1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
/* Inlining decision heuristics.
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* Inlining decision heuristics
We separate inlining decisions from the inliner itself and store it
inside callgraph as so called inline plan. Refer to cgraph.c
documentation about particular representation of inline plans in the
callgraph.
There are three major parts of this file:
cgraph_mark_inline implementation
This function allows to mark given call inline and performs necessary
modifications of cgraph (production of the clones and updating overall
statistics)
inlining heuristics limits
These functions allow to check that particular inlining is allowed
by the limits specified by user (allowed function growth, overall unit
growth and so on).
inlining heuristics
This is implementation of IPA pass aiming to get as much of benefit
from inlining obeying the limits checked above.
The implementation of particular heuristics is separated from
the rest of code to make it easier to replace it with more complicated
implementation in the future. The rest of inlining code acts as a
library aimed to modify the callgraph and verify that the parameters
on code size growth fits.
To mark given call inline, use cgraph_mark_inline function, the
verification is performed by cgraph_default_inline_p and
cgraph_check_inline_limits.
The heuristics implements simple knapsack style algorithm ordering
all functions by their "profitability" (estimated by code size growth)
and inlining them in priority order.
cgraph_decide_inlining implements heuristics taking whole callgraph
into account, while cgraph_decide_inlining_incrementally considers
only one function at a time and is used in non-unit-at-a-time mode. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "flags.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "intl.h"
#include "tree-pass.h"
#include "coverage.h"
#include "ggc.h"
/* Statistics we collect about inlining algorithm. */
static int ncalls_inlined;
static int nfunctions_inlined;
static int initial_insns;
static int overall_insns;
static int max_insns;
static gcov_type max_count;
/* Estimate size of the function after inlining WHAT into TO. */
static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
struct cgraph_node *what)
{
int size;
tree fndecl = what->decl, arg;
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
call_insns += estimate_move_cost (TREE_TYPE (arg));
size = (what->global.insns - call_insns) * times + to->global.insns;
gcc_assert (size >= 0);
return size;
}
/* E is expected to be an edge being inlined. Clone destination node of
the edge and redirect it to the new clone.
DUPLICATE is used for bookkeeping on whether we are actually creating new
clones or re-using node originally representing out-of-line function call.
*/
void
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
{
struct cgraph_node *n;
/* We may eliminate the need for out-of-line copy to be output. In that
case just go ahead and re-use it. */
if (!e->callee->callers->next_caller
&& (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
&& duplicate
&& (flag_unit_at_a_time && cgraph_global_info_ready))
{
gcc_assert (!e->callee->global.inlined_to);
if (!DECL_EXTERNAL (e->callee->decl))
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
duplicate = 0;
}
else if (duplicate)
{
n = cgraph_clone_node (e->callee, e->count, e->loop_nest);
cgraph_redirect_edge_callee (e, n);
}
if (e->caller->global.inlined_to)
e->callee->global.inlined_to = e->caller->global.inlined_to;
else
e->callee->global.inlined_to = e->caller;
/* Recursively clone all bodies. */
for (e = e->callee->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, duplicate);
}
/* Mark edge E as inlined and update callgraph accordingly. */
void
cgraph_mark_inline_edge (struct cgraph_edge *e)
{
int old_insns = 0, new_insns = 0;
struct cgraph_node *to = NULL, *what;
gcc_assert (e->inline_failed);
e->inline_failed = NULL;
if (!e->callee->global.inlined && flag_unit_at_a_time)
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
e->callee->global.inlined = true;
cgraph_clone_inlined_nodes (e, true);
what = e->callee;
/* Now update size of caller and all functions caller is inlined into. */
for (;e && !e->inline_failed; e = e->caller->callers)
{
old_insns = e->caller->global.insns;
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
what);
gcc_assert (new_insns >= 0);
to = e->caller;
to->global.insns = new_insns;
}
