summaryrefslogtreecommitdiff
path: root/gcc/ira.c
blob: de7f5b667f6ab99039e2b71249d5177b30071a7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
/* Integrated Register Allocator (IRA) entry point.
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* The integrated register allocator (IRA) is a
   regional register allocator performing graph coloring on a top-down
   traversal of nested regions.  Graph coloring in a region is based
   on Chaitin-Briggs algorithm.  It is called integrated because
   register coalescing, register live range splitting, and choosing a
   better hard register are done on-the-fly during coloring.  Register
   coalescing and choosing a cheaper hard register is done by hard
   register preferencing during hard register assigning.  The live
   range splitting is a byproduct of the regional register allocation.

   Major IRA notions are:

     o *Region* is a part of CFG where graph coloring based on
       Chaitin-Briggs algorithm is done.  IRA can work on any set of
       nested CFG regions forming a tree.  Currently the regions are
       the entire function for the root region and natural loops for
       the other regions.  Therefore data structure representing a
       region is called loop_tree_node.

     o *Allocno class* is a register class used for allocation of
       given allocno.  It means that only hard register of given
       register class can be assigned to given allocno.  In reality,
       even smaller subset of (*profitable*) hard registers can be
       assigned.  In rare cases, the subset can be even smaller
       because our modification of Chaitin-Briggs algorithm requires
       that sets of hard registers can be assigned to allocnos forms a
       forest, i.e. the sets can be ordered in a way where any
       previous set is not intersected with given set or is a superset
       of given set.

     o *Pressure class* is a register class belonging to a set of
       register classes containing all of the hard-registers available
       for register allocation.  The set of all pressure classes for a
       target is defined in the corresponding machine-description file
       according some criteria.  Register pressure is calculated only
       for pressure classes and it affects some IRA decisions as
       forming allocation regions.

     o *Allocno* represents the live range of a pseudo-register in a
       region.  Besides the obvious attributes like the corresponding
       pseudo-register number, allocno class, conflicting allocnos and
       conflicting hard-registers, there are a few allocno attributes
       which are important for understanding the allocation algorithm:

       - *Live ranges*.  This is a list of ranges of *program points*
         where the allocno lives.  Program points represent places
         where a pseudo can be born or become dead (there are
         approximately two times more program points than the insns)
         and they are represented by integers starting with 0.  The
         live ranges are used to find conflicts between allocnos.
         They also play very important role for the transformation of
         the IRA internal representation of several regions into a one
         region representation.  The later is used during the reload
         pass work because each allocno represents all of the
         corresponding pseudo-registers.

       - *Hard-register costs*.  This is a vector of size equal to the
         number of available hard-registers of the allocno class.  The
         cost of a callee-clobbered hard-register for an allocno is
         increased by the cost of save/restore code around the calls
         through the given allocno's life.  If the allocno is a move
         instruction operand and another operand is a hard-register of
         the allocno class, the cost of the hard-register is decreased
         by the move cost.

         When an allocno is assigned, the hard-register with minimal
         full cost is used.  Initially, a hard-register's full cost is
         the corresponding value from the hard-register's cost vector.
         If the allocno is connected by a *copy* (see below) to
         another allocno which has just received a hard-register, the
         cost of the hard-register is decreased.  Before choosing a
         hard-register for an allocno, the allocno's current costs of
         the hard-registers are modified by the conflict hard-register
         costs of all of the conflicting allocnos which are not
         assigned yet.

       - *Conflict hard-register costs*.  This is a vector of the same
         size as the hard-register costs vector.  To permit an
         unassigned allocno to get a better hard-register, IRA uses
         this vector to calculate the final full cost of the
         available hard-registers.  Conflict hard-register costs of an
         unassigned allocno are also changed with a change of the
         hard-register cost of the allocno when a copy involving the
         allocno is processed as described above.  This is done to
         show other unassigned allocnos that a given allocno prefers
         some hard-registers in order to remove the move instruction
         corresponding to the copy.

     o *Cap*.  If a pseudo-register does not live in a region but
       lives in a nested region, IRA creates a special allocno called
       a cap in the outer region.  A region cap is also created for a
       subregion cap.

     o *Copy*.  Allocnos can be connected by copies.  Copies are used
       to modify hard-register costs for allocnos during coloring.
       Such modifications reflects a preference to use the same
       hard-register for the allocnos connected by copies.  Usually
       copies are created for move insns (in this case it results in
       register coalescing).  But IRA also creates copies for operands
       of an insn which should be assigned to the same hard-register
       due to constraints in the machine description (it usually
       results in removing a move generated in reload to satisfy
       the constraints) and copies referring to the allocno which is
       the output operand of an instruction and the allocno which is
       an input operand dying in the instruction (creation of such
       copies results in less register shuffling).  IRA *does not*
       create copies between the same register allocnos from different
       regions because we use another technique for propagating
       hard-register preference on the borders of regions.

   Allocnos (including caps) for the upper region in the region tree
   *accumulate* information important for coloring from allocnos with
   the same pseudo-register from nested regions.  This includes
   hard-register and memory costs, conflicts with hard-registers,
   allocno conflicts, allocno copies and more.  *Thus, attributes for
   allocnos in a region have the same values as if the region had no
   subregions*.  It means that attributes for allocnos in the
   outermost region corresponding to the function have the same values
   as though the allocation used only one region which is the entire
   function.  It also means that we can look at IRA work as if the
   first IRA did allocation for all function then it improved the
   allocation for loops then their subloops and so on.

   IRA major passes are:

     o Building IRA internal representation which consists of the
       following subpasses:

       * First, IRA builds regions and creates allocnos (file
         ira-build.c) and initializes most of their attributes.

       * Then IRA finds an allocno class for each allocno and
         calculates its initial (non-accumulated) cost of memory and
         each hard-register of its allocno class (file ira-cost.c).

       * IRA creates live ranges of each allocno, calulates register
         pressure for each pressure class in each region, sets up
         conflict hard registers for each allocno and info about calls
         the allocno lives through (file ira-lives.c).

       * IRA removes low register pressure loops from the regions
         mostly to speed IRA up (file ira-build.c).

       * IRA propagates accumulated allocno info from lower region
         allocnos to corresponding upper region allocnos (file
         ira-build.c).

       * IRA creates all caps (file ira-build.c).

       * Having live-ranges of allocnos and their classes, IRA creates
         conflicting allocnos for each allocno.  Conflicting allocnos
         are stored as a bit vector or array of pointers to the
         conflicting allocnos whatever is more profitable (file
         ira-conflicts.c).  At this point IRA creates allocno copies.

     o Coloring.  Now IRA has all necessary info to start graph coloring
       process.  It is done in each region on top-down traverse of the
       region tree (file ira-color.c).  There are following subpasses:

       * Finding profitable hard registers of corresponding allocno
         class for each allocno.  For example, only callee-saved hard
         registers are frequently profitable for allocnos living
         through colors.  If the profitable hard register set of
         allocno does not form a tree based on subset relation, we use
         some approximation to form the tree.  This approximation is
         used to figure out trivial colorability of allocnos.  The
         approximation is a pretty rare case.

       * Putting allocnos onto the coloring stack.  IRA uses Briggs
         optimistic coloring which is a major improvement over
         Chaitin's coloring.  Therefore IRA does not spill allocnos at
         this point.  There is some freedom in the order of putting
         allocnos on the stack which can affect the final result of
         the allocation.  IRA uses some heuristics to improve the
         order.
	 
	 We also use a modification of Chaitin-Briggs algorithm which
         works for intersected register classes of allocnos.  To
         figure out trivial colorability of allocnos, the mentioned
         above tree of hard register sets is used.  To get an idea how
         the algorithm works in i386 example, let us consider an
         allocno to which any general hard register can be assigned.
         If the allocno conflicts with eight allocnos to which only
         EAX register can be assigned, given allocno is still
         trivially colorable because all conflicting allocnos might be
         assigned only to EAX and all other general hard registers are
         still free.

	 To get an idea of the used trivial colorability criterion, it
	 is also useful to read article "Graph-Coloring Register
	 Allocation for Irregular Architectures" by Michael D. Smith
	 and Glen Holloway.  Major difference between the article
	 approach and approach used in IRA is that Smith's approach
	 takes register classes only from machine description and IRA
	 calculate register classes from intermediate code too
	 (e.g. an explicit usage of hard registers in RTL code for
	 parameter passing can result in creation of additional
	 register classes which contain or exclude the hard
	 registers).  That makes IRA approach useful for improving
	 coloring even for architectures with regular register files
	 and in fact some benchmarking shows the improvement for
	 regular class architectures is even bigger than for irregular
	 ones.  Another difference is that Smith's approach chooses
	 intersection of classes of all insn operands in which a given
	 pseudo occurs.  IRA can use bigger classes if it is still
	 more profitable than memory usage.

       * Popping the allocnos from the stack and assigning them hard
         registers.  If IRA can not assign a hard register to an
         allocno and the allocno is coalesced, IRA undoes the
         coalescing and puts the uncoalesced allocnos onto the stack in
         the hope that some such allocnos will get a hard register
         separately.  If IRA fails to assign hard register or memory
         is more profitable for it, IRA spills the allocno.  IRA
         assigns the allocno the hard-register with minimal full
         allocation cost which reflects the cost of usage of the
         hard-register for the allocno and cost of usage of the
         hard-register for allocnos conflicting with given allocno.

       * Chaitin-Briggs coloring assigns as many pseudos as possible
         to hard registers.  After coloringh we try to improve
         allocation with cost point of view.  We improve the
         allocation by spilling some allocnos and assigning the freed
         hard registers to other allocnos if it decreases the overall
         allocation cost.

