summaryrefslogtreecommitdiff
path: root/gcc/ipa-profile.c
blob: 7ae001cc5e204a763ea5a0efd00b383012b9c33d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/* Basic IPA optimizations based on profile.
   Copyright (C) 2003-2013 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* ipa-profile pass implements the following analysis propagating profille
   inter-procedurally.

   - Count histogram construction.  This is a histogram analyzing how much
     time is spent executing statements with a given execution count read
     from profile feedback. This histogram is complette only with LTO,
     otherwise it contains information only about the current unit.

     Similar histogram is also estimated by coverage runtime.  This histogram
     is not dependent on LTO, but it suffers from various defects; first
     gcov runtime is not weighting individual basic block by estimated execution
     time and second the merging of multiple runs makes assumption that the
     histogram distribution did not change.  Consequentely histogram constructed
     here may be more precise.

     The information is used to set hot/cold thresholds.
   - Next speculative indirect call resolution is performed:  the local
     profile pass assigns profile-id to each function and provide us with a
     histogram specifying the most common target.  We look up the callgraph
     node corresponding to the target and produce a speculative call.

     This call may or may not survive through IPA optimization based on decision
     of inliner. 
   - Finally we propagate the following flags: unlikely executed, executed
     once, executed at startup and executed at exit.  These flags are used to
     control code size/performance threshold and and code placement (by producing
     .text.unlikely/.text.hot/.text.startup/.text.exit subsections).  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cgraph.h"
#include "tree-pass.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "ggc.h"
#include "flags.h"
#include "target.h"
#include "tree-iterator.h"
#include "ipa-utils.h"
#include "hash-table.h"
#include "profile.h"
#include "params.h"
#include "value-prof.h"
#include "alloc-pool.h"
#include "tree-inline.h"
#include "lto-streamer.h"
#include "data-streamer.h"
#include "ipa-inline.h"

/* Entry in the histogram.  */

struct histogram_entry
{
  gcov_type count;
  int time;
  int size;
};

/* Histogram of profile values.
   The histogram is represented as an ordered vector of entries allocated via
   histogram_pool. During construction a separate hashtable is kept to lookup
   duplicate entries.  */

vec<histogram_entry *> histogram;
static alloc_pool histogram_pool;

/* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR.  */

struct histogram_hash : typed_noop_remove <histogram_entry>
{
  typedef histogram_entry value_type;
  typedef histogram_entry compare_type;
  static inline hashval_t hash (const value_type *);
  static inline int equal (const value_type *, const compare_type *);
};

inline hashval_t
histogram_hash::hash (const histogram_entry *val)
{
  return val->count;
}

inline int
histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
{
  return val->count == val2->count;
}

/* Account TIME and SIZE executed COUNT times into HISTOGRAM.
   HASHTABLE is the on-side hash kept to avoid duplicates.  */

static void
account_time_size (hash_table <histogram_hash> hashtable,
		   vec<histogram_entry *> &histogram,
		   gcov_type count, int time, int size)
{
  histogram_entry key = {count, 0, 0};
  histogram_entry **val = hashtable.find_slot (&key, INSERT);

  if (!*val)
    {
      *val = (histogram_entry *) pool_alloc (histogram_pool);
      **val = key;
      histogram.safe_push (*val);
    }
  (*val)->time += time;
  (*val)->size += size;
}

int
cmp_counts (const void *v1, const void *v2)
{
  const histogram_entry *h1 = *(const histogram_entry * const *)v1;
  const histogram_entry *h2 = *(const histogram_entry * const *)v2;
  if (h1->count < h2->count)
    return 1;
  if (h1->count > h2->count)
    return -1;
  return 0;
}

/* Dump HISTOGRAM to FILE.  */

static void
dump_histogram (FILE *file, vec<histogram_entry *> histogram)
{
  unsigned int i;
  gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
  
  fprintf (dump_file, "Histogram:\n");
  for (i = 0; i < histogram.length (); i++)
    {
      overall_time += histogram[i]->count * histogram[i]->time;
      overall_size += histogram[i]->size;
    }
  if (!overall_time)
    overall_time = 1;
  if (!overall_size)
    overall_size = 1;
  for (i = 0; i < histogram.length (); i++)
    {
      cumulated_time += histogram[i]->count * histogram[i]->time;
      cumulated_size += histogram[i]->size;
      fprintf (file, "  "HOST_WIDEST_INT_PRINT_DEC": time:%i (%2.2f) size:%i (%2.2f)\n",
	       (HOST_WIDEST_INT) histogram[i]->count,
	       histogram[i]->time,
	       cumulated_time * 100.0 / overall_time,
	       histogram[i]->size,
	       cumulated_size * 100.0 / overall_size);
   }
}

