summaryrefslogtreecommitdiff
path: root/gcc/implicit-zee.c
blob: db422482c901fc4091c5d04f48f5fb036d94d947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/* Redundant Zero-extension elimination for targets that implicitly
   zero-extend writes to the lower 32-bit portion of 64-bit registers.
   Copyright (C) 2010 Free Software Foundation, Inc.
   Contributed by Sriraman Tallam (tmsriram@google.com) and
                  Silvius Rus     (rus@google.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* Problem Description :
   --------------------
   This pass is intended to be applicable only to targets that implicitly
   zero-extend 64-bit registers after writing to their lower 32-bit half.
   For instance, x86_64 zero-extends the upper bits of a register
   implicitly whenever an instruction writes to its lower 32-bit half.
   For example, the instruction *add edi,eax* also zero-extends the upper
   32-bits of rax after doing the addition.  These zero extensions come
   for free and GCC does not always exploit this well.  That is, it has
   been observed that there are plenty of cases where GCC explicitly
   zero-extends registers for x86_64 that are actually useless because
   these registers were already implicitly zero-extended in a prior
   instruction.  This pass tries to eliminate such useless zero extension
   instructions.

   How does this pass work  ?
   --------------------------

   This pass is run after register allocation.  Hence, all registers that
   this pass deals with are hard registers.  This pass first looks for a
   zero-extension instruction that could possibly be redundant. Such zero
   extension instructions show up in RTL with the pattern :
   (set (reg:DI x) (zero_extend:DI (reg:SI x))).
   where x can be any one of the 64-bit hard registers.
   Now, this pass tries to eliminate this instruction by merging the
   zero-extension with the definitions of register x. For instance, if
   one of the definitions of register x was  :
   (set (reg:SI x) (plus:SI (reg:SI z1) (reg:SI z2))),
   then the combination converts this into :
   (set (reg:DI x) (zero_extend:DI (plus:SI (reg:SI z1) (reg:SI z2)))).
   If all the merged definitions are recognizable assembly instructions,
   the zero-extension is effectively eliminated.  For example, in x86_64,
   implicit zero-extensions are captured with appropriate patterns in the
   i386.md file.  Hence, these merged definition can be matched to a single
   assembly instruction.  The original zero-extension instruction is then
   deleted if all the definitions can be merged.

   However, there are cases where the definition instruction cannot be
   merged with a zero-extend.  Examples are CALL instructions.  In such
   cases, the original zero extension is not redundant and this pass does
   not delete it.

   Handling conditional moves :
   ----------------------------

   Architectures like x86_64 support conditional moves whose semantics for
   zero-extension differ from the other instructions.  For instance, the
   instruction *cmov ebx, eax*
   zero-extends eax onto rax only when the move from ebx to eax happens.
   Otherwise, eax may not be zero-extended.  Conditional moves appear as
   RTL instructions of the form
   (set (reg:SI x) (if_then_else (cond) (reg:SI y) (reg:SI z))).
   This pass tries to merge a zero-extension with a conditional move by
   actually merging the defintions of y and z with a zero-extend and then
   converting the conditional move into :
   (set (reg:DI x) (if_then_else (cond) (reg:DI y) (reg:DI z))).
   Since registers y and z are zero-extended, register x will also be
   zero-extended after the conditional move.  Note that this step has to
   be done transitively since the definition of a conditional copy can be
   another conditional copy.

