1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
/* Interprocedural Identical Code Folding pass
Copyright (C) 2014-2015 Free Software Foundation, Inc.
Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "options.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "fold-const.h"
#include "predict.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "expr.h"
#include "gimple-iterator.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "stringpool.h"
#include "tree-dfa.h"
#include "tree-pass.h"
#include "gimple-pretty-print.h"
#include "cfgloop.h"
#include "except.h"
#include "hash-map.h"
#include "plugin-api.h"
#include "ipa-ref.h"
#include "cgraph.h"
#include "data-streamer.h"
#include "ipa-utils.h"
#include <list>
#include "tree-ssanames.h"
#include "tree-eh.h"
#include "ipa-icf-gimple.h"
#include "ipa-icf.h"
namespace ipa_icf_gimple {
/* Initialize internal structures for a given SOURCE_FUNC_DECL and
TARGET_FUNC_DECL. Strict polymorphic comparison is processed if
an option COMPARE_POLYMORPHIC is true. For special cases, one can
set IGNORE_LABELS to skip label comparison.
Similarly, IGNORE_SOURCE_DECLS and IGNORE_TARGET_DECLS are sets
of declarations that can be skipped. */
func_checker::func_checker (tree source_func_decl, tree target_func_decl,
bool compare_polymorphic,
bool ignore_labels,
hash_set<symtab_node *> *ignored_source_nodes,
hash_set<symtab_node *> *ignored_target_nodes)
: m_source_func_decl (source_func_decl), m_target_func_decl (target_func_decl),
m_ignored_source_nodes (ignored_source_nodes),
m_ignored_target_nodes (ignored_target_nodes),
m_compare_polymorphic (compare_polymorphic),
m_ignore_labels (ignore_labels)
{
function *source_func = DECL_STRUCT_FUNCTION (source_func_decl);
function *target_func = DECL_STRUCT_FUNCTION (target_func_decl);
unsigned ssa_source = SSANAMES (source_func)->length ();
unsigned ssa_target = SSANAMES (target_func)->length ();
m_source_ssa_names.create (ssa_source);
m_target_ssa_names.create (ssa_target);
for (unsigned i = 0; i < ssa_source; i++)
m_source_ssa_names.safe_push (-1);
for (unsigned i = 0; i < ssa_target; i++)
m_target_ssa_names.safe_push (-1);
}
/* Memory release routine. */
func_checker::~func_checker ()
{
m_source_ssa_names.release();
m_target_ssa_names.release();
}
/* Verifies that trees T1 and T2 are equivalent from perspective of ICF. */
bool
func_checker::compare_ssa_name (tree t1, tree t2)
{
gcc_assert (TREE_CODE (t1) == SSA_NAME);
gcc_assert (TREE_CODE (t2) == SSA_NAME);
unsigned i1 = SSA_NAME_VERSION (t1);
unsigned i2 = SSA_NAME_VERSION (t2);
if (m_source_ssa_names[i1] == -1)
m_source_ssa_names[i1] = i2;
else if (m_source_ssa_names[i1] != (int) i2)
return false;
if(m_target_ssa_names[i2] == -1)
m_target_ssa_names[i2] = i1;
else if (m_target_ssa_names[i2] != (int) i1)
return false;
if (SSA_NAME_IS_DEFAULT_DEF (t1))
{
tree b1 = SSA_NAME_VAR (t1);
tree b2 = SSA_NAME_VAR (t2);
if (b1 == NULL && b2 == NULL)
return true;
if (b1 == NULL || b2 == NULL || TREE_CODE (b1) != TREE_CODE (b2))
return return_false ();
return compare_cst_or_decl (b1, b2);
}
return true;
}
/* Verification function for edges E1 and E2. */
bool
func_checker::compare_edge (edge e1, edge e2)
{
if (e1->flags != e2->flags)
return false;
bool existed_p;
edge &slot = m_edge_map.get_or_insert (e1, &existed_p);
if (existed_p)
return return_with_debug (slot == e2);
else
slot = e2;
/* TODO: filter edge probabilities for profile feedback match. */
return true;
}
/* Verification function for declaration trees T1 and T2 that
come from functions FUNC1 and FUNC2. */
bool
func_checker::compare_decl (tree t1, tree t2)
{
if (!auto_var_in_fn_p (t1, m_source_func_decl)
|| !auto_var_in_fn_p (t2, m_target_func_decl))
return return_with_debug (t1 == t2);
tree_code t = TREE_CODE (t1);
