summaryrefslogtreecommitdiff
path: root/gcc/ipa-icf.c
blob: aa6589c16e1ae284914e6a7a61ab6cd14b406bd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
/* Interprocedural Identical Code Folding pass
   Copyright (C) 2014-2016 Free Software Foundation, Inc.

   Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Interprocedural Identical Code Folding for functions and
   read-only variables.

   The goal of this transformation is to discover functions and read-only
   variables which do have exactly the same semantics.

   In case of functions,
   we could either create a virtual clone or do a simple function wrapper
   that will call equivalent function. If the function is just locally visible,
   all function calls can be redirected. For read-only variables, we create
   aliases if possible.

   Optimization pass arranges as follows:
   1) All functions and read-only variables are visited and internal
      data structure, either sem_function or sem_variables is created.
   2) For every symbol from the previous step, VAR_DECL and FUNCTION_DECL are
      saved and matched to corresponding sem_items.
   3) These declaration are ignored for equality check and are solved
      by Value Numbering algorithm published by Alpert, Zadeck in 1992.
   4) We compute hash value for each symbol.
   5) Congruence classes are created based on hash value. If hash value are
      equal, equals function is called and symbols are deeply compared.
      We must prove that all SSA names, declarations and other items
      correspond.
   6) Value Numbering is executed for these classes. At the end of the process
      all symbol members in remaining classes can be merged.
   7) Merge operation creates alias in case of read-only variables. For
      callgraph node, we must decide if we can redirect local calls,
      create an alias or a thunk.

*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "coverage.h"
#include "gimple-pretty-print.h"
#include "data-streamer.h"
#include <list>
#include "fold-const.h"
#include "calls.h"
#include "varasm.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-inline.h"
#include "except.h"
#include "attribs.h"
#include "print-tree.h"
#include "ipa-utils.h"
#include "ipa-icf-gimple.h"
#include "ipa-icf.h"
#include "stor-layout.h"
#include "dbgcnt.h"

using namespace ipa_icf_gimple;

namespace ipa_icf {

/* Initialization and computation of symtab node hash, there data
   are propagated later on.  */

static sem_item_optimizer *optimizer = NULL;

/* Constructor.  */

symbol_compare_collection::symbol_compare_collection (symtab_node *node)
{
  m_references.create (0);
  m_interposables.create (0);

  ipa_ref *ref;

  if (is_a <varpool_node *> (node) && DECL_VIRTUAL_P (node->decl))
    return;

  for (unsigned i = 0; node->iterate_reference (i, ref); i++)
    {
      if (ref->address_matters_p ())
	m_references.safe_push (ref->referred);

      if (ref->referred->get_availability () <= AVAIL_INTERPOSABLE)
        {
	  if (ref->address_matters_p ())
	    m_references.safe_push (ref->referred);
	  else
	    m_interposables.safe_push (ref->referred);
	}
    }

  if (is_a <cgraph_node *> (node))
    {
      cgraph_node *cnode = dyn_cast <cgraph_node *> (node);

      for (cgraph_edge *e = cnode->callees; e; e = e->next_callee)
	if (e->callee->get_availability () <= AVAIL_INTERPOSABLE)
	  m_interposables.safe_push (e->callee);
    }
}

/* Constructor for key value pair, where _ITEM is key and _INDEX is a target.  */

sem_usage_pair::sem_usage_pair (sem_item *_item, unsigned int _index):
  item (_item), index (_index)
{
}

/* Semantic item constructor for a node of _TYPE, where STACK is used
   for bitmap memory allocation.  */

sem_item::sem_item (sem_item_type _type,
		    bitmap_obstack *stack): type (_type), m_hash (0)
{
  setup (stack);
}

/* Semantic item constructor for a node of _TYPE, where STACK is used
   for bitmap memory allocation. The item is based on symtab node _NODE
   with computed _HASH.  */

sem_item::sem_item (sem_item_type _type, symtab_node *_node,
		    hashval_t _hash, bitmap_obstack *stack): type(_type),
  node (_node), m_hash (_hash)
{
  decl = node->decl;
  setup (stack);
}

/* Add reference to a semantic TARGET.  */

void
sem_item::add_reference (sem_item *target)
{
  refs.safe_push (target);
  unsigned index = refs.length ();
  target->usages.safe_push (new sem_usage_pair(this, index));
  bitmap_set_bit (target->usage_index_bitmap, index);
  refs_set.add (target->node);
}

/* Initialize internal data structures. Bitmap STACK is used for
   bitmap memory allocation process.  */

void
sem_item::setup (bitmap_obstack *stack)
{
  gcc_checking_assert (node);

  refs.create (0);
  tree_refs.create (0);
  usages.create (0);
  usage_index_bitmap = BITMAP_ALLOC (stack);
}

sem_item::~sem_item ()
{
  for (unsigned i = 0; i < usages.length (); i++)
    delete usages[i];

  refs.release ();
  tree_refs.release ();
  usages.release ();

  BITMAP_FREE (usage_index_bitmap);
}

/* Dump function for debugging purpose.  */

DEBUG_FUNCTION void
sem_item::dump (void)
{
  if (dump_file)
    {
      fprintf (dump_file, "[%s] %s (%u) (tree:%p)\n", type == FUNC ? "func" : "var",
	       node->name(), node->order, (void *) node->decl);
      fprintf (dump_file, "  hash: %u\n", get_hash ());
      fprintf (dump_file, "  references: ");

      for (unsigned i = 0; i < refs.length (); i++)
	fprintf (dump_file, "%s%s ", refs[i]->node->name (),
		 i < refs.length() - 1 ? "," : "");

      fprintf (dump_file, "\n");
    }
}

/* Return true if target supports alias symbols.  */

bool
sem_item::target_supports_symbol_aliases_p (void)
{
#if !defined (ASM_OUTPUT_DEF) || (!defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL))
  return false;
#else
  return true;
#endif
}

void sem_item::set_hash (hashval_t hash)
{
  m_hash = hash;
}

/* Semantic function constructor that uses STACK as bitmap memory stack.  */

sem_function::sem_function (bitmap_obstack *stack): sem_item (FUNC, stack),
  m_checker (NULL), m_compared_func (NULL)
{
  bb_sizes.create (0);
  bb_sorted.create (0);
}

/*  Constructor based on callgraph node _NODE with computed hash _HASH.
    Bitmap STACK is used for memory allocation.  */
sem_function::sem_function (cgraph_node *node, hashval_t hash,
			    bitmap_obstack *stack):
  sem_item (FUNC, node, hash, stack),
  m_checker (NULL), m_compared_func (NULL)
{
  bb_sizes.create (0);
  bb_sorted.create (0);
}

sem_function::~sem_function ()
{
  for (unsigned i = 0; i < bb_sorted.length (); i++)
    delete (bb_sorted[i]);

  bb_sizes.release ();
  bb_sorted.release ();
}

/* Calculates hash value based on a BASIC_BLOCK.  */

hashval_t
sem_function::get_bb_hash (const sem_bb *basic_block)
{
  inchash::hash hstate;

  hstate.add_int (basic_block->nondbg_stmt_count);
  hstate.add_int (basic_block->edge_count);

  return hstate.end ();
}

/* References independent hash function.  */

hashval_t
sem_function::get_hash (void)
{
  if (!m_hash)
    {
      inchash::hash hstate;
      hstate.add_int (177454); /* Random number for function type.  */

      hstate.add_int (arg_count);
      hstate.add_int (cfg_checksum);
      hstate.add_int (gcode_hash);

      for (unsigned i = 0; i < bb_sorted.length (); i++)
	hstate.merge_hash (get_bb_hash (bb_sorted[i]));

      for (unsigned i = 0; i < bb_sizes.length (); i++)
	hstate.add_int (bb_sizes[i]);

      /* Add common features of declaration itself.  */
      if (DECL_FUNCTION_SPECIFIC_TARGET (decl))
        hstate.add_wide_int
	 (cl_target_option_hash
	   (TREE_TARGET_OPTION (DECL_FUNCTION_SPECIFIC_TARGET (decl))));
      if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
	 (cl_optimization_hash
	   (TREE_OPTIMIZATION (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))));
      hstate.add_flag (DECL_CXX_CONSTRUCTOR_P (decl));
      hstate.add_flag (DECL_CXX_DESTRUCTOR_P (decl));

      set_hash (hstate.end ());
    }

  return m_hash;
}

/* Return ture if A1 and A2 represent equivalent function attribute lists.
   Based on comp_type_attributes.  */

bool
sem_item::compare_attributes (const_tree a1, const_tree a2)
{
  const_tree a;
  if (a1 == a2)
    return true;
  for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
    {
      const struct attribute_spec *as;
      const_tree attr;

      as = lookup_attribute_spec (get_attribute_name (a));
      /* TODO: We can introduce as->affects_decl_identity
	 and as->affects_decl_reference_identity if attribute mismatch
	 gets a common reason to give up on merging.  It may not be worth
	 the effort.
	 For example returns_nonnull affects only references, while
	 optimize attribute can be ignored because it is already lowered
	 into flags representation and compared separately.  */
      if (!as)
        continue;

      attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
      if (!attr || !attribute_value_equal (a, attr))
        break;
    }
  if (!a)
    {
      for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
	{
	  const struct attribute_spec *as;

	  as = lookup_attribute_spec (get_attribute_name (a));
	  if (!as)
	    continue;

	  if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
	    break;
	  /* We don't need to compare trees again, as we did this
	     already in first loop.  */
	}
      if (!a)
        return true;
    }
  /* TODO: As in comp_type_attributes we may want to introduce target hook.  */
  return false;
}

/* Compare properties of symbols N1 and N2 that does not affect semantics of
   symbol itself but affects semantics of its references from USED_BY (which
   may be NULL if it is unknown).  If comparsion is false, symbols
   can still be merged but any symbols referring them can't.

   If ADDRESS is true, do extra checking needed for IPA_REF_ADDR.

   TODO: We can also split attributes to those that determine codegen of
   a function body/variable constructor itself and those that are used when
   referring to it.  */

bool
sem_item::compare_referenced_symbol_properties (symtab_node *used_by,
						symtab_node *n1,
						symtab_node *n2,
						bool address)
{
  if (is_a <cgraph_node *> (n1))
    {
      /* Inline properties matters: we do now want to merge uses of inline
	 function to uses of normal function because inline hint would be lost.
	 We however can merge inline function to noinline because the alias
	 will keep its DECL_DECLARED_INLINE flag.

	 Also ignore inline flag when optimizing for size or when function
	 is known to not be inlinable.

	 TODO: the optimize_size checks can also be assumed to be true if
	 unit has no !optimize_size functions. */

      if ((!used_by || address || !is_a <cgraph_node *> (used_by)
	   || !opt_for_fn (used_by->decl, optimize_size))
	  && !opt_for_fn (n1->decl, optimize_size)
	  && n1->get_availability () > AVAIL_INTERPOSABLE
	  && (!DECL_UNINLINABLE (n1->decl) || !DECL_UNINLINABLE (n2->decl)))
	{
	  if (DECL_DISREGARD_INLINE_LIMITS (n1->decl)
	      != DECL_DISREGARD_INLINE_LIMITS (n2->decl))
	    return return_false_with_msg
		     ("DECL_DISREGARD_INLINE_LIMITS are different");

	  if (DECL_DECLARED_INLINE_P (n1->decl)
	      != DECL_DECLARED_INLINE_P (n2->decl))
	    return return_false_with_msg ("inline attributes are different");
	}

      if (DECL_IS_OPERATOR_NEW (n1->decl)
	  != DECL_IS_OPERATOR_NEW (n2->decl))
	return return_false_with_msg ("operator new flags are different");
    }

  /* Merging two definitions with a reference to equivalent vtables, but
     belonging to a different type may result in ipa-polymorphic-call analysis
     giving a wrong answer about the dynamic type of instance.  */
  if (is_a <varpool_node *> (n1))
    {
      if ((DECL_VIRTUAL_P (n1->decl) || DECL_VIRTUAL_P (n2->decl))
	  && (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl)
	      || !types_must_be_same_for_odr (DECL_CONTEXT (n1->decl),
					      DECL_CONTEXT (n2->decl)))
	  && (!used_by || !is_a <cgraph_node *> (used_by) || address
	      || opt_for_fn (used_by->decl, flag_devirtualize)))
	return return_false_with_msg
		 ("references to virtual tables can not be merged");

      if (address && DECL_ALIGN (n1->decl) != DECL_ALIGN (n2->decl))
	return return_false_with_msg ("alignment mismatch");

      /* For functions we compare attributes in equals_wpa, because we do
	 not know what attributes may cause codegen differences, but for
	 variables just compare attributes for references - the codegen
	 for constructors is affected only by those attributes that we lower
	 to explicit representation (such as DECL_ALIGN or DECL_SECTION).  */
      if (!compare_attributes (DECL_ATTRIBUTES (n1->decl),
			       DECL_ATTRIBUTES (n2->decl)))
	return return_false_with_msg ("different var decl attributes");
      if (comp_type_attributes (TREE_TYPE (n1->decl),
				TREE_TYPE (n2->decl)) != 1)
	return return_false_with_msg ("different var type attributes");
    }