       * After allono assigning in the region, IRA modifies the hard
         register and memory costs for the corresponding allocnos in
         the subregions to reflect the cost of possible loads, stores,
         or moves on the border of the region and its subregions.
         When default regional allocation algorithm is used
         (-fira-algorithm=mixed), IRA just propagates the assignment
         for allocnos if the register pressure in the region for the
         corresponding pressure class is less than number of available
         hard registers for given pressure class.

     o Spill/restore code moving.  When IRA performs an allocation
       by traversing regions in top-down order, it does not know what
       happens below in the region tree.  Therefore, sometimes IRA
       misses opportunities to perform a better allocation.  A simple
       optimization tries to improve allocation in a region having
       subregions and containing in another region.  If the
       corresponding allocnos in the subregion are spilled, it spills
       the region allocno if it is profitable.  The optimization
       implements a simple iterative algorithm performing profitable
       transformations while they are still possible.  It is fast in
       practice, so there is no real need for a better time complexity
       algorithm.

     o Code change.  After coloring, two allocnos representing the
       same pseudo-register outside and inside a region respectively
       may be assigned to different locations (hard-registers or
       memory).  In this case IRA creates and uses a new
       pseudo-register inside the region and adds code to move allocno
       values on the region's borders.  This is done during top-down
       traversal of the regions (file ira-emit.c).  In some
       complicated cases IRA can create a new allocno to move allocno
       values (e.g. when a swap of values stored in two hard-registers
       is needed).  At this stage, the new allocno is marked as
       spilled.  IRA still creates the pseudo-register and the moves
       on the region borders even when both allocnos were assigned to
       the same hard-register.  If the reload pass spills a
       pseudo-register for some reason, the effect will be smaller
       because another allocno will still be in the hard-register.  In
       most cases, this is better then spilling both allocnos.  If
       reload does not change the allocation for the two
       pseudo-registers, the trivial move will be removed by
       post-reload optimizations.  IRA does not generate moves for
       allocnos assigned to the same hard register when the default
       regional allocation algorithm is used and the register pressure
       in the region for the corresponding pressure class is less than
       number of available hard registers for given pressure class.
       IRA also does some optimizations to remove redundant stores and
       to reduce code duplication on the region borders.

     o Flattening internal representation.  After changing code, IRA
       transforms its internal representation for several regions into
       one region representation (file ira-build.c).  This process is
       called IR flattening.  Such process is more complicated than IR
       rebuilding would be, but is much faster.

     o After IR flattening, IRA tries to assign hard registers to all
       spilled allocnos.  This is impelemented by a simple and fast
       priority coloring algorithm (see function
       ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
       created during the code change pass can be assigned to hard
       registers.

     o At the end IRA calls the reload pass.  The reload pass
       communicates with IRA through several functions in file
       ira-color.c to improve its decisions in

       * sharing stack slots for the spilled pseudos based on IRA info
         about pseudo-register conflicts.

       * reassigning hard-registers to all spilled pseudos at the end
         of each reload iteration.

       * choosing a better hard-register to spill based on IRA info
         about pseudo-register live ranges and the register pressure
         in places where the pseudo-register lives.

   IRA uses a lot of data representing the target processors.  These
   data are initilized in file ira.c.

   If function has no loops (or the loops are ignored when
   -fira-algorithm=CB is used), we have classic Chaitin-Briggs
   coloring (only instead of separate pass of coalescing, we use hard
   register preferencing).  In such case, IRA works much faster
   because many things are not made (like IR flattening, the
   spill/restore optimization, and the code change).

   Literature is worth to read for better understanding the code:

   o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
     Graph Coloring Register Allocation.

   o David Callahan, Brian Koblenz.  Register allocation via
     hierarchical graph coloring.

   o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
     Coloring Register Allocation: A Study of the Chaitin-Briggs and
     Callahan-Koblenz Algorithms.

   o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
     Register Allocation Based on Graph Fusion.

   o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
     Allocation for Irregular Architectures

   o Vladimir Makarov. The Integrated Register Allocator for GCC.

   o Vladimir Makarov.  The top-down register allocator for irregular
     register file architectures.

*/


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "regs.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "flags.h"
#include "obstack.h"
#include "bitmap.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "df.h"
#include "expr.h"
#include "recog.h"
#include "params.h"
#include "timevar.h"
#include "tree-pass.h"
#include "output.h"
#include "except.h"
#include "reload.h"
#include "diagnostic-core.h"
#include "integrate.h"
#include "ggc.h"
#include "ira-int.h"


struct target_ira default_target_ira;
struct target_ira_int default_target_ira_int;
#if SWITCHABLE_TARGET
struct target_ira *this_target_ira = &default_target_ira;
struct target_ira_int *this_target_ira_int = &default_target_ira_int;
#endif

/* A modified value of flag `-fira-verbose' used internally.  */
int internal_flag_ira_verbose;

/* Dump file of the allocator if it is not NULL.  */
FILE *ira_dump_file;

/* The number of elements in the following array.  */
int ira_spilled_reg_stack_slots_num;

/* The following array contains info about spilled pseudo-registers
   stack slots used in current function so far.  */
struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;

/* Correspondingly overall cost of the allocation, cost of the
   allocnos assigned to hard-registers, cost of the allocnos assigned
   to memory, cost of loads, stores and register move insns generated
   for pseudo-register live range splitting (see ira-emit.c).  */
int ira_overall_cost;
int ira_reg_cost, ira_mem_cost;
int ira_load_cost, ira_store_cost, ira_shuffle_cost;
int ira_move_loops_num, ira_additional_jumps_num;

/* All registers that can be eliminated.  */

HARD_REG_SET eliminable_regset;

/* Temporary hard reg set used for a different calculation.  */
static HARD_REG_SET temp_hard_regset;



/* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
static void
setup_reg_mode_hard_regset (void)
{
  int i, m, hard_regno;

  for (m = 0; m < NUM_MACHINE_MODES; m++)
    for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
      {
	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
	for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
			      hard_regno + i);
      }
}


#define no_unit_alloc_regs \
  (this_target_ira_int->x_no_unit_alloc_regs)

/* The function sets up the three arrays declared above.  */
static void
setup_class_hard_regs (void)
{
  int cl, i, hard_regno, n;
  HARD_REG_SET processed_hard_reg_set;

  ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      CLEAR_HARD_REG_SET (processed_hard_reg_set);
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	{
	  ira_non_ordered_class_hard_regs[cl][i] = -1;
	  ira_class_hard_reg_index[cl][i] = -1;
	}
      for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	{
#ifdef REG_ALLOC_ORDER
	  hard_regno = reg_alloc_order[i];
#else
	  hard_regno = i;
#endif
	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
	    continue;
	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
      	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
	    ira_class_hard_reg_index[cl][hard_regno] = -1;
	  else
	    {
	      ira_class_hard_reg_index[cl][hard_regno] = n;
	      ira_class_hard_regs[cl][n++] = hard_regno;
	    }
	}
      ira_class_hard_regs_num[cl] = n;
      for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
	  ira_non_ordered_class_hard_regs[cl][n++] = i;
      ira_assert (ira_class_hard_regs_num[cl] == n);
    }
}

/* Set up IRA_AVAILABLE_CLASS_REGS.  */
static void
setup_available_class_regs (void)
{
  int i, j;

  memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
  for (i = 0; i < N_REG_CLASSES; i++)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (TEST_HARD_REG_BIT (temp_hard_regset, j))
	  ira_available_class_regs[i]++;
    }
}

/* Set up global variables defining info about hard registers for the
   allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
   that we can use the hard frame pointer for the allocation.  */
static void
setup_alloc_regs (bool use_hard_frame_p)
{
#ifdef ADJUST_REG_ALLOC_ORDER
  ADJUST_REG_ALLOC_ORDER;
#endif
  COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
  if (! use_hard_frame_p)
    SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
  setup_class_hard_regs ();
  setup_available_class_regs ();
}



#define alloc_reg_class_subclasses \
  (this_target_ira_int->x_alloc_reg_class_subclasses)

/* Initialize the table of subclasses of each reg class.  */
static void
setup_reg_subclasses (void)
{
  int i, j;
  HARD_REG_SET temp_hard_regset2;

  for (i = 0; i < N_REG_CLASSES; i++)
    for (j = 0; j < N_REG_CLASSES; j++)
      alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      if (i == (int) NO_REGS)
	continue;

      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      if (hard_reg_set_empty_p (temp_hard_regset))
	continue;
      for (j = 0; j < N_REG_CLASSES; j++)
	if (i != j)
	  {
	    enum reg_class *p;

	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
	    if (! hard_reg_set_subset_p (temp_hard_regset,
					 temp_hard_regset2))
	      continue;
	    p = &alloc_reg_class_subclasses[j][0];
	    while (*p != LIM_REG_CLASSES) p++;
	    *p = (enum reg_class) i;
	  }
    }
}



/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
static void
setup_class_subset_and_memory_move_costs (void)
{
  int cl, cl2, mode, cost;
  HARD_REG_SET temp_hard_regset2;

  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
    ira_memory_move_cost[mode][NO_REGS][0]
      = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    {
      if (cl != (int) NO_REGS)
	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
	  {
	    ira_max_memory_move_cost[mode][cl][0]
	      = ira_memory_move_cost[mode][cl][0]
	      = memory_move_cost ((enum machine_mode) mode,
				  (enum reg_class) cl, false);
	    ira_max_memory_move_cost[mode][cl][1]
	      = ira_memory_move_cost[mode][cl][1]
	      = memory_move_cost ((enum machine_mode) mode,
				  (enum reg_class) cl, true);
	    /* Costs for NO_REGS are used in cost calculation on the
	       1st pass when the preferred register classes are not
	       known yet.  In this case we take the best scenario.  */
	    if (ira_memory_move_cost[mode][NO_REGS][0]
		> ira_memory_move_cost[mode][cl][0])
	      ira_max_memory_move_cost[mode][NO_REGS][0]
		= ira_memory_move_cost[mode][NO_REGS][0]
		= ira_memory_move_cost[mode][cl][0];
	    if (ira_memory_move_cost[mode][NO_REGS][1]
		> ira_memory_move_cost[mode][cl][1])
	      ira_max_memory_move_cost[mode][NO_REGS][1]
		= ira_memory_move_cost[mode][NO_REGS][1]
		= ira_memory_move_cost[mode][cl][1];
	  }
    }
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
      {
	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
	ira_class_subset_p[cl][cl2]
	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
	if (! hard_reg_set_empty_p (temp_hard_regset2)
	    && hard_reg_set_subset_p (reg_class_contents[cl2],
				      reg_class_contents[cl]))
	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
	    {
	      cost = ira_memory_move_cost[mode][cl2][0];
	      if (cost > ira_max_memory_move_cost[mode][cl][0])
		ira_max_memory_move_cost[mode][cl][0] = cost;
	      cost = ira_memory_move_cost[mode][cl2][1];
	      if (cost > ira_max_memory_move_cost[mode][cl][1])
		ira_max_memory_move_cost[mode][cl][1] = cost;
	    }
      }
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
      {
	ira_memory_move_cost[mode][cl][0]
	  = ira_max_memory_move_cost[mode][cl][0];
	ira_memory_move_cost[mode][cl][1]
	  = ira_max_memory_move_cost[mode][cl][1];
      }
  setup_reg_subclasses ();
}