gcc_assert (what->global.inlined_to == to);
if (new_insns > old_insns)
overall_insns += new_insns - old_insns;
ncalls_inlined++;
}
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
Return following unredirected edge in the list of callers
of EDGE->CALLEE */
static struct cgraph_edge *
cgraph_mark_inline (struct cgraph_edge *edge)
{
struct cgraph_node *to = edge->caller;
struct cgraph_node *what = edge->callee;
struct cgraph_edge *e, *next;
int times = 0;
/* Look for all calls, mark them inline and clone recursively
all inlined functions. */
for (e = what->callers; e; e = next)
{
next = e->next_caller;
if (e->caller == to && e->inline_failed)
{
cgraph_mark_inline_edge (e);
if (e == edge)
edge = next;
times++;
}
}
gcc_assert (times);
return edge;
}
/* Estimate the growth caused by inlining NODE into all callees. */
static int
cgraph_estimate_growth (struct cgraph_node *node)
{
int growth = 0;
struct cgraph_edge *e;
if (node->global.estimated_growth != INT_MIN)
return node->global.estimated_growth;
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
- e->caller->global.insns);
/* ??? Wrong for self recursive functions or cases where we decide to not
inline for different reasons, but it is not big deal as in that case
we will keep the body around, but we will also avoid some inlining. */
if (!node->needed && !DECL_EXTERNAL (node->decl))
growth -= node->global.insns;
node->global.estimated_growth = growth;
return growth;
}
/* Return false when inlining WHAT into TO is not good idea
as it would cause too large growth of function bodies. */
static bool
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
const char **reason)
{
int times = 0;
struct cgraph_edge *e;
int newsize;
int limit;
if (to->global.inlined_to)
to = to->global.inlined_to;
for (e = to->callees; e; e = e->next_callee)
if (e->callee == what)
times++;
/* When inlining large function body called once into small function,
take the inlined function as base for limiting the growth. */
if (to->local.self_insns > what->local.self_insns)
limit = to->local.self_insns;
else
limit = what->local.self_insns;
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
newsize = cgraph_estimate_size_after_inlining (times, to, what);
if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
&& newsize > limit)
{
if (reason)
*reason = N_("--param large-function-growth limit reached");
return false;
}
return true;
}
/* Return true when function N is small enough to be inlined. */
bool
cgraph_default_inline_p (struct cgraph_node *n)
{
if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
return false;
if (DECL_DECLARED_INLINE_P (n->decl))
return n->global.insns < MAX_INLINE_INSNS_SINGLE;
else
return n->global.insns < MAX_INLINE_INSNS_AUTO;
}
/* Return true when inlining WHAT would create recursive inlining.
We call recursive inlining all cases where same function appears more than
once in the single recursion nest path in the inline graph. */
static bool
cgraph_recursive_inlining_p (struct cgraph_node *to,
struct cgraph_node *what,
const char **reason)
{
bool recursive;
if (to->global.inlined_to)
recursive = what->decl == to->global.inlined_to->decl;
else
recursive = what->decl == to->decl;
/* Marking recursive function inline has sane semantic and thus we should
not warn on it. */
if (recursive && reason)
*reason = (what->local.disregard_inline_limits
? N_("recursive inlining") : "");
return recursive;
}
/* Return true if the call can be hot. */
static bool
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
{
if (profile_info && flag_branch_probabilities
&& (edge->count
<= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
return false;
return true;
}
/* A cost model driving the inlining heuristics in a way so the edges with
smallest badness are inlined first. After each inlining is performed
the costs of all caller edges of nodes affected are recomputed so the
metrics may accurately depend on values such as number of inlinable callers
of the function or function body size.
For the moment we use estimated growth caused by inlining callee into all
it's callers for driving the inlining but once we have loop depth or
frequency information readily available we should do better.
With profiling we use number of executions of each edge to drive the cost.
We also should distinguish hot and cold calls where the cold calls are
inlined into only when code size is overall improved.
Value INT_MAX can be returned to prevent function from being inlined.