  /* When matching virtual tables, be sure to also match information
     relevant for polymorphic call analysis.  */
  if (used_by && is_a <varpool_node *> (used_by)
      && DECL_VIRTUAL_P (used_by->decl))
    {
      if (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl))
	return return_false_with_msg ("virtual flag mismatch");
      if (DECL_VIRTUAL_P (n1->decl) && is_a <cgraph_node *> (n1)
	  && (DECL_FINAL_P (n1->decl) != DECL_FINAL_P (n2->decl)))
	return return_false_with_msg ("final flag mismatch");
    }
  return true;
}

/* Hash properties that are compared by compare_referenced_symbol_properties. */

void
sem_item::hash_referenced_symbol_properties (symtab_node *ref,
					     inchash::hash &hstate,
					     bool address)
{
  if (is_a <cgraph_node *> (ref))
    {
      if ((type != FUNC || address || !opt_for_fn (decl, optimize_size))
	  && !opt_for_fn (ref->decl, optimize_size)
	  && !DECL_UNINLINABLE (ref->decl))
	{
	  hstate.add_flag (DECL_DISREGARD_INLINE_LIMITS (ref->decl));
	  hstate.add_flag (DECL_DECLARED_INLINE_P (ref->decl));
	}
      hstate.add_flag (DECL_IS_OPERATOR_NEW (ref->decl));
    }
  else if (is_a <varpool_node *> (ref))
    {
      hstate.add_flag (DECL_VIRTUAL_P (ref->decl));
      if (address)
	hstate.add_int (DECL_ALIGN (ref->decl));
    }
}


/* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
   point to a same function. Comparison can be skipped if IGNORED_NODES
   contains these nodes.  ADDRESS indicate if address is taken.  */

bool
sem_item::compare_symbol_references (
    hash_map <symtab_node *, sem_item *> &ignored_nodes,
    symtab_node *n1, symtab_node *n2, bool address)
{
  enum availability avail1, avail2;

  if (n1 == n2)
    return true;

  /* Never match variable and function.  */
  if (is_a <varpool_node *> (n1) != is_a <varpool_node *> (n2))
    return false;

  if (!compare_referenced_symbol_properties (node, n1, n2, address))
    return false;
  if (address && n1->equal_address_to (n2) == 1)
    return true;
  if (!address && n1->semantically_equivalent_p (n2))
    return true;

  n1 = n1->ultimate_alias_target (&avail1);
  n2 = n2->ultimate_alias_target (&avail2);

  if (avail1 > AVAIL_INTERPOSABLE && ignored_nodes.get (n1)
      && avail2 > AVAIL_INTERPOSABLE && ignored_nodes.get (n2))
    return true;

  return return_false_with_msg ("different references");
}

/* If cgraph edges E1 and E2 are indirect calls, verify that
   ECF flags are the same.  */

bool sem_function::compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2)
{
  if (e1->indirect_info && e2->indirect_info)
    {
      int e1_flags = e1->indirect_info->ecf_flags;
      int e2_flags = e2->indirect_info->ecf_flags;

      if (e1_flags != e2_flags)
	return return_false_with_msg ("ICF flags are different");
    }
  else if (e1->indirect_info || e2->indirect_info)
    return false;

  return true;
}

/* Return true if parameter I may be used.  */

bool
sem_function::param_used_p (unsigned int i)
{
  if (ipa_node_params_sum == NULL)
    return true;

  struct ipa_node_params *parms_info = IPA_NODE_REF (get_node ());

  if (parms_info->descriptors.is_empty ()
      || parms_info->descriptors.length () <= i)
     return true;

  return ipa_is_param_used (IPA_NODE_REF (get_node ()), i);
}

/* Perform additional check needed to match types function parameters that are
   used.  Unlike for normal decls it matters if type is TYPE_RESTRICT and we
   make an assumption that REFERENCE_TYPE parameters are always non-NULL.  */

bool
sem_function::compatible_parm_types_p (tree parm1, tree parm2)
{
  /* Be sure that parameters are TBAA compatible.  */
  if (!func_checker::compatible_types_p (parm1, parm2))
    return return_false_with_msg ("parameter type is not compatible");

  if (POINTER_TYPE_P (parm1)
      && (TYPE_RESTRICT (parm1) != TYPE_RESTRICT (parm2)))
    return return_false_with_msg ("argument restrict flag mismatch");

  /* nonnull_arg_p implies non-zero range to REFERENCE types.  */
  if (POINTER_TYPE_P (parm1)
      && TREE_CODE (parm1) != TREE_CODE (parm2)
      && opt_for_fn (decl, flag_delete_null_pointer_checks))
    return return_false_with_msg ("pointer wrt reference mismatch");

  return true;
}

/* Fast equality function based on knowledge known in WPA.  */

bool
sem_function::equals_wpa (sem_item *item,
			  hash_map <symtab_node *, sem_item *> &ignored_nodes)
{
  gcc_assert (item->type == FUNC);
  cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
  cgraph_node *cnode2 = dyn_cast <cgraph_node *> (item->node);

  m_compared_func = static_cast<sem_function *> (item);

  if (cnode->thunk.thunk_p != cnode2->thunk.thunk_p)
    return return_false_with_msg ("thunk_p mismatch");

  if (cnode->thunk.thunk_p)
    {
      if (cnode->thunk.fixed_offset != cnode2->thunk.fixed_offset)
        return return_false_with_msg ("thunk fixed_offset mismatch");
      if (cnode->thunk.virtual_value != cnode2->thunk.virtual_value)
        return return_false_with_msg ("thunk virtual_value mismatch");
      if (cnode->thunk.this_adjusting != cnode2->thunk.this_adjusting)
        return return_false_with_msg ("thunk this_adjusting mismatch");
      if (cnode->thunk.virtual_offset_p != cnode2->thunk.virtual_offset_p)
        return return_false_with_msg ("thunk virtual_offset_p mismatch");
      if (cnode->thunk.add_pointer_bounds_args
	  != cnode2->thunk.add_pointer_bounds_args)
        return return_false_with_msg ("thunk add_pointer_bounds_args mismatch");
    }

  /* Compare special function DECL attributes.  */
  if (DECL_FUNCTION_PERSONALITY (decl)
      != DECL_FUNCTION_PERSONALITY (item->decl))
    return return_false_with_msg ("function personalities are different");

  if (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl)
       != DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (item->decl))
    return return_false_with_msg ("intrument function entry exit "
				  "attributes are different");

  if (DECL_NO_LIMIT_STACK (decl) != DECL_NO_LIMIT_STACK (item->decl))
    return return_false_with_msg ("no stack limit attributes are different");

  if (DECL_CXX_CONSTRUCTOR_P (decl) != DECL_CXX_CONSTRUCTOR_P (item->decl))
    return return_false_with_msg ("DECL_CXX_CONSTRUCTOR mismatch");

  if (DECL_CXX_DESTRUCTOR_P (decl) != DECL_CXX_DESTRUCTOR_P (item->decl))
    return return_false_with_msg ("DECL_CXX_DESTRUCTOR mismatch");

  /* TODO: pure/const flags mostly matters only for references, except for
     the fact that codegen takes LOOPING flag as a hint that loops are
     finite.  We may arrange the code to always pick leader that has least
     specified flags and then this can go into comparing symbol properties.  */
  if (flags_from_decl_or_type (decl) != flags_from_decl_or_type (item->decl))
    return return_false_with_msg ("decl_or_type flags are different");

  /* Do not match polymorphic constructors of different types.  They calls
     type memory location for ipa-polymorphic-call and we do not want
     it to get confused by wrong type.  */
  if (DECL_CXX_CONSTRUCTOR_P (decl)
      && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
    {
      if (TREE_CODE (TREE_TYPE (item->decl)) != METHOD_TYPE)
        return return_false_with_msg ("DECL_CXX_CONSTURCTOR type mismatch");
      else if (!func_checker::compatible_polymorphic_types_p
		 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
		  TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
        return return_false_with_msg ("ctor polymorphic type mismatch");
    }

  /* Checking function TARGET and OPTIMIZATION flags.  */
  cl_target_option *tar1 = target_opts_for_fn (decl);
  cl_target_option *tar2 = target_opts_for_fn (item->decl);

  if (tar1 != tar2 && !cl_target_option_eq (tar1, tar2))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "target flags difference");
	  cl_target_option_print_diff (dump_file, 2, tar1, tar2);
	}

      return return_false_with_msg ("Target flags are different");
    }

  cl_optimization *opt1 = opts_for_fn (decl);
  cl_optimization *opt2 = opts_for_fn (item->decl);

  if (opt1 != opt2 && memcmp (opt1, opt2, sizeof(cl_optimization)))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "optimization flags difference");
	  cl_optimization_print_diff (dump_file, 2, opt1, opt2);
	}

      return return_false_with_msg ("optimization flags are different");
    }

  /* Result type checking.  */
  if (!func_checker::compatible_types_p
	 (TREE_TYPE (TREE_TYPE (decl)),
	  TREE_TYPE (TREE_TYPE (m_compared_func->decl))))
    return return_false_with_msg ("result types are different");

  /* Checking types of arguments.  */
  tree list1 = TYPE_ARG_TYPES (TREE_TYPE (decl)),
       list2 = TYPE_ARG_TYPES (TREE_TYPE (m_compared_func->decl));
  for (unsigned i = 0; list1 && list2;
       list1 = TREE_CHAIN (list1), list2 = TREE_CHAIN (list2), i++)
    {
      tree parm1 = TREE_VALUE (list1);
      tree parm2 = TREE_VALUE (list2);

      /* This guard is here for function pointer with attributes (pr59927.c).  */
      if (!parm1 || !parm2)
	return return_false_with_msg ("NULL argument type");

      /* Verify that types are compatible to ensure that both functions
	 have same calling conventions.  */
      if (!types_compatible_p (parm1, parm2))
	return return_false_with_msg ("parameter types are not compatible");

      if (!param_used_p (i))
	continue;

      /* Perform additional checks for used parameters.  */
      if (!compatible_parm_types_p (parm1, parm2))
	return false;
    }

  if (list1 || list2)
    return return_false_with_msg ("Mismatched number of parameters");

  if (node->num_references () != item->node->num_references ())
    return return_false_with_msg ("different number of references");

  /* Checking function attributes.
     This is quadratic in number of attributes  */
  if (comp_type_attributes (TREE_TYPE (decl),
			    TREE_TYPE (item->decl)) != 1)
    return return_false_with_msg ("different type attributes");
  if (!compare_attributes (DECL_ATTRIBUTES (decl),
			   DECL_ATTRIBUTES (item->decl)))
    return return_false_with_msg ("different decl attributes");

  /* The type of THIS pointer type memory location for
     ipa-polymorphic-call-analysis.  */
  if (opt_for_fn (decl, flag_devirtualize)
      && (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
          || TREE_CODE (TREE_TYPE (item->decl)) == METHOD_TYPE)
      && param_used_p (0)
      && compare_polymorphic_p ())
    {
      if (TREE_CODE (TREE_TYPE (decl)) != TREE_CODE (TREE_TYPE (item->decl)))
	return return_false_with_msg ("METHOD_TYPE and FUNCTION_TYPE mismatch");
      if (!func_checker::compatible_polymorphic_types_p
	   (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
	    TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
	return return_false_with_msg ("THIS pointer ODR type mismatch");
    }

  ipa_ref *ref = NULL, *ref2 = NULL;
  for (unsigned i = 0; node->iterate_reference (i, ref); i++)
    {
      item->node->iterate_reference (i, ref2);

      if (ref->use != ref2->use)
	return return_false_with_msg ("reference use mismatch");

      if (!compare_symbol_references (ignored_nodes, ref->referred,
				      ref2->referred,
				      ref->address_matters_p ()))
	return false;
    }

  cgraph_edge *e1 = dyn_cast <cgraph_node *> (node)->callees;
  cgraph_edge *e2 = dyn_cast <cgraph_node *> (item->node)->callees;

  while (e1 && e2)
    {
      if (!compare_symbol_references (ignored_nodes, e1->callee,
				      e2->callee, false))
	return false;
      if (!compare_edge_flags (e1, e2))
	return false;

      e1 = e1->next_callee;
      e2 = e2->next_callee;
    }

  if (e1 || e2)
    return return_false_with_msg ("different number of calls");

  e1 = dyn_cast <cgraph_node *> (node)->indirect_calls;
  e2 = dyn_cast <cgraph_node *> (item->node)->indirect_calls;

  while (e1 && e2)
    {
      if (!compare_edge_flags (e1, e2))
	return false;

      e1 = e1->next_callee;
      e2 = e2->next_callee;
    }

  if (e1 || e2)
    return return_false_with_msg ("different number of indirect calls");

  return true;
}

/* Update hash by address sensitive references. We iterate over all
   sensitive references (address_matters_p) and we hash ultime alias
   target of these nodes, which can improve a semantic item hash.