   Motivating Example I :
   ---------------------
   For this program :
   **********************************************
   bad_code.c

   int mask[1000];

   int foo(unsigned x)
   {
     if (x < 10)
       x = x * 45;
     else
       x = x * 78;
     return mask[x];
   }
   **********************************************

   $ gcc -O2 -fsee bad_code.c (Turned on existing sign-extension elimination)
     ........
     400315:       b8 4e 00 00 00          mov    $0x4e,%eax
     40031a:       0f af f8                imul   %eax,%edi
     40031d:       89 ff                   mov    %edi,%edi  --> Useless extend
     40031f:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400326:       c3                      retq
     ......
     400330:       ba 2d 00 00 00          mov    $0x2d,%edx
     400335:       0f af fa                imul   %edx,%edi
     400338:       89 ff                   mov    %edi,%edi  --> Useless extend
     40033a:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400341:       c3                      retq

   $ gcc -O2 -fzee bad_code.c
     ......
     400315:       6b ff 4e                imul   $0x4e,%edi,%edi
     400318:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40031f:       c3                      retq
     400320:       6b ff 2d                imul   $0x2d,%edi,%edi
     400323:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40032a:       c3                      retq

   Motivating Example II :
   ---------------------

   Here is an example with a conditional move.

   For this program :
   **********************************************

   unsigned long long foo(unsigned x , unsigned y)
   {
     unsigned z;
     if (x > 100)
       z = x + y;
     else
       z = x - y;
     return (unsigned long long)(z);
   }

   $ gcc -O2 -fsee bad_code.c (Turned on existing sign-extension elimination)
     ............
     400360:       8d 14 3e                lea    (%rsi,%rdi,1),%edx
     400363:       89 f8                   mov    %edi,%eax
     400365:       29 f0                   sub    %esi,%eax
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       0f 43 c2                cmovae %edx,%eax
     40036d:       89 c0                   mov    %eax,%eax  --> Useless extend
     40036f:       c3                      retq

   $ gcc -O2 -fzee bad_code.c
     .............
     400360:       89 fa                   mov    %edi,%edx
     400362:       8d 04 3e                lea    (%rsi,%rdi,1),%eax
     400365:       29 f2                   sub    %esi,%edx
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       89 d6                   mov    %edx,%esi
     40036c:       48 0f 42 c6             cmovb  %rsi,%rax
     400370:       c3                      retq


   Usefulness :
   ----------

   This pass reduces the dynamic instruction count of a compression benchmark
   by 2.8% and improves its run time by about 1%.  The compression benchmark
   had the following code sequence in a very hot region of code before ZEE
   optimized it :

   shr $0x5, %edx
   mov %edx, %edx --> Useless zero-extend  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "function.h"
#include "expr.h"
#include "insn-attr.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "target.h"
#include "timevar.h"
#include "optabs.h"
#include "insn-codes.h"
#include "rtlhooks-def.h"
/* Include output.h for dump_file.  */
#include "output.h"
#include "params.h"
#include "timevar.h"
#include "tree-pass.h"
#include "df.h"
#include "cgraph.h"

/* This says if a register is newly created for the purpose of
   zero-extension.  */

enum insn_merge_code
{
  MERGE_NOT_ATTEMPTED = 0,
  MERGE_SUCCESS
};

/* This says if a INSN UID or its definition has already been merged
   with a zero-extend or not.  */

static enum insn_merge_code *is_insn_merge_attempted;
static int max_insn_uid;

/* Returns the merge code status for INSN.  */

static enum insn_merge_code
get_insn_status (rtx insn)
{
  gcc_assert (INSN_UID (insn) < max_insn_uid);
  return is_insn_merge_attempted[INSN_UID (insn)];
}

/* Sets the merge code status of INSN to CODE.  */

static void
set_insn_status (rtx insn, enum insn_merge_code code)
{
  gcc_assert (INSN_UID (insn) < max_insn_uid);
  is_insn_merge_attempted[INSN_UID (insn)] = code;
}

/* Given a insn (CURR_INSN) and a pointer to the SET rtx (ORIG_SET)
   that needs to be modified, this code modifies the SET rtx to a
   new SET rtx that zero_extends the right hand expression into a DImode
   register (NEWREG) on the left hand side.  Note that multiple
   assumptions are made about the nature of the set that needs
   to be true for this to work and is called from merge_def_and_ze.