/* Collect histogram from CFG profiles.  */

static void
ipa_profile_generate_summary (void)
{
  struct cgraph_node *node;
  gimple_stmt_iterator gsi;
  hash_table <histogram_hash> hashtable;
  basic_block bb;

  hashtable.create (10);
  histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
				      10);
  
  FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
    FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
      {
	int time = 0;
	int size = 0;
        for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  {
	    gimple stmt = gsi_stmt (gsi);
	    if (gimple_code (stmt) == GIMPLE_CALL
		&& !gimple_call_fndecl (stmt))
	      {
		histogram_value h;
		h = gimple_histogram_value_of_type
		      (DECL_STRUCT_FUNCTION (node->decl),
		       stmt, HIST_TYPE_INDIR_CALL);
		/* No need to do sanity check: gimple_ic_transform already
		   takes away bad histograms.  */
		if (h)
		  {
		    /* counter 0 is target, counter 1 is number of execution we called target,
		       counter 2 is total number of executions.  */
		    if (h->hvalue.counters[2])
		      {
			struct cgraph_edge * e = cgraph_edge (node, stmt);
			e->indirect_info->common_target_id
			  = h->hvalue.counters [0];
			e->indirect_info->common_target_probability
			  = GCOV_COMPUTE_SCALE (h->hvalue.counters [1], h->hvalue.counters [2]);
			if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
			  {
			    if (dump_file)
			      fprintf (dump_file, "Probability capped to 1\n");
			    e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
			  }
		      }
		    gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
						    stmt, h);
		  }
	      }
	    time += estimate_num_insns (stmt, &eni_time_weights);
	    size += estimate_num_insns (stmt, &eni_size_weights);
	  }
	account_time_size (hashtable, histogram, bb->count, time, size);
      }
  hashtable.dispose ();
  histogram.qsort (cmp_counts);
}

/* Serialize the ipa info for lto.  */

static void
ipa_profile_write_summary (void)
{
  struct lto_simple_output_block *ob
    = lto_create_simple_output_block (LTO_section_ipa_profile);
  unsigned int i;

  streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
  for (i = 0; i < histogram.length (); i++)
    {
      streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
      streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
      streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
    }
  lto_destroy_simple_output_block (ob);
}

/* Deserialize the ipa info for lto.  */

static void
ipa_profile_read_summary (void)
{
  struct lto_file_decl_data ** file_data_vec
    = lto_get_file_decl_data ();
  struct lto_file_decl_data * file_data;
  hash_table <histogram_hash> hashtable;
  int j = 0;

  hashtable.create (10);
  histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
				      10);

  while ((file_data = file_data_vec[j++]))
    {
      const char *data;
      size_t len;
      struct lto_input_block *ib
	= lto_create_simple_input_block (file_data,
					 LTO_section_ipa_profile,
					 &data, &len);
      if (ib)
	{
          unsigned int num = streamer_read_uhwi (ib);
	  unsigned int n;
	  for (n = 0; n < num; n++)
	    {
	      gcov_type count = streamer_read_gcov_count (ib);
	      int time = streamer_read_uhwi (ib);
	      int size = streamer_read_uhwi (ib);
	      account_time_size (hashtable, histogram,
				 count, time, size);
	    }
	  lto_destroy_simple_input_block (file_data,
					  LTO_section_ipa_profile,
					  ib, data, len);
	}
    }
  hashtable.dispose ();
  histogram.qsort (cmp_counts);
}

/* Data used by ipa_propagate_frequency.  */

struct ipa_propagate_frequency_data
{
  bool maybe_unlikely_executed;
  bool maybe_executed_once;
  bool only_called_at_startup;
  bool only_called_at_exit;
};

/* Worker for ipa_propagate_frequency_1.  */

static bool
ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
{
  struct ipa_propagate_frequency_data *d;
  struct cgraph_edge *edge;

  d = (struct ipa_propagate_frequency_data *)data;
  for (edge = node->callers;
       edge && (d->maybe_unlikely_executed || d->maybe_executed_once
	        || d->only_called_at_startup || d->only_called_at_exit);
       edge = edge->next_caller)
    {
      if (edge->caller != node)
	{
          d->only_called_at_startup &= edge->caller->only_called_at_startup;
	  /* It makes sense to put main() together with the static constructors.
	     It will be executed for sure, but rest of functions called from
	     main are definitely not at startup only.  */
	  if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
	    d->only_called_at_startup = 0;
          d->only_called_at_exit &= edge->caller->only_called_at_exit;
	}

