1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
|
/* Integrated Register Allocator. Changing code and generating moves.
Copyright (C) 2006-2013 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* When we have more one region, we need to change the original RTL
code after coloring. Let us consider two allocnos representing the
same pseudo-register outside and inside a region respectively.
They can get different hard-registers. The reload pass works on
pseudo registers basis and there is no way to say the reload that
pseudo could be in different registers and it is even more
difficult to say in what places of the code the pseudo should have
particular hard-registers. So in this case IRA has to create and
use a new pseudo-register inside the region and adds code to move
allocno values on the region's borders. This is done by the code
in this file.
The code makes top-down traversal of the regions and generate new
pseudos and the move code on the region borders. In some
complicated cases IRA can create a new pseudo used temporarily to
move allocno values when a swap of values stored in two
hard-registers is needed (e.g. two allocnos representing different
pseudos outside region got respectively hard registers 1 and 2 and
the corresponding allocnos inside the region got respectively hard
registers 2 and 1). At this stage, the new pseudo is marked as
spilled.
IRA still creates the pseudo-register and the moves on the region
borders even when the both corresponding allocnos were assigned to
the same hard-register. It is done because, if the reload pass for
some reason spills a pseudo-register representing the original
pseudo outside or inside the region, the effect will be smaller
because another pseudo will still be in the hard-register. In most
cases, this is better then spilling the original pseudo in its
whole live-range. If reload does not change the allocation for the
two pseudo-registers, the trivial move will be removed by
post-reload optimizations.
IRA does not generate a new pseudo and moves for the allocno values
if the both allocnos representing an original pseudo inside and
outside region assigned to the same hard register when the register
pressure in the region for the corresponding pressure class is less
than number of available hard registers for given pressure class.
IRA also does some optimizations to remove redundant moves which is
transformed into stores by the reload pass on CFG edges
representing exits from the region.
IRA tries to reduce duplication of code generated on CFG edges
which are enters and exits to/from regions by moving some code to
the edge sources or destinations when it is possible. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "regs.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "flags.h"
#include "obstack.h"
#include "bitmap.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "expr.h"
#include "recog.h"
#include "params.h"
#include "reload.h"
#include "df.h"
#include "ira-int.h"
/* Data used to emit live range split insns and to flattening IR. */
ira_emit_data_t ira_allocno_emit_data;
/* Definitions for vectors of pointers. */
typedef void *void_p;
/* Pointers to data allocated for allocnos being created during
emitting. Usually there are quite few such allocnos because they
are created only for resolving loop in register shuffling. */
static vec<void_p> new_allocno_emit_data_vec;
/* Allocate and initiate the emit data. */
void
ira_initiate_emit_data (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
ira_allocno_emit_data
= (ira_emit_data_t) ira_allocate (ira_allocnos_num
* sizeof (struct ira_emit_data));
memset (ira_allocno_emit_data, 0,
ira_allocnos_num * sizeof (struct ira_emit_data));
FOR_EACH_ALLOCNO (a, ai)
ALLOCNO_ADD_DATA (a) = ira_allocno_emit_data + ALLOCNO_NUM (a);
new_allocno_emit_data_vec.create (50);
}
/* Free the emit data. */
void
ira_finish_emit_data (void)
{
void_p p;
ira_allocno_t a;
ira_allocno_iterator ai;
ira_free (ira_allocno_emit_data);
FOR_EACH_ALLOCNO (a, ai)
ALLOCNO_ADD_DATA (a) = NULL;
for (;new_allocno_emit_data_vec.length () != 0;)
{
p = new_allocno_emit_data_vec.pop ();
ira_free (p);
}
new_allocno_emit_data_vec.release ();
}
/* Create and return a new allocno with given REGNO and
LOOP_TREE_NODE. Allocate emit data for it. */
static ira_allocno_t
create_new_allocno (int regno, ira_loop_tree_node_t loop_tree_node)
{
ira_allocno_t a;
a = ira_create_allocno (regno, false, loop_tree_node);
ALLOCNO_ADD_DATA (a) = ira_allocate (sizeof (struct ira_emit_data));
memset (ALLOCNO_ADD_DATA (a), 0, sizeof (struct ira_emit_data));
new_allocno_emit_data_vec.safe_push (ALLOCNO_ADD_DATA (a));
return a;
}
/* See comments below. */
typedef struct move *move_t;
/* The structure represents an allocno move. Both allocnos have the
same original regno but different allocation. */
struct move
{
/* The allocnos involved in the move. */
ira_allocno_t from, to;
/* The next move in the move sequence. */
move_t next;
/* Used for finding dependencies. */
bool visited_p;
/* The size of the following array. */
int deps_num;
/* Moves on which given move depends on. Dependency can be cyclic.