   Original :
   (set (reg:SI a) (expression))

   Transform :
   (set (reg:DI a) (zero_extend (expression)))

   Special Cases :
   If the expression is a constant or another zero_extend directly
   assign it to the DI mode register.  */

static bool
combine_set_zero_extend (rtx curr_insn, rtx *orig_set, rtx newreg)
{
  rtx temp_extension, simplified_temp_extension, new_set, new_const_int;
  rtx orig_src;
  HOST_WIDE_INT val;
  unsigned int mask, delta_width;

  /* Change the SET rtx and validate it.  */
  orig_src = SET_SRC (*orig_set);
  new_set = NULL_RTX;

  /* The right hand side can also be VOIDmode.  These cases have to be
     handled differently.  */

  if (GET_MODE (orig_src) != SImode)
    {
      /* Merge constants by directly moving the constant into the
         DImode register under some conditions.  */

      if (GET_CODE (orig_src) == CONST_INT
	  && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (SImode))
        {
          if (INTVAL (orig_src) >= 0)
            new_set = gen_rtx_SET (VOIDmode, newreg, orig_src);
          else if (INTVAL (orig_src) < 0)
            {
              /* Zero-extending a negative SImode integer into DImode
                 makes it a positive integer.  Convert the given negative
                 integer into the appropriate integer when zero-extended.  */

              delta_width = HOST_BITS_PER_WIDE_INT - GET_MODE_BITSIZE (SImode);
              mask = (~(unsigned HOST_WIDE_INT) 0) >> delta_width;
              val = INTVAL (orig_src);
              val = val & mask;
              new_const_int = gen_rtx_CONST_INT (VOIDmode, val);
              new_set = gen_rtx_SET (VOIDmode, newreg, new_const_int);
            }
          else
            return false;
        }
      else
        {
          /* This is mostly due to a call insn that should not be
             optimized.  */

          return false;
        }
    }
  else if (GET_CODE (orig_src) == ZERO_EXTEND)
    {
      /* Here a zero-extend is used to get to SI. Why not make it
         all the  way till DI.  */

      temp_extension = gen_rtx_ZERO_EXTEND (DImode, XEXP (orig_src, 0));
      simplified_temp_extension = simplify_rtx (temp_extension);
      if (simplified_temp_extension)
        temp_extension = simplified_temp_extension;
      new_set = gen_rtx_SET (VOIDmode, newreg, temp_extension);
    }
  else if (GET_CODE (orig_src) == IF_THEN_ELSE)
    {
      /* Only IF_THEN_ELSE of phi-type copies are combined. Otherwise,
         in general, IF_THEN_ELSE should not be combined.  */

      return false;
    }
  else
    {
      /* This is the normal case we expect.  */

      temp_extension = gen_rtx_ZERO_EXTEND (DImode, orig_src);
      simplified_temp_extension = simplify_rtx (temp_extension);
      if (simplified_temp_extension)
        temp_extension = simplified_temp_extension;
      new_set = gen_rtx_SET (VOIDmode, newreg, temp_extension);
    }

  gcc_assert (new_set != NULL_RTX);

  /* This change is a part of a group of changes. Hence,
     validate_change will not try to commit the change.  */

  if (validate_change (curr_insn, orig_set, new_set, true))
    {
      if (dump_file)
        {
          fprintf (dump_file, "Merged Instruction with ZERO_EXTEND:\n");
          print_rtl_single (dump_file, curr_insn);
        }
      return true;
    }
  return false;
}

/* This returns the DI mode for the SI register REG_SI.  */

static rtx
get_reg_di (rtx reg_si)
{
  rtx newreg;

  newreg = gen_rtx_REG (DImode, REGNO (reg_si));
  gcc_assert (newreg);
  return newreg;
}