/* Define the following macro if allocation through malloc if
   preferable.  */
#define IRA_NO_OBSTACK

#ifndef IRA_NO_OBSTACK
/* Obstack used for storing all dynamic data (except bitmaps) of the
   IRA.  */
static struct obstack ira_obstack;
#endif

/* Obstack used for storing all bitmaps of the IRA.  */
static struct bitmap_obstack ira_bitmap_obstack;

/* Allocate memory of size LEN for IRA data.  */
void *
ira_allocate (size_t len)
{
  void *res;

#ifndef IRA_NO_OBSTACK
  res = obstack_alloc (&ira_obstack, len);
#else
  res = xmalloc (len);
#endif
  return res;
}

/* Free memory ADDR allocated for IRA data.  */
void
ira_free (void *addr ATTRIBUTE_UNUSED)
{
#ifndef IRA_NO_OBSTACK
  /* do nothing */
#else
  free (addr);
#endif
}


/* Allocate and returns bitmap for IRA.  */
bitmap
ira_allocate_bitmap (void)
{
  return BITMAP_ALLOC (&ira_bitmap_obstack);
}

/* Free bitmap B allocated for IRA.  */
void
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
{
  /* do nothing */
}



/* Output information about allocation of all allocnos (except for
   caps) into file F.  */
void
ira_print_disposition (FILE *f)
{
  int i, n, max_regno;
  ira_allocno_t a;
  basic_block bb;

  fprintf (f, "Disposition:");
  max_regno = max_reg_num ();
  for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    for (a = ira_regno_allocno_map[i];
	 a != NULL;
	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
      {
	if (n % 4 == 0)
	  fprintf (f, "\n");
	n++;
	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
	  fprintf (f, "b%-3d", bb->index);
	else
	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
	if (ALLOCNO_HARD_REGNO (a) >= 0)
	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
	else
	  fprintf (f, " mem");
      }
  fprintf (f, "\n");
}

/* Outputs information about allocation of all allocnos into
   stderr.  */
void
ira_debug_disposition (void)
{
  ira_print_disposition (stderr);
}



/* Set up ira_stack_reg_pressure_class which is the biggest pressure
   register class containing stack registers or NO_REGS if there are
   no stack registers.  To find this class, we iterate through all
   register pressure classes and choose the first register pressure
   class containing all the stack registers and having the biggest
   size.  */
static void
setup_stack_reg_pressure_class (void)
{
  ira_stack_reg_pressure_class = NO_REGS;
#ifdef STACK_REGS
  {
    int i, best, size;
    enum reg_class cl;
    HARD_REG_SET temp_hard_regset2;

    CLEAR_HARD_REG_SET (temp_hard_regset);
    for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
      SET_HARD_REG_BIT (temp_hard_regset, i);
    best = 0;
    for (i = 0; i < ira_pressure_classes_num; i++)
      {
	cl = ira_pressure_classes[i];
	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
	size = hard_reg_set_size (temp_hard_regset2);
	if (best < size)
	  {
	    best = size;
	    ira_stack_reg_pressure_class = cl;
	  }
      }
  }
#endif
}

/* Find pressure classes which are register classes for which we
   calculate register pressure in IRA, register pressure sensitive
   insn scheduling, and register pressure sensitive loop invariant
   motion.

   To make register pressure calculation easy, we always use
   non-intersected register pressure classes.  A move of hard
   registers from one register pressure class is not more expensive
   than load and store of the hard registers.  Most likely an allocno
   class will be a subset of a register pressure class and in many
   cases a register pressure class.  That makes usage of register
   pressure classes a good approximation to find a high register
   pressure.  */
static void
setup_pressure_classes (void)
{
  int cost, i, n, curr;
  int cl, cl2;
  enum reg_class pressure_classes[N_REG_CLASSES];
  int m;
  HARD_REG_SET temp_hard_regset2;
  bool insert_p;

  n = 0;
  for (cl = 0; cl < N_REG_CLASSES; cl++)
    {
      if (ira_available_class_regs[cl] == 0)
	continue;
      /* Check that the moves between any hard registers of the
	 current class are not more expensive for a legal mode than
	 load/store of the hard registers of the current class.  Such
	 class is a potential candidate to be a register pressure
	 class.  */
      for (m = 0; m < NUM_MACHINE_MODES; m++)
	{
	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset,
				  ira_prohibited_class_mode_regs[cl][m]);
	  if (hard_reg_set_empty_p (temp_hard_regset))
	    continue;
	  ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
	  cost = ira_register_move_cost[m][cl][cl];
	  if (cost <= ira_max_memory_move_cost[m][cl][1]
	      || cost <= ira_max_memory_move_cost[m][cl][0])
	    break;
	}
      if (m >= NUM_MACHINE_MODES)
	continue;
      curr = 0;
      insert_p = true;
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      /* Remove so far added pressure classes which are subset of the
	 current candidate class.  Prefer GENERAL_REGS as a pressure
	 register class to another class containing the same
	 allocatable hard registers.  We do this because machine
	 dependent cost hooks might give wrong costs for the latter
	 class but always give the right cost for the former class
	 (GENERAL_REGS).  */
      for (i = 0; i < n; i++)
	{
	  cl2 = pressure_classes[i];
	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
	  if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
	      && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
		  || cl2 == (int) GENERAL_REGS))
	    {
	      pressure_classes[curr++] = (enum reg_class) cl2;
	      insert_p = false;
	      continue;
	    }
	  if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
	      && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
		  || cl == (int) GENERAL_REGS))
	    continue;
	  pressure_classes[curr++] = (enum reg_class) cl2;
	}
      /* If the current candidate is a subset of a so far added
	 pressure class, don't add it to the list of the pressure
	 classes.  */
      if (insert_p)
	pressure_classes[curr++] = (enum reg_class) cl;
      n = curr;
    }
#ifdef ENABLE_IRA_CHECKING
  /* Check pressure classes correctness: here we check that hard
     registers from all register pressure classes contains all hard
     registers available for the allocation.  */
  CLEAR_HARD_REG_SET (temp_hard_regset);
  CLEAR_HARD_REG_SET (temp_hard_regset2);
  for (cl = 0; cl <= LIM_REG_CLASSES; cl++)
    {
      for (i = 0; i < n; i++)
	if ((int) pressure_classes[i] == cl)
	  break;
      IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
      if (i >= n)
	IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
    }
  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
  AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
  ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
#endif
  ira_pressure_classes_num = 0;
  for (i = 0; i < n; i++)
    {
      cl = (int) pressure_classes[i];
      ira_reg_pressure_class_p[cl] = true;
      ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
    }
  setup_stack_reg_pressure_class ();
}

/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
   IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.

   Target may have many subtargets and not all target hard regiters can
   be used for allocation, e.g. x86 port in 32-bit mode can not use
   hard registers introduced in x86-64 like r8-r15).  Some classes
   might have the same allocatable hard registers, e.g.  INDEX_REGS
   and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
   calculations efforts we introduce allocno classes which contain
   unique non-empty sets of allocatable hard-registers.

   Pseudo class cost calculation in ira-costs.c is very expensive.
   Therefore we are trying to decrease number of classes involved in
   such calculation.  Register classes used in the cost calculation
   are called important classes.  They are allocno classes and other
   non-empty classes whose allocatable hard register sets are inside
   of an allocno class hard register set.  From the first sight, it
   looks like that they are just allocno classes.  It is not true.  In
   example of x86-port in 32-bit mode, allocno classes will contain
   GENERAL_REGS but not LEGACY_REGS (because allocatable hard
   registers are the same for the both classes).  The important
   classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
   because a machine description insn constraint may refers for
   LEGACY_REGS and code in ira-costs.c is mostly base on investigation
   of the insn constraints.  */
static void
setup_allocno_and_important_classes (void)
{
  int i, j, n, cl;
  bool set_p;
  HARD_REG_SET temp_hard_regset2;
  static enum reg_class classes[LIM_REG_CLASSES + 1];

  n = 0;
  /* Collect classes which contain unique sets of allocatable hard
     registers.  Prefer GENERAL_REGS to other classes containing the
     same set of hard registers.  */
  for (i = 0; i <= LIM_REG_CLASSES; i++)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      for (j = 0; j < n; j++)
	{
	  cl = classes[j];
	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
				  no_unit_alloc_regs);
	  if (hard_reg_set_equal_p (temp_hard_regset,
				    temp_hard_regset2))
	    break;
	}
      if (j >= n)
	classes[n++] = (enum reg_class) i;
      else if (i == GENERAL_REGS)
	/* Prefer general regs.  For i386 example, it means that
	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
	   (all of them consists of the same available hard
	   registers).  */
	classes[j] = (enum reg_class) i;
    }
  classes[n] = LIM_REG_CLASSES;

  /* Set up classes which can be used for allocnos as classes
     conatining non-empty unique sets of allocatable hard
     registers.  */
  ira_allocno_classes_num = 0;
  for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      if (hard_reg_set_empty_p (temp_hard_regset))
	continue;
      ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
    }
  ira_important_classes_num = 0;
  /* Add non-allocno classes containing to non-empty set of
     allocatable hard regs.  */
  for (cl = 0; cl < N_REG_CLASSES; cl++)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      if (! hard_reg_set_empty_p (temp_hard_regset))
	{
	  set_p = false;
	  for (j = 0; j < ira_allocno_classes_num; j++)
	    {
	      COPY_HARD_REG_SET (temp_hard_regset2,
				 reg_class_contents[ira_allocno_classes[j]]);
	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
	      if ((enum reg_class) cl == ira_allocno_classes[j])
		break;
	      else if (hard_reg_set_subset_p (temp_hard_regset,
					      temp_hard_regset2))
		set_p = true;
	    }
	  if (set_p && j >= ira_allocno_classes_num)
	    ira_important_classes[ira_important_classes_num++]
	      = (enum reg_class) cl;
	}
    }
  /* Now add allocno classes to the important classes.  */
  for (j = 0; j < ira_allocno_classes_num; j++)
    ira_important_classes[ira_important_classes_num++]
      = ira_allocno_classes[j];
  for (cl = 0; cl < N_REG_CLASSES; cl++)
    {
      ira_reg_allocno_class_p[cl] = false;
      ira_reg_pressure_class_p[cl] = false;
    }
  for (j = 0; j < ira_allocno_classes_num; j++)
    ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
  setup_pressure_classes ();
}

/* Setup translation in CLASS_TRANSLATE of all classes into a class
   given by array CLASSES of length CLASSES_NUM.  The function is used
   make translation any reg class to an allocno class or to an
   pressure class.  This translation is necessary for some
   calculations when we can use only allocno or pressure classes and
   such translation represents an approximate representation of all
   classes.