   Also hash in referenced symbols properties.  This can be done at any time
   (as the properties should not change), but it is convenient to do it here
   while we walk the references anyway.  */

void
sem_item::update_hash_by_addr_refs (hash_map <symtab_node *,
				    sem_item *> &m_symtab_node_map)
{
  ipa_ref* ref;
  inchash::hash hstate (get_hash ());

  for (unsigned i = 0; node->iterate_reference (i, ref); i++)
    {
      hstate.add_int (ref->use);
      hash_referenced_symbol_properties (ref->referred, hstate,
					 ref->use == IPA_REF_ADDR);
      if (ref->address_matters_p () || !m_symtab_node_map.get (ref->referred))
	hstate.add_int (ref->referred->ultimate_alias_target ()->order);
    }

  if (is_a <cgraph_node *> (node))
    {
      for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callers; e;
	   e = e->next_caller)
	{
	  sem_item **result = m_symtab_node_map.get (e->callee);
	  hash_referenced_symbol_properties (e->callee, hstate, false);
	  if (!result)
	    hstate.add_int (e->callee->ultimate_alias_target ()->order);
	}
    }

  set_hash (hstate.end ());
}

/* Update hash by computed local hash values taken from different
   semantic items.
   TODO: stronger SCC based hashing would be desirable here.  */

void
sem_item::update_hash_by_local_refs (hash_map <symtab_node *,
				     sem_item *> &m_symtab_node_map)
{
  ipa_ref* ref;
  inchash::hash state (get_hash ());

  for (unsigned j = 0; node->iterate_reference (j, ref); j++)
    {
      sem_item **result = m_symtab_node_map.get (ref->referring);
      if (result)
	state.merge_hash ((*result)->get_hash ());
    }

  if (type == FUNC)
    {
      for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callees; e;
	   e = e->next_callee)
	{
	  sem_item **result = m_symtab_node_map.get (e->caller);
	  if (result)
	    state.merge_hash ((*result)->get_hash ());
	}
    }

  global_hash = state.end ();
}

/* Returns true if the item equals to ITEM given as argument.  */

bool
sem_function::equals (sem_item *item,
		      hash_map <symtab_node *, sem_item *> &)
{
  gcc_assert (item->type == FUNC);
  bool eq = equals_private (item);

  if (m_checker != NULL)
    {
      delete m_checker;
      m_checker = NULL;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "Equals called for:%s:%s (%u:%u) (%s:%s) with result: %s\n\n",
	     xstrdup_for_dump (node->name()),
	     xstrdup_for_dump (item->node->name ()),
	     node->order,
	     item->node->order,
	     xstrdup_for_dump (node->asm_name ()),
	     xstrdup_for_dump (item->node->asm_name ()),
	     eq ? "true" : "false");

  return eq;
}

/* Processes function equality comparison.  */

bool
sem_function::equals_private (sem_item *item)
{
  if (item->type != FUNC)
    return false;

  basic_block bb1, bb2;
  edge e1, e2;
  edge_iterator ei1, ei2;
  bool result = true;
  tree arg1, arg2;

  m_compared_func = static_cast<sem_function *> (item);

  gcc_assert (decl != item->decl);

  if (bb_sorted.length () != m_compared_func->bb_sorted.length ()
      || edge_count != m_compared_func->edge_count
      || cfg_checksum != m_compared_func->cfg_checksum)
    return return_false ();

  m_checker = new func_checker (decl, m_compared_func->decl,
				compare_polymorphic_p (),
				false,
				&refs_set,
				&m_compared_func->refs_set);
  arg1 = DECL_ARGUMENTS (decl);
  arg2 = DECL_ARGUMENTS (m_compared_func->decl);
  for (unsigned i = 0;
       arg1 && arg2; arg1 = DECL_CHAIN (arg1), arg2 = DECL_CHAIN (arg2), i++)
    {
      if (!types_compatible_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
	return return_false_with_msg ("argument types are not compatible");
      if (!param_used_p (i))
	continue;
      /* Perform additional checks for used parameters.  */
      if (!compatible_parm_types_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
	return false;
      if (!m_checker->compare_decl (arg1, arg2))
        return return_false ();
    }
  if (arg1 || arg2)
    return return_false_with_msg ("Mismatched number of arguments");

  if (!dyn_cast <cgraph_node *> (node)->has_gimple_body_p ())
    return true;

  /* Fill-up label dictionary.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    {
      m_checker->parse_labels (bb_sorted[i]);
      m_checker->parse_labels (m_compared_func->bb_sorted[i]);
    }

  /* Checking all basic blocks.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    if(!m_checker->compare_bb (bb_sorted[i], m_compared_func->bb_sorted[i]))
      return return_false();

  dump_message ("All BBs are equal\n");

  auto_vec <int> bb_dict;

  /* Basic block edges check.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    {
      bb1 = bb_sorted[i]->bb;
      bb2 = m_compared_func->bb_sorted[i]->bb;

      ei2 = ei_start (bb2->preds);

      for (ei1 = ei_start (bb1->preds); ei_cond (ei1, &e1); ei_next (&ei1))
	{
	  ei_cond (ei2, &e2);

	  if (e1->flags != e2->flags)
	    return return_false_with_msg ("flags comparison returns false");

	  if (!bb_dict_test (&bb_dict, e1->src->index, e2->src->index))
	    return return_false_with_msg ("edge comparison returns false");

	  if (!bb_dict_test (&bb_dict, e1->dest->index, e2->dest->index))
	    return return_false_with_msg ("BB comparison returns false");

	  if (!m_checker->compare_edge (e1, e2))
	    return return_false_with_msg ("edge comparison returns false");

	  ei_next (&ei2);
	}
    }

  /* Basic block PHI nodes comparison.  */
  for (unsigned i = 0; i < bb_sorted.length (); i++)
    if (!compare_phi_node (bb_sorted[i]->bb, m_compared_func->bb_sorted[i]->bb))
      return return_false_with_msg ("PHI node comparison returns false");

  return result;
}

/* Set LOCAL_P of NODE to true if DATA is non-NULL.
   Helper for call_for_symbol_thunks_and_aliases.  */

static bool
set_local (cgraph_node *node, void *data)
{
  node->local.local = data != NULL;
  return false;
}

/* TREE_ADDRESSABLE of NODE to true.
   Helper for call_for_symbol_thunks_and_aliases.  */

static bool
set_addressable (varpool_node *node, void *)
{
  TREE_ADDRESSABLE (node->decl) = 1;
  return false;
}

/* Clear DECL_RTL of NODE. 
   Helper for call_for_symbol_thunks_and_aliases.  */

static bool
clear_decl_rtl (symtab_node *node, void *)
{
  SET_DECL_RTL (node->decl, NULL);
  return false;
}

/* Redirect all callers of N and its aliases to TO.  Remove aliases if
   possible.  Return number of redirections made.  */

static int
redirect_all_callers (cgraph_node *n, cgraph_node *to)
{
  int nredirected = 0;
  ipa_ref *ref;
  cgraph_edge *e = n->callers;

  while (e)
    {
      /* Redirecting thunks to interposable symbols or symbols in other sections
	 may not be supported by target output code.  Play safe for now and
	 punt on redirection.  */
      if (!e->caller->thunk.thunk_p)
	{
	  struct cgraph_edge *nexte = e->next_caller;
          e->redirect_callee (to);
	  e = nexte;
          nredirected++;
	}
      else
	e = e->next_callee;
    }
  for (unsigned i = 0; n->iterate_direct_aliases (i, ref);)
    {
      bool removed = false;
      cgraph_node *n_alias = dyn_cast <cgraph_node *> (ref->referring);

      if ((DECL_COMDAT_GROUP (n->decl)
	   && (DECL_COMDAT_GROUP (n->decl)
	       == DECL_COMDAT_GROUP (n_alias->decl)))
	  || (n_alias->get_availability () > AVAIL_INTERPOSABLE
	      && n->get_availability () > AVAIL_INTERPOSABLE))
	{
	  nredirected += redirect_all_callers (n_alias, to);
	  if (n_alias->can_remove_if_no_direct_calls_p ()
	      && !n_alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
							NULL, true)
	      && !n_alias->has_aliases_p ())
	    n_alias->remove ();
	}
      if (!removed)
	i++;
    }
  return nredirected;
}

/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
   be applied.  */

bool
sem_function::merge (sem_item *alias_item)
{
  gcc_assert (alias_item->type == FUNC);

  sem_function *alias_func = static_cast<sem_function *> (alias_item);

  cgraph_node *original = get_node ();
  cgraph_node *local_original = NULL;
  cgraph_node *alias = alias_func->get_node ();

  bool create_wrapper = false;
  bool create_alias = false;
  bool redirect_callers = false;
  bool remove = false;

  bool original_discardable = false;
  bool original_discarded = false;

  bool original_address_matters = original->address_matters_p ();
  bool alias_address_matters = alias->address_matters_p ();

  if (DECL_EXTERNAL (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; alias is external.\n\n");
      return false;
    }

  if (DECL_NO_INLINE_WARNING_P (original->decl)
      != DECL_NO_INLINE_WARNING_P (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; "
		 "DECL_NO_INLINE_WARNING mismatch.\n\n");
      return false;
    }

  /* Do not attempt to mix functions from different user sections;
     we do not know what user intends with those.  */
  if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
       || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
      && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; "
		 "original and alias are in different sections.\n\n");
      return false;
    }

  /* See if original is in a section that can be discarded if the main
     symbol is not used.  */

  if (original->can_be_discarded_p ())
    original_discardable = true;
  /* Also consider case where we have resolution info and we know that
     original's definition is not going to be used.  In this case we can not
     create alias to original.  */
  if (node->resolution != LDPR_UNKNOWN
      && !decl_binds_to_current_def_p (node->decl))
    original_discardable = original_discarded = true;

  /* Creating a symtab alias is the optimal way to merge.
     It however can not be used in the following cases:

     1) if ORIGINAL and ALIAS may be possibly compared for address equality.
     2) if ORIGINAL is in a section that may be discarded by linker or if
	it is an external functions where we can not create an alias
	(ORIGINAL_DISCARDABLE)
     3) if target do not support symbol aliases.
     4) original and alias lie in different comdat groups.

     If we can not produce alias, we will turn ALIAS into WRAPPER of ORIGINAL
     and/or redirect all callers from ALIAS to ORIGINAL.  */
  if ((original_address_matters && alias_address_matters)
      || (original_discardable
	  && (!DECL_COMDAT_GROUP (alias->decl)
	      || (DECL_COMDAT_GROUP (alias->decl)
		  != DECL_COMDAT_GROUP (original->decl))))
      || original_discarded
      || !sem_item::target_supports_symbol_aliases_p ()
      || DECL_COMDAT_GROUP (alias->decl) != DECL_COMDAT_GROUP (original->decl))
    {
      /* First see if we can produce wrapper.  */

      /* Symbol properties that matter for references must be preserved.
	 TODO: We can produce wrapper, but we need to produce alias of ORIGINAL
	 with proper properties.  */
      if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
							   alias->address_taken))
        {
	  if (dump_file)
	    fprintf (dump_file,
		     "Wrapper cannot be created because referenced symbol "
		     "properties mismatch\n");
        }
      /* Do not turn function in one comdat group into wrapper to another
	 comdat group. Other compiler producing the body of the
	 another comdat group may make opossite decision and with unfortunate
	 linker choices this may close a loop.  */
      else if (DECL_COMDAT_GROUP (original->decl)
	       && DECL_COMDAT_GROUP (alias->decl)
	       && (DECL_COMDAT_GROUP (alias->decl)
		   != DECL_COMDAT_GROUP (original->decl)))
	{
	  if (dump_file)
	    fprintf (dump_file,
		     "Wrapper cannot be created because of COMDAT\n");
	}
      else if (DECL_STATIC_CHAIN (alias->decl))
        {
	  if (dump_file)
	    fprintf (dump_file,
		     "Can not create wrapper of nested functions.\n");
        }
      /* TODO: We can also deal with variadic functions never calling
	 VA_START.  */
      else if (stdarg_p (TREE_TYPE (alias->decl)))
	{
	  if (dump_file)
	    fprintf (dump_file,
		     "can not create wrapper of stdarg function.\n");
	}
      else if (inline_summaries
	       && inline_summaries->get (alias)->self_size <= 2)
	{
	  if (dump_file)
	    fprintf (dump_file, "Wrapper creation is not "
		     "profitable (function is too small).\n");
	}
      /* If user paid attention to mark function noinline, assume it is
	 somewhat special and do not try to turn it into a wrapper that can
	 not be undone by inliner.  */
      else if (lookup_attribute ("noinline", DECL_ATTRIBUTES (alias->decl)))
	{
	  if (dump_file)
	    fprintf (dump_file, "Wrappers are not created for noinline.\n");
	}
      else
        create_wrapper = true;

      /* We can redirect local calls in the case both alias and orignal
	 are not interposable.  */
      redirect_callers
	= alias->get_availability () > AVAIL_INTERPOSABLE
	  && original->get_availability () > AVAIL_INTERPOSABLE
	  && !alias->instrumented_version;
      /* TODO: We can redirect, but we need to produce alias of ORIGINAL
	 with proper properties.  */
      if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
							   alias->address_taken))
	redirect_callers = false;

      if (!redirect_callers && !create_wrapper)
	{
	  if (dump_file)
	    fprintf (dump_file, "Not unifying; can not redirect callers nor "
		     "produce wrapper\n\n");
	  return false;
	}

      /* Work out the symbol the wrapper should call.
	 If ORIGINAL is interposable, we need to call a local alias.
	 Also produce local alias (if possible) as an optimization.