/* Treat if_then_else insns, where the operands of both branches
   are registers, as copies. For instance,
   Original :
   (set (reg:SI a) (if_then_else (cond) (reg:SI b) (reg:SI c)))
   Transformed :
   (set (reg:DI a) (if_then_else (cond) (reg:DI b) (reg:DI c)))
   DEF_INSN is the if_then_else insn.  */

static bool
transform_ifelse (rtx def_insn)
{
  rtx set_insn = PATTERN (def_insn);
  rtx srcreg, dstreg, srcreg2;
  rtx map_srcreg, map_dstreg, map_srcreg2;
  rtx ifexpr;
  rtx cond;
  rtx new_set;

  gcc_assert (GET_CODE (set_insn) == SET);
  cond = XEXP (SET_SRC (set_insn), 0);
  dstreg = SET_DEST (set_insn);
  srcreg = XEXP (SET_SRC (set_insn), 1);
  srcreg2 = XEXP (SET_SRC (set_insn), 2);
  map_srcreg = get_reg_di (srcreg);
  map_srcreg2 = get_reg_di (srcreg2);
  map_dstreg = get_reg_di (dstreg);
  ifexpr = gen_rtx_IF_THEN_ELSE (DImode, cond, map_srcreg, map_srcreg2);
  new_set = gen_rtx_SET (VOIDmode, map_dstreg, ifexpr);

  if (validate_change (def_insn, &PATTERN (def_insn), new_set, true))
    {
      if (dump_file)
        {
          fprintf (dump_file, "Cond_Move Instruction's mode extended :\n");
          print_rtl_single (dump_file, def_insn);
        }
      return true;
    }
  else
    return false;
}

/* Function to get all the immediate definitions of an instruction.
   The reaching definitions are desired for WHICH_REG used in
   CURR_INSN.  This function returns 0 if there was an error getting
   a definition.  Upon success, this function returns the number of
   definitions and stores the definitions in DEST.  */

static int
get_defs (rtx curr_insn, rtx which_reg, VEC (rtx,heap) **dest)
{
  df_ref reg_info, *defs;
  struct df_link *def_chain;
  int n_refs = 0;

  defs = DF_INSN_USES (curr_insn);
  reg_info = NULL;

  while (*defs)
    {
      reg_info = *defs;
      if (GET_CODE (DF_REF_REG (reg_info)) == SUBREG)
        return 0;
      if (REGNO (DF_REF_REG (reg_info)) == REGNO (which_reg))
        break;
      defs++;
    }

  gcc_assert (reg_info != NULL && defs != NULL);
  def_chain = DF_REF_CHAIN (reg_info);

  while (def_chain)
    {
      /* Problem getting some definition for this instruction.  */

      if (def_chain->ref == NULL)
        return 0;
      if (DF_REF_INSN_INFO (def_chain->ref) == NULL)
        return 0;
      def_chain = def_chain->next;
    }

  def_chain = DF_REF_CHAIN (reg_info);

  if (dest == NULL)
    return 1;

  while (def_chain)
    {
      VEC_safe_push (rtx, heap, *dest, DF_REF_INSN (def_chain->ref));
      def_chain = def_chain->next;
      n_refs++;
    }
  return n_refs;
}

/* rtx function to check if this SET insn, EXPR, is a conditional copy insn :
   (set (reg:SI a ) (IF_THEN_ELSE (cond) (reg:SI b) (reg:SI c)))
   Called from is_insn_cond_copy.  DATA stores the two registers on each
   side of the condition.  */

static int
is_this_a_cmove (rtx expr, void *data)
{
  /* Check for conditional (if-then-else) copy.  */

  if (GET_CODE (expr) == SET
      && GET_CODE (SET_DEST (expr)) == REG
      && GET_MODE (SET_DEST (expr)) == SImode
      && GET_CODE (SET_SRC (expr))  == IF_THEN_ELSE
      && GET_CODE (XEXP (SET_SRC (expr), 1)) == REG
      && GET_MODE (XEXP (SET_SRC (expr), 1)) == SImode
      && GET_CODE (XEXP (SET_SRC (expr), 2)) == REG
      && GET_MODE (XEXP (SET_SRC (expr), 2)) == SImode)
    {
      ((rtx *)data)[0] = XEXP (SET_SRC (expr), 1);
      ((rtx *)data)[1] = XEXP (SET_SRC (expr), 2);
      return 1;
    }
  return 0;
}