*/
static int
cgraph_edge_badness (struct cgraph_edge *edge)
{
if (max_count)
{
int growth =
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
growth -= edge->caller->global.insns;
/* Always prefer inlining saving code size. */
if (growth <= 0)
return INT_MIN - growth;
return ((int)((double)edge->count * INT_MIN / max_count)) / growth;
}
else
{
int nest = MIN (edge->loop_nest, 8);
int badness = cgraph_estimate_growth (edge->callee) * 256;
badness >>= nest;
/* Make recursive inlining happen always after other inlining is done. */
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
return badness + 1;
else
return badness;
}
}
/* Recompute heap nodes for each of caller edge. */
static void
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
bitmap updated_nodes)
{
struct cgraph_edge *edge;
if (!node->local.inlinable || node->local.disregard_inline_limits
|| node->global.inlined_to)
return;
if (bitmap_bit_p (updated_nodes, node->uid))
return;
bitmap_set_bit (updated_nodes, node->uid);
for (edge = node->callers; edge; edge = edge->next_caller)
if (edge->inline_failed)
{
int badness = cgraph_edge_badness (edge);
if (edge->aux)
{
fibnode_t n = edge->aux;
gcc_assert (n->data == edge);
if (n->key == badness)
continue;
/* fibheap_replace_key only increase the keys. */
if (fibheap_replace_key (heap, n, badness))
continue;
fibheap_delete_node (heap, edge->aux);
}
edge->aux = fibheap_insert (heap, badness, edge);
}
}
/* Recompute heap nodes for each of caller edges of each of callees. */
static void
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
bitmap updated_nodes)
{
struct cgraph_edge *e;
node->global.estimated_growth = INT_MIN;
for (e = node->callees; e; e = e->next_callee)
if (e->inline_failed)
update_caller_keys (heap, e->callee, updated_nodes);
else if (!e->inline_failed)
update_callee_keys (heap, e->callee, updated_nodes);
}
/* Enqueue all recursive calls from NODE into priority queue depending on
how likely we want to recursively inline the call. */
static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
fibheap_t heap)
{
static int priority;
struct cgraph_edge *e;
for (e = where->callees; e; e = e->next_callee)
if (e->callee == node)
{
/* FIXME: Once counts and frequencies are available we should drive the
order by these. For now force the order to be simple queue since
we get order dependent on recursion depth for free by this. */
fibheap_insert (heap, priority++, e);
}
for (e = where->callees; e; e = e->next_callee)
if (!e->inline_failed)
lookup_recursive_calls (node, e->callee, heap);
}
/* Decide on recursive inlining: in the case function has recursive calls,
inline until body size reaches given argument. */
static bool
cgraph_decide_recursive_inlining (struct cgraph_node *node)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
fibheap_t heap;
struct cgraph_edge *e;
struct cgraph_node *master_clone;
int depth = 0;
int n = 0;
if (DECL_DECLARED_INLINE_P (node->decl))
{
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
}
/* Make sure that function is small enough to be considered for inlining. */
if (!max_depth
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
return false;
heap = fibheap_new ();
lookup_recursive_calls (node, node, heap);
if (fibheap_empty (heap))
{
fibheap_delete (heap);
return false;
}
if (dump_file)
fprintf (dump_file,
" Performing recursive inlining on %s\n",
cgraph_node_name (node));
/* We need original clone to copy around. */
master_clone = cgraph_clone_node (node, 0, 1);
master_clone->needed = true;
for (e = master_clone->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, true);
/* Do the inlining and update list of recursive call during process. */
while (!fibheap_empty (heap)
&& cgraph_estimate_size_after_inlining (1, node, master_clone) <= limit)
{
struct cgraph_edge *curr = fibheap_extract_min (heap);
struct cgraph_node *node;
depth = 0;
for (node = curr->caller;
node; node = node->global.inlined_to)
if (node->decl == curr->callee->decl)
depth++;
if (depth > max_depth)
continue;
if (dump_file)
fprintf (dump_file,
" Inlining call of depth %i\n", depth);
cgraph_redirect_edge_callee (curr, master_clone);
cgraph_mark_inline_edge (curr);
lookup_recursive_calls (node, curr->callee, heap);
n++;
}
fibheap_delete (heap);
if (dump_file)
fprintf (dump_file,
"\n Inlined %i times, body grown from %i to %i insns\n", n,
master_clone->global.insns, node->global.insns);
/* Remove master clone we used for inlining. We rely that clones inlined
into master clone gets queued just before master clone so we don't
need recursion. */
for (node = cgraph_nodes; node != master_clone;
node = node->next)
if (node->global.inlined_to == master_clone)
cgraph_remove_node (node);
cgraph_remove_node (master_clone);
return true;
}
/* Set inline_failed for all callers of given function to REASON. */
static void
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
{
struct cgraph_edge *e;
if (dump_file)
fprintf (dump_file, "Inlining failed: %s\n", reason);
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
e->inline_failed = reason;
}
/* We use greedy algorithm for inlining of small functions:
All inline candidates are put into prioritized heap based on estimated
growth of the overall number of instructions and then update the estimates.
