1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
/* Data dependence analysis for Graphite.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Konrad Trifunovic <konrad.trifunovic@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "pointer-set.h"
#include "gimple.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-dependences.h"
/* Creates a new polyhedral data reference pair and
returns it. Parameter SOURCE denotes a source data reference
while parameter SINK denotes a sink data reference. Both
SOURCE and SINK define a pair of references, thus they
define an edge in DDG (Data Dependence Graph). */
static poly_dr_pair_p
new_poly_dr_pair (poly_dr_p source,
poly_dr_p sink,
ppl_Pointset_Powerset_C_Polyhedron_t ddp)
{
poly_dr_pair_p pdrpp;
pdrpp = XNEW (struct poly_dr_pair);
pdrpp->source = source;
pdrpp->sink = sink;
pdrpp->ddp = ddp;
return pdrpp;
}
/* Comparison function for poly_dr_pair hash table. */
int
eq_poly_dr_pair_p (const void *pdrpp1, const void *pdrpp2)
{
const struct poly_dr_pair *p1 = (const struct poly_dr_pair *) pdrpp1;
const struct poly_dr_pair *p2 = (const struct poly_dr_pair *) pdrpp2;
return (p1->source == p2->source
&& p1->sink == p2->sink);
}
/* Hash function for poly_dr_pair hashtable. */
hashval_t
hash_poly_dr_pair_p (const void *pdrpp)
{
const struct poly_dr_pair *p = (const struct poly_dr_pair *) pdrpp;
return (hashval_t) ((long) p->source + (long) p->sink);
}
/* Returns a polyhedron of dimension DIM.
Maps the dimensions [0, ..., cut - 1] of polyhedron P to OFFSET0
and the dimensions [cut, ..., nb_dim] to DIM - GDIM. */
static ppl_Pointset_Powerset_C_Polyhedron_t
map_into_dep_poly (graphite_dim_t dim, graphite_dim_t gdim,
ppl_Pointset_Powerset_C_Polyhedron_t p,
graphite_dim_t cut,
graphite_dim_t offset)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&res, p);
ppl_insert_dimensions_pointset (res, 0, offset);
ppl_insert_dimensions_pointset (res, offset + cut,
dim - offset - cut - gdim);
return res;
}
/* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
transformed into "a CUT0 c CUT1' b"
Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
"00...0 a 00...0 c 00...0 b". */
static ppl_Pointset_Powerset_C_Polyhedron_t
map_dr_into_dep_poly (graphite_dim_t dim,
ppl_Pointset_Powerset_C_Polyhedron_t dr,
graphite_dim_t cut0, graphite_dim_t cut1,
graphite_dim_t nb0, graphite_dim_t nb1)
{
ppl_dimension_type pdim;
ppl_dimension_type *map;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_dimension_type i;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&res, dr);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
/* First mapping: move 'g' vector to right position. */
for (i = 0; i < cut0; i++)
map[i] = i;
for (i = cut0; i < cut1; i++)
map[i] = pdim - cut1 + i;
for (i = cut1; i < pdim; i++)
map[i] = cut0 + i - cut1;
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
free (map);
/* After swapping 's' and 'g' vectors, we have to update a new cut. */
cut1 = pdim - cut1 + cut0;
ppl_insert_dimensions_pointset (res, 0, nb0);
ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
dim - nb0 - nb1 - pdim);
return res;
}
/* Builds a constraints of the form "POS1 - POS2 CSTR_TYPE C" */
static ppl_Constraint_t
build_pairwise_constraint (graphite_dim_t dim,
graphite_dim_t pos1, graphite_dim_t pos2,
int c, enum ppl_enum_Constraint_Type cstr_type)
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
Value v, v_op, v_c;
value_init (v);
value_init (v_op);
value_init (v_c);
value_set_si (v, 1);
value_set_si (v_op, -1);
value_set_si (v_c, c);
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_assign_Coefficient_from_mpz_t (coef, v);
ppl_Linear_Expression_add_to_coefficient (expr, pos1, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_op);
ppl_Linear_Expression_add_to_coefficient (expr, pos2, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_c);
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
ppl_new_Constraint (&cstr, expr, cstr_type);
ppl_delete_Linear_Expression (expr);
ppl_delete_Coefficient (coef);
value_clear (v);
value_clear (v_op);
value_clear (v_c);
return cstr;
}
/* Builds subscript equality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dr_equality_constraints (graphite_dim_t dim,
graphite_dim_t pos, graphite_dim_t nb_subscripts)
{
ppl_Polyhedron_t subscript_equalities;