if ((t == VAR_DECL || t == PARM_DECL || t == RESULT_DECL)
&& DECL_BY_REFERENCE (t1) != DECL_BY_REFERENCE (t2))
return return_false_with_msg ("DECL_BY_REFERENCE flags are different");
if (!compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2),
m_compare_polymorphic))
return return_false ();
bool existed_p;
tree &slot = m_decl_map.get_or_insert (t1, &existed_p);
if (existed_p)
return return_with_debug (slot == t2);
else
slot = t2;
return true;
}
/* Return true if types are compatible from perspective of ICF. */
bool
func_checker::compatible_types_p (tree t1, tree t2,
bool compare_polymorphic,
bool first_argument)
{
if (TREE_CODE (t1) != TREE_CODE (t2))
return return_false_with_msg ("different tree types");
if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
return return_false_with_msg ("restrict flags are different");
if (!types_compatible_p (t1, t2))
return return_false_with_msg ("types are not compatible");
if (get_alias_set (t1) != get_alias_set (t2))
return return_false_with_msg ("alias sets are different");
/* We call contains_polymorphic_type_p with this pointer type. */
if (first_argument && TREE_CODE (t1) == POINTER_TYPE)
{
t1 = TREE_TYPE (t1);
t2 = TREE_TYPE (t2);
}
if (compare_polymorphic)
if (contains_polymorphic_type_p (t1) || contains_polymorphic_type_p (t2))
{
if (!contains_polymorphic_type_p (t1) || !contains_polymorphic_type_p (t2))
return return_false_with_msg ("one type is not polymorphic");
if (!types_must_be_same_for_odr (t1, t2))
return return_false_with_msg ("types are not same for ODR");
}
return true;
}
/* Function compare for equality given memory operands T1 and T2. */
bool
func_checker::compare_memory_operand (tree t1, tree t2)
{
if (!t1 && !t2)
return true;
else if (!t1 || !t2)
return false;
ao_ref r1, r2;
ao_ref_init (&r1, t1);
ao_ref_init (&r2, t2);
tree b1 = ao_ref_base (&r1);
tree b2 = ao_ref_base (&r2);
bool source_is_memop = DECL_P (b1) || INDIRECT_REF_P (b1)
|| TREE_CODE (b1) == MEM_REF
|| TREE_CODE (b1) == TARGET_MEM_REF;
bool target_is_memop = DECL_P (b2) || INDIRECT_REF_P (b2)
|| TREE_CODE (b2) == MEM_REF
|| TREE_CODE (b2) == TARGET_MEM_REF;
/* Compare alias sets for memory operands. */
if (source_is_memop && target_is_memop)
{
if (TREE_THIS_VOLATILE (b1) != TREE_THIS_VOLATILE (b2))
return return_false_with_msg ("different operand volatility");
if (ao_ref_alias_set (&r1) != ao_ref_alias_set (&r2)
|| ao_ref_base_alias_set (&r1) != ao_ref_base_alias_set (&r2))
return return_false_with_msg ("ao alias sets are different");
}
return compare_operand (t1, t2);
}
/* Function compare for equality given trees T1 and T2 which
can be either a constant or a declaration type. */
bool
func_checker::compare_cst_or_decl (tree t1, tree t2)
{
bool ret;
switch (TREE_CODE (t1))
{
case INTEGER_CST:
case COMPLEX_CST:
case VECTOR_CST:
case STRING_CST:
case REAL_CST:
{
ret = compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2))
&& operand_equal_p (t1, t2, OEP_ONLY_CONST);
return return_with_debug (ret);
}
case FUNCTION_DECL:
{
ret = compare_function_decl (t1, t2);
return return_with_debug (ret);
}
case VAR_DECL:
return return_with_debug (compare_variable_decl (t1, t2));
case FIELD_DECL:
{
tree offset1 = DECL_FIELD_OFFSET (t1);
tree offset2 = DECL_FIELD_OFFSET (t2);
tree bit_offset1 = DECL_FIELD_BIT_OFFSET (t1);
tree bit_offset2 = DECL_FIELD_BIT_OFFSET (t2);
ret = compare_operand (offset1, offset2)
&& compare_operand (bit_offset1, bit_offset2);
return return_with_debug (ret);
}
case LABEL_DECL:
{
int *bb1 = m_label_bb_map.get (t1);
int *bb2 = m_label_bb_map.get (t2);
return return_with_debug (*bb1 == *bb2);
}
case PARM_DECL:
case RESULT_DECL:
case CONST_DECL:
{
ret = compare_decl (t1, t2);
return return_with_debug (ret);
}
default:
gcc_unreachable ();
}
}
/* Function responsible for comparison of various operands T1 and T2.