It means we need a temporary to generates the moves. Sequence
A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
B1 are assigned to reg R2 is an example of the cyclic
dependencies. */
move_t *deps;
/* First insn generated for the move. */
rtx insn;
};
/* Array of moves (indexed by BB index) which should be put at the
start/end of the corresponding basic blocks. */
static move_t *at_bb_start, *at_bb_end;
/* Max regno before renaming some pseudo-registers. For example, the
same pseudo-register can be renamed in a loop if its allocation is
different outside the loop. */
static int max_regno_before_changing;
/* Return new move of allocnos TO and FROM. */
static move_t
create_move (ira_allocno_t to, ira_allocno_t from)
{
move_t move;
move = (move_t) ira_allocate (sizeof (struct move));
move->deps = NULL;
move->deps_num = 0;
move->to = to;
move->from = from;
move->next = NULL;
move->insn = NULL_RTX;
move->visited_p = false;
return move;
}
/* Free memory for MOVE and its dependencies. */
static void
free_move (move_t move)
{
if (move->deps != NULL)
ira_free (move->deps);
ira_free (move);
}
/* Free memory for list of the moves given by its HEAD. */
static void
free_move_list (move_t head)
{
move_t next;
for (; head != NULL; head = next)
{
next = head->next;
free_move (head);
}
}
/* Return TRUE if the move list LIST1 and LIST2 are equal (two
moves are equal if they involve the same allocnos). */
static bool
eq_move_lists_p (move_t list1, move_t list2)
{
for (; list1 != NULL && list2 != NULL;
list1 = list1->next, list2 = list2->next)
if (list1->from != list2->from || list1->to != list2->to)
return false;
return list1 == list2;
}
/* Print move list LIST into file F. */
static void
print_move_list (FILE *f, move_t list)
{
for (; list != NULL; list = list->next)
fprintf (f, " a%dr%d->a%dr%d",
ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
fprintf (f, "\n");
}
extern void ira_debug_move_list (move_t list);
/* Print move list LIST into stderr. */
void
ira_debug_move_list (move_t list)
{
print_move_list (stderr, list);
}
/* This recursive function changes pseudo-registers in *LOC if it is
necessary. The function returns TRUE if a change was done. */
static bool
change_regs (rtx *loc)
{
int i, regno, result = false;
const char *fmt;
enum rtx_code code;
rtx reg;
if (*loc == NULL_RTX)
return false;
code = GET_CODE (*loc);
if (code == REG)
{
regno = REGNO (*loc);
if (regno < FIRST_PSEUDO_REGISTER)
return false;
if (regno >= max_regno_before_changing)
/* It is a shared register which was changed already. */
return false;
if (ira_curr_regno_allocno_map[regno] == NULL)
return false;
reg = allocno_emit_reg (ira_curr_regno_allocno_map[regno]);
if (reg == *loc)
return false;
*loc = reg;
return true;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
result = change_regs (&XEXP (*loc, i)) || result;
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
result = change_regs (&XVECEXP (*loc, i, j)) || result;
}
}
return result;
}
/* Attach MOVE to the edge E. The move is attached to the head of the
list if HEAD_P is TRUE. */
static void
add_to_edge_list (edge e, move_t move, bool head_p)
{
move_t last;
if (head_p || e->aux == NULL)
{
move->next = (move_t) e->aux;
e->aux = move;
}
else
{
for (last = (move_t) e->aux; last->next != NULL; last = last->next)
;
last->next = move;
move->next = NULL;
}
}
/* Create and return new pseudo-register with the same attributes as
ORIGINAL_REG. */
rtx
ira_create_new_reg (rtx original_reg)
{
rtx new_reg;
new_reg = gen_reg_rtx (GET_MODE (original_reg));
ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
REG_POINTER (new_reg) = REG_POINTER (original_reg);
REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Creating newreg=%i from oldreg=%i\n",
REGNO (new_reg), REGNO (original_reg));
ira_expand_reg_equiv ();
return new_reg;
}
/* Return TRUE if loop given by SUBNODE inside the loop given by
NODE. */
static bool
subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
{
for (; subnode != NULL; subnode = subnode->parent)
if (subnode == node)
return true;
return false;
}
/* Set up member `reg' to REG for allocnos which has the same regno as
ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
static void
set_allocno_reg (ira_allocno_t allocno, rtx reg)
{
int regno;
ira_allocno_t a;
ira_loop_tree_node_t node;
node = ALLOCNO_LOOP_TREE_NODE (allocno);