INLINED and INLINED_CALEES are just pointers to arrays large enough
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
static void
cgraph_decide_inlining_of_small_functions (void)
{
struct cgraph_node *node;
struct cgraph_edge *edge;
fibheap_t heap = fibheap_new ();
bitmap updated_nodes = BITMAP_ALLOC (NULL);
if (dump_file)
fprintf (dump_file, "\nDeciding on smaller functions:\n");
/* Put all inline candidates into the heap. */
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->local.inlinable || !node->callers
|| node->local.disregard_inline_limits)
continue;
if (dump_file)
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
node->global.estimated_growth = INT_MIN;
if (!cgraph_default_inline_p (node))
{
cgraph_set_inline_failed (node,
N_("--param max-inline-insns-single limit reached"));
continue;
}
for (edge = node->callers; edge; edge = edge->next_caller)
if (edge->inline_failed)
{
gcc_assert (!edge->aux);
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge);
}
}
while (overall_insns <= max_insns && (edge = fibheap_extract_min (heap)))
{
int old_insns = overall_insns;
struct cgraph_node *where;
int growth =
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
growth -= edge->caller->global.insns;
if (dump_file)
{
fprintf (dump_file,
"\nConsidering %s with %i insns to be inlined into %s\n"
" Estimated growth after inlined into all callees is %+i insns.\n"
" Estimated badness is %i.\n",
cgraph_node_name (edge->callee),
edge->callee->global.insns,
cgraph_node_name (edge->caller),
cgraph_estimate_growth (edge->callee),
cgraph_edge_badness (edge));
if (edge->count)
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
}
gcc_assert (edge->aux);
edge->aux = NULL;
if (!edge->inline_failed)
continue;
/* When not having profile info ready we don't weight by any way the
position of call in procedure itself. This means if call of
function A from function B seems profitable to inline, the recursive
call of function A in inline copy of A in B will look profitable too
and we end up inlining until reaching maximal function growth. This
is not good idea so prohibit the recursive inlining.
??? When the frequencies are taken into account we might not need this
restriction. */
if (!max_count)
{
where = edge->caller;
while (where->global.inlined_to)
{
if (where->decl == edge->callee->decl)
break;
where = where->callers->caller;
}
if (where->global.inlined_to)
{
edge->inline_failed
= (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : "");
if (dump_file)
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
continue;
}
}
if (!cgraph_maybe_hot_edge_p (edge) && growth > 0)
{
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
&edge->inline_failed))
{
edge->inline_failed =
N_("call is unlikely");
if (dump_file)
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
}
continue;
}
if (!cgraph_default_inline_p (edge->callee))
{
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
&edge->inline_failed))
{
edge->inline_failed =
N_("--param max-inline-insns-single limit reached after inlining into the callee");
if (dump_file)
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
}
continue;
}
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
&edge->inline_failed))
{
where = edge->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
if (!cgraph_decide_recursive_inlining (where))
continue;
update_callee_keys (heap, where, updated_nodes);
}
else
{
if (!cgraph_check_inline_limits (edge->caller, edge->callee,
&edge->inline_failed))
{
if (dump_file)
fprintf (dump_file, " Not inlining into %s:%s.\n",
cgraph_node_name (edge->caller), edge->inline_failed);
continue;
}
cgraph_mark_inline_edge (edge);
update_callee_keys (heap, edge->callee, updated_nodes);
}
where = edge->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
/* Our profitability metric can depend on local properties
such as number of inlinable calls and size of the function body.