If these components, from functions FUNC1 and FUNC2, are equal, true
is returned. */
bool
func_checker::compare_operand (tree t1, tree t2)
{
tree x1, x2, y1, y2, z1, z2;
bool ret;
if (!t1 && !t2)
return true;
else if (!t1 || !t2)
return false;
tree tt1 = TREE_TYPE (t1);
tree tt2 = TREE_TYPE (t2);
if (!func_checker::compatible_types_p (tt1, tt2))
return false;
if (TREE_CODE (t1) != TREE_CODE (t2))
return return_false ();
switch (TREE_CODE (t1))
{
case CONSTRUCTOR:
{
unsigned length1 = vec_safe_length (CONSTRUCTOR_ELTS (t1));
unsigned length2 = vec_safe_length (CONSTRUCTOR_ELTS (t2));
if (length1 != length2)
return return_false ();
for (unsigned i = 0; i < length1; i++)
if (!compare_operand (CONSTRUCTOR_ELT (t1, i)->value,
CONSTRUCTOR_ELT (t2, i)->value))
return return_false();
return true;
}
case ARRAY_REF:
case ARRAY_RANGE_REF:
/* First argument is the array, second is the index. */
x1 = TREE_OPERAND (t1, 0);
x2 = TREE_OPERAND (t2, 0);
y1 = TREE_OPERAND (t1, 1);
y2 = TREE_OPERAND (t2, 1);
if (!compare_operand (array_ref_low_bound (t1),
array_ref_low_bound (t2)))
return return_false_with_msg ("");
if (!compare_operand (array_ref_element_size (t1),
array_ref_element_size (t2)))
return return_false_with_msg ("");
if (!compare_operand (x1, x2))
return return_false_with_msg ("");
return compare_operand (y1, y2);
case MEM_REF:
{
x1 = TREE_OPERAND (t1, 0);
x2 = TREE_OPERAND (t2, 0);
y1 = TREE_OPERAND (t1, 1);
y2 = TREE_OPERAND (t2, 1);
/* See if operand is an memory access (the test originate from
gimple_load_p).