	 Local aliases can not be created inside comdat groups because that
	 prevents inlining.  */
      if (!original_discardable && !original->get_comdat_group ())
	{
	  local_original
	    = dyn_cast <cgraph_node *> (original->noninterposable_alias ());
	  if (!local_original
	      && original->get_availability () > AVAIL_INTERPOSABLE)
	    local_original = original;
	}
      /* If we can not use local alias, fallback to the original
	 when possible.  */
      else if (original->get_availability () > AVAIL_INTERPOSABLE)
	local_original = original;

      /* If original is COMDAT local, we can not really redirect calls outside
	 of its comdat group to it.  */
      if (original->comdat_local_p ())
        redirect_callers = false;
      if (!local_original)
	{
	  if (dump_file)
	    fprintf (dump_file, "Not unifying; "
		     "can not produce local alias.\n\n");
	  return false;
	}

      if (!redirect_callers && !create_wrapper)
	{
	  if (dump_file)
	    fprintf (dump_file, "Not unifying; "
		     "can not redirect callers nor produce a wrapper\n\n");
	  return false;
	}
      if (!create_wrapper
	  && !alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
						  NULL, true)
	  && !alias->can_remove_if_no_direct_calls_p ())
	{
	  if (dump_file)
	    fprintf (dump_file, "Not unifying; can not make wrapper and "
		     "function has other uses than direct calls\n\n");
	  return false;
	}
    }
  else
    create_alias = true;

  if (redirect_callers)
    {
      int nredirected = redirect_all_callers (alias, local_original);

      if (nredirected)
	{
	  alias->icf_merged = true;
	  local_original->icf_merged = true;

	  if (dump_file && nredirected)
	    fprintf (dump_file, "%i local calls have been "
		     "redirected.\n", nredirected);
	}

      /* If all callers was redirected, do not produce wrapper.  */
      if (alias->can_remove_if_no_direct_calls_p ()
	  && !DECL_VIRTUAL_P (alias->decl)
	  && !alias->has_aliases_p ())
	{
	  create_wrapper = false;
	  remove = true;
	}
      gcc_assert (!create_alias);
    }
  else if (create_alias)
    {
      alias->icf_merged = true;

      /* Remove the function's body.  */
      ipa_merge_profiles (original, alias);
      alias->release_body (true);
      alias->reset ();
      /* Notice global symbol possibly produced RTL.  */
      ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
							   NULL, true);

      /* Create the alias.  */
      cgraph_node::create_alias (alias_func->decl, decl);
      alias->resolve_alias (original);

      original->call_for_symbol_thunks_and_aliases
	 (set_local, (void *)(size_t) original->local_p (), true);

      if (dump_file)
	fprintf (dump_file, "Unified; Function alias has been created.\n\n");
    }
  if (create_wrapper)
    {
      gcc_assert (!create_alias);
      alias->icf_merged = true;
      local_original->icf_merged = true;

      ipa_merge_profiles (local_original, alias, true);
      alias->create_wrapper (local_original);

      if (dump_file)
	fprintf (dump_file, "Unified; Wrapper has been created.\n\n");
    }

  /* It's possible that redirection can hit thunks that block
     redirection opportunities.  */
  gcc_assert (alias->icf_merged || remove || redirect_callers);
  original->icf_merged = true;

  /* We use merged flag to track cases where COMDAT function is known to be
     compatible its callers.  If we merged in non-COMDAT, we need to give up
     on this optimization.  */
  if (original->merged_comdat && !alias->merged_comdat)
    {
      if (dump_file)
	fprintf (dump_file, "Dropping merged_comdat flag.\n\n");
      if (local_original)
        local_original->merged_comdat = false;
      original->merged_comdat = false;
    }

  if (remove)
    {
      ipa_merge_profiles (original, alias);
      alias->release_body ();
      alias->reset ();
      alias->body_removed = true;
      alias->icf_merged = true;
      if (dump_file)
	fprintf (dump_file, "Unified; Function body was removed.\n");
    }

  return true;
}

/* Semantic item initialization function.  */

void
sem_function::init (void)
{
  if (in_lto_p)
    get_node ()->get_untransformed_body ();

  tree fndecl = node->decl;
  function *func = DECL_STRUCT_FUNCTION (fndecl);

  gcc_assert (func);
  gcc_assert (SSANAMES (func));

  ssa_names_size = SSANAMES (func)->length ();
  node = node;

  decl = fndecl;
  region_tree = func->eh->region_tree;

  /* iterating all function arguments.  */
  arg_count = count_formal_params (fndecl);

  edge_count = n_edges_for_fn (func);
  cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
  if (!cnode->thunk.thunk_p)
    {
      cfg_checksum = coverage_compute_cfg_checksum (func);

      inchash::hash hstate;

      basic_block bb;
      FOR_EACH_BB_FN (bb, func)
      {
	unsigned nondbg_stmt_count = 0;

	edge e;
	for (edge_iterator ei = ei_start (bb->preds); ei_cond (ei, &e);
	     ei_next (&ei))
	  cfg_checksum = iterative_hash_host_wide_int (e->flags,
			 cfg_checksum);

	for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
	     gsi_next (&gsi))
	  {
	    gimple *stmt = gsi_stmt (gsi);

	    if (gimple_code (stmt) != GIMPLE_DEBUG
		&& gimple_code (stmt) != GIMPLE_PREDICT)
	      {
		hash_stmt (stmt, hstate);
		nondbg_stmt_count++;
	      }
	  }

	gcode_hash = hstate.end ();
	bb_sizes.safe_push (nondbg_stmt_count);

	/* Inserting basic block to hash table.  */
	sem_bb *semantic_bb = new sem_bb (bb, nondbg_stmt_count,
					  EDGE_COUNT (bb->preds)
					  + EDGE_COUNT (bb->succs));

	bb_sorted.safe_push (semantic_bb);
      }
    }
  else
    {
      cfg_checksum = 0;
      inchash::hash hstate;
      hstate.add_wide_int (cnode->thunk.fixed_offset);
      hstate.add_wide_int (cnode->thunk.virtual_value);
      hstate.add_flag (cnode->thunk.this_adjusting);
      hstate.add_flag (cnode->thunk.virtual_offset_p);
      hstate.add_flag (cnode->thunk.add_pointer_bounds_args);
      gcode_hash = hstate.end ();
    }
}

/* Accumulate to HSTATE a hash of expression EXP.
   Identical to inchash::add_expr, but guaranteed to be stable across LTO
   and DECL equality classes.  */

void
sem_item::add_expr (const_tree exp, inchash::hash &hstate)
{
  if (exp == NULL_TREE)
    {
      hstate.merge_hash (0);
      return;
    }

  /* Handled component can be matched in a cureful way proving equivalence
     even if they syntactically differ.  Just skip them.  */
  STRIP_NOPS (exp);
  while (handled_component_p (exp))
    exp = TREE_OPERAND (exp, 0);

  enum tree_code code = TREE_CODE (exp);
  hstate.add_int (code);

  switch (code)
    {
    /* Use inchash::add_expr for everything that is LTO stable.  */
    case VOID_CST:
    case INTEGER_CST:
    case REAL_CST:
    case FIXED_CST:
    case STRING_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
      inchash::add_expr (exp, hstate);
      break;
    case CONSTRUCTOR:
      {
	unsigned HOST_WIDE_INT idx;
	tree value;

	hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));

	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
	  if (value)
	    add_expr (value, hstate);
	break;
      }
    case ADDR_EXPR:
    case FDESC_EXPR:
      add_expr (get_base_address (TREE_OPERAND (exp, 0)), hstate);
      break;
    case SSA_NAME:
    case VAR_DECL:
    case CONST_DECL:
    case PARM_DECL:
      hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));
      break;
    case MEM_REF:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
    case RANGE_EXPR:
      add_expr (TREE_OPERAND (exp, 0), hstate);
      add_expr (TREE_OPERAND (exp, 1), hstate);
      break;
    case PLUS_EXPR:
      {
	inchash::hash one, two;
	add_expr (TREE_OPERAND (exp, 0), one);
	add_expr (TREE_OPERAND (exp, 1), two);
	hstate.add_commutative (one, two);
      }
      break;
    CASE_CONVERT:
      hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));
      return add_expr (TREE_OPERAND (exp, 0), hstate);
    default:
      break;
    }
}

/* Accumulate to HSTATE a hash of type t.
   TYpes that may end up being compatible after LTO type merging needs to have
   the same hash.  */

void
sem_item::add_type (const_tree type, inchash::hash &hstate)
{
  if (type == NULL_TREE)
    {
      hstate.merge_hash (0);
      return;
    }

  type = TYPE_MAIN_VARIANT (type);

  hstate.add_int (TYPE_MODE (type));

  if (TREE_CODE (type) == COMPLEX_TYPE)
    {
      hstate.add_int (COMPLEX_TYPE);
      sem_item::add_type (TREE_TYPE (type), hstate);
    }
  else if (INTEGRAL_TYPE_P (type))
    {
      hstate.add_int (INTEGER_TYPE);
      hstate.add_flag (TYPE_UNSIGNED (type));
      hstate.add_int (TYPE_PRECISION (type));
    }
  else if (VECTOR_TYPE_P (type))
    {
      hstate.add_int (VECTOR_TYPE);
      hstate.add_int (TYPE_PRECISION (type));
      sem_item::add_type (TREE_TYPE (type), hstate);
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    {
      hstate.add_int (ARRAY_TYPE);
      /* Do not hash size, so complete and incomplete types can match.  */
      sem_item::add_type (TREE_TYPE (type), hstate);
    }
  else if (RECORD_OR_UNION_TYPE_P (type))
    {
      gcc_checking_assert (COMPLETE_TYPE_P (type));
      hashval_t *val = optimizer->m_type_hash_cache.get (type);

      if (!val)
	{
	  inchash::hash hstate2;
	  unsigned nf;
	  tree f;
	  hashval_t hash;

	  hstate2.add_int (RECORD_TYPE);
	  gcc_assert (COMPLETE_TYPE_P (type));

	  for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
	    if (TREE_CODE (f) == FIELD_DECL)
	      {
		add_type (TREE_TYPE (f), hstate2);
		nf++;
	      }

	  hstate2.add_int (nf);
	  hash = hstate2.end ();
	  hstate.add_wide_int (hash);
	  optimizer->m_type_hash_cache.put (type, hash);
	}
      else
        hstate.add_wide_int (*val);
    }
}

/* Improve accumulated hash for HSTATE based on a gimple statement STMT.  */

void
sem_function::hash_stmt (gimple *stmt, inchash::hash &hstate)
{
  enum gimple_code code = gimple_code (stmt);

  hstate.add_int (code);

  switch (code)
    {
    case GIMPLE_SWITCH:
      add_expr (gimple_switch_index (as_a <gswitch *> (stmt)), hstate);
      break;
    case GIMPLE_ASSIGN:
      hstate.add_int (gimple_assign_rhs_code (stmt));
      if (commutative_tree_code (gimple_assign_rhs_code (stmt))
	  || commutative_ternary_tree_code (gimple_assign_rhs_code (stmt)))
	{
	  inchash::hash one, two;

	  add_expr (gimple_assign_rhs1 (stmt), one);
	  add_type (TREE_TYPE (gimple_assign_rhs1 (stmt)), one);
	  add_expr (gimple_assign_rhs2 (stmt), two);
	  hstate.add_commutative (one, two);
	  if (commutative_ternary_tree_code (gimple_assign_rhs_code (stmt)))
	    {
	      add_expr (gimple_assign_rhs3 (stmt), hstate);
	      add_type (TREE_TYPE (gimple_assign_rhs3 (stmt)), hstate);
	    }
	  add_expr (gimple_assign_lhs (stmt), hstate);
	  add_type (TREE_TYPE (gimple_assign_lhs (stmt)), two);
	  break;
	}
      /* ... fall through ... */
    case GIMPLE_CALL:
    case GIMPLE_ASM:
    case GIMPLE_COND:
    case GIMPLE_GOTO:
    case GIMPLE_RETURN:
      /* All these statements are equivalent if their operands are.  */
      for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
	{
	  add_expr (gimple_op (stmt, i), hstate);
	  if (gimple_op (stmt, i))
	    add_type (TREE_TYPE (gimple_op (stmt, i)), hstate);
	}
    default:
      break;
    }
}


/* Return true if polymorphic comparison must be processed.  */

bool
sem_function::compare_polymorphic_p (void)
{
  struct cgraph_edge *e;

  if (!opt_for_fn (get_node ()->decl, flag_devirtualize))
    return false;
  if (get_node ()->indirect_calls != NULL)
    return true;
  /* TODO: We can do simple propagation determining what calls may lead to
     a polymorphic call.  */
  for (e = get_node ()->callees; e; e = e->next_callee)
    if (e->callee->definition
	&& opt_for_fn (e->callee->decl, flag_devirtualize))
      return true;
  return false;
}

/* For a given call graph NODE, the function constructs new
   semantic function item.  */

sem_function *
sem_function::parse (cgraph_node *node, bitmap_obstack *stack)
{
  tree fndecl = node->decl;
  function *func = DECL_STRUCT_FUNCTION (fndecl);

  if (!func || (!node->has_gimple_body_p () && !node->thunk.thunk_p))
    return NULL;

  if (lookup_attribute_by_prefix ("omp ", DECL_ATTRIBUTES (node->decl)) != NULL)
    return NULL;