for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
ALLOCNO_EMIT_DATA (a)->reg = reg;
for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
ALLOCNO_EMIT_DATA (a)->reg = reg;
regno = ALLOCNO_REGNO (allocno);
for (a = allocno;;)
{
if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
{
node = node->parent;
if (node == NULL)
break;
a = node->regno_allocno_map[regno];
}
if (a == NULL)
continue;
if (ALLOCNO_EMIT_DATA (a)->child_renamed_p)
break;
ALLOCNO_EMIT_DATA (a)->child_renamed_p = true;
}
}
/* Return true if there is an entry to given loop not from its parent
(or grandparent) block. For example, it is possible for two
adjacent loops inside another loop. */
static bool
entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
{
ira_loop_tree_node_t bb_node, src_loop_node, parent;
edge e;
edge_iterator ei;
for (bb_node = loop_node->children;
bb_node != NULL;
bb_node = bb_node->next)
if (bb_node->bb != NULL)
{
FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
{
for (parent = src_loop_node->parent;
parent != NULL;
parent = parent->parent)
if (parent == loop_node)
break;
if (parent != NULL)
/* That is an exit from a nested loop -- skip it. */
continue;
for (parent = loop_node->parent;
parent != NULL;
parent = parent->parent)
if (src_loop_node == parent)
break;
if (parent == NULL)
return true;
}
}
return false;
}
/* Set up ENTERED_FROM_NON_PARENT_P for each loop region. */
static void
setup_entered_from_non_parent_p (void)
{
unsigned int i;
loop_p loop;
ira_assert (current_loops != NULL);
FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
if (ira_loop_nodes[i].regno_allocno_map != NULL)
ira_loop_nodes[i].entered_from_non_parent_p
= entered_from_non_parent_p (&ira_loop_nodes[i]);
}
/* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
DEST_ALLOCNO (assigned to memory) can be removed because it does
not change value of the destination. One possible reason for this
is the situation when SRC_ALLOCNO is not modified in the
corresponding loop. */
static bool
store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
{
int regno, orig_regno;
ira_allocno_t a;
ira_loop_tree_node_t node;
ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
&& ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
orig_regno = ALLOCNO_REGNO (src_allocno);
regno = REGNO (allocno_emit_reg (dest_allocno));
for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
node != NULL;
node = node->parent)
{
a = node->regno_allocno_map[orig_regno];
ira_assert (a != NULL);
if (REGNO (allocno_emit_reg (a)) == (unsigned) regno)
/* We achieved the destination and everything is ok. */
return true;
else if (bitmap_bit_p (node->modified_regnos, orig_regno))
return false;
else if (node->entered_from_non_parent_p)
/* If there is a path from a destination loop block to the
source loop header containing basic blocks of non-parents
(grandparents) of the source loop, we should have checked
modifications of the pseudo on this path too to decide
about possibility to remove the store. It could be done by
solving a data-flow problem. Unfortunately such global
solution would complicate IR flattening. Therefore we just
prohibit removal of the store in such complicated case. */
return false;
}
/* It is actually a loop entry -- do not remove the store. */
return false;
}
/* Generate and attach moves to the edge E. This looks at the final
regnos of allocnos living on the edge with the same original regno
to figure out when moves should be generated. */
static void
generate_edge_moves (edge e)
{
ira_loop_tree_node_t src_loop_node, dest_loop_node;
unsigned int regno;
bitmap_iterator bi;
ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
move_t move;
bitmap regs_live_in_dest, regs_live_out_src;
src_loop_node = IRA_BB_NODE (e->src)->parent;
dest_loop_node = IRA_BB_NODE (e->dest)->parent;
e->aux = NULL;
if (src_loop_node == dest_loop_node)
return;
src_map = src_loop_node->regno_allocno_map;
dest_map = dest_loop_node->regno_allocno_map;
regs_live_in_dest = df_get_live_in (e->dest);
regs_live_out_src = df_get_live_out (e->src);
EXECUTE_IF_SET_IN_REG_SET (regs_live_in_dest,
FIRST_PSEUDO_REGISTER, regno, bi)
if (bitmap_bit_p (regs_live_out_src, regno))
{
src_allocno = src_map[regno];
dest_allocno = dest_map[regno];
if (REGNO (allocno_emit_reg (src_allocno))
== REGNO (allocno_emit_reg (dest_allocno)))
continue;