      /* When profile feedback is available, do not try to propagate too hard;
	 counts are already good guide on function frequencies and roundoff
	 errors can make us to push function into unlikely section even when
	 it is executed by the train run.  Transfer the function only if all
	 callers are unlikely executed.  */
      if (profile_info && flag_branch_probabilities
	  && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
	      || (edge->caller->global.inlined_to
		  && edge->caller->global.inlined_to->frequency
		     != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
	  d->maybe_unlikely_executed = false;
      if (!edge->frequency)
	continue;
      switch (edge->caller->frequency)
        {
	case NODE_FREQUENCY_UNLIKELY_EXECUTED:
	  break;
	case NODE_FREQUENCY_EXECUTED_ONCE:
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Called by %s that is executed once\n",
		     edge->caller->name ());
	  d->maybe_unlikely_executed = false;
	  if (inline_edge_summary (edge)->loop_depth)
	    {
	      d->maybe_executed_once = false;
	      if (dump_file && (dump_flags & TDF_DETAILS))
	        fprintf (dump_file, "  Called in loop\n");
	    }
	  break;
	case NODE_FREQUENCY_HOT:
	case NODE_FREQUENCY_NORMAL:
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Called by %s that is normal or hot\n",
		     edge->caller->name ());
	  d->maybe_unlikely_executed = false;
	  d->maybe_executed_once = false;
	  break;
	}
    }
  return edge != NULL;
}

/* Return ture if NODE contains hot calls.  */

bool
contains_hot_call_p (struct cgraph_node *node)
{
  struct cgraph_edge *e;
  for (e = node->callees; e; e = e->next_callee)
    if (cgraph_maybe_hot_edge_p (e))
      return true;
    else if (!e->inline_failed
	     && contains_hot_call_p (e->callee))
      return true;
  for (e = node->indirect_calls; e; e = e->next_callee)
    if (cgraph_maybe_hot_edge_p (e))
      return true;
  return false;
}

/* See if the frequency of NODE can be updated based on frequencies of its
   callers.  */
bool
ipa_propagate_frequency (struct cgraph_node *node)
{
  struct ipa_propagate_frequency_data d = {true, true, true, true};
  bool changed = false;

  /* We can not propagate anything useful about externally visible functions
     nor about virtuals.  */
  if (!node->local.local
      || node->alias
      || (flag_devirtualize && DECL_VIRTUAL_P (node->decl)))
    return false;
  gcc_assert (node->analyzed);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Processing frequency %s\n", node->name ());

  cgraph_for_node_and_aliases (node, ipa_propagate_frequency_1, &d, true);

  if ((d.only_called_at_startup && !d.only_called_at_exit)
      && !node->only_called_at_startup)
    {
       node->only_called_at_startup = true;
       if (dump_file)
         fprintf (dump_file, "Node %s promoted to only called at startup.\n",
		  node->name ());
       changed = true;
    }
  if ((d.only_called_at_exit && !d.only_called_at_startup)
      && !node->only_called_at_exit)
    {
       node->only_called_at_exit = true;
       if (dump_file)
         fprintf (dump_file, "Node %s promoted to only called at exit.\n",
		  node->name ());
       changed = true;
    }

  /* With profile we can decide on hot/normal based on count.  */
  if (node->count)
    {
      bool hot = false;
      if (node->count >= get_hot_bb_threshold ())
	hot = true;
      if (!hot)
	hot |= contains_hot_call_p (node);
      if (hot)
	{
	  if (node->frequency != NODE_FREQUENCY_HOT)
	    {
	      if (dump_file)
		fprintf (dump_file, "Node %s promoted to hot.\n",
			 node->name ());
	      node->frequency = NODE_FREQUENCY_HOT;
	      return true;
	    }
	  return false;
	}
      else if (node->frequency == NODE_FREQUENCY_HOT)
	{
	  if (dump_file)
	    fprintf (dump_file, "Node %s reduced to normal.\n",
		     node->name ());
	  node->frequency = NODE_FREQUENCY_NORMAL;
	  changed = true;
	}
    }
  /* These come either from profile or user hints; never update them.  */
  if (node->frequency == NODE_FREQUENCY_HOT
      || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
    return changed;
  if (d.maybe_unlikely_executed)
    {
      node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
      if (dump_file)
	fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
		 node->name ());
      changed = true;
    }
  else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
    {
      node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      if (dump_file)
	fprintf (dump_file, "Node %s promoted to executed once.\n",
		 node->name ());
      changed = true;
    }
  return changed;
}