After inlining these properties might change for the function we
inlined into (since it's body size changed) and for the functions
called by function we inlined (since number of it inlinable callers
might change). */
update_caller_keys (heap, where, updated_nodes);
bitmap_clear (updated_nodes);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (edge->caller),
edge->caller->global.insns);
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
while ((edge = fibheap_extract_min (heap)) != NULL)
{
gcc_assert (edge->aux);
edge->aux = NULL;
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
&edge->inline_failed))
edge->inline_failed = N_("--param inline-unit-growth limit reached");
}
fibheap_delete (heap);
BITMAP_FREE (updated_nodes);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static void
cgraph_decide_inlining (void)
{
struct cgraph_node *node;
int nnodes;
struct cgraph_node **order =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
int old_insns = 0;
int i;
timevar_push (TV_INLINE_HEURISTICS);
max_count = 0;
for (node = cgraph_nodes; node; node = node->next)
{
struct cgraph_edge *e;
initial_insns += node->local.self_insns;
for (e = node->callees; e; e = e->next_callee)
if (max_count < e->count)
max_count = e->count;
}
overall_insns = initial_insns;
gcc_assert (!max_count || (profile_info && flag_branch_probabilities));
max_insns = ((HOST_WIDEST_INT) overall_insns
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
nnodes = cgraph_postorder (order);
if (dump_file)
fprintf (dump_file,
"\nDeciding on inlining. Starting with %i insns.\n",
initial_insns);
for (node = cgraph_nodes; node; node = node->next)
node->aux = 0;
if (dump_file)
fprintf (dump_file, "\nInlining always_inline functions:\n");
/* In the first pass mark all always_inline edges. Do this with a priority
so none of our later choices will make this impossible. */
for (i = nnodes - 1; i >= 0; i--)
{
struct cgraph_edge *e, *next;
node = order[i];
if (!node->local.disregard_inline_limits)
continue;
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns (always inline)\n",
cgraph_node_name (node), node->global.insns);
old_insns = overall_insns;
for (e = node->callers; e; e = next)
{
next = e->next_caller;
if (!e->inline_failed)
continue;
if (cgraph_recursive_inlining_p (e->caller, e->callee,
&e->inline_failed))
continue;
cgraph_mark_inline_edge (e);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (e->caller),
e->caller->global.insns);
}
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
if (!flag_really_no_inline)
{
cgraph_decide_inlining_of_small_functions ();
if (dump_file)
fprintf (dump_file, "\nDeciding on functions called once:\n");
/* And finally decide what functions are called once. */
for (i = nnodes - 1; i >= 0; i--)
{
node = order[i];
if (node->callers && !node->callers->next_caller && !node->needed
&& node->local.inlinable && node->callers->inline_failed
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
{
bool ok = true;
struct cgraph_node *node1;
/* Verify that we won't duplicate the caller. */
for (node1 = node->callers->caller;
node1->callers && !node1->callers->inline_failed
&& ok; node1 = node1->callers->caller)
if (node1->callers->next_caller || node1->needed)
ok = false;
if (ok)
{
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns.\n"
" Called once from %s %i insns.\n",
cgraph_node_name (node), node->global.insns,
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns);
old_insns = overall_insns;
if (cgraph_check_inline_limits (node->callers->caller, node,
NULL))
{
cgraph_mark_inline (node->callers);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns"
" for a net change of %+i insns.\n",
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns,
overall_insns - old_insns);
}
else
{
if (dump_file)
fprintf (dump_file,
" Inline limit reached, not inlined.\n");