/* This returns 1 if it found
   (SET (reg:SI REGNO (def_reg)) (if_then_else (cond) (REG:SI x1) (REG:SI x2)))
   in the DEF_INSN pattern.  It stores the x1 and x2 in COPY_REG_1
   and COPY_REG_2.  */

static int
is_insn_cond_copy (rtx def_insn, rtx *copy_reg_1, rtx *copy_reg_2)
{
  int type;
  rtx set_expr;
  rtx srcreg[2];

  srcreg[0] = NULL_RTX;
  srcreg[1] = NULL_RTX;

  set_expr = single_set (def_insn);

  if (set_expr == NULL_RTX)
    return 0;

  type = is_this_a_cmove (set_expr, (void *) srcreg);

  if (type)
    {
      *copy_reg_1 = srcreg[0];
      *copy_reg_2 = srcreg[1];
      return type;
    }

  return 0;
}

/* Reaching Definitions of the zero-extended register could be conditional
   copies or regular definitions.  This function separates the two types into
   two lists, DEFS_LIST and COPIES_LIST.  This is necessary because, if a
   reaching definition is a conditional copy, combining the zero_extend with
   this definition is wrong.  Conditional copies are merged by transitively
   merging its definitions.  The defs_list is populated with all the reaching
   definitions of the zero-extension instruction (ZERO_EXTEND_INSN) which must
   be merged with a zero_extend.  The copies_list contains all the conditional
   moves that will later be extended into a DI mode conditonal move if all the
   merges are successful.  The function returns false when there is a failure
   in getting some definitions, like that of parameters.  It returns 1 upon
   success, 0 upon failure and 2 when all definitions of the ZERO_EXTEND_INSN
   were merged previously.  */

static int
make_defs_and_copies_lists (rtx zero_extend_insn, rtx set_pat,
                            VEC (rtx,heap) **defs_list,
                            VEC (rtx,heap) **copies_list)
{
  bool *is_insn_visited;
  VEC (rtx,heap) *work_list;
  rtx srcreg, copy_reg_1, copy_reg_2;
  rtx def_insn;
  int n_defs = 0;
  int vec_index = 0;
  int n_worklist = 0;
  int i, is_copy;

  srcreg = XEXP (SET_SRC (set_pat), 0);
  work_list = VEC_alloc (rtx, heap, 8);

  /* Initialize the Work List */
  n_worklist = get_defs (zero_extend_insn, srcreg, &work_list);

  if (n_worklist == 0)
    {
      VEC_free (rtx, heap, work_list);
      /* The number of defs being equal to zero can only imply that all of its
         definitions have been previously merged.  */
      return 2;
    }

  is_insn_visited = XNEWVEC (bool, max_insn_uid);

  for (i = 0; i < max_insn_uid; i++)
    is_insn_visited[i] = false;


  /* Perform transitive closure for conditional copies.  */
  while (n_worklist > vec_index)
    {
      def_insn = VEC_index (rtx, work_list, vec_index);
      gcc_assert (INSN_UID (def_insn) < max_insn_uid);

      if (is_insn_visited[INSN_UID (def_insn)])
        {
          vec_index++;
          continue;
        }

      is_insn_visited[INSN_UID (def_insn)] = true;
      copy_reg_1 = copy_reg_2 = NULL_RTX;
      is_copy = is_insn_cond_copy (def_insn, &copy_reg_1, &copy_reg_2);
      if (is_copy)
        {
          gcc_assert (copy_reg_1 && copy_reg_2);