In this case the alias set of the function being replaced must
be subset of the alias set of the other function. At the moment
we seek for equivalency classes, so simply require inclussion in
both directions. */
if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2)))
return return_false ();
if (!compare_operand (x1, x2))
return return_false_with_msg ("");
/* Type of the offset on MEM_REF does not matter. */
return wi::to_offset (y1) == wi::to_offset (y2);
}
case COMPONENT_REF:
{
x1 = TREE_OPERAND (t1, 0);
x2 = TREE_OPERAND (t2, 0);
y1 = TREE_OPERAND (t1, 1);
y2 = TREE_OPERAND (t2, 1);
ret = compare_operand (x1, x2)
&& compare_cst_or_decl (y1, y2);
return return_with_debug (ret);
}
/* Virtual table call. */
case OBJ_TYPE_REF:
{
x1 = TREE_OPERAND (t1, 0);
x2 = TREE_OPERAND (t2, 0);
y1 = TREE_OPERAND (t1, 1);
y2 = TREE_OPERAND (t2, 1);
z1 = TREE_OPERAND (t1, 2);
z2 = TREE_OPERAND (t2, 2);
ret = compare_ssa_name (x1, x2)
&& compare_ssa_name (y1, y2)
&& compare_cst_or_decl (z1, z2);
return return_with_debug (ret);
}
case ADDR_EXPR:
{
x1 = TREE_OPERAND (t1, 0);
x2 = TREE_OPERAND (t2, 0);
ret = compare_operand (x1, x2);
return return_with_debug (ret);
}
case BIT_FIELD_REF:
{
ret = compare_decl (t1, t2);
return return_with_debug (ret);
}
case SSA_NAME:
return compare_ssa_name (t1, t2);
case INTEGER_CST:
case COMPLEX_CST:
case VECTOR_CST:
case STRING_CST:
case REAL_CST:
case FUNCTION_DECL:
case VAR_DECL:
case FIELD_DECL:
case LABEL_DECL:
case PARM_DECL:
case RESULT_DECL:
case CONST_DECL:
return compare_cst_or_decl (t1, t2);
default:
return return_false_with_msg ("Unknown TREE code reached");
}
}
/* Compares two tree list operands T1 and T2 and returns true if these
two trees are semantically equivalent. */
bool
func_checker::compare_tree_list_operand (tree t1, tree t2)
{
gcc_assert (TREE_CODE (t1) == TREE_LIST);
gcc_assert (TREE_CODE (t2) == TREE_LIST);
for (; t1; t1 = TREE_CHAIN (t1))
{
if (!t2)
return false;
if (!compare_operand (TREE_VALUE (t1), TREE_VALUE (t2)))
return return_false ();
t2 = TREE_CHAIN (t2);
}
if (t2)
return return_false ();
return true;
}
/* Verifies that trees T1 and T2, representing function declarations
are equivalent from perspective of ICF. */
bool
func_checker::compare_function_decl (tree t1, tree t2)
{
bool ret = false;
if (t1 == t2)
return true;
symtab_node *n1 = symtab_node::get (t1);
symtab_node *n2 = symtab_node::get (t2);
if (m_ignored_source_nodes != NULL && m_ignored_target_nodes != NULL)
{
ret = m_ignored_source_nodes->contains (n1)
&& m_ignored_target_nodes->contains (n2);
if (ret)
return true;
}
/* If function decl is WEAKREF, we compare targets. */
cgraph_node *f1 = cgraph_node::get (t1);
cgraph_node *f2 = cgraph_node::get (t2);
if(f1 && f2 && f1->weakref && f2->weakref)
ret = f1->alias_target == f2->alias_target;
return ret;
}
/* Verifies that trees T1 and T2 do correspond. */
bool
func_checker::compare_variable_decl (tree t1, tree t2)
{
bool ret = false;
if (t1 == t2)
return true;
if (TREE_CODE (t1) == VAR_DECL && (DECL_EXTERNAL (t1) || TREE_STATIC (t1)))
{
symtab_node *n1 = symtab_node::get (t1);
symtab_node *n2 = symtab_node::get (t2);
if (m_ignored_source_nodes != NULL && m_ignored_target_nodes != NULL)
{
ret = m_ignored_source_nodes->contains (n1)
&& m_ignored_target_nodes->contains (n2);
if (ret)
return true;
}
}
ret = compare_decl (t1, t2);
return return_with_debug (ret);
}
/* Function visits all gimple labels and creates corresponding
mapping between basic blocks and labels. */
void
func_checker::parse_labels (sem_bb *bb)
{
for (gimple_stmt_iterator gsi = gsi_start_bb (bb->bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
tree t = gimple_label_label (label_stmt);
gcc_assert (TREE_CODE (t) == LABEL_DECL);
m_label_bb_map.put (t, bb->bb->index);
}
}
}
/* Basic block equivalence comparison function that returns true if
basic blocks BB1 and BB2 (from functions FUNC1 and FUNC2) correspond.