   The translation in case when allocatable hard register set of a
   given class is subset of allocatable hard register set of a class
   in CLASSES is pretty simple.  We use smallest classes from CLASSES
   containing a given class.  If allocatable hard register set of a
   given class is not a subset of any corresponding set of a class
   from CLASSES, we use the cheapest (with load/store point of view)
   class from CLASSES whose set intersects with given class set */
static void
setup_class_translate_array (enum reg_class *class_translate,
			     int classes_num, enum reg_class *classes)
{
  int cl, mode;
  enum reg_class aclass, best_class, *cl_ptr;
  int i, cost, min_cost, best_cost;

  for (cl = 0; cl < N_REG_CLASSES; cl++)
    class_translate[cl] = NO_REGS;

  for (i = 0; i < classes_num; i++)
    {
      aclass = classes[i];
      for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
	   (cl = *cl_ptr) != LIM_REG_CLASSES;
	   cl_ptr++)
	if (class_translate[cl] == NO_REGS)
	  class_translate[cl] = aclass;
      class_translate[aclass] = aclass;
    }
  /* For classes which are not fully covered by one of given classes
     (in other words covered by more one given class), use the
     cheapest class.  */
  for (cl = 0; cl < N_REG_CLASSES; cl++)
    {
      if (cl == NO_REGS || class_translate[cl] != NO_REGS)
	continue;
      best_class = NO_REGS;
      best_cost = INT_MAX;
      for (i = 0; i < classes_num; i++)
	{
	  aclass = classes[i];
	  COPY_HARD_REG_SET (temp_hard_regset,
			     reg_class_contents[aclass]);
	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	  if (! hard_reg_set_empty_p (temp_hard_regset))
	    {
	      min_cost = INT_MAX;
	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
		{
		  cost = (ira_memory_move_cost[mode][cl][0]
			  + ira_memory_move_cost[mode][cl][1]);
		  if (min_cost > cost)
		    min_cost = cost;
		}
	      if (best_class == NO_REGS || best_cost > min_cost)
		{
		  best_class = aclass;
		  best_cost = min_cost;
		}
	    }
	}
      class_translate[cl] = best_class;
    }
}

/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
   IRA_PRESSURE_CLASS_TRANSLATE.  */
static void
setup_class_translate (void)
{
  setup_class_translate_array (ira_allocno_class_translate,
			       ira_allocno_classes_num, ira_allocno_classes);
  setup_class_translate_array (ira_pressure_class_translate,
			       ira_pressure_classes_num, ira_pressure_classes);
}

/* Order numbers of allocno classes in original target allocno class
   array, -1 for non-allocno classes.  */
static int allocno_class_order[N_REG_CLASSES];

/* The function used to sort the important classes.  */
static int
comp_reg_classes_func (const void *v1p, const void *v2p)
{
  enum reg_class cl1 = *(const enum reg_class *) v1p;
  enum reg_class cl2 = *(const enum reg_class *) v2p;
  enum reg_class tcl1, tcl2;
  int diff;

  tcl1 = ira_allocno_class_translate[cl1];
  tcl2 = ira_allocno_class_translate[cl2];
  if (tcl1 != NO_REGS && tcl2 != NO_REGS
      && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
    return diff;
  return (int) cl1 - (int) cl2;
}

/* For correct work of function setup_reg_class_relation we need to
   reorder important classes according to the order of their allocno
   classes.  It places important classes containing the same
   allocatable hard register set adjacent to each other and allocno
   class with the allocatable hard register set right after the other
   important classes with the same set.

   In example from comments of function
   setup_allocno_and_important_classes, it places LEGACY_REGS and
   GENERAL_REGS close to each other and GENERAL_REGS is after
   LEGACY_REGS.  */
static void
reorder_important_classes (void)
{
  int i;

  for (i = 0; i < N_REG_CLASSES; i++)
    allocno_class_order[i] = -1;
  for (i = 0; i < ira_allocno_classes_num; i++)
    allocno_class_order[ira_allocno_classes[i]] = i;
  qsort (ira_important_classes, ira_important_classes_num,
	 sizeof (enum reg_class), comp_reg_classes_func);
  for (i = 0; i < ira_important_classes_num; i++)
    ira_important_class_nums[ira_important_classes[i]] = i;
}

/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
   IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
   IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
   please see corresponding comments in ira-int.h.  */
static void
setup_reg_class_relations (void)
{
  int i, cl1, cl2, cl3;
  HARD_REG_SET intersection_set, union_set, temp_set2;
  bool important_class_p[N_REG_CLASSES];

  memset (important_class_p, 0, sizeof (important_class_p));
  for (i = 0; i < ira_important_classes_num; i++)
    important_class_p[ira_important_classes[i]] = true;
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
    {
      ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
	{
	  ira_reg_classes_intersect_p[cl1][cl2] = false;
	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
	  if (hard_reg_set_empty_p (temp_hard_regset)
	      && hard_reg_set_empty_p (temp_set2))
	    {
	      /* The both classes have no allocatable hard registers
		 -- take all class hard registers into account and use
		 reg_class_subunion and reg_class_superunion.  */
	      for (i = 0;; i++)
		{
		  cl3 = reg_class_subclasses[cl1][i];
		  if (cl3 == LIM_REG_CLASSES)
		    break;
		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
					  (enum reg_class) cl3))
		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
		}
	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
	      continue;
	    }
	  ira_reg_classes_intersect_p[cl1][cl2]
	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
	  if (important_class_p[cl1] && important_class_p[cl2]
	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
	    {
	      /* CL1 and CL2 are important classes and CL1 allocatable
		 hard register set is inside of CL2 allocatable hard
		 registers -- make CL1 a superset of CL2.  */
	      enum reg_class *p;

	      p = &ira_reg_class_super_classes[cl1][0];
	      while (*p != LIM_REG_CLASSES)
		p++;
	      *p++ = (enum reg_class) cl2;
	      *p = LIM_REG_CLASSES;
	    }
	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
	  for (i = 0; i < ira_important_classes_num; i++)
	    {
	      cl3 = ira_important_classes[i];
	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
		{
		  /* CL3 allocatable hard register set is inside of
		     intersection of allocatable hard register sets
		     of CL1 and CL2.  */
		  COPY_HARD_REG_SET
		    (temp_set2,
		     reg_class_contents[(int)
					ira_reg_class_intersect[cl1][cl2]]);
		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
	 	  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
		      /* If the allocatable hard register sets are the
			 same, prefer GENERAL_REGS or the smallest
			 class for debugging purposes.  */
		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
			  && (cl3 == GENERAL_REGS
			      || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
				  && hard_reg_set_subset_p
				     (reg_class_contents[cl3],
				      reg_class_contents
				      [(int) ira_reg_class_intersect[cl1][cl2]])))))
		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
		}
	      if (hard_reg_set_subset_p (temp_hard_regset, union_set))
		{
		  /* CL3 allocatbale hard register set is inside of
		     union of allocatable hard register sets of CL1
		     and CL2.  */
		  COPY_HARD_REG_SET
		    (temp_set2,
		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
			  
			  && (! hard_reg_set_equal_p (temp_set2,
						      temp_hard_regset)
			      || cl3 == GENERAL_REGS
			      /* If the allocatable hard register sets are the
				 same, prefer GENERAL_REGS or the smallest
				 class for debugging purposes.  */
			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
				  && hard_reg_set_subset_p
				     (reg_class_contents[cl3],
				      reg_class_contents
				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
		}
	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
		{
		  /* CL3 allocatable hard register set contains union
		     of allocatable hard register sets of CL1 and
		     CL2.  */
		  COPY_HARD_REG_SET
		    (temp_set2,
		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)

			  && (! hard_reg_set_equal_p (temp_set2,
						      temp_hard_regset)
			      || cl3 == GENERAL_REGS
			      /* If the allocatable hard register sets are the
				 same, prefer GENERAL_REGS or the smallest
				 class for debugging purposes.  */
			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
				  && hard_reg_set_subset_p
				     (reg_class_contents[cl3],
				      reg_class_contents
				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
		}
	    }
	}
    }
}

/* Output all possible allocno classes and the translation map into
   file F.  */
static void
print_classes (FILE *f, bool pressure_p)
{
  int classes_num = (pressure_p
		     ? ira_pressure_classes_num : ira_allocno_classes_num);
  enum reg_class *classes = (pressure_p
			     ? ira_pressure_classes : ira_allocno_classes);
  enum reg_class *class_translate = (pressure_p
				     ? ira_pressure_class_translate
				     : ira_allocno_class_translate);
  static const char *const reg_class_names[] = REG_CLASS_NAMES;
  int i;

  fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
  for (i = 0; i < classes_num; i++)
    fprintf (f, " %s", reg_class_names[classes[i]]);
  fprintf (f, "\nClass translation:\n");
  for (i = 0; i < N_REG_CLASSES; i++)
    fprintf (f, " %s -> %s\n", reg_class_names[i],
	     reg_class_names[class_translate[i]]);
}

/* Output all possible allocno and translation classes and the
   translation maps into stderr.  */
void
ira_debug_allocno_classes (void)
{
  print_classes (stderr, false);
  print_classes (stderr, true);
}