          /* Push it into the copy list first.  */

          VEC_safe_push (rtx, heap, *copies_list, def_insn);

          /* Perform transitive closure here */

          n_defs = get_defs (def_insn, copy_reg_1, &work_list);

          if (n_defs == 0)
            {
              VEC_free (rtx, heap, work_list);
              XDELETEVEC (is_insn_visited);
              return 0;
            }
          n_worklist += n_defs;

          n_defs = get_defs (def_insn, copy_reg_2, &work_list);
          if (n_defs == 0)
            {
              VEC_free (rtx, heap, work_list);
              XDELETEVEC (is_insn_visited);
              return 0;
            }
          n_worklist += n_defs;
        }
      else
        {
          VEC_safe_push (rtx, heap, *defs_list, def_insn);
        }
      vec_index++;
    }

  VEC_free (rtx, heap, work_list);
  XDELETEVEC (is_insn_visited);
  return 1;
}

/* Merge the DEF_INSN with a zero-extend.  Calls combine_set_zero_extend
   on the SET pattern.  */

static bool
merge_def_and_ze (rtx def_insn)
{
  enum rtx_code code;
  rtx setreg;
  rtx *sub_rtx;
  rtx s_expr;
  int i;

  code = GET_CODE (PATTERN (def_insn));
  sub_rtx = NULL;

  if (code == PARALLEL)
    {
      for (i = 0; i < XVECLEN (PATTERN (def_insn), 0); i++)
        {
          s_expr = XVECEXP (PATTERN (def_insn), 0, i);
          if (GET_CODE (s_expr) != SET)
            continue;

          if (sub_rtx == NULL)
            sub_rtx = &XVECEXP (PATTERN (def_insn), 0, i);
          else
            {
              /* PARALLEL with multiple SETs.  */
              return false;
            }
        }
    }
  else if (code == SET)
    sub_rtx = &PATTERN (def_insn);
  else
    {
      /* It is not a PARALLEL or a SET, what could it be ? */
      return false;
    }

  gcc_assert (sub_rtx != NULL);

  if (GET_CODE (SET_DEST (*sub_rtx)) == REG
      && GET_MODE (SET_DEST (*sub_rtx)) == SImode)
    {
      setreg = get_reg_di (SET_DEST (*sub_rtx));
      return combine_set_zero_extend (def_insn, sub_rtx, setreg);
    }
  else
    return false;
  return true;
}

/* This function goes through all reaching defs of the source
   of the zero extension instruction (ZERO_EXTEND_INSN) and
   tries to combine the zero extension with the definition
   instruction.  The changes are made as a group so that even
   if one definition cannot be merged, all reaching definitions
   end up not being merged. When a conditional copy is encountered,
   merging is attempted transitively on its definitions.  It returns
   true upon success and false upon failure.  */

static bool
combine_reaching_defs (rtx zero_extend_insn, rtx set_pat)
{
  rtx def_insn;
  bool merge_successful = true;
  int i;
  int defs_ix;
  int outcome;

  /* To store the definitions that have been merged.  */

  VEC (rtx, heap) *defs_list, *copies_list, *vec;
  enum insn_merge_code merge_code;

  defs_list = VEC_alloc (rtx, heap, 8);
  copies_list = VEC_alloc (rtx, heap, 8);

  outcome = make_defs_and_copies_lists (zero_extend_insn,
                                        set_pat, &defs_list, &copies_list);

  /* outcome == 2 implies that all the definitions for this zero_extend were
     merged while previously when handling other zero_extends.  */

  if (outcome == 2)
    {
      VEC_free (rtx, heap, defs_list);
      VEC_free (rtx, heap, copies_list);
      if (dump_file)
        fprintf (dump_file, "All definitions have been merged previously.\n");
      return true;
    }

  if (outcome == 0)
    {
      VEC_free (rtx, heap, defs_list);
      VEC_free (rtx, heap, copies_list);
      return false;
    }

  merge_successful = true;

