1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
/* Graphite polyhedral representation.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_POLY_H
#define GCC_GRAPHITE_POLY_H
typedef struct poly_dr *poly_dr_p;
DEF_VEC_P(poly_dr_p);
DEF_VEC_ALLOC_P (poly_dr_p, heap);
typedef struct poly_bb *poly_bb_p;
DEF_VEC_P(poly_bb_p);
DEF_VEC_ALLOC_P (poly_bb_p, heap);
typedef struct scop *scop_p;
DEF_VEC_P(scop_p);
DEF_VEC_ALLOC_P (scop_p, heap);
typedef ppl_dimension_type graphite_dim_t;
static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
static inline graphite_dim_t scop_nb_params (scop_p);
/* A data reference can write or read some memory or we
just know it may write some memory. */
enum poly_dr_type
{
PDR_READ,
/* PDR_MAY_READs are represented using PDR_READS. This does not
limit the expressiveness. */
PDR_WRITE,
PDR_MAY_WRITE
};
struct poly_dr
{
/* An identifier for this PDR. */
int id;
/* The number of data refs identical to this one in the PBB. */
int nb_refs;
/* A pointer to compiler's data reference description. */
void *compiler_dr;
/* A pointer to the PBB that contains this data reference. */
poly_bb_p pbb;
enum poly_dr_type type;
/* The access polyhedron contains the polyhedral space this data
reference will access.
The polyhedron contains these dimensions:
- The alias set (a):
Every memory access is classified in at least one alias set.
- The subscripts (s_0, ..., s_n):
The memory is accessed using zero or more subscript dimensions.
- The iteration domain (variables and parameters)
Do not hardcode the dimensions. Use the following accessor functions:
- pdr_alias_set_dim
- pdr_subscript_dim
- pdr_iterator_dim
- pdr_parameter_dim
Example:
| int A[1335][123];
| int *p = malloc ();
|
| k = ...
| for i
| {
| if (unknown_function ())
| p = A;
| ... = p[?][?];
| for j
| A[i][j+k] = m;
| }
The data access A[i][j+k] in alias set "5" is described like this:
| i j k a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
|-1 0 0 0 1 0 0 = 0
| 0 -1 -1 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
| 0 0 0 0 0 1 0 >= 0 # array size.
| 0 0 0 0 -1 0 1335 >= 0
| 0 0 0 0 0 -1 123 >= 0
The pointer "*p" in alias set "5" and "7" is described as a union of
polyhedron:
| i k a s0 1
| 0 0 1 0 -5 = 0
| 0 0 0 1 0 >= 0
"or"
| i k a s0 1
| 0 0 1 0 -7 = 0
| 0 0 0 1 0 >= 0
"*p" accesses all of the object allocated with 'malloc'.
The scalar data access "m" is represented as an array with zero subscript
dimensions.
| i j k a 1
| 0 0 0 -1 15 = 0 */
ppl_Pointset_Powerset_C_Polyhedron_t accesses;
/* Data reference's base object set number, we must assure 2 pdrs are in the
same base object set before dependency checking. */
int dr_base_object_set;
/* The number of subscripts. */
graphite_dim_t nb_subscripts;
};
#define PDR_ID(PDR) (PDR->id)
#define PDR_NB_REFS(PDR) (PDR->nb_refs)
#define PDR_CDR(PDR) (PDR->compiler_dr)
#define PDR_PBB(PDR) (PDR->pbb)
#define PDR_TYPE(PDR) (PDR->type)
#define PDR_ACCESSES(PDR) (PDR->accesses)
#define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
#define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
void new_poly_dr (poly_bb_p, int, ppl_Pointset_Powerset_C_Polyhedron_t,
enum poly_dr_type, void *, graphite_dim_t);
void free_poly_dr (poly_dr_p);
void debug_pdr (poly_dr_p);
void print_pdr (FILE *, poly_dr_p);
static inline scop_p pdr_scop (poly_dr_p pdr);
/* The dimension of the PDR_ACCESSES polyhedron of PDR. */
static inline ppl_dimension_type
pdr_dim (poly_dr_p pdr)
{
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
&dim);
return dim;
}
/* The dimension of the iteration domain of the scop of PDR. */
static inline ppl_dimension_type
pdr_dim_iter_domain (poly_dr_p pdr)
{
return pbb_dim_iter_domain (PDR_PBB (pdr));
}
/* The number of parameters of the scop of PDR. */
static inline ppl_dimension_type
pdr_nb_params (poly_dr_p pdr)
{
return scop_nb_params (pdr_scop (pdr));
}
/* The dimension of the alias set in PDR. */
static inline ppl_dimension_type
pdr_alias_set_dim (poly_dr_p pdr)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
}
/* The dimension in PDR containing subscript S. */
static inline ppl_dimension_type
pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
}
/* The dimension in PDR containing the loop iterator ITER. */
static inline ppl_dimension_type
pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in PDR containing parameter PARAM. */