/* Simple ipa profile pass propagating frequencies across the callgraph.  */

static unsigned int
ipa_profile (void)
{
  struct cgraph_node **order;
  struct cgraph_edge *e;
  int order_pos;
  bool something_changed = false;
  int i;
  gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
  struct cgraph_node *n,*n2;
  int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
  bool node_map_initialized = false;

  if (dump_file)
    dump_histogram (dump_file, histogram);
  for (i = 0; i < (int)histogram.length (); i++)
    {
      overall_time += histogram[i]->count * histogram[i]->time;
      overall_size += histogram[i]->size;
    }
  if (overall_time)
    {
      gcov_type threshold;

      gcc_assert (overall_size);
      if (dump_file)
	{
	  gcov_type min, cumulated_time = 0, cumulated_size = 0;

	  fprintf (dump_file, "Overall time: "HOST_WIDEST_INT_PRINT_DEC"\n", 
		   (HOST_WIDEST_INT)overall_time);
	  min = get_hot_bb_threshold ();
          for (i = 0; i < (int)histogram.length () && histogram[i]->count >= min;
	       i++)
	    {
	      cumulated_time += histogram[i]->count * histogram[i]->time;
	      cumulated_size += histogram[i]->size;
	    }
	  fprintf (dump_file, "GCOV min count: "HOST_WIDEST_INT_PRINT_DEC
		   " Time:%3.2f%% Size:%3.2f%%\n", 
		   (HOST_WIDEST_INT)min,
		   cumulated_time * 100.0 / overall_time,
		   cumulated_size * 100.0 / overall_size);
	}
      cutoff = (overall_time * PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE) + 500) / 1000;
      threshold = 0;
      for (i = 0; cumulated < cutoff; i++)
	{
	  cumulated += histogram[i]->count * histogram[i]->time;
          threshold = histogram[i]->count;
	}
      if (!threshold)
	threshold = 1;
      if (dump_file)
	{
	  gcov_type cumulated_time = 0, cumulated_size = 0;

          for (i = 0;
	       i < (int)histogram.length () && histogram[i]->count >= threshold;
	       i++)
	    {
	      cumulated_time += histogram[i]->count * histogram[i]->time;
	      cumulated_size += histogram[i]->size;
	    }
	  fprintf (dump_file, "Determined min count: "HOST_WIDEST_INT_PRINT_DEC
		   " Time:%3.2f%% Size:%3.2f%%\n", 
		   (HOST_WIDEST_INT)threshold,
		   cumulated_time * 100.0 / overall_time,
		   cumulated_size * 100.0 / overall_size);
	}
      if (threshold > get_hot_bb_threshold ()
	  || in_lto_p)
	{
	  if (dump_file)
	    fprintf (dump_file, "Threshold updated.\n");
          set_hot_bb_threshold (threshold);
	}
    }
  histogram.release ();
  free_alloc_pool (histogram_pool);

  /* Produce speculative calls: we saved common traget from porfiling into
     e->common_target_id.  Now, at link time, we can look up corresponding
     function node and produce speculative call.  */

  FOR_EACH_DEFINED_FUNCTION (n)
    {
      bool update = false;