ppl_Pointset_Powerset_C_Polyhedron_t res;
Value v, v_op;
graphite_dim_t i;
value_init (v);
value_init (v_op);
value_set_si (v, 1);
value_set_si (v_op, -1);
ppl_new_C_Polyhedron_from_space_dimension (&subscript_equalities, dim, 0);
for (i = 0; i < nb_subscripts; i++)
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_assign_Coefficient_from_mpz_t (coef, v);
ppl_Linear_Expression_add_to_coefficient (expr, pos + i, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_op);
ppl_Linear_Expression_add_to_coefficient (expr, pos + i + nb_subscripts,
coef);
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (subscript_equalities, cstr);
ppl_delete_Linear_Expression (expr);
ppl_delete_Constraint (cstr);
ppl_delete_Coefficient (coef);
}
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&res, subscript_equalities);
value_clear (v);
value_clear (v_op);
ppl_delete_Polyhedron (subscript_equalities);
return res;
}
/* Builds scheduling equality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_pairwise_scheduling_equality (graphite_dim_t dim,
graphite_dim_t pos, graphite_dim_t offset)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Polyhedron_t equalities;
ppl_Constraint_t cstr;
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
cstr = build_pairwise_constraint (dim, pos, pos + offset, 0,
PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (equalities, cstr);
ppl_delete_Constraint (cstr);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
ppl_delete_Polyhedron (equalities);
return res;
}
/* Builds scheduling inequality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_pairwise_scheduling_inequality (graphite_dim_t dim,
graphite_dim_t pos,
graphite_dim_t offset,
bool direction)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Polyhedron_t equalities;
ppl_Constraint_t cstr;
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
if (direction)
cstr = build_pairwise_constraint (dim, pos, pos + offset, -1,
PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
else
cstr = build_pairwise_constraint (dim, pos, pos + offset, 1,
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
ppl_Polyhedron_add_constraint (equalities, cstr);
ppl_delete_Constraint (cstr);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
ppl_delete_Polyhedron (equalities);
return res;
}
/* Returns true when adding the lexicographical constraints at level I
to the RES dependence polyhedron returns an empty polyhedron. */
static bool
lexicographically_gt_p (ppl_Pointset_Powerset_C_Polyhedron_t res,
graphite_dim_t dim,
graphite_dim_t offset,
bool direction, graphite_dim_t i)
{
ppl_Pointset_Powerset_C_Polyhedron_t ineq;
bool empty_p;
ineq = build_pairwise_scheduling_inequality (dim, i, offset,
direction);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (ineq, res);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (ineq);
if (!empty_p)
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, ineq);
ppl_delete_Pointset_Powerset_C_Polyhedron (ineq);
return !empty_p;
}
/* Build the precedence constraints for the lexicographical comparison
of time vectors RES following the lexicographical order. */
static void
build_lexicographically_gt_constraint (ppl_Pointset_Powerset_C_Polyhedron_t *res,
graphite_dim_t dim,
graphite_dim_t tdim1,
graphite_dim_t offset,
bool direction)
{
graphite_dim_t i;
if (lexicographically_gt_p (*res, dim, offset, direction, 0))
return;
for (i = 0; i < tdim1 - 1; i++)
{
ppl_Pointset_Powerset_C_Polyhedron_t sceq;
sceq = build_pairwise_scheduling_equality (dim, i, offset);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, sceq);
ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
if (lexicographically_gt_p (*res, dim, offset, direction, i + 1))
return;
}
if (i == tdim1 - 1)
{
ppl_delete_Pointset_Powerset_C_Polyhedron (*res);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (res, dim, 1);
}
}
/* Build the dependence polyhedron for data references PDR1 and PDR2. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dependence_polyhedron_1 (poly_bb_p pbb1, poly_bb_p pbb2,
ppl_Pointset_Powerset_C_Polyhedron_t d1,
ppl_Pointset_Powerset_C_Polyhedron_t d2,
poly_dr_p pdr1, poly_dr_p pdr2,
ppl_Polyhedron_t s1, ppl_Polyhedron_t s2,
bool direction,
bool original_scattering_p)
{
scop_p scop = PBB_SCOP (pbb1);
graphite_dim_t tdim1 = original_scattering_p ?