static inline ppl_dimension_type
pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + param;
}
/* Returns true when PDR is a "read". */
static inline bool
pdr_read_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_READ;
}
/* Returns true when PDR is a "write". */
static inline bool
pdr_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_WRITE;
}
/* Returns true when PDR is a "may write". */
static inline bool
pdr_may_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_MAY_WRITE;
}
/* Return true when PDR1 and PDR2 are similar data accesses: they have
the same base array, and the same access functions. */
static inline bool
same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
return PDR_TYPE (pdr1) == PDR_TYPE (pdr2)
&& PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
&& PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
}
typedef struct poly_scattering *poly_scattering_p;
struct poly_scattering
{
/* The scattering function containing the transformations. */
ppl_Polyhedron_t scattering;
/* The number of local variables. */
int nb_local_variables;
/* The number of scattering dimensions. */
int nb_scattering;
};
/* POLY_BB represents a blackbox in the polyhedral model. */
struct poly_bb
{
void *black_box;
scop_p scop;
/* The iteration domain of this bb.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
| i >= a - 7b + 8
| i <= 3a + 13b + 20
| j >= 2
| j <= 2i + 5
| k >= 0
| k <= 5
The number of variables in the DOMAIN may change and is not
related to the number of loops in the original code. */
ppl_Pointset_Powerset_C_Polyhedron_t domain;
/* The data references we access. */
VEC (poly_dr_p, heap) *drs;
/* The original scattering. */
poly_scattering_p original;
/* The transformed scattering. */
poly_scattering_p transformed;
/* A copy of the transformed scattering. */
poly_scattering_p saved;
/* True when the PDR duplicates have already been removed. */
bool pdr_duplicates_removed;
/* True when this PBB contains only a reduction statement. */
bool is_reduction;
};
#define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
#define PBB_SCOP(PBB) (PBB->scop)
#define PBB_DOMAIN(PBB) (PBB->domain)
#define PBB_DRS(PBB) (PBB->drs)
#define PBB_ORIGINAL(PBB) (PBB->original)
#define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
#define PBB_TRANSFORMED(PBB) (PBB->transformed)
#define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
#define PBB_SAVED(PBB) (PBB->saved)
#define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
#define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
#define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
#define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
extern void new_poly_bb (scop_p, void *, bool);
extern void free_poly_bb (poly_bb_p);
extern void debug_loop_vec (poly_bb_p);
extern void schedule_to_scattering (poly_bb_p, int);
extern void print_pbb_domain (FILE *, poly_bb_p);
extern void print_pbb (FILE *, poly_bb_p);
extern void print_scop_context (FILE *, scop_p);
extern void print_scop (FILE *, scop_p);
extern void debug_pbb_domain (poly_bb_p);
extern void debug_pbb (poly_bb_p);
extern void print_pdrs (FILE *, poly_bb_p);
extern void debug_pdrs (poly_bb_p);
extern void debug_scop_context (scop_p);
extern void debug_scop (scop_p);
extern void print_scop_params (FILE *, scop_p);
extern void debug_scop_params (scop_p);
extern void print_iteration_domain (FILE *, poly_bb_p);
extern void print_iteration_domains (FILE *, scop_p);
extern void debug_iteration_domain (poly_bb_p);
extern void debug_iteration_domains (scop_p);
extern bool scop_do_interchange (scop_p);
extern bool scop_do_strip_mine (scop_p);
extern void pbb_number_of_iterations (poly_bb_p, graphite_dim_t, Value);
extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, Value);
extern void pbb_remove_duplicate_pdrs (poly_bb_p);
/* Return the number of write data references in PBB. */
static inline int
number_of_write_pdrs (poly_bb_p pbb)
{
int res = 0;
int i;
poly_dr_p pdr;
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
if (PDR_TYPE (pdr) == PDR_WRITE)
res++;
return res;
}
/* The index of the PBB. */
static inline int
pbb_index (poly_bb_p pbb)
{
return GBB_BB (PBB_BLACK_BOX (pbb))->index;
}
/* The loop of the PBB. */
static inline loop_p
pbb_loop (poly_bb_p pbb)
{
return gbb_loop (PBB_BLACK_BOX (pbb));
}
/* The scop that contains the PDR. */
static inline scop_p