  /* PR ipa/70306.  */
  if (DECL_STATIC_CONSTRUCTOR (node->decl)
      || DECL_STATIC_DESTRUCTOR (node->decl))
    return NULL;

  sem_function *f = new sem_function (node, 0, stack);

  f->init ();

  return f;
}

/* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
   return true if phi nodes are semantically equivalent in these blocks .  */

bool
sem_function::compare_phi_node (basic_block bb1, basic_block bb2)
{
  gphi_iterator si1, si2;
  gphi *phi1, *phi2;
  unsigned size1, size2, i;
  tree t1, t2;
  edge e1, e2;

  gcc_assert (bb1 != NULL);
  gcc_assert (bb2 != NULL);

  si2 = gsi_start_phis (bb2);
  for (si1 = gsi_start_phis (bb1); !gsi_end_p (si1);
       gsi_next (&si1))
    {
      gsi_next_nonvirtual_phi (&si1);
      gsi_next_nonvirtual_phi (&si2);

      if (gsi_end_p (si1) && gsi_end_p (si2))
	break;

      if (gsi_end_p (si1) || gsi_end_p (si2))
	return return_false();

      phi1 = si1.phi ();
      phi2 = si2.phi ();

      tree phi_result1 = gimple_phi_result (phi1);
      tree phi_result2 = gimple_phi_result (phi2);

      if (!m_checker->compare_operand (phi_result1, phi_result2))
	return return_false_with_msg ("PHI results are different");

      size1 = gimple_phi_num_args (phi1);
      size2 = gimple_phi_num_args (phi2);

      if (size1 != size2)
	return return_false ();

      for (i = 0; i < size1; ++i)
	{
	  t1 = gimple_phi_arg (phi1, i)->def;
	  t2 = gimple_phi_arg (phi2, i)->def;

	  if (!m_checker->compare_operand (t1, t2))
	    return return_false ();

	  e1 = gimple_phi_arg_edge (phi1, i);
	  e2 = gimple_phi_arg_edge (phi2, i);

	  if (!m_checker->compare_edge (e1, e2))
	    return return_false ();
	}

      gsi_next (&si2);
    }

  return true;
}

/* Returns true if tree T can be compared as a handled component.  */

bool
sem_function::icf_handled_component_p (tree t)
{
  tree_code tc = TREE_CODE (t);

  return (handled_component_p (t)
	  || tc == ADDR_EXPR || tc == MEM_REF || tc == OBJ_TYPE_REF);
}

/* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
   corresponds to TARGET.  */

bool
sem_function::bb_dict_test (vec<int> *bb_dict, int source, int target)
{
  source++;
  target++;

  if (bb_dict->length () <= (unsigned)source)
    bb_dict->safe_grow_cleared (source + 1);

  if ((*bb_dict)[source] == 0)
    {
      (*bb_dict)[source] = target;
      return true;
    }
  else
    return (*bb_dict)[source] == target;
}


/* Semantic variable constructor that uses STACK as bitmap memory stack.  */

sem_variable::sem_variable (bitmap_obstack *stack): sem_item (VAR, stack)
{
}

/*  Constructor based on varpool node _NODE with computed hash _HASH.
    Bitmap STACK is used for memory allocation.  */

sem_variable::sem_variable (varpool_node *node, hashval_t _hash,
			    bitmap_obstack *stack): sem_item(VAR,
				  node, _hash, stack)
{
  gcc_checking_assert (node);
  gcc_checking_assert (get_node ());
}

/* Fast equality function based on knowledge known in WPA.  */

bool
sem_variable::equals_wpa (sem_item *item,
			  hash_map <symtab_node *, sem_item *> &ignored_nodes)
{
  gcc_assert (item->type == VAR);

  if (node->num_references () != item->node->num_references ())
    return return_false_with_msg ("different number of references");

  if (DECL_TLS_MODEL (decl) || DECL_TLS_MODEL (item->decl))
    return return_false_with_msg ("TLS model");

  /* DECL_ALIGN is safe to merge, because we will always chose the largest
     alignment out of all aliases.  */

  if (DECL_VIRTUAL_P (decl) != DECL_VIRTUAL_P (item->decl))
    return return_false_with_msg ("Virtual flag mismatch");

  if (DECL_SIZE (decl) != DECL_SIZE (item->decl)
      && ((!DECL_SIZE (decl) || !DECL_SIZE (item->decl))
	  || !operand_equal_p (DECL_SIZE (decl),
			       DECL_SIZE (item->decl), OEP_ONLY_CONST)))
    return return_false_with_msg ("size mismatch");

  /* Do not attempt to mix data from different user sections;
     we do not know what user intends with those.  */
  if (((DECL_SECTION_NAME (decl) && !node->implicit_section)
       || (DECL_SECTION_NAME (item->decl) && !item->node->implicit_section))
      && DECL_SECTION_NAME (decl) != DECL_SECTION_NAME (item->decl))
    return return_false_with_msg ("user section mismatch");

  if (DECL_IN_TEXT_SECTION (decl) != DECL_IN_TEXT_SECTION (item->decl))
    return return_false_with_msg ("text section");

  ipa_ref *ref = NULL, *ref2 = NULL;
  for (unsigned i = 0; node->iterate_reference (i, ref); i++)
    {
      item->node->iterate_reference (i, ref2);

      if (ref->use != ref2->use)
	return return_false_with_msg ("reference use mismatch");

      if (!compare_symbol_references (ignored_nodes,
				      ref->referred, ref2->referred,
				      ref->address_matters_p ()))
	return false;
    }

  return true;
}

/* Returns true if the item equals to ITEM given as argument.  */

bool
sem_variable::equals (sem_item *item,
		      hash_map <symtab_node *, sem_item *> &)
{
  gcc_assert (item->type == VAR);
  bool ret;

  if (DECL_INITIAL (decl) == error_mark_node && in_lto_p)
    dyn_cast <varpool_node *>(node)->get_constructor ();
  if (DECL_INITIAL (item->decl) == error_mark_node && in_lto_p)
    dyn_cast <varpool_node *>(item->node)->get_constructor ();

  /* As seen in PR ipa/65303 we have to compare variables types.  */
  if (!func_checker::compatible_types_p (TREE_TYPE (decl),
					 TREE_TYPE (item->decl)))
    return return_false_with_msg ("variables types are different");

  ret = sem_variable::equals (DECL_INITIAL (decl),
			      DECL_INITIAL (item->node->decl));
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "Equals called for vars:%s:%s (%u:%u) (%s:%s) with result: %s\n\n",
	     xstrdup_for_dump (node->name()),
	     xstrdup_for_dump (item->node->name ()),
	     node->order, item->node->order,
	     xstrdup_for_dump (node->asm_name ()),
	     xstrdup_for_dump (item->node->asm_name ()), ret ? "true" : "false");

  return ret;
}

/* Compares trees T1 and T2 for semantic equality.  */

bool
sem_variable::equals (tree t1, tree t2)
{
  if (!t1 || !t2)
    return return_with_debug (t1 == t2);
  if (t1 == t2)
    return true;
  tree_code tc1 = TREE_CODE (t1);
  tree_code tc2 = TREE_CODE (t2);

  if (tc1 != tc2)
    return return_false_with_msg ("TREE_CODE mismatch");

  switch (tc1)
    {
    case CONSTRUCTOR:
      {
	vec<constructor_elt, va_gc> *v1, *v2;
	unsigned HOST_WIDE_INT idx;

	enum tree_code typecode = TREE_CODE (TREE_TYPE (t1));
	if (typecode != TREE_CODE (TREE_TYPE (t2)))
	  return return_false_with_msg ("constructor type mismatch");

	if (typecode == ARRAY_TYPE)
	  {
	    HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1));
	    /* For arrays, check that the sizes all match.  */
	    if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
		|| size_1 == -1
		|| size_1 != int_size_in_bytes (TREE_TYPE (t2)))
	      return return_false_with_msg ("constructor array size mismatch");
	  }
	else if (!func_checker::compatible_types_p (TREE_TYPE (t1),
						    TREE_TYPE (t2)))
	  return return_false_with_msg ("constructor type incompatible");

	v1 = CONSTRUCTOR_ELTS (t1);
	v2 = CONSTRUCTOR_ELTS (t2);
	if (vec_safe_length (v1) != vec_safe_length (v2))
	  return return_false_with_msg ("constructor number of elts mismatch");

	for (idx = 0; idx < vec_safe_length (v1); ++idx)
	  {
	    constructor_elt *c1 = &(*v1)[idx];
	    constructor_elt *c2 = &(*v2)[idx];

	    /* Check that each value is the same...  */
	    if (!sem_variable::equals (c1->value, c2->value))
	      return false;
	    /* ... and that they apply to the same fields!  */
	    if (!sem_variable::equals (c1->index, c2->index))
	      return false;
	  }
	return true;
      }
    case MEM_REF:
      {
	tree x1 = TREE_OPERAND (t1, 0);
	tree x2 = TREE_OPERAND (t2, 0);
	tree y1 = TREE_OPERAND (t1, 1);
	tree y2 = TREE_OPERAND (t2, 1);

	if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2)))
	  return return_false ();

	/* Type of the offset on MEM_REF does not matter.  */
	return return_with_debug (sem_variable::equals (x1, x2)
			          && wi::to_offset  (y1)
				     == wi::to_offset  (y2));
      }
    case ADDR_EXPR:
    case FDESC_EXPR:
      {
	tree op1 = TREE_OPERAND (t1, 0);
	tree op2 = TREE_OPERAND (t2, 0);
	return sem_variable::equals (op1, op2);
      }
    /* References to other vars/decls are compared using ipa-ref.  */
    case FUNCTION_DECL:
    case VAR_DECL:
      if (decl_in_symtab_p (t1) && decl_in_symtab_p (t2))
	return true;
      return return_false_with_msg ("Declaration mismatch");
    case CONST_DECL:
      /* TODO: We can check CONST_DECL by its DECL_INITIAL, but for that we
	 need to process its VAR/FUNCTION references without relying on ipa-ref
	 compare.  */
    case FIELD_DECL:
    case LABEL_DECL:
      return return_false_with_msg ("Declaration mismatch");
    case INTEGER_CST:
      /* Integer constants are the same only if the same width of type.  */
      if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
        return return_false_with_msg ("INTEGER_CST precision mismatch");
      if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
        return return_false_with_msg ("INTEGER_CST mode mismatch");
      return return_with_debug (tree_int_cst_equal (t1, t2));
    case STRING_CST:
      if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
        return return_false_with_msg ("STRING_CST mode mismatch");
      if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
	return return_false_with_msg ("STRING_CST length mismatch");
      if (memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
		    TREE_STRING_LENGTH (t1)))
	return return_false_with_msg ("STRING_CST mismatch");
      return true;
    case FIXED_CST:
      /* Fixed constants are the same only if the same width of type.  */
      if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
        return return_false_with_msg ("FIXED_CST precision mismatch");

      return return_with_debug (FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
							TREE_FIXED_CST (t2)));
    case COMPLEX_CST:
      return (sem_variable::equals (TREE_REALPART (t1), TREE_REALPART (t2))
	      && sem_variable::equals (TREE_IMAGPART (t1), TREE_IMAGPART (t2)));
    case REAL_CST:
      /* Real constants are the same only if the same width of type.  */
      if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
        return return_false_with_msg ("REAL_CST precision mismatch");
      return return_with_debug (real_identical (&TREE_REAL_CST (t1),
						&TREE_REAL_CST (t2)));
    case VECTOR_CST:
      {
	unsigned i;

        if (VECTOR_CST_NELTS (t1) != VECTOR_CST_NELTS (t2))
          return return_false_with_msg ("VECTOR_CST nelts mismatch");

	for (i = 0; i < VECTOR_CST_NELTS (t1); ++i)
	  if (!sem_variable::equals (VECTOR_CST_ELT (t1, i),
				     VECTOR_CST_ELT (t2, i)))
	    return 0;

	return 1;
      }
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      {
	tree x1 = TREE_OPERAND (t1, 0);
	tree x2 = TREE_OPERAND (t2, 0);
	tree y1 = TREE_OPERAND (t1, 1);
	tree y2 = TREE_OPERAND (t2, 1);

	if (!sem_variable::equals (x1, x2) || !sem_variable::equals (y1, y2))
	  return false;
	if (!sem_variable::equals (array_ref_low_bound (t1),
				   array_ref_low_bound (t2)))
	  return false;
        if (!sem_variable::equals (array_ref_element_size (t1),
			           array_ref_element_size (t2)))
	  return false;
	return true;
      }
     
    case COMPONENT_REF:
    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case RANGE_EXPR:
      {
	tree x1 = TREE_OPERAND (t1, 0);
	tree x2 = TREE_OPERAND (t2, 0);
	tree y1 = TREE_OPERAND (t1, 1);
	tree y2 = TREE_OPERAND (t2, 1);

	return sem_variable::equals (x1, x2) && sem_variable::equals (y1, y2);
      }

    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
      if (!func_checker::compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2)))
	  return return_false ();
      return sem_variable::equals (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
    case ERROR_MARK:
      return return_false_with_msg ("ERROR_MARK");
    default:
      return return_false_with_msg ("Unknown TREE code reached");
    }
}