  /* Go through the defs vector and try to merge all the definitions
     in this vector.  */

  vec = VEC_alloc (rtx, heap, 8);
  FOR_EACH_VEC_ELT (rtx, defs_list, defs_ix, def_insn)
    {
      merge_code = get_insn_status (def_insn);
      gcc_assert (merge_code == MERGE_NOT_ATTEMPTED);

      if (merge_def_and_ze (def_insn))
        VEC_safe_push (rtx, heap, vec, def_insn);
      else
        {
          merge_successful = false;
          break;
        }
    }

  /* Now go through the conditional copies vector and try to merge all
     the copies in this vector.  */

  if (merge_successful)
    {
      FOR_EACH_VEC_ELT (rtx, copies_list, i, def_insn)
        {
          if (transform_ifelse (def_insn))
            {
              VEC_safe_push (rtx, heap, vec, def_insn);
            }
          else
            {
              merge_successful = false;
              break;
            }
        }
    }

  if (merge_successful)
    {
      /* Commit the changes here if possible */
      /* XXX : Now, it is an all or nothing scenario.  Even if one definition
         cannot be merged we totally bail.  In future, allow zero-extensions to
         be partially eliminated along those paths where the definitions could
         be merged.  */

      if (apply_change_group ())
        {
          if (dump_file)
            fprintf (dump_file, "All merges were successful ....\n");

          FOR_EACH_VEC_ELT (rtx, vec, i, def_insn)
            {
              set_insn_status (def_insn, MERGE_SUCCESS);
            }

          VEC_free (rtx, heap, vec);
          VEC_free (rtx, heap, defs_list);
          VEC_free (rtx, heap, copies_list);
          return true;
        }
      else
        {
          /* Changes need not be cancelled explicitly as apply_change_group
             does it.  Print list of definitions in the dump_file for debug
             purposes.  This zero-extension cannot be deleted.  */

          if (dump_file)
            {
              FOR_EACH_VEC_ELT (rtx, vec, i, def_insn)
                {
                  fprintf (dump_file, " Ummergable definitions : \n");
                  print_rtl_single (dump_file, def_insn);
                }
            }
        }
    }
  else
    {
      /* Cancel any changes that have been made so far.  */
      cancel_changes (0);
    }

  VEC_free (rtx, heap, vec);
  VEC_free (rtx, heap, defs_list);
  VEC_free (rtx, heap, copies_list);
  return false;
}

/* Carry information about zero-extensions while walking the RTL.  */

struct zero_extend_info
{
  /* The insn where the zero-extension is.  */
  rtx insn;

  /* The list of candidates.  */
  VEC (rtx, heap) *insn_list;
};

/* Add a zero-extend pattern that could be eliminated.  This is called via
   note_stores from find_removable_zero_extends.  */

static void
add_removable_zero_extend (rtx x ATTRIBUTE_UNUSED, const_rtx expr, void *data)
{
  struct zero_extend_info *zei = (struct zero_extend_info *)data;
  rtx src, dest;

  /* We are looking for SET (REG:DI N) (ZERO_EXTEND (REG:SI N)).  */
  if (GET_CODE (expr) != SET)
    return;

  src = SET_SRC (expr);
  dest = SET_DEST (expr);

  if (REG_P (dest)
      && GET_MODE (dest) == DImode
      && GET_CODE (src) == ZERO_EXTEND
      && REG_P (XEXP (src, 0))
      && GET_MODE (XEXP (src, 0)) == SImode
      && REGNO (dest) == REGNO (XEXP (src, 0)))
    {
      if (get_defs (zei->insn, XEXP (src, 0), NULL))
	VEC_safe_push (rtx, heap, zei->insn_list, zei->insn);
      else if (dump_file)
	{
	  fprintf (dump_file, "Cannot eliminate zero-extension: \n");
	  print_rtl_single (dump_file, zei->insn);
	  fprintf (dump_file, "No defs. Could be extending parameters.\n");
	}
    }
}