pdr_scop (poly_dr_p pdr)
{
return PBB_SCOP (PDR_PBB (pdr));
}
/* Set black box of PBB to BLACKBOX. */
static inline void
pbb_set_black_box (poly_bb_p pbb, void *black_box)
{
pbb->black_box = black_box;
}
/* The number of loops around PBB: the dimension of the iteration
domain. */
static inline graphite_dim_t
pbb_dim_iter_domain (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
return dim - scop_nb_params (scop);
}
/* The number of params defined in PBB. */
static inline graphite_dim_t
pbb_nb_params (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
return scop_nb_params (scop);
}
/* The number of scattering dimensions in the SCATTERING polyhedron
of a PBB for a given SCOP. */
static inline graphite_dim_t
pbb_nb_scattering_orig (const struct poly_bb *pbb)
{
return 2 * pbb_dim_iter_domain (pbb) + 1;
}
/* The number of scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_scattering_transform (const struct poly_bb *pbb)
{
return PBB_NB_SCATTERING_TRANSFORM (pbb);
}
/* The number of dynamic scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
{
/* This function requires the 2d + 1 scattering format to be
invariant during all transformations. */
gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
}
/* Returns the number of local variables used in the transformed
scattering polyhedron of PBB. */
static inline graphite_dim_t
pbb_nb_local_vars (const struct poly_bb *pbb)
{
/* For now we do not have any local variables, as we do not do strip
mining for example. */
return PBB_NB_LOCAL_VARIABLES (pbb);
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
return param
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
return scatter;
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
return scatter;
}
ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
graphite_dim_t);
/* The dimension in the transformed scattering polyhedron of PBB of
the local variable LV. */
static inline ppl_dimension_type
psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
{
gcc_assert (lv <= pbb_nb_local_vars (pbb));
return lv + pbb_nb_scattering_transform (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter + pbb_nb_scattering_orig (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_orig (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The scattering dimension of PBB corresponding to the dynamic level
LEVEL. */
static inline ppl_dimension_type
psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
{
graphite_dim_t result;
result = 1 + 2 * level;
gcc_assert (result < pbb_nb_scattering_transform (pbb));
return result;
}
/* Adds to the transformed scattering polyhedron of PBB a new local
variable and returns its index. */
static inline graphite_dim_t
psct_add_local_variable (poly_bb_p pbb)
{
graphite_dim_t nlv = pbb_nb_local_vars (pbb);
ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
PBB_NB_LOCAL_VARIABLES (pbb) += 1;
return nlv;
}
/* Adds a dimension to the transformed scattering polyhedron of PBB at
INDEX. */
static inline void
psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
{
gcc_assert (index < pbb_nb_scattering_transform (pbb));
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
}
typedef struct lst *lst_p;
DEF_VEC_P(lst_p);
DEF_VEC_ALLOC_P (lst_p, heap);
/* Loops and Statements Tree. */
struct lst {
/* LOOP_P is true when an LST node is a loop. */
bool loop_p;
/* A pointer to the loop that contains this node. */
lst_p loop_father;
/* Loop nodes contain a sequence SEQ of LST nodes, statements
contain a pointer to their polyhedral representation PBB. */
union {
poly_bb_p pbb;
VEC (lst_p, heap) *seq;
} node;
};
#define LST_LOOP_P(LST) ((LST)->loop_p)
#define LST_LOOP_FATHER(LST) ((LST)->loop_father)
#define LST_PBB(LST) ((LST)->node.pbb)
#define LST_SEQ(LST) ((LST)->node.seq)
void scop_to_lst (scop_p);
void print_lst (FILE *, lst_p, int);
void debug_lst (lst_p);
/* Creates a new LST loop with SEQ. */
static inline lst_p
new_lst_loop (VEC (lst_p, heap) *seq)
{
lst_p lst = XNEW (struct lst);
int i;
lst_p l;
LST_LOOP_P (lst) = true;
LST_SEQ (lst) = seq;
LST_LOOP_FATHER (lst) = NULL;
for (i = 0; VEC_iterate (lst_p, seq, i, l); i++)
LST_LOOP_FATHER (l) = lst;
return lst;
}
/* Creates a new LST statement with PBB. */
static inline lst_p
new_lst_stmt (poly_bb_p pbb)
{
lst_p lst = XNEW (struct lst);
LST_LOOP_P (lst) = false;
LST_PBB (lst) = pbb;
LST_LOOP_FATHER (lst) = NULL;
return lst;
}