/* Parser function that visits a varpool NODE.  */

sem_variable *
sem_variable::parse (varpool_node *node, bitmap_obstack *stack)
{
  if (TREE_THIS_VOLATILE (node->decl) || DECL_HARD_REGISTER (node->decl)
      || node->alias)
    return NULL;

  sem_variable *v = new sem_variable (node, 0, stack);

  v->init ();

  return v;
}

/* References independent hash function.  */

hashval_t
sem_variable::get_hash (void)
{
  if (m_hash)
    return m_hash;

  /* All WPA streamed in symbols should have their hashes computed at compile
     time.  At this point, the constructor may not be in memory at all.
     DECL_INITIAL (decl) would be error_mark_node in that case.  */
  gcc_assert (!node->lto_file_data);
  tree ctor = DECL_INITIAL (decl);
  inchash::hash hstate;

  hstate.add_int (456346417);
  if (DECL_SIZE (decl) && tree_fits_shwi_p (DECL_SIZE (decl)))
    hstate.add_wide_int (tree_to_shwi (DECL_SIZE (decl)));
  add_expr (ctor, hstate);
  set_hash (hstate.end ());

  return m_hash;
}

/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
   be applied.  */

bool
sem_variable::merge (sem_item *alias_item)
{
  gcc_assert (alias_item->type == VAR);

  if (!sem_item::target_supports_symbol_aliases_p ())
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; "
		 "Symbol aliases are not supported by target\n\n");
      return false;
    }

  if (DECL_EXTERNAL (alias_item->decl))
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; alias is external.\n\n");
      return false;
    }

  sem_variable *alias_var = static_cast<sem_variable *> (alias_item);

  varpool_node *original = get_node ();
  varpool_node *alias = alias_var->get_node ();
  bool original_discardable = false;

  bool original_address_matters = original->address_matters_p ();
  bool alias_address_matters = alias->address_matters_p ();

  /* See if original is in a section that can be discarded if the main
     symbol is not used.
     Also consider case where we have resolution info and we know that
     original's definition is not going to be used.  In this case we can not
     create alias to original.  */
  if (original->can_be_discarded_p ()
      || (node->resolution != LDPR_UNKNOWN
	  && !decl_binds_to_current_def_p (node->decl)))
    original_discardable = true;

  gcc_assert (!TREE_ASM_WRITTEN (alias->decl));

  /* Constant pool machinery is not quite ready for aliases.
     TODO: varasm code contains logic for merging DECL_IN_CONSTANT_POOL.
     For LTO merging does not happen that is an important missing feature.
     We can enable merging with LTO if the DECL_IN_CONSTANT_POOL
     flag is dropped and non-local symbol name is assigned.  */
  if (DECL_IN_CONSTANT_POOL (alias->decl)
      || DECL_IN_CONSTANT_POOL (original->decl))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; constant pool variables.\n\n");
      return false;
    }

  /* Do not attempt to mix functions from different user sections;
     we do not know what user intends with those.  */
  if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
       || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
      && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; "
		 "original and alias are in different sections.\n\n");
      return false;
    }

  /* We can not merge if address comparsion metters.  */
  if (original_address_matters && alias_address_matters
      && flag_merge_constants < 2)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; "
		 "adress of original and alias may be compared.\n\n");
      return false;
    }

  if (DECL_ALIGN (original->decl) < DECL_ALIGN (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; "
		 "original and alias have incompatible alignments\n\n");

      return false;
    }

  if (DECL_COMDAT_GROUP (original->decl) != DECL_COMDAT_GROUP (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; alias cannot be created; "
		 "across comdat group boundary\n\n");

      return false;
    }

  if (original_discardable)
    {
      if (dump_file)
	fprintf (dump_file, "Not unifying; alias cannot be created; "
		 "target is discardable\n\n");

      return false;
    }
  else
    {
      gcc_assert (!original->alias);
      gcc_assert (!alias->alias);

      alias->analyzed = false;

      DECL_INITIAL (alias->decl) = NULL;
      ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
							   NULL, true);
      alias->need_bounds_init = false;
      alias->remove_all_references ();
      if (TREE_ADDRESSABLE (alias->decl))
        original->call_for_symbol_and_aliases (set_addressable, NULL, true);

      varpool_node::create_alias (alias_var->decl, decl);
      alias->resolve_alias (original);

      if (dump_file)
	fprintf (dump_file, "Unified; Variable alias has been created.\n\n");

      return true;
    }
}

/* Dump symbol to FILE.  */

void
sem_variable::dump_to_file (FILE *file)
{
  gcc_assert (file);

  print_node (file, "", decl, 0);
  fprintf (file, "\n\n");
}

unsigned int sem_item_optimizer::class_id = 0;

sem_item_optimizer::sem_item_optimizer (): worklist (0), m_classes (0),
  m_classes_count (0), m_cgraph_node_hooks (NULL), m_varpool_node_hooks (NULL)
{
  m_items.create (0);
  bitmap_obstack_initialize (&m_bmstack);
}

sem_item_optimizer::~sem_item_optimizer ()
{
  for (unsigned int i = 0; i < m_items.length (); i++)
    delete m_items[i];

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      for (unsigned int i = 0; i < (*it)->classes.length (); i++)
	delete (*it)->classes[i];

      (*it)->classes.release ();
      free (*it);
    }

  m_items.release ();

  bitmap_obstack_release (&m_bmstack);
}

/* Write IPA ICF summary for symbols.  */

void
sem_item_optimizer::write_summary (void)
{
  unsigned int count = 0;

  output_block *ob = create_output_block (LTO_section_ipa_icf);
  lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
  ob->symbol = NULL;

  /* Calculate number of symbols to be serialized.  */
  for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
       !lsei_end_p (lsei);
       lsei_next_in_partition (&lsei))
    {
      symtab_node *node = lsei_node (lsei);

      if (m_symtab_node_map.get (node))
	count++;
    }

  streamer_write_uhwi (ob, count);

  /* Process all of the symbols.  */
  for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
       !lsei_end_p (lsei);
       lsei_next_in_partition (&lsei))
    {
      symtab_node *node = lsei_node (lsei);

      sem_item **item = m_symtab_node_map.get (node);

      if (item && *item)
	{
	  int node_ref = lto_symtab_encoder_encode (encoder, node);
	  streamer_write_uhwi_stream (ob->main_stream, node_ref);

	  streamer_write_uhwi (ob, (*item)->get_hash ());
	}
    }

  streamer_write_char_stream (ob->main_stream, 0);
  produce_asm (ob, NULL);
  destroy_output_block (ob);
}

/* Reads a section from LTO stream file FILE_DATA. Input block for DATA
   contains LEN bytes.  */

void
sem_item_optimizer::read_section (lto_file_decl_data *file_data,
				  const char *data, size_t len)
{
  const lto_function_header *header =
    (const lto_function_header *) data;
  const int cfg_offset = sizeof (lto_function_header);
  const int main_offset = cfg_offset + header->cfg_size;
  const int string_offset = main_offset + header->main_size;
  data_in *data_in;
  unsigned int i;
  unsigned int count;

  lto_input_block ib_main ((const char *) data + main_offset, 0,
			   header->main_size, file_data->mode_table);

  data_in =
    lto_data_in_create (file_data, (const char *) data + string_offset,
			header->string_size, vNULL);

  count = streamer_read_uhwi (&ib_main);

  for (i = 0; i < count; i++)
    {
      unsigned int index;
      symtab_node *node;
      lto_symtab_encoder_t encoder;

      index = streamer_read_uhwi (&ib_main);
      encoder = file_data->symtab_node_encoder;
      node = lto_symtab_encoder_deref (encoder, index);

      hashval_t hash = streamer_read_uhwi (&ib_main);

      gcc_assert (node->definition);

      if (dump_file)
	fprintf (dump_file, "Symbol added:%s (tree: %p, uid:%u)\n",
		 node->asm_name (), (void *) node->decl, node->order);

      if (is_a<cgraph_node *> (node))
	{
	  cgraph_node *cnode = dyn_cast <cgraph_node *> (node);

	  m_items.safe_push (new sem_function (cnode, hash, &m_bmstack));
	}
      else
	{
	  varpool_node *vnode = dyn_cast <varpool_node *> (node);

	  m_items.safe_push (new sem_variable (vnode, hash, &m_bmstack));
	}
    }

  lto_free_section_data (file_data, LTO_section_ipa_icf, NULL, data,
			 len);
  lto_data_in_delete (data_in);
}

/* Read IPA ICF summary for symbols.  */

void
sem_item_optimizer::read_summary (void)
{
  lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
  lto_file_decl_data *file_data;
  unsigned int j = 0;

  while ((file_data = file_data_vec[j++]))
    {
      size_t len;
      const char *data = lto_get_section_data (file_data,
			 LTO_section_ipa_icf, NULL, &len);

      if (data)
	read_section (file_data, data, len);
    }
}

/* Register callgraph and varpool hooks.  */

void
sem_item_optimizer::register_hooks (void)
{
  if (!m_cgraph_node_hooks)
    m_cgraph_node_hooks = symtab->add_cgraph_removal_hook
			  (&sem_item_optimizer::cgraph_removal_hook, this);

  if (!m_varpool_node_hooks)
    m_varpool_node_hooks = symtab->add_varpool_removal_hook
			   (&sem_item_optimizer::varpool_removal_hook, this);
}

/* Unregister callgraph and varpool hooks.  */

void
sem_item_optimizer::unregister_hooks (void)
{
  if (m_cgraph_node_hooks)
    symtab->remove_cgraph_removal_hook (m_cgraph_node_hooks);

  if (m_varpool_node_hooks)
    symtab->remove_varpool_removal_hook (m_varpool_node_hooks);
}

/* Adds a CLS to hashtable associated by hash value.  */

void
sem_item_optimizer::add_class (congruence_class *cls)
{
  gcc_assert (cls->members.length ());

  congruence_class_group *group = get_group_by_hash (
				    cls->members[0]->get_hash (),
				    cls->members[0]->type);
  group->classes.safe_push (cls);
}

/* Gets a congruence class group based on given HASH value and TYPE.  */

congruence_class_group *
sem_item_optimizer::get_group_by_hash (hashval_t hash, sem_item_type type)
{
  congruence_class_group *item = XNEW (congruence_class_group);
  item->hash = hash;
  item->type = type;

  congruence_class_group **slot = m_classes.find_slot (item, INSERT);

  if (*slot)
    free (item);
  else
    {
      item->classes.create (1);
      *slot = item;
    }

  return *slot;
}

/* Callgraph removal hook called for a NODE with a custom DATA.  */

void
sem_item_optimizer::cgraph_removal_hook (cgraph_node *node, void *data)
{
  sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
  optimizer->remove_symtab_node (node);
}

/* Varpool removal hook called for a NODE with a custom DATA.  */

void
sem_item_optimizer::varpool_removal_hook (varpool_node *node, void *data)
{
  sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
  optimizer->remove_symtab_node (node);
}

/* Remove symtab NODE triggered by symtab removal hooks.  */

void
sem_item_optimizer::remove_symtab_node (symtab_node *node)
{
  gcc_assert (!m_classes.elements());

  m_removed_items_set.add (node);
}

void
sem_item_optimizer::remove_item (sem_item *item)
{
  if (m_symtab_node_map.get (item->node))
    m_symtab_node_map.remove (item->node);
  delete item;
}

/* Removes all callgraph and varpool nodes that are marked by symtab
   as deleted.  */

void
sem_item_optimizer::filter_removed_items (void)
{
  auto_vec <sem_item *> filtered;

  for (unsigned int i = 0; i < m_items.length(); i++)
    {
      sem_item *item = m_items[i];

      if (m_removed_items_set.contains (item->node))
        {
	  remove_item (item);
	  continue;
        }

      if (item->type == FUNC)
        {
	  cgraph_node *cnode = static_cast <sem_function *>(item)->get_node ();

	  if (in_lto_p && (cnode->alias || cnode->body_removed))
	    remove_item (item);
	  else
	    filtered.safe_push (item);
        }
      else /* VAR.  */
        {
	  if (!flag_ipa_icf_variables)
	    remove_item (item);
	  else
	    {
	      /* Filter out non-readonly variables.  */
	      tree decl = item->decl;
	      if (TREE_READONLY (decl))
		filtered.safe_push (item);
	      else
		remove_item (item);
	    }
        }
    }

  /* Clean-up of released semantic items.  */

  m_items.release ();
  for (unsigned int i = 0; i < filtered.length(); i++)
    m_items.safe_push (filtered[i]);
}