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
graphite_dim_t tdim2 = original_scattering_p ?
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t gdim = scop_nb_params (scop);
graphite_dim_t dim1 = pdr_dim (pdr1);
graphite_dim_t dim2 = pdr_dim (pdr2);
graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Pointset_Powerset_C_Polyhedron_t id1, id2, isc1, isc2, idr1, idr2;
ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc1, s1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc2, s2);
id1 = map_into_dep_poly (dim, gdim, d1, ddim1, tdim1);
id2 = map_into_dep_poly (dim, gdim, d2, ddim2, tdim1 + ddim1 + tdim2);
isc1 = map_into_dep_poly (dim, gdim, sc1, ddim1 + tdim1, 0);
isc2 = map_into_dep_poly (dim, gdim, sc2, ddim2 + tdim2, tdim1 + ddim1);
idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
tdim1, tdim2 + ddim2);
idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
tdim1 + ddim1 + tdim2, sdim1);
/* Now add the subscript equalities. */
dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
ppl_delete_Pointset_Powerset_C_Polyhedron (id1);
ppl_delete_Pointset_Powerset_C_Polyhedron (id2);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
ppl_delete_Pointset_Powerset_C_Polyhedron (isc1);
ppl_delete_Pointset_Powerset_C_Polyhedron (isc2);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res))
build_lexicographically_gt_constraint (&res, dim, MIN (tdim1, tdim2),
tdim1 + ddim1, direction);
return res;
}
/* Build the dependence polyhedron for data references PDR1 and PDR2.
If possible use already cached information. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dependence_polyhedron (poly_bb_p pbb1, poly_bb_p pbb2,
ppl_Pointset_Powerset_C_Polyhedron_t d1,
ppl_Pointset_Powerset_C_Polyhedron_t d2,
poly_dr_p pdr1, poly_dr_p pdr2,
ppl_Polyhedron_t s1, ppl_Polyhedron_t s2,
bool direction,
bool original_scattering_p)
{
poly_dr_pair tmp;
PTR *x = NULL;
ppl_Pointset_Powerset_C_Polyhedron_t res;
if (original_scattering_p)
{
tmp.source = pdr1;
tmp.sink = pdr2;
x = htab_find_slot (SCOP_ORIGINAL_PDR_PAIRS (PBB_SCOP (pbb1)),
&tmp, INSERT);
if (x && *x)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nddp cache: hit.\n");
return ((poly_dr_pair *)*x)->ddp;
}
else if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nddp cache: miss.\n");
}
res = dependence_polyhedron_1 (pbb1, pbb2, d1, d2, pdr1, pdr2,
s1, s2, direction, original_scattering_p);
if (original_scattering_p)
{
gcc_assert (x && *x == NULL);
*x = new_poly_dr_pair (pdr1, pdr2, res);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nddp cache: add element.\n");
}
return res;
}
/* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
functions. */
static bool
graphite_legal_transform_dr (poly_bb_p pbb1, poly_bb_p pbb2,
poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Polyhedron_t st1, st2;
ppl_Pointset_Powerset_C_Polyhedron_t pt;
graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
ppl_Pointset_Powerset_C_Polyhedron_t temp;
ppl_dimension_type pdim;
bool is_empty_p;
ppl_Pointset_Powerset_C_Polyhedron_t po;
ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1);
ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2);
ppl_Polyhedron_t so1 = PBB_ORIGINAL_SCATTERING (pbb1);
ppl_Polyhedron_t so2 = PBB_ORIGINAL_SCATTERING (pbb2);
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
if (sdim1 != sdim2)
return true;
po = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2,
true, true);
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (po))
return true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nloop carries dependency.\n");
st1 = PBB_TRANSFORMED_SCATTERING (pbb1);
st2 = PBB_TRANSFORMED_SCATTERING (pbb2);
ddim1 = pbb_dim_iter_domain (pbb1);
otdim1 = pbb_nb_scattering_orig (pbb1);
otdim2 = pbb_nb_scattering_orig (pbb2);
ttdim1 = pbb_nb_scattering_transform (pbb1);
ttdim2 = pbb_nb_scattering_transform (pbb2);
/* Copy the PO polyhedron into the TEMP, so it is not destroyed.
