loop, stmt->body, to_body,
newivs, newivs_index, bb_pbb_mapping, level + 1,
params_index);
redirect_edge_succ_nodup (next_e, after);
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
if (flag_loop_parallelize_all
&& !dependency_in_loop_p (loop, bb_pbb_mapping,
get_scattering_level (level)))
loop->can_be_parallel = true;
return last_e;
}
/* Translates a clast for statement STMT to gimple. First a guard is created
protecting the loop, if it is executed zero times. In this guard we create
the real loop structure.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
edge next_e, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
newivs_index, params_index);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
newivs_index, bb_pbb_mapping, level,
params_index);
return last_e;
}
/* Translates a clast guard statement STMT to gimple.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_guard (sese region, loop_p context_loop,
struct clast_guard *stmt, edge next_e,
VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
newivs_index, params_index);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
translate_clast (region, context_loop, stmt->then, true_e,
newivs, newivs_index, bb_pbb_mapping,
level, params_index);
return last_e;
}
/* Translates a CLAST statement STMT to GCC representation in the
context of a SESE.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
edge next_e, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
if (!stmt)
return next_e;
if (CLAST_STMT_IS_A (stmt, stmt_root))
; /* Do nothing. */
else if (CLAST_STMT_IS_A (stmt, stmt_user))
next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
next_e, newivs, newivs_index,
bb_pbb_mapping, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_for))
next_e = translate_clast_for (region, context_loop,
(struct clast_for *) stmt, next_e,
newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_guard))
next_e = translate_clast_guard (region, context_loop,
(struct clast_guard *) stmt, next_e,
newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_block))
next_e = translate_clast (region, context_loop,
((struct clast_block *) stmt)->body,
next_e, newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else
gcc_unreachable();
recompute_all_dominators ();
graphite_verify ();
return translate_clast (region, context_loop, stmt->next, next_e,
newivs, newivs_index,
bb_pbb_mapping, level, params_index);
}
/* Free the SCATTERING domain list. */
static void
free_scattering (CloogScatteringList *scattering)
{
while (scattering)
{
CloogScattering *dom = cloog_scattering (scattering);
CloogScatteringList *next = cloog_next_scattering (scattering);
cloog_scattering_free (dom);
free (scattering);
scattering = next;
}
}
/* Initialize Cloog's parameter names from the names used in GIMPLE.
Initialize Cloog's iterator names, using 'graphite_iterator_%d'
from 0 to scop_nb_loops (scop). */
static void
initialize_cloog_names (scop_p scop, CloogProgram *prog)
{
sese region = SCOP_REGION (scop);
int i;
int nb_iterators = scop_max_loop_depth (scop);
int nb_scattering = cloog_program_nb_scattdims (prog);
int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
char **iterators = XNEWVEC (char *, nb_iterators * 2);
char **scattering = XNEWVEC (char *, nb_scattering);
char **parameters= XNEWVEC (char *, nb_parameters);
cloog_program_set_names (prog, cloog_names_malloc ());
for (i = 0; i < nb_parameters; i++)
{
tree param = VEC_index (tree, SESE_PARAMS(region), i);
const char *name = get_name (param);
int len;
if (!name)
name = "T";
len = strlen (name);
len += 17;
parameters[i] = XNEWVEC (char, len + 1);
snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
}
cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
cloog_names_set_parameters (cloog_program_names (prog), parameters);
for (i = 0; i < nb_iterators; i++)
{
int len = 4 + 16;
iterators[i] = XNEWVEC (char, len);
snprintf (iterators[i], len, "git_%d", i);
}
cloog_names_set_nb_iterators (cloog_program_names (prog),
nb_iterators);
cloog_names_set_iterators (cloog_program_names (prog),
iterators);
for (i = 0; i < nb_scattering; i++)
{
int len = 5 + 16;
scattering[i] = XNEWVEC (char, len);
snprintf (scattering[i], len, "scat_%d", i);
}
cloog_names_set_nb_scattering (cloog_program_names (prog),
nb_scattering);
cloog_names_set_scattering (cloog_program_names (prog),
scattering);
}
/* Initialize a CLooG input file. */
static FILE *
init_cloog_input_file (int scop_number)
{
FILE *graphite_out_file;
int len = strlen (dump_base_name);
char *dumpname = XNEWVEC (char, len + 25);
char *s_scop_number = XNEWVEC (char, 15);
memcpy (dumpname, dump_base_name, len + 1);