      for (e = n->indirect_calls; e; e = e->next_callee)
	{
	  if (n->count)
	    nindirect++;
	  if (e->indirect_info->common_target_id)
	    {
	      if (!node_map_initialized)
	        init_node_map (false);
	      node_map_initialized = true;
	      ncommon++;
	      n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
	      if (n2)
		{
		  if (dump_file)
		    {
		      fprintf (dump_file, "Indirect call -> direct call from"
			       " other module %s/%i => %s/%i, prob %3.2f\n",
			       xstrdup (n->name ()), n->order,
			       xstrdup (n2->name ()), n2->order,
			       e->indirect_info->common_target_probability
			       / (float)REG_BR_PROB_BASE);
		    }
		  if (e->indirect_info->common_target_probability
		      < REG_BR_PROB_BASE / 2)
		    {
		      nuseless++;
		      if (dump_file)
			fprintf (dump_file,
				 "Not speculating: probability is too low.\n");
		    }
		  else if (!cgraph_maybe_hot_edge_p (e))
		    {
		      nuseless++;
		      if (dump_file)
			fprintf (dump_file,
				 "Not speculating: call is cold.\n");
		    }
		  else if (cgraph_function_body_availability (n2)
			   <= AVAIL_OVERWRITABLE
			   && symtab_can_be_discarded (n2))
		    {
		      nuseless++;
		      if (dump_file)
			fprintf (dump_file,
				 "Not speculating: target is overwritable "
				 "and can be discarded.\n");
		    }
		  else
		    {
		      /* Target may be overwritable, but profile says that
			 control flow goes to this particular implementation
			 of N2.  Speculate on the local alias to allow inlining.
		       */
		      if (!symtab_can_be_discarded (n2))
			{
			  cgraph_node *alias;
			  alias = cgraph (symtab_nonoverwritable_alias
					   (n2));
			  if (alias)
			    n2 = alias;
			}
		      nconverted++;
		      cgraph_turn_edge_to_speculative
			(e, n2,
			 apply_scale (e->count,
				      e->indirect_info->common_target_probability),
			 apply_scale (e->frequency,
				      e->indirect_info->common_target_probability));
		      update = true;
		    }
		}
	      else
		{
		  if (dump_file)
		    fprintf (dump_file, "Function with profile-id %i not found.\n",
			     e->indirect_info->common_target_id);
		  nunknown++;
		}
	    }
	 }
       if (update)
	 inline_update_overall_summary (n);
     }
  if (node_map_initialized)
    del_node_map ();
  if (dump_file && nindirect)
    fprintf (dump_file,
	     "%i indirect calls trained.\n"
	     "%i (%3.2f%%) have common target.\n"
	     "%i (%3.2f%%) targets was not found.\n"
	     "%i (%3.2f%%) speculations seems useless.\n"
	     "%i (%3.2f%%) speculations produced.\n",
	     nindirect,
	     ncommon, ncommon * 100.0 / nindirect,
	     nunknown, nunknown * 100.0 / nindirect,
	     nuseless, nuseless * 100.0 / nindirect,
	     nconverted, nconverted * 100.0 / nindirect);

  order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  order_pos = ipa_reverse_postorder (order);
  for (i = order_pos - 1; i >= 0; i--)
    {
      if (order[i]->local.local && ipa_propagate_frequency (order[i]))
	{
	  for (e = order[i]->callees; e; e = e->next_callee)
	    if (e->callee->local.local && !e->callee->aux)
	      {
	        something_changed = true;
	        e->callee->aux = (void *)1;
	      }
	}
      order[i]->aux = NULL;
    }

  while (something_changed)
    {
      something_changed = false;
      for (i = order_pos - 1; i >= 0; i--)
	{
	  if (order[i]->aux && ipa_propagate_frequency (order[i]))
	    {
	      for (e = order[i]->callees; e; e = e->next_callee)
		if (e->callee->local.local && !e->callee->aux)
		  {
		    something_changed = true;
		    e->callee->aux = (void *)1;
		  }
	    }
	  order[i]->aux = NULL;
	}
    }
  free (order);
  return 0;
}

static bool
gate_ipa_profile (void)
{
  return flag_ipa_profile;
}

namespace {

const pass_data pass_data_ipa_profile =
{
  IPA_PASS, /* type */
  "profile_estimate", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_IPA_PROFILE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_ipa_profile : public ipa_opt_pass_d
{
public:
  pass_ipa_profile (gcc::context *ctxt)
    : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
		      ipa_profile_generate_summary, /* generate_summary */
		      ipa_profile_write_summary, /* write_summary */
		      ipa_profile_read_summary, /* read_summary */
		      NULL, /* write_optimization_summary */
		      NULL, /* read_optimization_summary */
		      NULL, /* stmt_fixup */
		      0, /* function_transform_todo_flags_start */
		      NULL, /* function_transform */
		      NULL) /* variable_transform */
  {}

  /* opt_pass methods: */
  bool gate () { return gate_ipa_profile (); }
  unsigned int execute () { return ipa_profile (); }

}; // class pass_ipa_profile

} // anon namespace

ipa_opt_pass_d *
make_pass_ipa_profile (gcc::context *ctxt)
{
  return new pass_ipa_profile (ctxt);
}