/* Remove unnecessary stores at the region exit. We should do
this for readonly memory for sure and this is guaranteed by
that we never generate moves on region borders (see
checking in function change_loop). */
if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
&& ALLOCNO_HARD_REGNO (src_allocno) >= 0
&& store_can_be_removed_p (src_allocno, dest_allocno))
{
ALLOCNO_EMIT_DATA (src_allocno)->mem_optimized_dest = dest_allocno;
ALLOCNO_EMIT_DATA (dest_allocno)->mem_optimized_dest_p = true;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Remove r%d:a%d->a%d(mem)\n",
regno, ALLOCNO_NUM (src_allocno),
ALLOCNO_NUM (dest_allocno));
continue;
}
move = create_move (dest_allocno, src_allocno);
add_to_edge_list (e, move, true);
}
}
/* Bitmap of allocnos local for the current loop. */
static bitmap local_allocno_bitmap;
/* This bitmap is used to find that we need to generate and to use a
new pseudo-register when processing allocnos with the same original
regno. */
static bitmap used_regno_bitmap;
/* This bitmap contains regnos of allocnos which were renamed locally
because the allocnos correspond to disjoint live ranges in loops
with a common parent. */
static bitmap renamed_regno_bitmap;
/* Change (if necessary) pseudo-registers inside loop given by loop
tree node NODE. */
static void
change_loop (ira_loop_tree_node_t node)
{
bitmap_iterator bi;
unsigned int i;
int regno;
bool used_p;
ira_allocno_t allocno, parent_allocno, *map;
rtx insn, original_reg;
enum reg_class aclass, pclass;
ira_loop_tree_node_t parent;
if (node != ira_loop_tree_root)
{
ira_assert (current_loops != NULL);
if (node->bb != NULL)
{
FOR_BB_INSNS (node->bb, insn)
if (INSN_P (insn) && change_regs (&insn))
{
df_insn_rescan (insn);
df_notes_rescan (insn);
}
return;
}
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Changing RTL for loop %d (header bb%d)\n",
node->loop_num, node->loop->header->index);
parent = ira_curr_loop_tree_node->parent;
map = parent->regno_allocno_map;
EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
0, i, bi)
{
allocno = ira_allocnos[i];
regno = ALLOCNO_REGNO (allocno);
aclass = ALLOCNO_CLASS (allocno);
pclass = ira_pressure_class_translate[aclass];
parent_allocno = map[regno];
ira_assert (regno < ira_reg_equiv_len);
/* We generate the same hard register move because the
reload pass can put an allocno into memory in this case
we will have live range splitting. If it does not happen
such the same hard register moves will be removed. The
worst case when the both allocnos are put into memory by
the reload is very rare. */
if (parent_allocno != NULL
&& (ALLOCNO_HARD_REGNO (allocno)
== ALLOCNO_HARD_REGNO (parent_allocno))
&& (ALLOCNO_HARD_REGNO (allocno) < 0
|| (parent->reg_pressure[pclass] + 1
<= ira_class_hard_regs_num[pclass])
|| TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
[ALLOCNO_MODE (allocno)],
ALLOCNO_HARD_REGNO (allocno))
/* don't create copies because reload can spill an
allocno set by copy although the allocno will not
get memory slot. */
|| ira_equiv_no_lvalue_p (regno)))
continue;
original_reg = allocno_emit_reg (allocno);
if (parent_allocno == NULL
|| (REGNO (allocno_emit_reg (parent_allocno))
== REGNO (original_reg)))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file)
fprintf (ira_dump_file, " %i vs parent %i:",
ALLOCNO_HARD_REGNO (allocno),
ALLOCNO_HARD_REGNO (parent_allocno));
set_allocno_reg (allocno, ira_create_new_reg (original_reg));
}
}
}
/* Rename locals: Local allocnos with same regno in different loops
might get the different hard register. So we need to change
ALLOCNO_REG. */
bitmap_and_compl (local_allocno_bitmap,
ira_curr_loop_tree_node->all_allocnos,
ira_curr_loop_tree_node->border_allocnos);
EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
{
allocno = ira_allocnos[i];
regno = ALLOCNO_REGNO (allocno);
if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
continue;
used_p = !bitmap_set_bit (used_regno_bitmap, regno);
ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
if (! used_p)
continue;
bitmap_set_bit (renamed_regno_bitmap, regno);
set_allocno_reg (allocno, ira_create_new_reg (allocno_emit_reg (allocno)));
}
}
/* Process to set up flag somewhere_renamed_p. */
static void
set_allocno_somewhere_renamed_p (void)
{
unsigned int regno;
ira_allocno_t allocno;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (allocno, ai)
{