strip_off_ending (dumpname, len);
sprintf (s_scop_number, ".%d", scop_number);
strcat (dumpname, s_scop_number);
strcat (dumpname, ".cloog");
graphite_out_file = fopen (dumpname, "w+b");
if (graphite_out_file == 0)
fatal_error ("can%'t open %s for writing: %m", dumpname);
free (dumpname);
return graphite_out_file;
}
/* Build cloog program for SCoP. */
static void
build_cloog_prog (scop_p scop, CloogProgram *prog,
CloogOptions *options, CloogState *state ATTRIBUTE_UNUSED)
{
int i;
int max_nb_loops = scop_max_loop_depth (scop);
poly_bb_p pbb;
CloogLoop *loop_list = NULL;
CloogBlockList *block_list = NULL;
CloogScatteringList *scattering = NULL;
int nbs = 2 * max_nb_loops + 1;
int *scaldims;
cloog_program_set_context
(prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
scop_nb_params (scop), state));
nbs = unify_scattering_dimensions (scop);
scaldims = (int *) xmalloc (nbs * (sizeof (int)));
cloog_program_set_nb_scattdims (prog, nbs);
initialize_cloog_names (scop, prog);
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
{
CloogStatement *stmt;
CloogBlock *block;
CloogDomain *dom;
/* Dead code elimination: when the domain of a PBB is empty,
don't generate code for the PBB. */
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
continue;
/* Build the new statement and its block. */
stmt = cloog_statement_alloc (state, pbb_index (pbb));
dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
scop_nb_params (scop),
state);
block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
cloog_statement_set_usr (stmt, pbb);
/* Build loop list. */
{
CloogLoop *new_loop_list = cloog_loop_malloc (state);
cloog_loop_set_next (new_loop_list, loop_list);
cloog_loop_set_domain (new_loop_list, dom);
cloog_loop_set_block (new_loop_list, block);
loop_list = new_loop_list;
}
/* Build block list. */
{
CloogBlockList *new_block_list = cloog_block_list_malloc ();
cloog_block_list_set_next (new_block_list, block_list);
cloog_block_list_set_block (new_block_list, block);
block_list = new_block_list;
}
/* Build scattering list. */
{
/* XXX: Replace with cloog_domain_list_alloc(), when available. */
CloogScatteringList *new_scattering
= (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
ppl_Polyhedron_t scat;
CloogScattering *dom;
scat = PBB_TRANSFORMED_SCATTERING (pbb);
dom = new_Cloog_Scattering_from_ppl_Polyhedron
(scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
state);
cloog_set_next_scattering (new_scattering, scattering);
cloog_set_scattering (new_scattering, dom);
scattering = new_scattering;
}
}
cloog_program_set_loop (prog, loop_list);
cloog_program_set_blocklist (prog, block_list);
for (i = 0; i < nbs; i++)
scaldims[i] = 0 ;
cloog_program_set_scaldims (prog, scaldims);
/* Extract scalar dimensions to simplify the code generation problem. */
cloog_program_extract_scalars (prog, scattering, options);
/* Dump a .cloog input file, if requested. This feature is only
enabled in the Graphite branch. */
if (0)
{
static size_t file_scop_number = 0;
FILE *cloog_file = init_cloog_input_file (file_scop_number);
cloog_program_dump_cloog (cloog_file, prog, scattering);
++file_scop_number;
}
/* Apply scattering. */
cloog_program_scatter (prog, scattering, options);
free_scattering (scattering);
/* Iterators corresponding to scalar dimensions have to be extracted. */
cloog_names_scalarize (cloog_program_names (prog), nbs,
cloog_program_scaldims (prog));
/* Free blocklist. */
{
CloogBlockList *next = cloog_program_blocklist (prog);
while (next)
{
CloogBlockList *toDelete = next;
next = cloog_block_list_next (next);
cloog_block_list_set_next (toDelete, NULL);
cloog_block_list_set_block (toDelete, NULL);
cloog_block_list_free (toDelete);
}
cloog_program_set_blocklist (prog, NULL);
}
}
/* Return the options that will be used in GLOOG. */
static CloogOptions *
set_cloog_options (CloogState *state ATTRIBUTE_UNUSED)
{
CloogOptions *options = cloog_options_malloc (state);
/* Change cloog output language to C. If we do use FORTRAN instead, cloog
will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
we pass an incomplete program to cloog. */
options->language = LANGUAGE_C;
/* Enable complex equality spreading: removes dummy statements
(assignments) in the generated code which repeats the
substitution equations for statements. This is useless for
GLooG. */
options->esp = 1;
#ifdef CLOOG_ORG
/* Silence CLooG to avoid failing tests due to debug output to stderr. */
options->quiet = 1;
#else
/* Enable C pretty-printing mode: normalizes the substitution
equations for statements. */
options->cpp = 1;
#endif
/* Allow cloog to build strides with a stride width different to one.