/* Traverse the instruction stream looking for zero-extends and return the
   list of candidates.  */

static VEC (rtx,heap)*
find_removable_zero_extends (void)
{
  struct zero_extend_info zei;
  basic_block bb;
  rtx insn;

  zei.insn_list = VEC_alloc (rtx, heap, 8);

  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
      {
	if (!NONDEBUG_INSN_P (insn))
	  continue;

	zei.insn = insn;
	note_stores (PATTERN (insn), add_removable_zero_extend, &zei);
      }

  return zei.insn_list;
}

/* This is the main function that checks the insn stream for redundant
   zero extensions and tries to remove them if possible.  */

static unsigned int
find_and_remove_ze (void)
{
  rtx curr_insn = NULL_RTX;
  int i;
  int ix;
  long long num_realized = 0;
  long long num_ze_opportunities = 0;
  VEC (rtx, heap) *zeinsn_list;
  VEC (rtx, heap) *zeinsn_del_list;

  /* Construct DU chain to get all reaching definitions of each
     zero-extension instruction.  */

  df_chain_add_problem (DF_UD_CHAIN + DF_DU_CHAIN);
  df_analyze ();

  max_insn_uid = get_max_uid ();

  is_insn_merge_attempted
    = XNEWVEC (enum insn_merge_code,
	       sizeof (enum insn_merge_code) * max_insn_uid);

  for (i = 0; i < max_insn_uid; i++)
    is_insn_merge_attempted[i] = MERGE_NOT_ATTEMPTED;

  num_ze_opportunities = num_realized = 0;

  zeinsn_del_list = VEC_alloc (rtx, heap, 4);

  zeinsn_list = find_removable_zero_extends ();

  FOR_EACH_VEC_ELT (rtx, zeinsn_list, ix, curr_insn)
    {
      num_ze_opportunities++;
      /* Try to combine the zero-extends with the definition here.  */

      if (dump_file)
        {
          fprintf (dump_file, "Trying to eliminate zero extension : \n");
          print_rtl_single (dump_file, curr_insn);
        }

      if (combine_reaching_defs (curr_insn, PATTERN (curr_insn)))
        {
          if (dump_file)
            fprintf (dump_file, "Eliminated the zero extension...\n");
          num_realized++;
          VEC_safe_push (rtx, heap, zeinsn_del_list, curr_insn);
        }
    }

  /* Delete all useless zero extensions here in one sweep.  */
  FOR_EACH_VEC_ELT (rtx, zeinsn_del_list, ix, curr_insn)
    delete_insn (curr_insn);

  free (is_insn_merge_attempted);
  VEC_free (rtx, heap, zeinsn_list);
  VEC_free (rtx, heap, zeinsn_del_list);

  if (dump_file && num_ze_opportunities > 0)
    fprintf (dump_file, "\n %s : num_zee_opportunities = %lld "
                        "num_realized = %lld \n",
                        current_function_name (),
                        num_ze_opportunities, num_realized);

  df_finish_pass (false);
  return 0;
}

/* Find and remove redundant zero extensions.  */

static unsigned int
rest_of_handle_zee (void)
{
  timevar_push (TV_ZEE);
  find_and_remove_ze ();
  timevar_pop (TV_ZEE);
  return 0;
}

/* Run zee pass when flag_zee is set at optimization level > 0.  */

static bool
gate_handle_zee (void)
{
  return (optimize > 0 && flag_zee);
}

struct rtl_opt_pass pass_implicit_zee =
{
 {
  RTL_PASS,
  "zee",                                /* name */
  gate_handle_zee,                      /* gate */
  rest_of_handle_zee,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_ZEE,                               /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_ggc_collect |
  TODO_verify_rtl_sharing,              /* todo_flags_finish */
 }
};