regno = ALLOCNO_REGNO (allocno);
if (bitmap_bit_p (renamed_regno_bitmap, regno)
&& REGNO (allocno_emit_reg (allocno)) == regno)
ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
}
}
/* Return TRUE if move lists on all edges given in vector VEC are
equal. */
static bool
eq_edge_move_lists_p (vec<edge, va_gc> *vec)
{
move_t list;
int i;
list = (move_t) EDGE_I (vec, 0)->aux;
for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
return false;
return true;
}
/* Look at all entry edges (if START_P) or exit edges of basic block
BB and put move lists at the BB start or end if it is possible. In
other words, this decreases code duplication of allocno moves. */
static void
unify_moves (basic_block bb, bool start_p)
{
int i;
edge e;
move_t list;
vec<edge, va_gc> *vec;
vec = (start_p ? bb->preds : bb->succs);
if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
return;
e = EDGE_I (vec, 0);
list = (move_t) e->aux;
if (! start_p && control_flow_insn_p (BB_END (bb)))
return;
e->aux = NULL;
for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
{
e = EDGE_I (vec, i);
free_move_list ((move_t) e->aux);
e->aux = NULL;
}
if (start_p)
at_bb_start[bb->index] = list;
else
at_bb_end[bb->index] = list;
}
/* Last move (in move sequence being processed) setting up the
corresponding hard register. */
static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
/* If the element value is equal to CURR_TICK then the corresponding
element in `hard_regno_last_set' is defined and correct. */
static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
/* Last move (in move sequence being processed) setting up the
corresponding allocno. */
static move_t *allocno_last_set;
/* If the element value is equal to CURR_TICK then the corresponding
element in . `allocno_last_set' is defined and correct. */
static int *allocno_last_set_check;
/* Definition of vector of moves. */
/* This vec contains moves sorted topologically (depth-first) on their
dependency graph. */
static vec<move_t> move_vec;
/* The variable value is used to check correctness of values of
elements of arrays `hard_regno_last_set' and
`allocno_last_set_check'. */
static int curr_tick;
/* This recursive function traverses dependencies of MOVE and produces
topological sorting (in depth-first order). */
static void
traverse_moves (move_t move)
{
int i;
if (move->visited_p)
return;
move->visited_p = true;
for (i = move->deps_num - 1; i >= 0; i--)
traverse_moves (move->deps[i]);
move_vec.safe_push (move);
}
/* Remove unnecessary moves in the LIST, makes topological sorting,
and removes cycles on hard reg dependencies by introducing new
allocnos assigned to memory and additional moves. It returns the
result move list. */
static move_t
modify_move_list (move_t list)
{
int i, n, nregs, hard_regno;
ira_allocno_t to, from;
move_t move, new_move, set_move, first, last;
if (list == NULL)
return NULL;
/* Creat move deps. */
curr_tick++;
for (move = list; move != NULL; move = move->next)
{
to = move->to;
if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
continue;
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
for (i = 0; i < nregs; i++)
{
hard_regno_last_set[hard_regno + i] = move;
hard_regno_last_set_check[hard_regno + i] = curr_tick;
}
}
for (move = list; move != NULL; move = move->next)
{
from = move->from;
to = move->to;
if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
{
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
for (n = i = 0; i < nregs; i++)
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
&& (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
!= ALLOCNO_REGNO (from)))
n++;
move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
for (n = i = 0; i < nregs; i++)
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
&& (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
!= ALLOCNO_REGNO (from)))
move->deps[n++] = hard_regno_last_set[hard_regno + i];
move->deps_num = n;
}
}
/* Toplogical sorting: */
move_vec.truncate (0);
for (move = list; move != NULL; move = move->next)
traverse_moves (move);
last = NULL;
for (i = (int) move_vec.length () - 1; i >= 0; i--)
{
move = move_vec[i];
move->next = NULL;
if (last != NULL)
last->next = move;
last = move;
}
first = move_vec.last ();
/* Removing cycles: */
curr_tick++;
move_vec.truncate (0);
for (move = first; move != NULL; move = move->next)
{
from = move->from;