This example has stride = 4:
for (i = 0; i < 20; i += 4)
A */
options->strides = 1;
/* Disable optimizations and make cloog generate source code closer to the
input. This is useful for debugging, but later we want the optimized
code.
XXX: We can not disable optimizations, as loop blocking is not working
without them. */
if (0)
{
options->f = -1;
options->l = INT_MAX;
}
return options;
}
/* Prints STMT to STDERR. */
void
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
{
CloogState *state = cloog_state_malloc ();
CloogOptions *options = set_cloog_options (state);
clast_pprint (file, stmt, 0, options);
cloog_options_free (options);
cloog_state_free (state);
}
/* Prints STMT to STDERR. */
DEBUG_FUNCTION void
debug_clast_stmt (struct clast_stmt *stmt)
{
print_clast_stmt (stderr, stmt);
}
/* Translate SCOP to a CLooG program and clast. These two
representations should be freed together: a clast cannot be used
without a program. */
cloog_prog_clast
scop_to_clast (scop_p scop, CloogState *state)
{
CloogOptions *options = set_cloog_options (state);
cloog_prog_clast pc;
/* Connect new cloog prog generation to graphite. */
pc.prog = cloog_program_malloc ();
build_cloog_prog (scop, pc.prog, options, state);
pc.prog = cloog_program_generate (pc.prog, options);
pc.stmt = cloog_clast_create (pc.prog, options);
cloog_options_free (options);
return pc;
}
/* Prints to FILE the code generated by CLooG for SCOP. */
void
print_generated_program (FILE *file, scop_p scop)
{
CloogState *state = cloog_state_malloc ();
CloogOptions *options = set_cloog_options (state);
cloog_prog_clast pc = scop_to_clast (scop, state);
fprintf (file, " (prog: \n");
cloog_program_print (file, pc.prog);
fprintf (file, " )\n");
fprintf (file, " (clast: \n");
clast_pprint (file, pc.stmt, 0, options);
fprintf (file, " )\n");
cloog_options_free (options);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
}
/* Prints to STDERR the code generated by CLooG for SCOP. */
DEBUG_FUNCTION void
debug_generated_program (scop_p scop)
{
print_generated_program (stderr, scop);
}
/* Add CLooG names to parameter index. The index is used to translate
back from CLooG names to GCC trees. */
static void
create_params_index (htab_t index_table, CloogProgram *prog) {
CloogNames* names = cloog_program_names (prog);
int nb_parameters = cloog_names_nb_parameters (names);
char **parameters = cloog_names_parameters (names);
int i;
for (i = 0; i < nb_parameters; i++)
save_clast_name_index (index_table, parameters[i], i);
}
/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
the given SCOP. Return true if code generation succeeded.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/
bool
gloog (scop_p scop, htab_t bb_pbb_mapping)
{
VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
loop_p context_loop;
sese region = SCOP_REGION (scop);
ifsese if_region = NULL;
htab_t newivs_index, params_index;
cloog_prog_clast pc;
CloogState *state;
state = cloog_state_malloc ();
timevar_push (TV_GRAPHITE_CODE_GEN);
gloog_error = false;
pc = scop_to_clast (scop, state);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nCLAST generated by CLooG: \n");
print_clast_stmt (dump_file, pc.stmt);
fprintf (dump_file, "\n");
}
recompute_all_dominators ();
graphite_verify ();
if_region = move_sese_in_condition (region);
sese_insert_phis_for_liveouts (region,
if_region->region->exit->src,
if_region->false_region->exit,
if_region->true_region->exit);
recompute_all_dominators ();
graphite_verify ();
context_loop = SESE_ENTRY (region)->src->loop_father;
newivs_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free);
params_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free);
create_params_index (params_index, pc.prog);
translate_clast (region, context_loop, pc.stmt,
if_region->true_region->entry,
&newivs, newivs_index,
bb_pbb_mapping, 1, params_index);
graphite_verify ();
scev_reset_htab ();
recompute_all_dominators ();
graphite_verify ();
if (gloog_error)
set_ifsese_condition (if_region, integer_zero_node);
free (if_region->true_region);
free (if_region->region);
free (if_region);
htab_delete (newivs_index);
htab_delete (params_index);
VEC_free (tree, heap, newivs);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
timevar_pop (TV_GRAPHITE_CODE_GEN);
if (dump_file && (dump_flags & TDF_DETAILS))
{
loop_p loop;
loop_iterator li;
int num_no_dependency = 0;
FOR_EACH_LOOP (li, loop, 0)
if (loop->can_be_parallel)
num_no_dependency++;
fprintf (dump_file, "\n%d loops carried no dependency.\n",
num_no_dependency);
}
cloog_state_free (state);
return !gloog_error;
}
#endif
|