/* Returns a copy of LST. */
static inline lst_p
copy_lst (lst_p lst)
{
if (!lst)
return NULL;
if (LST_LOOP_P (lst))
return new_lst_loop (VEC_copy (lst_p, heap, LST_SEQ (lst)));
return new_lst_stmt (LST_PBB (lst));
}
/* Returns the loop depth of LST. */
static inline int
lst_depth (lst_p lst)
{
if (!lst)
return -1;
return lst_depth (LST_LOOP_FATHER (lst)) + 1;
}
/* Returns the Dewey number for LST. */
static inline int
lst_dewey_number (lst_p lst)
{
int i;
lst_p l;
if (!lst)
return -1;
if (!LST_LOOP_FATHER (lst))
return 0;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (LST_LOOP_FATHER (lst)), i, l); i++)
if (l == lst)
return i;
return -1;
}
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
void *region;
/* Number of parameters in SCoP. */
graphite_dim_t nb_params;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
VEC (poly_bb_p, heap) *bbs;
/* Original and transformed schedules. */
lst_p original_schedule, transformed_schedule;
/* Data dependence graph for this SCoP. */
struct graph *dep_graph;
/* The context describes known restrictions concerning the parameters
and relations in between the parameters.
void f (int8_t a, uint_16_t b) {
c = 2 a + b;
...
}
Here we can add these restrictions to the context:
-128 >= a >= 127
0 >= b >= 65,535
c = 2a + b */
ppl_Pointset_Powerset_C_Polyhedron_t context;
/* A hashtable of the data dependence relations for the original
scattering. */
htab_t original_pddrs;
};
#define SCOP_BBS(S) (S->bbs)
#define SCOP_REGION(S) ((sese) S->region)
#define SCOP_DEP_GRAPH(S) (S->dep_graph)
#define SCOP_CONTEXT(S) (S->context)
#define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
#define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
#define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
extern scop_p new_scop (void *);
extern void free_scop (scop_p);
extern void free_scops (VEC (scop_p, heap) *);
extern void print_generated_program (FILE *, scop_p);
extern void debug_generated_program (scop_p);
extern void print_scattering_function (FILE *, poly_bb_p);
extern void print_scattering_functions (FILE *, scop_p);
extern void debug_scattering_function (poly_bb_p);
extern void debug_scattering_functions (scop_p);
extern int scop_max_loop_depth (scop_p);
extern int unify_scattering_dimensions (scop_p);
extern bool apply_poly_transforms (scop_p);
extern bool graphite_legal_transform (scop_p);
/* Set the region of SCOP to REGION. */
static inline void
scop_set_region (scop_p scop, void *region)
{
scop->region = region;
}
/* Returns the number of parameters for SCOP. */
static inline graphite_dim_t
scop_nb_params (scop_p scop)
{
return scop->nb_params;
}
/* Set the number of params of SCOP to NB_PARAMS. */
static inline void
scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
{
scop->nb_params = nb_params;
}
/* Allocates a new empty poly_scattering structure. */
static inline poly_scattering_p
poly_scattering_new (void)
{
poly_scattering_p res = XNEW (struct poly_scattering);
res->scattering = NULL;
res->nb_local_variables = 0;
res->nb_scattering = 0;
return res;
}
/* Free a poly_scattering structure. */
static inline void
poly_scattering_free (poly_scattering_p s)
{
ppl_delete_Polyhedron (s->scattering);
free (s);
}
/* Copies S and return a new scattering. */
static inline poly_scattering_p
poly_scattering_copy (poly_scattering_p s)
{
poly_scattering_p res = poly_scattering_new ();
ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
res->nb_local_variables = s->nb_local_variables;
res->nb_scattering = s->nb_scattering;
return res;
}
/* Saves the transformed scattering of PBB. */
static inline void
store_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_TRANSFORMED (pbb));
if (PBB_SAVED (pbb))
poly_scattering_free (PBB_SAVED (pbb));
PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
}
/* Saves the scattering for all the pbbs in the SCOP. */
static inline void
store_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
store_scattering_pbb (pbb);
}
/* Restores the scattering of PBB. */
static inline void
restore_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_SAVED (pbb));
poly_scattering_free (PBB_TRANSFORMED (pbb));
PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
}
/* Restores the scattering for all the pbbs in the SCOP. */
static inline void
restore_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
restore_scattering_pbb (pbb);
}
#endif
|