to = move->to;
if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
{
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
for (i = 0; i < nregs; i++)
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
&& ALLOCNO_HARD_REGNO
(hard_regno_last_set[hard_regno + i]->to) >= 0)
{
int n, j;
ira_allocno_t new_allocno;
set_move = hard_regno_last_set[hard_regno + i];
/* It does not matter what loop_tree_node (of TO or
FROM) to use for the new allocno because of
subsequent IRA internal representation
flattening. */
new_allocno
= create_new_allocno (ALLOCNO_REGNO (set_move->to),
ALLOCNO_LOOP_TREE_NODE (set_move->to));
ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
ira_set_allocno_class (new_allocno,
ALLOCNO_CLASS (set_move->to));
ira_create_allocno_objects (new_allocno);
ALLOCNO_ASSIGNED_P (new_allocno) = true;
ALLOCNO_HARD_REGNO (new_allocno) = -1;
ALLOCNO_EMIT_DATA (new_allocno)->reg
= ira_create_new_reg (allocno_emit_reg (set_move->to));
/* Make it possibly conflicting with all earlier
created allocnos. Cases where temporary allocnos
created to remove the cycles are quite rare. */
n = ALLOCNO_NUM_OBJECTS (new_allocno);
gcc_assert (n == ALLOCNO_NUM_OBJECTS (set_move->to));
for (j = 0; j < n; j++)
{
ira_object_t new_obj = ALLOCNO_OBJECT (new_allocno, j);
OBJECT_MIN (new_obj) = 0;
OBJECT_MAX (new_obj) = ira_objects_num - 1;
}
new_move = create_move (set_move->to, new_allocno);
set_move->to = new_allocno;
move_vec.safe_push (new_move);
ira_move_loops_num++;
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Creating temporary allocno a%dr%d\n",
ALLOCNO_NUM (new_allocno),
REGNO (allocno_emit_reg (new_allocno)));
}
}
if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
continue;
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
for (i = 0; i < nregs; i++)
{
hard_regno_last_set[hard_regno + i] = move;
hard_regno_last_set_check[hard_regno + i] = curr_tick;
}
}
for (i = (int) move_vec.length () - 1; i >= 0; i--)
{
move = move_vec[i];
move->next = NULL;
last->next = move;
last = move;
}
return first;
}
/* Generate RTX move insns from the move list LIST. This updates
allocation cost using move execution frequency FREQ. */
static rtx
emit_move_list (move_t list, int freq)
{
rtx to, from, dest;
int to_regno, from_regno, cost, regno;
rtx result, insn, set;
enum machine_mode mode;
enum reg_class aclass;
grow_reg_equivs ();
start_sequence ();
for (; list != NULL; list = list->next)
{
start_sequence ();
to = allocno_emit_reg (list->to);
to_regno = REGNO (to);
from = allocno_emit_reg (list->from);
from_regno = REGNO (from);
emit_move_insn (to, from);
list->insn = get_insns ();
end_sequence ();
for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
{
/* The reload needs to have set up insn codes. If the
reload sets up insn codes by itself, it may fail because
insns will have hard registers instead of pseudos and
there may be no machine insn with given hard
registers. */
recog_memoized (insn);
/* Add insn to equiv init insn list if it is necessary.
Otherwise reload will not remove this insn if it decides
to use the equivalence. */
if ((set = single_set (insn)) != NULL_RTX)
{
dest = SET_DEST (set);
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
ira_assert (REG_P (dest));
regno = REGNO (dest);
if (regno >= ira_reg_equiv_len
|| (ira_reg_equiv[regno].invariant == NULL_RTX
&& ira_reg_equiv[regno].constant == NULL_RTX))
continue; /* regno has no equivalence. */
ira_assert ((int) reg_equivs->length () > regno);
reg_equiv_init (regno)
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
}
}
if (ira_use_lra_p)
ira_update_equiv_info_by_shuffle_insn (to_regno, from_regno, list->insn);
emit_insn (list->insn);
mode = ALLOCNO_MODE (list->to);
aclass = ALLOCNO_CLASS (list->to);
cost = 0;
if (ALLOCNO_HARD_REGNO (list->to) < 0)
{
if (ALLOCNO_HARD_REGNO (list->from) >= 0)
{
cost = ira_memory_move_cost[mode][aclass][0] * freq;
ira_store_cost += cost;
}
}
else if (ALLOCNO_HARD_REGNO (list->from) < 0)
{
if (ALLOCNO_HARD_REGNO (list->to) >= 0)
{
cost = ira_memory_move_cost[mode][aclass][0] * freq;
ira_load_cost += cost;
}
}
else
{
ira_init_register_move_cost_if_necessary (mode);
cost = ira_register_move_cost[mode][aclass][aclass] * freq;
ira_shuffle_cost += cost;
}
ira_overall_cost += cost;
}
result = get_insns ();
end_sequence ();
return result;
}
/* Generate RTX move insns from move lists attached to basic blocks