In general, a collection of equivalence dictionaries is built for types
like SSA names, declarations (VAR_DECL, PARM_DECL, ..). This infrastructure
is utilized by every statement-by-statement comparison function. */
bool
func_checker::compare_bb (sem_bb *bb1, sem_bb *bb2)
{
gimple_stmt_iterator gsi1, gsi2;
gimple s1, s2;
gsi1 = gsi_start_bb_nondebug (bb1->bb);
gsi2 = gsi_start_bb_nondebug (bb2->bb);
while (!gsi_end_p (gsi1))
{
if (gsi_end_p (gsi2))
return return_false ();
s1 = gsi_stmt (gsi1);
s2 = gsi_stmt (gsi2);
int eh1 = lookup_stmt_eh_lp_fn
(DECL_STRUCT_FUNCTION (m_source_func_decl), s1);
int eh2 = lookup_stmt_eh_lp_fn
(DECL_STRUCT_FUNCTION (m_target_func_decl), s2);
if (eh1 != eh2)
return return_false_with_msg ("EH regions are different");
if (gimple_code (s1) != gimple_code (s2))
return return_false_with_msg ("gimple codes are different");
switch (gimple_code (s1))
{
case GIMPLE_CALL:
if (!compare_gimple_call (as_a <gcall *> (s1),
as_a <gcall *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_CALL");
break;
case GIMPLE_ASSIGN:
if (!compare_gimple_assign (s1, s2))
return return_different_stmts (s1, s2, "GIMPLE_ASSIGN");
break;
case GIMPLE_COND:
if (!compare_gimple_cond (s1, s2))
return return_different_stmts (s1, s2, "GIMPLE_COND");
break;
case GIMPLE_SWITCH:
if (!compare_gimple_switch (as_a <gswitch *> (s1),
as_a <gswitch *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_SWITCH");
break;
case GIMPLE_DEBUG:
case GIMPLE_EH_DISPATCH:
break;
case GIMPLE_RESX:
if (!compare_gimple_resx (as_a <gresx *> (s1),
as_a <gresx *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_RESX");
break;
case GIMPLE_LABEL:
if (!compare_gimple_label (as_a <glabel *> (s1),
as_a <glabel *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_LABEL");
break;
case GIMPLE_RETURN:
if (!compare_gimple_return (as_a <greturn *> (s1),
as_a <greturn *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_RETURN");
break;
case GIMPLE_GOTO:
if (!compare_gimple_goto (s1, s2))
return return_different_stmts (s1, s2, "GIMPLE_GOTO");
break;
case GIMPLE_ASM:
if (!compare_gimple_asm (as_a <gasm *> (s1),
as_a <gasm *> (s2)))
return return_different_stmts (s1, s2, "GIMPLE_ASM");
break;
case GIMPLE_PREDICT:
case GIMPLE_NOP:
return true;
default:
return return_false_with_msg ("Unknown GIMPLE code reached");
}
gsi_next_nondebug (&gsi1);
gsi_next_nondebug (&gsi2);
}
if (!gsi_end_p (gsi2))
return return_false ();
return true;
}
/* Verifies for given GIMPLEs S1 and S2 that
call statements are semantically equivalent. */
bool
func_checker::compare_gimple_call (gcall *s1, gcall *s2)
{
unsigned i;
tree t1, t2;
if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
return false;
t1 = gimple_call_fn (s1);
t2 = gimple_call_fn (s2);
if (!compare_operand (t1, t2))
return return_false ();
/* Compare flags. */
if (gimple_call_internal_p (s1) != gimple_call_internal_p (s2)
|| gimple_call_ctrl_altering_p (s1) != gimple_call_ctrl_altering_p (s2)
|| gimple_call_tail_p (s1) != gimple_call_tail_p (s2)
|| gimple_call_return_slot_opt_p (s1) != gimple_call_return_slot_opt_p (s2)
|| gimple_call_from_thunk_p (s1) != gimple_call_from_thunk_p (s2)
|| gimple_call_va_arg_pack_p (s1) != gimple_call_va_arg_pack_p (s2)
|| gimple_call_alloca_for_var_p (s1) != gimple_call_alloca_for_var_p (s2)
|| gimple_call_with_bounds_p (s1) != gimple_call_with_bounds_p (s2))