/* Set up different arrays concerning class subsets, allocno and
   important classes.  */
static void
find_reg_classes (void)
{
  setup_allocno_and_important_classes ();
  setup_class_translate ();
  reorder_important_classes ();
  setup_reg_class_relations ();
}



/* Set up the array above.  */
static void
setup_hard_regno_aclass (void)
{
  int i;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
#if 1
      ira_hard_regno_allocno_class[i]
	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
	   ? NO_REGS
	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
#else
      int j;
      enum reg_class cl;
      ira_hard_regno_allocno_class[i] = NO_REGS;
      for (j = 0; j < ira_allocno_classes_num; j++)
 	{
	  cl = ira_allocno_classes[j];
 	  if (ira_class_hard_reg_index[cl][i] >= 0)
 	    {
	      ira_hard_regno_allocno_class[i] = cl;
 	      break;
 	    }
 	}
#endif
    }
}



/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
static void
setup_reg_class_nregs (void)
{
  int i, cl, cl2, m;

  for (m = 0; m < MAX_MACHINE_MODE; m++)
    {
      for (cl = 0; cl < N_REG_CLASSES; cl++)
	ira_reg_class_max_nregs[cl][m]
	  = ira_reg_class_min_nregs[cl][m]
	  = CLASS_MAX_NREGS ((enum reg_class) cl, (enum machine_mode) m);
      for (cl = 0; cl < N_REG_CLASSES; cl++)
	for (i = 0;
	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
	     i++)
	  if (ira_reg_class_min_nregs[cl2][m]
	      < ira_reg_class_min_nregs[cl][m])
	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
    }
}



/* Set up IRA_PROHIBITED_CLASS_MODE_REGS.  */
static void
setup_prohibited_class_mode_regs (void)
{
  int j, k, hard_regno, cl;

  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    {
      for (j = 0; j < NUM_MACHINE_MODES; j++)
	{
	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
	    {
	      hard_regno = ira_class_hard_regs[cl][k];
	      if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
				  hard_regno);
	    }
	}
    }
}

/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
   spanning from one register pressure class to another one.  It is
   called after defining the pressure classes.  */
static void
clarify_prohibited_class_mode_regs (void)
{
  int j, k, hard_regno, cl, pclass, nregs;

  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
    for (j = 0; j < NUM_MACHINE_MODES; j++)
      for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
	{
	  hard_regno = ira_class_hard_regs[cl][k];
	  if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
	    continue;
	  nregs = hard_regno_nregs[hard_regno][j];
	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
	  for (nregs-- ;nregs >= 0; nregs--)
	    if (((enum reg_class) pclass
		 != ira_pressure_class_translate[REGNO_REG_CLASS
						 (hard_regno + nregs)]))
	      {
		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
				  hard_regno);
		break;
	      }
	}
}



/* Allocate and initialize IRA_REGISTER_MOVE_COST,
   IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
   IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
   IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet.  */
void
ira_init_register_move_cost (enum machine_mode mode)
{
  int cl1, cl2, cl3;

  ira_assert (ira_register_move_cost[mode] == NULL
	      && ira_max_register_move_cost[mode] == NULL
	      && ira_may_move_in_cost[mode] == NULL
	      && ira_may_move_out_cost[mode] == NULL
	      && ira_max_may_move_in_cost[mode] == NULL
	      && ira_max_may_move_out_cost[mode] == NULL);
  if (move_cost[mode] == NULL)
    init_move_cost (mode);
  ira_register_move_cost[mode] = move_cost[mode];
  /* Don't use ira_allocate because the tables exist out of scope of a
     IRA call.  */
  ira_max_register_move_cost[mode]
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
  memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
	  sizeof (move_table) * N_REG_CLASSES);
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
    {
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
      if (hard_reg_set_empty_p (temp_hard_regset))
	continue;
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
	if (hard_reg_set_subset_p (reg_class_contents[cl1],
				   reg_class_contents[cl2]))
	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
	    {
	      if (ira_max_register_move_cost[mode][cl2][cl3]
		  < ira_register_move_cost[mode][cl1][cl3])
		ira_max_register_move_cost[mode][cl2][cl3]
		  = ira_register_move_cost[mode][cl1][cl3];
	      if (ira_max_register_move_cost[mode][cl3][cl2]
		  < ira_register_move_cost[mode][cl3][cl1])
		ira_max_register_move_cost[mode][cl3][cl2]
		  = ira_register_move_cost[mode][cl3][cl1];
	    }
    }
  ira_may_move_in_cost[mode]
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
  memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
	  sizeof (move_table) * N_REG_CLASSES);
  ira_may_move_out_cost[mode]
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
  memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
	  sizeof (move_table) * N_REG_CLASSES);
  ira_max_may_move_in_cost[mode]
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
  memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
	  sizeof (move_table) * N_REG_CLASSES);
  ira_max_may_move_out_cost[mode]
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
  memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
	  sizeof (move_table) * N_REG_CLASSES);
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
    {
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
	{
	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
	  if (hard_reg_set_empty_p (temp_hard_regset))
	    continue;
	  if (ira_class_subset_p[cl1][cl2])
	    ira_may_move_in_cost[mode][cl1][cl2] = 0;
	  if (ira_class_subset_p[cl2][cl1])
	    ira_may_move_out_cost[mode][cl1][cl2] = 0;
	  if (ira_class_subset_p[cl1][cl2])
	    ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
	  if (ira_class_subset_p[cl2][cl1])
	    ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
	  ira_register_move_cost[mode][cl1][cl2]
	    = ira_max_register_move_cost[mode][cl1][cl2];
	  ira_may_move_in_cost[mode][cl1][cl2]
	    = ira_max_may_move_in_cost[mode][cl1][cl2];
	  ira_may_move_out_cost[mode][cl1][cl2]
	    = ira_max_may_move_out_cost[mode][cl1][cl2];
	}
    }
}



/* This is called once during compiler work.  It sets up
   different arrays whose values don't depend on the compiled
   function.  */
void
ira_init_once (void)
{
  int mode;

  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
    {
      ira_register_move_cost[mode] = NULL;
      ira_max_register_move_cost[mode] = NULL;
      ira_may_move_in_cost[mode] = NULL;
      ira_may_move_out_cost[mode] = NULL;
      ira_max_may_move_in_cost[mode] = NULL;
      ira_max_may_move_out_cost[mode] = NULL;
    }
  ira_init_costs_once ();
}

/* Free ira_max_register_move_cost, ira_may_move_in_cost,
   ira_may_move_out_cost, ira_max_may_move_in_cost, and
   ira_max_may_move_out_cost for each mode.  */
static void
free_register_move_costs (void)
{
  int mode;

  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
    {
      if (ira_max_register_move_cost[mode] != NULL)
	free (ira_max_register_move_cost[mode]);
      if (ira_may_move_in_cost[mode] != NULL)
	free (ira_may_move_in_cost[mode]);
      if (ira_may_move_out_cost[mode] != NULL)
	free (ira_may_move_out_cost[mode]);
      if (ira_max_may_move_in_cost[mode] != NULL)
	free (ira_max_may_move_in_cost[mode]);
      if (ira_max_may_move_out_cost[mode] != NULL)
	free (ira_max_may_move_out_cost[mode]);
      ira_register_move_cost[mode] = NULL;
      ira_max_register_move_cost[mode] = NULL;
      ira_may_move_in_cost[mode] = NULL;
      ira_may_move_out_cost[mode] = NULL;
      ira_max_may_move_in_cost[mode] = NULL;
      ira_max_may_move_out_cost[mode] = NULL;
    }
}

/* This is called every time when register related information is
   changed.  */
void
ira_init (void)
{
  free_register_move_costs ();
  setup_reg_mode_hard_regset ();
  setup_alloc_regs (flag_omit_frame_pointer != 0);
  setup_class_subset_and_memory_move_costs ();
  setup_reg_class_nregs ();
  setup_prohibited_class_mode_regs ();
  find_reg_classes ();
  clarify_prohibited_class_mode_regs ();
  setup_hard_regno_aclass ();
  ira_init_costs ();
}

/* Function called once at the end of compiler work.  */
void
ira_finish_once (void)
{
  ira_finish_costs_once ();
  free_register_move_costs ();
}


#define ira_prohibited_mode_move_regs_initialized_p \
  (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)

/* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
static void
setup_prohibited_mode_move_regs (void)
{
  int i, j;
  rtx test_reg1, test_reg2, move_pat, move_insn;

  if (ira_prohibited_mode_move_regs_initialized_p)
    return;
  ira_prohibited_mode_move_regs_initialized_p = true;
  test_reg1 = gen_rtx_REG (VOIDmode, 0);
  test_reg2 = gen_rtx_REG (VOIDmode, 0);
  move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
  move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	{
	  if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
	    continue;
	  SET_REGNO_RAW (test_reg1, j);
	  PUT_MODE (test_reg1, (enum machine_mode) i);
	  SET_REGNO_RAW (test_reg2, j);
	  PUT_MODE (test_reg2, (enum machine_mode) i);
	  INSN_CODE (move_insn) = -1;
	  recog_memoized (move_insn);
	  if (INSN_CODE (move_insn) < 0)
	    continue;
	  extract_insn (move_insn);
	  if (! constrain_operands (1))
	    continue;
	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
	}
    }
}



/* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
static bool
ira_bad_reload_regno_1 (int regno, rtx x)
{
  int x_regno, n, i;
  ira_allocno_t a;
  enum reg_class pref;

  /* We only deal with pseudo regs.  */
  if (! x || GET_CODE (x) != REG)
    return false;

  x_regno = REGNO (x);
  if (x_regno < FIRST_PSEUDO_REGISTER)
    return false;

  /* If the pseudo prefers REGNO explicitly, then do not consider
     REGNO a bad spill choice.  */
  pref = reg_preferred_class (x_regno);
  if (reg_class_size[pref] == 1)
    return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);

  /* If the pseudo conflicts with REGNO, then we consider REGNO a
     poor choice for a reload regno.  */
  a = ira_regno_allocno_map[x_regno];
  n = ALLOCNO_NUM_OBJECTS (a);
  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
      if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
	return true;
    }
  return false;
}

/* Return nonzero if REGNO is a particularly bad choice for reloading
   IN or OUT.  */
bool
ira_bad_reload_regno (int regno, rtx in, rtx out)
{
  return (ira_bad_reload_regno_1 (regno, in)
	  || ira_bad_reload_regno_1 (regno, out));
}