and edges. */
static void
emit_moves (void)
{
basic_block bb;
edge_iterator ei;
edge e;
rtx insns, tmp;
FOR_EACH_BB_FN (bb, cfun)
{
if (at_bb_start[bb->index] != NULL)
{
at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
insns = emit_move_list (at_bb_start[bb->index],
REG_FREQ_FROM_BB (bb));
tmp = BB_HEAD (bb);
if (LABEL_P (tmp))
tmp = NEXT_INSN (tmp);
if (NOTE_INSN_BASIC_BLOCK_P (tmp))
tmp = NEXT_INSN (tmp);
if (tmp == BB_HEAD (bb))
emit_insn_before (insns, tmp);
else if (tmp != NULL_RTX)
emit_insn_after (insns, PREV_INSN (tmp));
else
emit_insn_after (insns, get_last_insn ());
}
if (at_bb_end[bb->index] != NULL)
{
at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
ira_assert (! control_flow_insn_p (BB_END (bb)));
emit_insn_after (insns, BB_END (bb));
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->aux == NULL)
continue;
ira_assert ((e->flags & EDGE_ABNORMAL) == 0
|| ! EDGE_CRITICAL_P (e));
e->aux = modify_move_list ((move_t) e->aux);
insert_insn_on_edge
(emit_move_list ((move_t) e->aux,
REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
e);
if (e->src->next_bb != e->dest)
ira_additional_jumps_num++;
}
}
}
/* Update costs of A and corresponding allocnos on upper levels on the
loop tree from reading (if READ_P) or writing A on an execution
path with FREQ. */
static void
update_costs (ira_allocno_t a, bool read_p, int freq)
{
ira_loop_tree_node_t parent;
for (;;)
{
ALLOCNO_NREFS (a)++;
ALLOCNO_FREQ (a) += freq;
ALLOCNO_MEMORY_COST (a)
+= (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)]
[read_p ? 1 : 0] * freq);
if (ALLOCNO_CAP (a) != NULL)
a = ALLOCNO_CAP (a);
else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
|| (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
break;
}
}
/* Process moves from LIST with execution FREQ to add ranges, copies,
and modify costs for allocnos involved in the moves. All regnos
living through the list is in LIVE_THROUGH, and the loop tree node
used to find corresponding allocnos is NODE. */
static void
add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
bitmap live_through, int freq)
{
int start, n;
unsigned int regno;
move_t move;
ira_allocno_t a;
ira_copy_t cp;
live_range_t r;
bitmap_iterator bi;
HARD_REG_SET hard_regs_live;
if (list == NULL)
return;
n = 0;
EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
n++;
REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
/* This is a trick to guarantee that new ranges is not merged with
the old ones. */
ira_max_point++;
start = ira_max_point;
for (move = list; move != NULL; move = move->next)
{
ira_allocno_t from = move->from;
ira_allocno_t to = move->to;
int nr, i;
bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
nr = ALLOCNO_NUM_OBJECTS (to);
for (i = 0; i < nr; i++)
{
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
if (OBJECT_CONFLICT_ARRAY (to_obj) == NULL)
{
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Allocate conflicts for a%dr%d\n",
ALLOCNO_NUM (to), REGNO (allocno_emit_reg (to)));
ira_allocate_object_conflicts (to_obj, n);
}
}
ior_hard_reg_conflicts (from, &hard_regs_live);
ior_hard_reg_conflicts (to, &hard_regs_live);
update_costs (from, true, freq);
update_costs (to, false, freq);
cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Adding cp%d:a%dr%d-a%dr%d\n",
cp->num, ALLOCNO_NUM (cp->first),
REGNO (allocno_emit_reg (cp->first)),
ALLOCNO_NUM (cp->second),
REGNO (allocno_emit_reg (cp->second)));
nr = ALLOCNO_NUM_OBJECTS (from);
for (i = 0; i < nr; i++)
{
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
r = OBJECT_LIVE_RANGES (from_obj);
if (r == NULL || r->finish >= 0)
{
ira_add_live_range_to_object (from_obj, start, ira_max_point);
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Adding range [%d..%d] to allocno a%dr%d\n",
start, ira_max_point, ALLOCNO_NUM (from),
REGNO (allocno_emit_reg (from)));
}
else
{
r->finish = ira_max_point;
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Adding range [%d..%d] to allocno a%dr%d\n",
r->start, ira_max_point, ALLOCNO_NUM (from),
REGNO (allocno_emit_reg (from)));
}
}
ira_max_point++;
nr = ALLOCNO_NUM_OBJECTS (to);
for (i = 0; i < nr; i++)
{
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
ira_add_live_range_to_object (to_obj, ira_max_point, -1);
}
ira_max_point++;
}
for (move = list; move != NULL; move = move->next)
{
int nr, i;