return false;
if (gimple_call_internal_p (s1)
&& gimple_call_internal_fn (s1) != gimple_call_internal_fn (s2))
return false;
tree fntype1 = gimple_call_fntype (s1);
tree fntype2 = gimple_call_fntype (s2);
if ((fntype1 && !fntype2)
|| (!fntype1 && fntype2)
|| (fntype1 && !types_compatible_p (fntype1, fntype2)))
return return_false_with_msg ("call function types are not compatible");
tree chain1 = gimple_call_chain (s1);
tree chain2 = gimple_call_chain (s2);
if ((chain1 && !chain2)
|| (!chain1 && chain2)
|| !compare_operand (chain1, chain2))
return return_false_with_msg ("static call chains are different");
/* Checking of argument. */
for (i = 0; i < gimple_call_num_args (s1); ++i)
{
t1 = gimple_call_arg (s1, i);
t2 = gimple_call_arg (s2, i);
if (!compare_memory_operand (t1, t2))
return return_false_with_msg ("memory operands are different");
}
/* Return value checking. */
t1 = gimple_get_lhs (s1);
t2 = gimple_get_lhs (s2);
return compare_memory_operand (t1, t2);
}
/* Verifies for given GIMPLEs S1 and S2 that
assignment statements are semantically equivalent. */
bool
func_checker::compare_gimple_assign (gimple s1, gimple s2)
{
tree arg1, arg2;
tree_code code1, code2;
unsigned i;
code1 = gimple_expr_code (s1);
code2 = gimple_expr_code (s2);
if (code1 != code2)
return false;
code1 = gimple_assign_rhs_code (s1);
code2 = gimple_assign_rhs_code (s2);
if (code1 != code2)
return false;
for (i = 0; i < gimple_num_ops (s1); i++)
{
arg1 = gimple_op (s1, i);
arg2 = gimple_op (s2, i);
if (!compare_memory_operand (arg1, arg2))
return return_false_with_msg ("memory operands are different");
}
return true;
}
/* Verifies for given GIMPLEs S1 and S2 that
condition statements are semantically equivalent. */
bool
func_checker::compare_gimple_cond (gimple s1, gimple s2)
{
tree t1, t2;
tree_code code1, code2;
code1 = gimple_expr_code (s1);
code2 = gimple_expr_code (s2);
if (code1 != code2)
return false;
t1 = gimple_cond_lhs (s1);
t2 = gimple_cond_lhs (s2);
if (!compare_operand (t1, t2))
return false;
t1 = gimple_cond_rhs (s1);
t2 = gimple_cond_rhs (s2);
return compare_operand (t1, t2);
}
/* Verifies that tree labels T1 and T2 correspond in FUNC1 and FUNC2. */
bool
func_checker::compare_tree_ssa_label (tree t1, tree t2)
{
return compare_operand (t1, t2);
}
/* Verifies for given GIMPLE_LABEL stmts S1 and S2 that
label statements are semantically equivalent. */
bool
func_checker::compare_gimple_label (const glabel *g1, const glabel *g2)
{
if (m_ignore_labels)
return true;
tree t1 = gimple_label_label (g1);
tree t2 = gimple_label_label (g2);
if (FORCED_LABEL (t1) || FORCED_LABEL (t2))
return return_false_with_msg ("FORCED_LABEL");
/* As the pass build BB to label mapping, no further check is needed. */
return true;
}
/* Verifies for given GIMPLE_SWITCH stmts S1 and S2 that
switch statements are semantically equivalent. */
bool
func_checker::compare_gimple_switch (const gswitch *g1, const gswitch *g2)
{
unsigned lsize1, lsize2, i;
lsize1 = gimple_switch_num_labels (g1);
lsize2 = gimple_switch_num_labels (g2);
if (lsize1 != lsize2)
return false;
tree t1 = gimple_switch_index (g1);
tree t2 = gimple_switch_index (g2);
if (!compare_operand (t1, t2))
return false;
for (i = 0; i < lsize1; i++)
{
tree label1 = gimple_switch_label (g1, i);
tree label2 = gimple_switch_label (g2, i);
/* Label LOW and HIGH comparison. */