/* Return TRUE if *LOC contains an asm.  */
static int
insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
  if ( !*loc)
    return FALSE;
  if (GET_CODE (*loc) == ASM_OPERANDS)
    return TRUE;
  return FALSE;
}


/* Return TRUE if INSN contains an ASM.  */
static bool
insn_contains_asm (rtx insn)
{
  return for_each_rtx (&insn, insn_contains_asm_1, NULL);
}

/* Add register clobbers from asm statements.  */
static void
compute_regs_asm_clobbered (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      rtx insn;
      FOR_BB_INSNS_REVERSE (bb, insn)
	{
	  df_ref *def_rec;

	  if (insn_contains_asm (insn))
	    for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
	      {
		df_ref def = *def_rec;
		unsigned int dregno = DF_REF_REGNO (def);
		if (dregno < FIRST_PSEUDO_REGISTER)
		  {
		    unsigned int i;
		    enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
		    unsigned int end = dregno
		      + hard_regno_nregs[dregno][mode] - 1;

		    for (i = dregno; i <= end; ++i)
		      SET_HARD_REG_BIT(crtl->asm_clobbers, i);
		  }
	      }
	}
    }
}


/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.  */
void
ira_setup_eliminable_regset (void)
{
#ifdef ELIMINABLE_REGS
  int i;
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif
  /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
     sp for alloca.  So we can't eliminate the frame pointer in that
     case.  At some point, we should improve this by emitting the
     sp-adjusting insns for this case.  */
  int need_fp
    = (! flag_omit_frame_pointer
       || (cfun->calls_alloca && EXIT_IGNORE_STACK)
       /* We need the frame pointer to catch stack overflow exceptions
	  if the stack pointer is moving.  */
       || (flag_stack_check && STACK_CHECK_MOVING_SP)
       || crtl->accesses_prior_frames
       || crtl->stack_realign_needed
       || targetm.frame_pointer_required ());

  frame_pointer_needed = need_fp;

  COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
  CLEAR_HARD_REG_SET (eliminable_regset);

  compute_regs_asm_clobbered ();

  /* Build the regset of all eliminable registers and show we can't
     use those that we already know won't be eliminated.  */
#ifdef ELIMINABLE_REGS
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
    {
      bool cannot_elim
	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
	   || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));

      if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
	{
	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);

	    if (cannot_elim)
	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
	}
      else if (cannot_elim)
	error ("%s cannot be used in asm here",
	       reg_names[eliminables[i].from]);
      else
	df_set_regs_ever_live (eliminables[i].from, true);
    }
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
    {
      SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
      if (need_fp)
	SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
    }
  else if (need_fp)
    error ("%s cannot be used in asm here",
	   reg_names[HARD_FRAME_POINTER_REGNUM]);
  else
    df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
#endif

#else
  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
    {
      SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
      if (need_fp)
	SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
    }
  else if (need_fp)
    error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
  else
    df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
#endif
}



/* The length of the following two arrays.  */
int ira_reg_equiv_len;

/* The element value is TRUE if the corresponding regno value is
   invariant.  */
bool *ira_reg_equiv_invariant_p;

/* The element value is equiv constant of given pseudo-register or
   NULL_RTX.  */
rtx *ira_reg_equiv_const;

/* Set up the two arrays declared above.  */
static void
find_reg_equiv_invariant_const (void)
{
  int i;
  bool invariant_p;
  rtx list, insn, note, constant, x;

  for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
    {
      constant = NULL_RTX;
      invariant_p = false;
      for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
	{
	  insn = XEXP (list, 0);
	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);

	  if (note == NULL_RTX)
	    continue;

	  x = XEXP (note, 0);

	  if (! CONSTANT_P (x)
	      || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
	    {
	      /* It can happen that a REG_EQUIV note contains a MEM
		 that is not a legitimate memory operand.  As later
		 stages of the reload assume that all addresses found
		 in the reg_equiv_* arrays were originally legitimate,
		 we ignore such REG_EQUIV notes.  */
	      if (memory_operand (x, VOIDmode))
		invariant_p = MEM_READONLY_P (x);
	      else if (function_invariant_p (x))
		{
		  if (GET_CODE (x) == PLUS
		      || x == frame_pointer_rtx || x == arg_pointer_rtx)
		    invariant_p = true;
		  else
		    constant = x;
		}
	    }
	}
      ira_reg_equiv_invariant_p[i] = invariant_p;
      ira_reg_equiv_const[i] = constant;
    }
}



/* Vector of substitutions of register numbers,
   used to map pseudo regs into hardware regs.
   This is set up as a result of register allocation.
   Element N is the hard reg assigned to pseudo reg N,
   or is -1 if no hard reg was assigned.
   If N is a hard reg number, element N is N.  */
short *reg_renumber;

/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
   the allocation found by IRA.  */
static void
setup_reg_renumber (void)
{
  int regno, hard_regno;
  ira_allocno_t a;
  ira_allocno_iterator ai;

  caller_save_needed = 0;
  FOR_EACH_ALLOCNO (a, ai)
    {
      /* There are no caps at this point.  */
      ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
      if (! ALLOCNO_ASSIGNED_P (a))
	/* It can happen if A is not referenced but partially anticipated
	   somewhere in a region.  */
	ALLOCNO_ASSIGNED_P (a) = true;
      ira_free_allocno_updated_costs (a);
      hard_regno = ALLOCNO_HARD_REGNO (a);
      regno = ALLOCNO_REGNO (a);
      reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
      if (hard_regno >= 0)
	{
	  int i, nwords;
	  enum reg_class pclass;
	  ira_object_t obj;
	  
	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
	  nwords = ALLOCNO_NUM_OBJECTS (a);
	  for (i = 0; i < nwords; i++)
	    {
	      obj = ALLOCNO_OBJECT (a, i);
	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
				      reg_class_contents[pclass]);
	    }
	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
	      && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
					      call_used_reg_set))
	    {
	      ira_assert (!optimize || flag_caller_saves
			  || regno >= ira_reg_equiv_len
			  || ira_reg_equiv_const[regno]
			  || ira_reg_equiv_invariant_p[regno]);
	      caller_save_needed = 1;
	    }
	}
    }
}

/* Set up allocno assignment flags for further allocation
   improvements.  */
static void
setup_allocno_assignment_flags (void)
{
  int hard_regno;
  ira_allocno_t a;
  ira_allocno_iterator ai;

  FOR_EACH_ALLOCNO (a, ai)
    {
      if (! ALLOCNO_ASSIGNED_P (a))
	/* It can happen if A is not referenced but partially anticipated
	   somewhere in a region.  */
	ira_free_allocno_updated_costs (a);
      hard_regno = ALLOCNO_HARD_REGNO (a);
      /* Don't assign hard registers to allocnos which are destination
	 of removed store at the end of loop.  It has no sense to keep
	 the same value in different hard registers.  It is also
	 impossible to assign hard registers correctly to such
	 allocnos because the cost info and info about intersected
	 calls are incorrect for them.  */
      ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
				|| (ALLOCNO_MEMORY_COST (a)
				    - ALLOCNO_CLASS_COST (a)) < 0);
      ira_assert (hard_regno < 0
		  || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
						  reg_class_contents
						  [ALLOCNO_CLASS (a)]));
    }
}

/* Evaluate overall allocation cost and the costs for using hard
   registers and memory for allocnos.  */
static void
calculate_allocation_cost (void)
{
  int hard_regno, cost;
  ira_allocno_t a;
  ira_allocno_iterator ai;

  ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
  FOR_EACH_ALLOCNO (a, ai)
    {
      hard_regno = ALLOCNO_HARD_REGNO (a);
      ira_assert (hard_regno < 0
		  || ! ira_hard_reg_not_in_set_p
		       (hard_regno, ALLOCNO_MODE (a),
			reg_class_contents[ALLOCNO_CLASS (a)]));
      if (hard_regno < 0)
	{
	  cost = ALLOCNO_MEMORY_COST (a);
	  ira_mem_cost += cost;
	}
      else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
	{
	  cost = (ALLOCNO_HARD_REG_COSTS (a)
		  [ira_class_hard_reg_index
		   [ALLOCNO_CLASS (a)][hard_regno]]);
	  ira_reg_cost += cost;
	}
      else
	{
	  cost = ALLOCNO_CLASS_COST (a);
	  ira_reg_cost += cost;
	}
      ira_overall_cost += cost;
    }

  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
    {
      fprintf (ira_dump_file,
	       "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
      fprintf (ira_dump_file, "+++       move loops %d, new jumps %d\n",
	       ira_move_loops_num, ira_additional_jumps_num);
    }

}

#ifdef ENABLE_IRA_CHECKING
/* Check the correctness of the allocation.  We do need this because
   of complicated code to transform more one region internal
   representation into one region representation.  */
static void
check_allocation (void)
{
  ira_allocno_t a;
  int hard_regno, nregs, conflict_nregs;
  ira_allocno_iterator ai;

  FOR_EACH_ALLOCNO (a, ai)
    {
      int n = ALLOCNO_NUM_OBJECTS (a);
      int i;

      if (ALLOCNO_CAP_MEMBER (a) != NULL
	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
	continue;
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
      if (nregs == 1)
	/* We allocated a single hard register.  */
	n = 1;
      else if (n > 1)
	/* We allocated multiple hard registers, and we will test
	   conflicts in a granularity of single hard regs.  */
	nregs = 1;

      for (i = 0; i < n; i++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
	  ira_object_t conflict_obj;
	  ira_object_conflict_iterator oci;
	  int this_regno = hard_regno;
	  if (n > 1)
	    {
	      if (WORDS_BIG_ENDIAN)
		this_regno += n - i - 1;
	      else
		this_regno += i;
	    }
	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
	      if (conflict_hard_regno < 0)
		continue;

	      conflict_nregs
		= (hard_regno_nregs
		   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);

	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
		{
		  if (WORDS_BIG_ENDIAN)
		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
					    - OBJECT_SUBWORD (conflict_obj) - 1);
		  else
		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
		  conflict_nregs = 1;
		}

	      if ((conflict_hard_regno <= this_regno
		 && this_regno < conflict_hard_regno + conflict_nregs)
		|| (this_regno <= conflict_hard_regno
		    && conflict_hard_regno < this_regno + nregs))
		{
		  fprintf (stderr, "bad allocation for %d and %d\n",
			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
		  gcc_unreachable ();
		}
	    }
	}
    }
}
#endif