nr = ALLOCNO_NUM_OBJECTS (move->to);
for (i = 0; i < nr; i++)
{
ira_object_t to_obj = ALLOCNO_OBJECT (move->to, i);
r = OBJECT_LIVE_RANGES (to_obj);
if (r->finish < 0)
{
r->finish = ira_max_point - 1;
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Adding range [%d..%d] to allocno a%dr%d\n",
r->start, r->finish, ALLOCNO_NUM (move->to),
REGNO (allocno_emit_reg (move->to)));
}
}
}
EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
{
ira_allocno_t to;
int nr, i;
a = node->regno_allocno_map[regno];
if ((to = ALLOCNO_EMIT_DATA (a)->mem_optimized_dest) != NULL)
a = to;
nr = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < nr; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
ira_add_live_range_to_object (obj, start, ira_max_point - 1);
}
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Adding range [%d..%d] to live through %s allocno a%dr%d\n",
start, ira_max_point - 1,
to != NULL ? "upper level" : "",
ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
}
}
/* Process all move list to add ranges, conflicts, copies, and modify
costs for allocnos involved in the moves. */
static void
add_ranges_and_copies (void)
{
basic_block bb;
edge_iterator ei;
edge e;
ira_loop_tree_node_t node;
bitmap live_through;
live_through = ira_allocate_bitmap ();
FOR_EACH_BB_FN (bb, cfun)
{
/* It does not matter what loop_tree_node (of source or
destination block) to use for searching allocnos by their
regnos because of subsequent IR flattening. */
node = IRA_BB_NODE (bb)->parent;
bitmap_copy (live_through, df_get_live_in (bb));
add_range_and_copies_from_move_list
(at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
bitmap_copy (live_through, df_get_live_out (bb));
add_range_and_copies_from_move_list
(at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
FOR_EACH_EDGE (e, ei, bb->succs)
{
bitmap_and (live_through,
df_get_live_in (e->dest), df_get_live_out (bb));
add_range_and_copies_from_move_list
((move_t) e->aux, node, live_through,
REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
}
}
ira_free_bitmap (live_through);
}
/* The entry function changes code and generates shuffling allocnos on
region borders for the regional (LOOPS_P is TRUE in this case)
register allocation. */
void
ira_emit (bool loops_p)
{
basic_block bb;
rtx insn;
edge_iterator ei;
edge e;
ira_allocno_t a;
ira_allocno_iterator ai;
size_t sz;
FOR_EACH_ALLOCNO (a, ai)
ALLOCNO_EMIT_DATA (a)->reg = regno_reg_rtx[ALLOCNO_REGNO (a)];
if (! loops_p)
return;
sz = sizeof (move_t) * last_basic_block_for_fn (cfun);
at_bb_start = (move_t *) ira_allocate (sz);
memset (at_bb_start, 0, sz);
at_bb_end = (move_t *) ira_allocate (sz);
memset (at_bb_end, 0, sz);
local_allocno_bitmap = ira_allocate_bitmap ();
used_regno_bitmap = ira_allocate_bitmap ();
renamed_regno_bitmap = ira_allocate_bitmap ();
max_regno_before_changing = max_reg_num ();
ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
set_allocno_somewhere_renamed_p ();
ira_free_bitmap (used_regno_bitmap);
ira_free_bitmap (renamed_regno_bitmap);
ira_free_bitmap (local_allocno_bitmap);
setup_entered_from_non_parent_p ();
FOR_EACH_BB_FN (bb, cfun)
{
at_bb_start[bb->index] = NULL;
at_bb_end[bb->index] = NULL;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
generate_edge_moves (e);
}
allocno_last_set
= (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
allocno_last_set_check
= (int *) ira_allocate (sizeof (int) * max_reg_num ());
memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
curr_tick = 0;
FOR_EACH_BB_FN (bb, cfun)
unify_moves (bb, true);
FOR_EACH_BB_FN (bb, cfun)
unify_moves (bb, false);
move_vec.create (ira_allocnos_num);
emit_moves ();
add_ranges_and_copies ();
/* Clean up: */
FOR_EACH_BB_FN (bb, cfun)
{
free_move_list (at_bb_start[bb->index]);
free_move_list (at_bb_end[bb->index]);
FOR_EACH_EDGE (e, ei, bb->succs)
{
free_move_list ((move_t) e->aux);
e->aux = NULL;
}
}
move_vec.release ();
ira_free (allocno_last_set_check);
ira_free (allocno_last_set);
commit_edge_insertions ();
/* Fix insn codes. It is necessary to do it before reload because
reload assumes initial insn codes defined. The insn codes can be
invalidated by CFG infrastructure for example in jump
redirection. */
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS_REVERSE (bb, insn)
if (INSN_P (insn))
recog_memoized (insn);
ira_free (at_bb_end);
ira_free (at_bb_start);
}
|