/* Optimizer entry point which returns true in case it processes
   a merge operation. True is returned if there's a merge operation
   processed.  */

bool
sem_item_optimizer::execute (void)
{
  filter_removed_items ();
  unregister_hooks ();

  build_graph ();
  update_hash_by_addr_refs ();
  build_hash_based_classes ();

  if (dump_file)
    fprintf (dump_file, "Dump after hash based groups\n");
  dump_cong_classes ();

  for (unsigned int i = 0; i < m_items.length(); i++)
    m_items[i]->init_wpa ();

  subdivide_classes_by_equality (true);

  if (dump_file)
    fprintf (dump_file, "Dump after WPA based types groups\n");

  dump_cong_classes ();

  process_cong_reduction ();
  checking_verify_classes ();

  if (dump_file)
    fprintf (dump_file, "Dump after callgraph-based congruence reduction\n");

  dump_cong_classes ();

  parse_nonsingleton_classes ();
  subdivide_classes_by_equality ();

  if (dump_file)
    fprintf (dump_file, "Dump after full equality comparison of groups\n");

  dump_cong_classes ();

  unsigned int prev_class_count = m_classes_count;

  process_cong_reduction ();
  dump_cong_classes ();
  checking_verify_classes ();
  bool merged_p = merge_classes (prev_class_count);

  if (dump_file && (dump_flags & TDF_DETAILS))
    symtab_node::dump_table (dump_file);

  return merged_p;
}

/* Function responsible for visiting all potential functions and
   read-only variables that can be merged.  */

void
sem_item_optimizer::parse_funcs_and_vars (void)
{
  cgraph_node *cnode;

  if (flag_ipa_icf_functions)
    FOR_EACH_DEFINED_FUNCTION (cnode)
    {
      sem_function *f = sem_function::parse (cnode, &m_bmstack);
      if (f)
	{
	  m_items.safe_push (f);
	  m_symtab_node_map.put (cnode, f);

	  if (dump_file)
	    fprintf (dump_file, "Parsed function:%s\n", f->node->asm_name ());

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    f->dump_to_file (dump_file);
	}
      else if (dump_file)
	fprintf (dump_file, "Not parsed function:%s\n", cnode->asm_name ());
    }

  varpool_node *vnode;

  if (flag_ipa_icf_variables)
    FOR_EACH_DEFINED_VARIABLE (vnode)
    {
      sem_variable *v = sem_variable::parse (vnode, &m_bmstack);

      if (v)
	{
	  m_items.safe_push (v);
	  m_symtab_node_map.put (vnode, v);
	}
    }
}

/* Makes pairing between a congruence class CLS and semantic ITEM.  */

void
sem_item_optimizer::add_item_to_class (congruence_class *cls, sem_item *item)
{
  item->index_in_class = cls->members.length ();
  cls->members.safe_push (item);
  item->cls = cls;
}

/* For each semantic item, append hash values of references.  */

void
sem_item_optimizer::update_hash_by_addr_refs ()
{
  /* First, append to hash sensitive references and class type if it need to
     be matched for ODR.  */
  for (unsigned i = 0; i < m_items.length (); i++)
    {
      m_items[i]->update_hash_by_addr_refs (m_symtab_node_map);
      if (m_items[i]->type == FUNC)
	{
	  if (TREE_CODE (TREE_TYPE (m_items[i]->decl)) == METHOD_TYPE
	      && contains_polymorphic_type_p
		   (TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl)))
	      && (DECL_CXX_CONSTRUCTOR_P (m_items[i]->decl)
		  || (static_cast<sem_function *> (m_items[i])->param_used_p (0)
		      && static_cast<sem_function *> (m_items[i])
			   ->compare_polymorphic_p ())))
	     {
	        tree class_type
		  = TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl));
		inchash::hash hstate (m_items[i]->get_hash ());

		if (TYPE_NAME (class_type)
		     && DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (class_type)))
		  hstate.add_wide_int
		    (IDENTIFIER_HASH_VALUE
		       (DECL_ASSEMBLER_NAME (TYPE_NAME (class_type))));

		m_items[i]->set_hash (hstate.end ());
	     }
	}
    }

  /* Once all symbols have enhanced hash value, we can append
     hash values of symbols that are seen by IPA ICF and are
     references by a semantic item. Newly computed values
     are saved to global_hash member variable.  */
  for (unsigned i = 0; i < m_items.length (); i++)
    m_items[i]->update_hash_by_local_refs (m_symtab_node_map);

  /* Global hash value replace current hash values.  */
  for (unsigned i = 0; i < m_items.length (); i++)
    m_items[i]->set_hash (m_items[i]->global_hash);
}

/* Congruence classes are built by hash value.  */

void
sem_item_optimizer::build_hash_based_classes (void)
{
  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];

      congruence_class_group *group = get_group_by_hash (item->get_hash (),
				      item->type);

      if (!group->classes.length ())
	{
	  m_classes_count++;
	  group->classes.safe_push (new congruence_class (class_id++));
	}

      add_item_to_class (group->classes[0], item);
    }
}

/* Build references according to call graph.  */

void
sem_item_optimizer::build_graph (void)
{
  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];
      m_symtab_node_map.put (item->node, item);

      /* Initialize hash values if we are not in LTO mode.  */
      if (!in_lto_p)
	item->get_hash ();
    }

  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];

      if (item->type == FUNC)
	{
	  cgraph_node *cnode = dyn_cast <cgraph_node *> (item->node);

	  cgraph_edge *e = cnode->callees;
	  while (e)
	    {
	      sem_item **slot = m_symtab_node_map.get
		(e->callee->ultimate_alias_target ());
	      if (slot)
		item->add_reference (*slot);

	      e = e->next_callee;
	    }
	}

      ipa_ref *ref = NULL;
      for (unsigned i = 0; item->node->iterate_reference (i, ref); i++)
	{
	  sem_item **slot = m_symtab_node_map.get
	    (ref->referred->ultimate_alias_target ());
	  if (slot)
	    item->add_reference (*slot);
	}
    }
}

/* Semantic items in classes having more than one element and initialized.
   In case of WPA, we load function body.  */

void
sem_item_optimizer::parse_nonsingleton_classes (void)
{
  unsigned int init_called_count = 0;

  for (unsigned i = 0; i < m_items.length (); i++)
    if (m_items[i]->cls->members.length () > 1)
      {
	m_items[i]->init ();
	init_called_count++;
      }

  if (dump_file)
    fprintf (dump_file, "Init called for %u items (%.2f%%).\n", init_called_count,
	     m_items.length () ? 100.0f * init_called_count / m_items.length (): 0.0f);
}

/* Equality function for semantic items is used to subdivide existing
   classes. If IN_WPA, fast equality function is invoked.  */

void
sem_item_optimizer::subdivide_classes_by_equality (bool in_wpa)
{
  for (hash_table <congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      unsigned int class_count = (*it)->classes.length ();

      for (unsigned i = 0; i < class_count; i++)
	{
	  congruence_class *c = (*it)->classes [i];

	  if (c->members.length() > 1)
	    {
	      auto_vec <sem_item *> new_vector;

	      sem_item *first = c->members[0];
	      new_vector.safe_push (first);

	      unsigned class_split_first = (*it)->classes.length ();

	      for (unsigned j = 1; j < c->members.length (); j++)
		{
		  sem_item *item = c->members[j];

		  bool equals = in_wpa ? first->equals_wpa (item,
				m_symtab_node_map) : first->equals (item, m_symtab_node_map);

		  if (equals)
		    new_vector.safe_push (item);
		  else
		    {
		      bool integrated = false;

		      for (unsigned k = class_split_first; k < (*it)->classes.length (); k++)
			{
			  sem_item *x = (*it)->classes[k]->members[0];
			  bool equals = in_wpa ? x->equals_wpa (item,
								m_symtab_node_map) : x->equals (item, m_symtab_node_map);

			  if (equals)
			    {
			      integrated = true;
			      add_item_to_class ((*it)->classes[k], item);

			      break;
			    }
			}

		      if (!integrated)
			{
			  congruence_class *c = new congruence_class (class_id++);
			  m_classes_count++;
			  add_item_to_class (c, item);

			  (*it)->classes.safe_push (c);
			}
		    }
		}

	      // we replace newly created new_vector for the class we've just splitted
	      c->members.release ();
	      c->members.create (new_vector.length ());

	      for (unsigned int j = 0; j < new_vector.length (); j++)
		add_item_to_class (c, new_vector[j]);
	    }
	}
    }

  checking_verify_classes ();
}

/* Subdivide classes by address references that members of the class
   reference. Example can be a pair of functions that have an address
   taken from a function. If these addresses are different the class
   is split.  */

unsigned
sem_item_optimizer::subdivide_classes_by_sensitive_refs ()
{
  typedef hash_map <symbol_compare_hash, vec <sem_item *> > subdivide_hash_map;

  unsigned newly_created_classes = 0;

  for (hash_table <congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      unsigned int class_count = (*it)->classes.length ();
      auto_vec<congruence_class *> new_classes;

      for (unsigned i = 0; i < class_count; i++)
	{
	  congruence_class *c = (*it)->classes [i];

	  if (c->members.length() > 1)
	    {
	      subdivide_hash_map split_map;

	      for (unsigned j = 0; j < c->members.length (); j++)
	        {
		  sem_item *source_node = c->members[j];

		  symbol_compare_collection *collection = new symbol_compare_collection (source_node->node);

		  bool existed;
		  vec <sem_item *> *slot = &split_map.get_or_insert (collection,
								     &existed);
		  gcc_checking_assert (slot);

		  slot->safe_push (source_node);

		  if (existed)
		    delete collection;
	        }

	       /* If the map contains more than one key, we have to split the map
		  appropriately.  */
	      if (split_map.elements () != 1)
	        {
		  bool first_class = true;

		  for (subdivide_hash_map::iterator it2 = split_map.begin ();
		       it2 != split_map.end (); ++it2)
		    {
		      congruence_class *new_cls;
		      new_cls = new congruence_class (class_id++);

		      for (unsigned k = 0; k < (*it2).second.length (); k++)
			add_item_to_class (new_cls, (*it2).second[k]);

		      worklist_push (new_cls);
		      newly_created_classes++;

		      if (first_class)
		        {
			  (*it)->classes[i] = new_cls;
			  first_class = false;
			}
		      else
		        {
		          new_classes.safe_push (new_cls);
			  m_classes_count++;
		        }
		    }
		}

	      /* Release memory.  */
	      for (subdivide_hash_map::iterator it2 = split_map.begin ();
		   it2 != split_map.end (); ++it2)
		{
		  delete (*it2).first;
		  (*it2).second.release ();
		}
	    }
	  }

	for (unsigned i = 0; i < new_classes.length (); i++)
	  (*it)->classes.safe_push (new_classes[i]);
    }

  return newly_created_classes;
}

/* Verify congruence classes, if checking is enabled.  */

void
sem_item_optimizer::checking_verify_classes (void)
{
  if (flag_checking)
    verify_classes ();
}

/* Verify congruence classes.  */

void
sem_item_optimizer::verify_classes (void)
{
  for (hash_table <congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      for (unsigned int i = 0; i < (*it)->classes.length (); i++)
	{
	  congruence_class *cls = (*it)->classes[i];

	  gcc_assert (cls);
	  gcc_assert (cls->members.length () > 0);

	  for (unsigned int j = 0; j < cls->members.length (); j++)
	    {
	      sem_item *item = cls->members[j];

	      gcc_assert (item);
	      gcc_assert (item->cls == cls);

	      for (unsigned k = 0; k < item->usages.length (); k++)
		{
		  sem_usage_pair *usage = item->usages[k];
		  gcc_assert (usage->item->index_in_class <
			      usage->item->cls->members.length ());
		}
	    }
	}
    }
}

/* Disposes split map traverse function. CLS_PTR is pointer to congruence
   class, BSLOT is bitmap slot we want to release. DATA is mandatory,
   but unused argument.  */

bool
sem_item_optimizer::release_split_map (congruence_class * const &,
				       bitmap const &b, traverse_split_pair *)
{
  bitmap bmp = b;

  BITMAP_FREE (bmp);

  return true;
}

/* Process split operation for a class given as pointer CLS_PTR,
   where bitmap B splits congruence class members. DATA is used
   as argument of split pair.  */

bool
sem_item_optimizer::traverse_congruence_split (congruence_class * const &cls,
    bitmap const &b, traverse_split_pair *pair)
{
  sem_item_optimizer *optimizer = pair->optimizer;
  const congruence_class *splitter_cls = pair->cls;

  /* If counted bits are greater than zero and less than the number of members
     a group will be splitted.  */
  unsigned popcount = bitmap_count_bits (b);

  if (popcount > 0 && popcount < cls->members.length ())
    {
      auto_vec <congruence_class *, 2> newclasses;
      newclasses.quick_push (new congruence_class (class_id++));
      newclasses.quick_push (new congruence_class (class_id++));

      for (unsigned int i = 0; i < cls->members.length (); i++)
	{
	  int target = bitmap_bit_p (b, i);
	  congruence_class *tc = newclasses[target];

	  add_item_to_class (tc, cls->members[i]);
	}

      if (flag_checking)
	{
	  for (unsigned int i = 0; i < 2; i++)
	    gcc_assert (newclasses[i]->members.length ());
	}

      if (splitter_cls == cls)
	optimizer->splitter_class_removed = true;

      /* Remove old class from worklist if presented.  */
      bool in_worklist = cls->in_worklist;

      if (in_worklist)
	cls->in_worklist = false;

      congruence_class_group g;
      g.hash = cls->members[0]->get_hash ();
      g.type = cls->members[0]->type;

      congruence_class_group *slot = optimizer->m_classes.find(&g);

      for (unsigned int i = 0; i < slot->classes.length (); i++)
	if (slot->classes[i] == cls)
	  {
	    slot->classes.ordered_remove (i);
	    break;
	  }