}
}
}
}
}
if (dump_file)
fprintf (dump_file,
"\nInlined %i calls, eliminated %i functions, "
"%i insns turned to %i insns.\n\n",
ncalls_inlined, nfunctions_inlined, initial_insns,
overall_insns);
free (order);
timevar_pop (TV_INLINE_HEURISTICS);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
bool
cgraph_decide_inlining_incrementally (struct cgraph_node *node, bool early)
{
struct cgraph_edge *e;
bool inlined = false;
/* First of all look for always inline functions. */
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.disregard_inline_limits
&& e->inline_failed
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
/* ??? It is possible that renaming variable removed the function body
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
&& DECL_SAVED_TREE (e->callee->decl))
{
if (dump_file && early)
fprintf (dump_file, " Early inlining %s into %s\n",
cgraph_node_name (e->callee), cgraph_node_name (node));
cgraph_mark_inline (e);
inlined = true;
}
/* Now do the automatic inlining. */
if (!flag_really_no_inline)
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.inlinable
&& e->inline_failed
&& !e->callee->local.disregard_inline_limits
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
&& (!early
|| (cgraph_estimate_size_after_inlining (1, e->caller, node)
<= e->caller->global.insns))
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
&& DECL_SAVED_TREE (e->callee->decl))
{
if (cgraph_default_inline_p (e->callee))
{
if (dump_file && early)
fprintf (dump_file, " Early inlining %s into %s\n",
cgraph_node_name (e->callee), cgraph_node_name (node));
cgraph_mark_inline (e);
inlined = true;
}
else if (!early)
e->inline_failed
= N_("--param max-inline-insns-single limit reached");
}
if (early && inlined)
{
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
tree_register_cfg_hooks ();
current_function_decl = node->decl;
optimize_inline_calls (current_function_decl);
node->local.self_insns = node->global.insns;
current_function_decl = NULL;
pop_cfun ();
ggc_collect ();
}
return inlined;
}
/* When inlining shall be performed. */
static bool
cgraph_gate_inlining (void)
{
return flag_inline_trees;
}
struct tree_opt_pass pass_ipa_inline =
{
"inline", /* name */
cgraph_gate_inlining, /* gate */
cgraph_decide_inlining, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_INTEGRATION, /* tv_id */
0, /* properties_required */
PROP_cfg, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* Do inlining of small functions. Doing so early helps profiling and other
passes to be somewhat more effective and avoids some code duplication in
later real inlining pass for testcases with very many function calls. */
static void
cgraph_early_inlining (void)
{
struct cgraph_node *node;
int nnodes;
struct cgraph_node **order =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
int i;
if (sorrycount || errorcount)
return;
#ifdef ENABLE_CHECKING
for (node = cgraph_nodes; node; node = node->next)
gcc_assert (!node->aux);
#endif
nnodes = cgraph_postorder (order);
for (i = nnodes - 1; i >= 0; i--)
{
node = order[i];
if (node->analyzed && node->local.inlinable
&& (node->needed || node->reachable)
&& node->callers)
cgraph_decide_inlining_incrementally (node, true);
}
cgraph_remove_unreachable_nodes (true, dump_file);
#ifdef ENABLE_CHECKING
for (node = cgraph_nodes; node; node = node->next)
gcc_assert (!node->global.inlined_to);
#endif
free (order);
}
/* When inlining shall be performed. */
static bool
cgraph_gate_early_inlining (void)
{
return flag_inline_trees && flag_early_inlining;
}
struct tree_opt_pass pass_early_ipa_inline =
{
"einline", /* name */
cgraph_gate_early_inlining, /* gate */
cgraph_early_inlining, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_INTEGRATION, /* tv_id */
0, /* properties_required */
PROP_cfg, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
|