tree low1 = CASE_LOW (label1);
tree low2 = CASE_LOW (label2);
if (!tree_int_cst_equal (low1, low2))
return return_false_with_msg ("case low values are different");
tree high1 = CASE_HIGH (label1);
tree high2 = CASE_HIGH (label2);
if (!tree_int_cst_equal (high1, high2))
return return_false_with_msg ("case high values are different");
if (TREE_CODE (label1) == CASE_LABEL_EXPR
&& TREE_CODE (label2) == CASE_LABEL_EXPR)
{
label1 = CASE_LABEL (label1);
label2 = CASE_LABEL (label2);
if (!compare_operand (label1, label2))
return return_false_with_msg ("switch label_exprs are different");
}
else if (!tree_int_cst_equal (label1, label2))
return return_false_with_msg ("switch labels are different");
}
return true;
}
/* Verifies for given GIMPLE_RETURN stmts S1 and S2 that
return statements are semantically equivalent. */
bool
func_checker::compare_gimple_return (const greturn *g1, const greturn *g2)
{
tree t1, t2;
t1 = gimple_return_retval (g1);
t2 = gimple_return_retval (g2);
/* Void return type. */
if (t1 == NULL && t2 == NULL)
return true;
else
return compare_operand (t1, t2);
}
/* Verifies for given GIMPLEs S1 and S2 that
goto statements are semantically equivalent. */
bool
func_checker::compare_gimple_goto (gimple g1, gimple g2)
{
tree dest1, dest2;
dest1 = gimple_goto_dest (g1);
dest2 = gimple_goto_dest (g2);
if (TREE_CODE (dest1) != TREE_CODE (dest2) || TREE_CODE (dest1) != SSA_NAME)
return false;
return compare_operand (dest1, dest2);
}
/* Verifies for given GIMPLE_RESX stmts S1 and S2 that
resx statements are semantically equivalent. */
bool
func_checker::compare_gimple_resx (const gresx *g1, const gresx *g2)
{
return gimple_resx_region (g1) == gimple_resx_region (g2);
}
/* Verifies for given GIMPLEs S1 and S2 that ASM statements are equivalent.
For the beginning, the pass only supports equality for
'__asm__ __volatile__ ("", "", "", "memory")'. */
bool
func_checker::compare_gimple_asm (const gasm *g1, const gasm *g2)
{
if (gimple_asm_volatile_p (g1) != gimple_asm_volatile_p (g2))
return false;
if (gimple_asm_ninputs (g1) != gimple_asm_ninputs (g2))
return false;
if (gimple_asm_noutputs (g1) != gimple_asm_noutputs (g2))
return false;
/* We do not suppport goto ASM statement comparison. */
if (gimple_asm_nlabels (g1) || gimple_asm_nlabels (g2))
return false;
if (gimple_asm_nclobbers (g1) != gimple_asm_nclobbers (g2))
return false;
if (strcmp (gimple_asm_string (g1), gimple_asm_string (g2)) != 0)
return return_false_with_msg ("ASM strings are different");
for (unsigned i = 0; i < gimple_asm_ninputs (g1); i++)
{
tree input1 = gimple_asm_input_op (g1, i);
tree input2 = gimple_asm_input_op (g2, i);
if (!compare_tree_list_operand (input1, input2))
return return_false_with_msg ("ASM input is different");
}
for (unsigned i = 0; i < gimple_asm_noutputs (g1); i++)
{
tree output1 = gimple_asm_output_op (g1, i);
tree output2 = gimple_asm_output_op (g2, i);
if (!compare_tree_list_operand (output1, output2))
return return_false_with_msg ("ASM output is different");
}
for (unsigned i = 0; i < gimple_asm_nclobbers (g1); i++)
{
tree clobber1 = gimple_asm_clobber_op (g1, i);
tree clobber2 = gimple_asm_clobber_op (g2, i);
if (!operand_equal_p (TREE_VALUE (clobber1), TREE_VALUE (clobber2),
OEP_ONLY_CONST))
return return_false_with_msg ("ASM clobber is different");
}
return true;
}
} // ipa_icf_gimple namespace
|