/* Fix values of array REG_EQUIV_INIT after live range splitting done
   by IRA.  */
static void
fix_reg_equiv_init (void)
{
  int max_regno = max_reg_num ();
  int i, new_regno;
  rtx x, prev, next, insn, set;

  if (reg_equiv_init_size < max_regno)
    {
      reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
      while (reg_equiv_init_size < max_regno)
	reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
      for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
	for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
	  {
	    next = XEXP (x, 1);
	    insn = XEXP (x, 0);
	    set = single_set (insn);
	    ira_assert (set != NULL_RTX
			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
	    if (REG_P (SET_DEST (set))
		&& ((int) REGNO (SET_DEST (set)) == i
		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
	      new_regno = REGNO (SET_DEST (set));
	    else if (REG_P (SET_SRC (set))
		     && ((int) REGNO (SET_SRC (set)) == i
			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
	      new_regno = REGNO (SET_SRC (set));
	    else
 	      gcc_unreachable ();
	    if (new_regno == i)
	      prev = x;
	    else
	      {
		if (prev == NULL_RTX)
		  reg_equiv_init[i] = next;
		else
		  XEXP (prev, 1) = next;
		XEXP (x, 1) = reg_equiv_init[new_regno];
		reg_equiv_init[new_regno] = x;
	      }
	  }
    }
}

#ifdef ENABLE_IRA_CHECKING
/* Print redundant memory-memory copies.  */
static void
print_redundant_copies (void)
{
  int hard_regno;
  ira_allocno_t a;
  ira_copy_t cp, next_cp;
  ira_allocno_iterator ai;

  FOR_EACH_ALLOCNO (a, ai)
    {
      if (ALLOCNO_CAP_MEMBER (a) != NULL)
	/* It is a cap. */
	continue;
      hard_regno = ALLOCNO_HARD_REGNO (a);
      if (hard_regno >= 0)
	continue;
      for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
	if (cp->first == a)
	  next_cp = cp->next_first_allocno_copy;
	else
	  {
	    next_cp = cp->next_second_allocno_copy;
	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
		&& cp->insn != NULL_RTX
		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
	      fprintf (ira_dump_file,
		       "        Redundant move from %d(freq %d):%d\n",
		       INSN_UID (cp->insn), cp->freq, hard_regno);
	  }
    }
}
#endif

/* Setup preferred and alternative classes for new pseudo-registers
   created by IRA starting with START.  */
static void
setup_preferred_alternate_classes_for_new_pseudos (int start)
{
  int i, old_regno;
  int max_regno = max_reg_num ();

  for (i = start; i < max_regno; i++)
    {
      old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
      ira_assert (i != old_regno);
      setup_reg_classes (i, reg_preferred_class (old_regno),
			 reg_alternate_class (old_regno),
			 reg_allocno_class (old_regno));
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
	fprintf (ira_dump_file,
		 "    New r%d: setting preferred %s, alternative %s\n",
		 i, reg_class_names[reg_preferred_class (old_regno)],
		 reg_class_names[reg_alternate_class (old_regno)]);
    }
}



/* Regional allocation can create new pseudo-registers.  This function
   expands some arrays for pseudo-registers.  */
static void
expand_reg_info (int old_size)
{
  int i;
  int size = max_reg_num ();

  resize_reg_info ();
  for (i = old_size; i < size; i++)
    setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
}

/* Return TRUE if there is too high register pressure in the function.
   It is used to decide when stack slot sharing is worth to do.  */
static bool
too_high_register_pressure_p (void)
{
  int i;
  enum reg_class pclass;

  for (i = 0; i < ira_pressure_classes_num; i++)
    {
      pclass = ira_pressure_classes[i];
      if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
	return true;
    }
  return false;
}



/* Indicate that hard register number FROM was eliminated and replaced with
   an offset from hard register number TO.  The status of hard registers live
   at the start of a basic block is updated by replacing a use of FROM with
   a use of TO.  */

void
mark_elimination (int from, int to)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      /* We don't use LIVE info in IRA.  */
      bitmap r = DF_LR_IN (bb);

      if (REGNO_REG_SET_P (r, from))
	{
	  CLEAR_REGNO_REG_SET (r, from);
	  SET_REGNO_REG_SET (r, to);
	}
    }
}



struct equivalence
{
  /* Set when a REG_EQUIV note is found or created.  Use to
     keep track of what memory accesses might be created later,
     e.g. by reload.  */
  rtx replacement;
  rtx *src_p;
  /* The list of each instruction which initializes this register.  */
  rtx init_insns;
  /* Loop depth is used to recognize equivalences which appear
     to be present within the same loop (or in an inner loop).  */
  int loop_depth;
  /* Nonzero if this had a preexisting REG_EQUIV note.  */
  int is_arg_equivalence;
  /* Set when an attempt should be made to replace a register
     with the associated src_p entry.  */
  char replace;
};

/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
   structure for that register.  */
static struct equivalence *reg_equiv;

/* Used for communication between the following two functions: contains
   a MEM that we wish to ensure remains unchanged.  */
static rtx equiv_mem;

/* Set nonzero if EQUIV_MEM is modified.  */
static int equiv_mem_modified;

/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
   Called via note_stores.  */
static void
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
			       void *data ATTRIBUTE_UNUSED)
{
  if ((REG_P (dest)
       && reg_overlap_mentioned_p (dest, equiv_mem))
      || (MEM_P (dest)
	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
    equiv_mem_modified = 1;
}

/* Verify that no store between START and the death of REG invalidates
   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
   by storing into an overlapping memory location, or with a non-const
   CALL_INSN.

   Return 1 if MEMREF remains valid.  */
static int
validate_equiv_mem (rtx start, rtx reg, rtx memref)
{
  rtx insn;
  rtx note;

  equiv_mem = memref;
  equiv_mem_modified = 0;

  /* If the memory reference has side effects or is volatile, it isn't a
     valid equivalence.  */
  if (side_effects_p (memref))
    return 0;

  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	continue;

      if (find_reg_note (insn, REG_DEAD, reg))
	return 1;

      /* This used to ignore readonly memory and const/pure calls.  The problem
	 is the equivalent form may reference a pseudo which gets assigned a
	 call clobbered hard reg.  When we later replace REG with its
	 equivalent form, the value in the call-clobbered reg has been
	 changed and all hell breaks loose.  */
      if (CALL_P (insn))
	return 0;

      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);

      /* If a register mentioned in MEMREF is modified via an
	 auto-increment, we lose the equivalence.  Do the same if one
	 dies; although we could extend the life, it doesn't seem worth
	 the trouble.  */

      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	if ((REG_NOTE_KIND (note) == REG_INC
	     || REG_NOTE_KIND (note) == REG_DEAD)
	    && REG_P (XEXP (note, 0))
	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
	  return 0;
    }

  return 0;
}

/* Returns zero if X is known to be invariant.  */
static int
equiv_init_varies_p (rtx x)
{
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;

  switch (code)
    {
    case MEM:
      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case REG:
      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

      /* Fall through.  */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (equiv_init_varies_p (XEXP (x, i)))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
	    return 1;
      }

  return 0;
}

/* Returns nonzero if X (used to initialize register REGNO) is movable.
   X is only movable if the registers it uses have equivalent initializations
   which appear to be within the same loop (or in an inner loop) and movable
   or if they are not candidates for local_alloc and don't vary.  */
static int
equiv_init_movable_p (rtx x, int regno)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SET:
      return equiv_init_movable_p (SET_SRC (x), regno);

    case CC0:
    case CLOBBER:
      return 0;

    case PRE_INC:
    case PRE_DEC:
    case POST_INC:
    case POST_DEC:
    case PRE_MODIFY:
    case POST_MODIFY:
      return 0;

    case REG:
      return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
	       && reg_equiv[REGNO (x)].replace)
	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
		  && ! rtx_varies_p (x, 0)));

    case UNSPEC_VOLATILE:
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 0;

      /* Fall through.  */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (! equiv_init_movable_p (XEXP (x, i), regno))
	  return 0;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
	    return 0;
	break;
      }

  return 1;
}

/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
   true.  */
static int
contains_replace_regs (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case PC:
    case CC0:
    case HIGH:
      return 0;

    case REG:
      return reg_equiv[REGNO (x)].replace;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (contains_replace_regs (XEXP (x, i)))
	  return 1;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (contains_replace_regs (XVECEXP (x, i, j)))
	    return 1;
	break;
      }

  return 0;
}

/* TRUE if X references a memory location that would be affected by a store
   to MEMREF.  */
static int
memref_referenced_p (rtx memref, rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case PC:
    case CC0:
    case HIGH:
    case LO_SUM:
      return 0;

    case REG:
      return (reg_equiv[REGNO (x)].replacement
	      && memref_referenced_p (memref,
				      reg_equiv[REGNO (x)].replacement));

    case MEM:
      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
	return 1;
      break;

    case SET:
      /* If we are setting a MEM, it doesn't count (its address does), but any
	 other SET_DEST that has a MEM in it is referencing the MEM.  */
      if (MEM_P (SET_DEST (x)))
	{
	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
	    return 1;
	}
      else if (memref_referenced_p (memref, SET_DEST (x)))
	return 1;

      return memref_referenced_p (memref, SET_SRC (x));

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (memref_referenced_p (memref, XEXP (x, i)))
	  return 1;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
	    return 1;
	break;
      }

  return 0;
}

/* TRUE if some insn in the range (START, END] references a memory location
   that would be affected by a store to MEMREF.  */
static int
memref_used_between_p (rtx memref, rtx start, rtx end)
{
  rtx insn;

  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
       insn = NEXT_INSN (insn))
    {
      if (!NONDEBUG_INSN_P (insn))
	continue;

      if (memref_referenced_p (memref, PATTERN (insn)))
	return 1;

      /* Nonconst functions may access memory.  */
      if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
	return 1;
    }

  return 0;
}

/* Mark REG as having no known equivalence.
   Some instructions might have been processed before and furnished
   with REG_EQUIV notes for this register; these notes will have to be
   removed.
   STORE is the piece of RTL that does the non-constant / conflicting
   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
   but needs to be there because this function is called from note_stores.  */
static void
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
	  void *data ATTRIBUTE_UNUSED)
{
  int regno;
  rtx list;

  if (!REG_P (reg))
    return;
  regno = REGNO (reg);
  list = reg_equiv[regno].init_insns;
  if (list == const0_rtx)
    return;
  reg_equiv[regno].init_insns = const0_rtx;
  reg_equiv[regno].replacement = NULL_RTX;
  /* This doesn't matter for equivalences made for argument registers, we
     should keep their initialization insns.  */
  if (reg_equiv[regno].is_arg_equivalence)
    return;
  reg_equiv_init[regno] = NULL_RTX;
  for (; list; list =  XEXP (list, 1))
    {
      rtx insn = XEXP (list, 0);
      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
    }
}

/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
   equivalent replacement.  */

static rtx
adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
{
  if (REG_P (loc))
    {
      bitmap cleared_regs = (bitmap) data;
      if (bitmap_bit_p (cleared_regs, REGNO (loc)))
	return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
					NULL_RTX, adjust_cleared_regs, data);
    }
  return NULL_RTX;
}

/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
static int recorded_label_ref;

/* Find registers that are equivalent to a single value throughout the
   compilation (either because they can be referenced in memory or are
   set once from a single constant).  Lower their priority for a
   register.