Keep in mind, that PO polyhedron might be restored from the cache
and should not be modified! */
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&temp, pdim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (temp, po);
pt = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, st1, st2,
false, false);
/* Extend PO and PT to have the same dimensions. */
ppl_insert_dimensions_pointset (temp, otdim1, ttdim1);
ppl_insert_dimensions_pointset (temp, otdim1 + ttdim1 + ddim1 + otdim2, ttdim2);
ppl_insert_dimensions_pointset (pt, 0, otdim1);
ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (temp, pt);
is_empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp);
ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
ppl_delete_Pointset_Powerset_C_Polyhedron (pt);
return is_empty_p;
}
/* Iterates over the data references of PBB1 and PBB2 and detect
whether the transformed schedule is correct. */
static bool
graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
{
int i, j;
poly_dr_p pdr1, pdr2;
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
if (!graphite_legal_transform_dr (pbb1, pbb2, pdr1, pdr2))
return false;
return true;
}
/* Iterates over the SCOP and detect whether the transformed schedule
is correct. */
bool
graphite_legal_transform (scop_p scop)
{
int i, j;
poly_bb_p pbb1, pbb2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
if (!graphite_legal_transform_bb (pbb1, pbb2))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
/* Remove all the dimensions except alias information at dimension
ALIAS_DIM. */
static void
build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
ppl_dimension_type alias_dim)
{
ppl_dimension_type *ds;
ppl_dimension_type access_dim;
unsigned i, pos = 0;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
&access_dim);
ds = XNEWVEC (ppl_dimension_type, access_dim-1);
for (i = 0; i < access_dim; i++)
{
if (i == alias_dim)
continue;
ds[pos] = i;
pos++;
}
ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
ds,
access_dim - 1);
free (ds);
}
/* Return true when PDR1 and PDR2 may alias. */
static bool
poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
int empty_p;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset1, accesses1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset2, accesses2);
build_alias_set_powerset (alias_powerset1, alias_dim1);
build_alias_set_powerset (alias_powerset2, alias_dim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
(alias_powerset1, alias_powerset2);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
return !empty_p;
}
/* Returns TRUE when the dependence polyhedron between PDR1 and
PDR2 represents a loop carried dependence at level LEVEL. Otherwise
return FALSE. */
static bool
graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
int level)
{
poly_bb_p pbb1 = PDR_PBB (pdr1);
poly_bb_p pbb2 = PDR_PBB (pdr2);
ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1);
ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2);
ppl_Polyhedron_t so1 = PBB_TRANSFORMED_SCATTERING (pbb1);
ppl_Polyhedron_t so2 = PBB_TRANSFORMED_SCATTERING (pbb2);
ppl_Pointset_Powerset_C_Polyhedron_t po;
ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
graphite_dim_t tdim1 = pbb_nb_scattering_transform (pbb1);
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
ppl_dimension_type dim;
bool empty_p;
if ((PDR_TYPE (pdr1) == PDR_READ && PDR_TYPE (pdr2) == PDR_READ)
|| !poly_drs_may_alias_p (pdr1, pdr2))
return false;
if (sdim1 != sdim2)
return true;
po = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2,
true, false);
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (po))
{
ppl_delete_Pointset_Powerset_C_Polyhedron (po);
return false;
}
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
eqpp = build_pairwise_scheduling_inequality (dim, level, tdim1 + ddim1, 1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp);
ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
return !empty_p;
}
/* Check data dependency between PBB1 and PBB2 at level LEVEL. */
bool
dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
{
int i, j;
poly_dr_p pdr1, pdr2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
#endif
|