      /* New class will be inserted and integrated to work list.  */
      for (unsigned int i = 0; i < 2; i++)
	optimizer->add_class (newclasses[i]);

      /* Two classes replace one, so that increment just by one.  */
      optimizer->m_classes_count++;

      /* If OLD class was presented in the worklist, we remove the class
         and replace it will both newly created classes.  */
      if (in_worklist)
	for (unsigned int i = 0; i < 2; i++)
	  optimizer->worklist_push (newclasses[i]);
      else /* Just smaller class is inserted.  */
	{
	  unsigned int smaller_index = newclasses[0]->members.length () <
				       newclasses[1]->members.length () ?
				       0 : 1;
	  optimizer->worklist_push (newclasses[smaller_index]);
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  congruence class splitted:\n");
	  cls->dump (dump_file, 4);

	  fprintf (dump_file, "  newly created groups:\n");
	  for (unsigned int i = 0; i < 2; i++)
	    newclasses[i]->dump (dump_file, 4);
	}

      /* Release class if not presented in work list.  */
      if (!in_worklist)
	delete cls;
    }


  return true;
}

/* Tests if a class CLS used as INDEXth splits any congruence classes.
   Bitmap stack BMSTACK is used for bitmap allocation.  */

void
sem_item_optimizer::do_congruence_step_for_index (congruence_class *cls,
    unsigned int index)
{
  hash_map <congruence_class *, bitmap> split_map;

  for (unsigned int i = 0; i < cls->members.length (); i++)
    {
      sem_item *item = cls->members[i];

      /* Iterate all usages that have INDEX as usage of the item.  */
      for (unsigned int j = 0; j < item->usages.length (); j++)
	{
	  sem_usage_pair *usage = item->usages[j];

	  if (usage->index != index)
	    continue;

	  bitmap *slot = split_map.get (usage->item->cls);
	  bitmap b;

	  if(!slot)
	    {
	      b = BITMAP_ALLOC (&m_bmstack);
	      split_map.put (usage->item->cls, b);
	    }
	  else
	    b = *slot;

	  gcc_checking_assert (usage->item->cls);
	  gcc_checking_assert (usage->item->index_in_class <
			       usage->item->cls->members.length ());

	  bitmap_set_bit (b, usage->item->index_in_class);
	}
    }

  traverse_split_pair pair;
  pair.optimizer = this;
  pair.cls = cls;

  splitter_class_removed = false;
  split_map.traverse
  <traverse_split_pair *, sem_item_optimizer::traverse_congruence_split> (&pair);

  /* Bitmap clean-up.  */
  split_map.traverse
  <traverse_split_pair *, sem_item_optimizer::release_split_map> (NULL);
}

/* Every usage of a congruence class CLS is a candidate that can split the
   collection of classes. Bitmap stack BMSTACK is used for bitmap
   allocation.  */

void
sem_item_optimizer::do_congruence_step (congruence_class *cls)
{
  bitmap_iterator bi;
  unsigned int i;

  bitmap usage = BITMAP_ALLOC (&m_bmstack);

  for (unsigned int i = 0; i < cls->members.length (); i++)
    bitmap_ior_into (usage, cls->members[i]->usage_index_bitmap);

  EXECUTE_IF_SET_IN_BITMAP (usage, 0, i, bi)
  {
    if (dump_file && (dump_flags & TDF_DETAILS))
      fprintf (dump_file, "  processing congruence step for class: %u, index: %u\n",
	       cls->id, i);

    do_congruence_step_for_index (cls, i);

    if (splitter_class_removed)
      break;
  }

  BITMAP_FREE (usage);
}

/* Adds a newly created congruence class CLS to worklist.  */

void
sem_item_optimizer::worklist_push (congruence_class *cls)
{
  /* Return if the class CLS is already presented in work list.  */
  if (cls->in_worklist)
    return;

  cls->in_worklist = true;
  worklist.push_back (cls);
}

/* Pops a class from worklist. */

congruence_class *
sem_item_optimizer::worklist_pop (void)
{
  congruence_class *cls;

  while (!worklist.empty ())
    {
      cls = worklist.front ();
      worklist.pop_front ();
      if (cls->in_worklist)
	{
	  cls->in_worklist = false;

	  return cls;
	}
      else
	{
	  /* Work list item was already intended to be removed.
	     The only reason for doing it is to split a class.
	     Thus, the class CLS is deleted.  */
	  delete cls;
	}
    }

  return NULL;
}

/* Iterative congruence reduction function.  */

void
sem_item_optimizer::process_cong_reduction (void)
{
  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned i = 0; i < (*it)->classes.length (); i++)
      if ((*it)->classes[i]->is_class_used ())
	worklist_push ((*it)->classes[i]);

  if (dump_file)
    fprintf (dump_file, "Worklist has been filled with: %lu\n",
	     (unsigned long) worklist.size ());

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Congruence class reduction\n");

  congruence_class *cls;

  /* Process complete congruence reduction.  */
  while ((cls = worklist_pop ()) != NULL)
    do_congruence_step (cls);

  /* Subdivide newly created classes according to references.  */
  unsigned new_classes = subdivide_classes_by_sensitive_refs ();

  if (dump_file)
    fprintf (dump_file, "Address reference subdivision created: %u "
	     "new classes.\n", new_classes);
}

/* Debug function prints all informations about congruence classes.  */

void
sem_item_optimizer::dump_cong_classes (void)
{
  if (!dump_file)
    return;

  fprintf (dump_file,
	   "Congruence classes: %u (unique hash values: %lu), with total: %u items\n",
	   m_classes_count, (unsigned long) m_classes.elements(), m_items.length ());

  /* Histogram calculation.  */
  unsigned int max_index = 0;
  unsigned int* histogram = XCNEWVEC (unsigned int, m_items.length () + 1);

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)

    for (unsigned i = 0; i < (*it)->classes.length (); i++)
      {
	unsigned int c = (*it)->classes[i]->members.length ();
	histogram[c]++;

	if (c > max_index)
	  max_index = c;
      }

  fprintf (dump_file,
	   "Class size histogram [num of members]: number of classe number of classess\n");

  for (unsigned int i = 0; i <= max_index; i++)
    if (histogram[i])
      fprintf (dump_file, "[%u]: %u classes\n", i, histogram[i]);

  fprintf (dump_file, "\n\n");


  if (dump_flags & TDF_DETAILS)
    for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
	 it != m_classes.end (); ++it)
      {
	fprintf (dump_file, "  group: with %u classes:\n", (*it)->classes.length ());

	for (unsigned i = 0; i < (*it)->classes.length (); i++)
	  {
	    (*it)->classes[i]->dump (dump_file, 4);

	    if(i < (*it)->classes.length () - 1)
	      fprintf (dump_file, " ");
	  }
      }

  free (histogram);
}

/* After reduction is done, we can declare all items in a group
   to be equal. PREV_CLASS_COUNT is start number of classes
   before reduction. True is returned if there's a merge operation
   processed. */

bool
sem_item_optimizer::merge_classes (unsigned int prev_class_count)
{
  unsigned int item_count = m_items.length ();
  unsigned int class_count = m_classes_count;
  unsigned int equal_items = item_count - class_count;

  unsigned int non_singular_classes_count = 0;
  unsigned int non_singular_classes_sum = 0;

  bool merged_p = false;

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned int i = 0; i < (*it)->classes.length (); i++)
      {
	congruence_class *c = (*it)->classes[i];
	if (c->members.length () > 1)
	  {
	    non_singular_classes_count++;
	    non_singular_classes_sum += c->members.length ();
	  }
      }

  if (dump_file)
    {
      fprintf (dump_file, "\nItem count: %u\n", item_count);
      fprintf (dump_file, "Congruent classes before: %u, after: %u\n",
	       prev_class_count, class_count);
      fprintf (dump_file, "Average class size before: %.2f, after: %.2f\n",
	       prev_class_count ? 1.0f * item_count / prev_class_count : 0.0f,
	       class_count ? 1.0f * item_count / class_count : 0.0f);
      fprintf (dump_file, "Average non-singular class size: %.2f, count: %u\n",
	       non_singular_classes_count ? 1.0f * non_singular_classes_sum /
	       non_singular_classes_count : 0.0f,
	       non_singular_classes_count);
      fprintf (dump_file, "Equal symbols: %u\n", equal_items);
      fprintf (dump_file, "Fraction of visited symbols: %.2f%%\n\n",
	       item_count ? 100.0f * equal_items / item_count : 0.0f);
    }

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned int i = 0; i < (*it)->classes.length (); i++)
      {
	congruence_class *c = (*it)->classes[i];

	if (c->members.length () == 1)
	  continue;

	sem_item *source = c->members[0];

	if (DECL_NAME (source->decl)
	    && MAIN_NAME_P (DECL_NAME (source->decl)))
	  /* If merge via wrappers, picking main as the target can be
	     problematic.  */
	  source = c->members[1];

	for (unsigned int j = 0; j < c->members.length (); j++)
	  {
	    sem_item *alias = c->members[j];

	    if (alias == source)
	      continue;

	    if (dump_file)
	      {
		fprintf (dump_file, "Semantic equality hit:%s->%s\n",
			 xstrdup_for_dump (source->node->name ()),
			 xstrdup_for_dump (alias->node->name ()));
		fprintf (dump_file, "Assembler symbol names:%s->%s\n",
			 xstrdup_for_dump (source->node->asm_name ()),
			 xstrdup_for_dump (alias->node->asm_name ()));
	      }

	    if (lookup_attribute ("no_icf", DECL_ATTRIBUTES (alias->decl)))
	      {
	        if (dump_file)
		  fprintf (dump_file,
			   "Merge operation is skipped due to no_icf "
			   "attribute.\n\n");

		continue;
	      }

	    if (dump_file && (dump_flags & TDF_DETAILS))
	      {
		source->dump_to_file (dump_file);
		alias->dump_to_file (dump_file);
	      }

	    if (dbg_cnt (merged_ipa_icf))
	      merged_p |= source->merge (alias);
	  }
      }

  return merged_p;
}

/* Dump function prints all class members to a FILE with an INDENT.  */

void
congruence_class::dump (FILE *file, unsigned int indent) const
{
  FPRINTF_SPACES (file, indent, "class with id: %u, hash: %u, items: %u\n",
		  id, members[0]->get_hash (), members.length ());

  FPUTS_SPACES (file, indent + 2, "");
  for (unsigned i = 0; i < members.length (); i++)
    fprintf (file, "%s(%p/%u) ", members[i]->node->asm_name (),
	     (void *) members[i]->decl,
	     members[i]->node->order);

  fprintf (file, "\n");
}

/* Returns true if there's a member that is used from another group.  */

bool
congruence_class::is_class_used (void)
{
  for (unsigned int i = 0; i < members.length (); i++)
    if (members[i]->usages.length ())
      return true;

  return false;
}

/* Generate pass summary for IPA ICF pass.  */

static void
ipa_icf_generate_summary (void)
{
  if (!optimizer)
    optimizer = new sem_item_optimizer ();

  optimizer->register_hooks ();
  optimizer->parse_funcs_and_vars ();
}

/* Write pass summary for IPA ICF pass.  */

static void
ipa_icf_write_summary (void)
{
  gcc_assert (optimizer);

  optimizer->write_summary ();
}

/* Read pass summary for IPA ICF pass.  */

static void
ipa_icf_read_summary (void)
{
  if (!optimizer)
    optimizer = new sem_item_optimizer ();

  optimizer->read_summary ();
  optimizer->register_hooks ();
}

/* Semantic equality exection function.  */

static unsigned int
ipa_icf_driver (void)
{
  gcc_assert (optimizer);

  bool merged_p = optimizer->execute ();

  delete optimizer;
  optimizer = NULL;

  return merged_p ? TODO_remove_functions : 0;
}

const pass_data pass_data_ipa_icf =
{
  IPA_PASS,		    /* type */
  "icf",		    /* name */
  OPTGROUP_IPA,             /* optinfo_flags */
  TV_IPA_ICF,		    /* tv_id */
  0,                        /* properties_required */
  0,                        /* properties_provided */
  0,                        /* properties_destroyed */
  0,                        /* todo_flags_start */
  0,                        /* todo_flags_finish */
};

class pass_ipa_icf : public ipa_opt_pass_d
{
public:
  pass_ipa_icf (gcc::context *ctxt)
    : ipa_opt_pass_d (pass_data_ipa_icf, ctxt,
		      ipa_icf_generate_summary, /* generate_summary */
		      ipa_icf_write_summary, /* write_summary */
		      ipa_icf_read_summary, /* read_summary */
		      NULL, /*
		      write_optimization_summary */
		      NULL, /*
		      read_optimization_summary */
		      NULL, /* stmt_fixup */
		      0, /* function_transform_todo_flags_start */
		      NULL, /* function_transform */
		      NULL) /* variable_transform */
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
  {
    return in_lto_p || flag_ipa_icf_variables || flag_ipa_icf_functions;
  }

  virtual unsigned int execute (function *)
  {
    return ipa_icf_driver();
  }
}; // class pass_ipa_icf

} // ipa_icf namespace

ipa_opt_pass_d *
make_pass_ipa_icf (gcc::context *ctxt)
{
  return new ipa_icf::pass_ipa_icf (ctxt);
}