   If such a register is only referenced once, try substituting its
   value into the using insn.  If it succeeds, we can eliminate the
   register completely.

   Initialize the REG_EQUIV_INIT array of initializing insns.

   Return non-zero if jump label rebuilding should be done.  */
static int
update_equiv_regs (void)
{
  rtx insn;
  basic_block bb;
  int loop_depth;
  bitmap cleared_regs;

  /* We need to keep track of whether or not we recorded a LABEL_REF so
     that we know if the jump optimizer needs to be rerun.  */
  recorded_label_ref = 0;

  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
  reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
  reg_equiv_init_size = max_regno;

  init_alias_analysis ();

  /* Scan the insns and find which registers have equivalences.  Do this
     in a separate scan of the insns because (due to -fcse-follow-jumps)
     a register can be set below its use.  */
  FOR_EACH_BB (bb)
    {
      loop_depth = bb->loop_depth;

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  rtx note;
	  rtx set;
	  rtx dest, src;
	  int regno;

	  if (! INSN_P (insn))
	    continue;

	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_INC)
	      no_equiv (XEXP (note, 0), note, NULL);

	  set = single_set (insn);

	  /* If this insn contains more (or less) than a single SET,
	     only mark all destinations as having no known equivalence.  */
	  if (set == 0)
	    {
	      note_stores (PATTERN (insn), no_equiv, NULL);
	      continue;
	    }
	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      int i;

	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
		{
		  rtx part = XVECEXP (PATTERN (insn), 0, i);
		  if (part != set)
		    note_stores (part, no_equiv, NULL);
		}
	    }

	  dest = SET_DEST (set);
	  src = SET_SRC (set);

	  /* See if this is setting up the equivalence between an argument
	     register and its stack slot.  */
	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
	  if (note)
	    {
	      gcc_assert (REG_P (dest));
	      regno = REGNO (dest);

	      /* Note that we don't want to clear reg_equiv_init even if there
		 are multiple sets of this register.  */
	      reg_equiv[regno].is_arg_equivalence = 1;

	      /* Record for reload that this is an equivalencing insn.  */
	      if (rtx_equal_p (src, XEXP (note, 0)))
		reg_equiv_init[regno]
		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);

	      /* Continue normally in case this is a candidate for
		 replacements.  */
	    }

	  if (!optimize)
	    continue;

	  /* We only handle the case of a pseudo register being set
	     once, or always to the same value.  */
	  /* ??? The mn10200 port breaks if we add equivalences for
	     values that need an ADDRESS_REGS register and set them equivalent
	     to a MEM of a pseudo.  The actual problem is in the over-conservative
	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
	     calculate_needs, but we traditionally work around this problem
	     here by rejecting equivalences when the destination is in a register
	     that's likely spilled.  This is fragile, of course, since the
	     preferred class of a pseudo depends on all instructions that set
	     or use it.  */

	  if (!REG_P (dest)
	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
	      || reg_equiv[regno].init_insns == const0_rtx
	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
	    {
	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
		 also set somewhere else to a constant.  */
	      note_stores (set, no_equiv, NULL);
	      continue;
	    }

	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);

	  /* cse sometimes generates function invariants, but doesn't put a
	     REG_EQUAL note on the insn.  Since this note would be redundant,
	     there's no point creating it earlier than here.  */
	  if (! note && ! rtx_varies_p (src, 0))
	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));

	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
	     since it represents a function call */
	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
	    note = NULL_RTX;

	  if (DF_REG_DEF_COUNT (regno) != 1
	      && (! note
		  || rtx_varies_p (XEXP (note, 0), 0)
		  || (reg_equiv[regno].replacement
		      && ! rtx_equal_p (XEXP (note, 0),
					reg_equiv[regno].replacement))))
	    {
	      no_equiv (dest, set, NULL);
	      continue;
	    }
	  /* Record this insn as initializing this register.  */
	  reg_equiv[regno].init_insns
	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);

	  /* If this register is known to be equal to a constant, record that
	     it is always equivalent to the constant.  */
	  if (DF_REG_DEF_COUNT (regno) == 1
	      && note && ! rtx_varies_p (XEXP (note, 0), 0))
	    {
	      rtx note_value = XEXP (note, 0);
	      remove_note (insn, note);
	      set_unique_reg_note (insn, REG_EQUIV, note_value);
	    }

	  /* If this insn introduces a "constant" register, decrease the priority
	     of that register.  Record this insn if the register is only used once
	     more and the equivalence value is the same as our source.

	     The latter condition is checked for two reasons:  First, it is an
	     indication that it may be more efficient to actually emit the insn
	     as written (if no registers are available, reload will substitute
	     the equivalence).  Secondly, it avoids problems with any registers
	     dying in this insn whose death notes would be missed.

	     If we don't have a REG_EQUIV note, see if this insn is loading
	     a register used only in one basic block from a MEM.  If so, and the
	     MEM remains unchanged for the life of the register, add a REG_EQUIV
	     note.  */

	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);

	  if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
	      && MEM_P (SET_SRC (set))
	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
	    note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));

	  if (note)
	    {
	      int regno = REGNO (dest);
	      rtx x = XEXP (note, 0);

	      /* If we haven't done so, record for reload that this is an
		 equivalencing insn.  */
	      if (!reg_equiv[regno].is_arg_equivalence)
		reg_equiv_init[regno]
		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);

	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
		 We might end up substituting the LABEL_REF for uses of the
		 pseudo here or later.  That kind of transformation may turn an
		 indirect jump into a direct jump, in which case we must rerun the
		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
	      if (GET_CODE (x) == LABEL_REF
		  || (GET_CODE (x) == CONST
		      && GET_CODE (XEXP (x, 0)) == PLUS
		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
		recorded_label_ref = 1;

	      reg_equiv[regno].replacement = x;
	      reg_equiv[regno].src_p = &SET_SRC (set);
	      reg_equiv[regno].loop_depth = loop_depth;

	      /* Don't mess with things live during setjmp.  */
	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
		{
		  /* Note that the statement below does not affect the priority
		     in local-alloc!  */
		  REG_LIVE_LENGTH (regno) *= 2;

		  /* If the register is referenced exactly twice, meaning it is
		     set once and used once, indicate that the reference may be
		     replaced by the equivalence we computed above.  Do this
		     even if the register is only used in one block so that
		     dependencies can be handled where the last register is
		     used in a different block (i.e. HIGH / LO_SUM sequences)
		     and to reduce the number of registers alive across
		     calls.  */

		  if (REG_N_REFS (regno) == 2
		      && (rtx_equal_p (x, src)
			  || ! equiv_init_varies_p (src))
		      && NONJUMP_INSN_P (insn)
		      && equiv_init_movable_p (PATTERN (insn), regno))
		    reg_equiv[regno].replace = 1;
		}
	    }
	}
    }

  if (!optimize)
    goto out;

  /* A second pass, to gather additional equivalences with memory.  This needs
     to be done after we know which registers we are going to replace.  */

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      rtx set, src, dest;
      unsigned regno;

      if (! INSN_P (insn))
	continue;

      set = single_set (insn);
      if (! set)
	continue;

      dest = SET_DEST (set);
      src = SET_SRC (set);

      /* If this sets a MEM to the contents of a REG that is only used
	 in a single basic block, see if the register is always equivalent
	 to that memory location and if moving the store from INSN to the
	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
	 initializing insn.

	 Don't add a REG_EQUIV note if the insn already has one.  The existing
	 REG_EQUIV is likely more useful than the one we are adding.

	 If one of the regs in the address has reg_equiv[REGNO].replace set,
	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
	 optimization may move the set of this register immediately before
	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
	 the mention in the REG_EQUIV note would be to an uninitialized
	 pseudo.  */

      if (MEM_P (dest) && REG_P (src)
	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
	  && DF_REG_DEF_COUNT (regno) == 1
	  && reg_equiv[regno].init_insns != 0
	  && reg_equiv[regno].init_insns != const0_rtx
	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
			      REG_EQUIV, NULL_RTX)
	  && ! contains_replace_regs (XEXP (dest, 0)))
	{
	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
	  if (validate_equiv_mem (init_insn, src, dest)
	      && ! memref_used_between_p (dest, init_insn, insn)
	      /* Attaching a REG_EQUIV note will fail if INIT_INSN has
		 multiple sets.  */
	      && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
	    {
	      /* This insn makes the equivalence, not the one initializing
		 the register.  */
	      reg_equiv_init[regno]
		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
	      df_notes_rescan (init_insn);
	    }
	}
    }

  cleared_regs = BITMAP_ALLOC (NULL);
  /* Now scan all regs killed in an insn to see if any of them are
     registers only used that once.  If so, see if we can replace the
     reference with the equivalent form.  If we can, delete the
     initializing reference and this register will go away.  If we
     can't replace the reference, and the initializing reference is
     within the same loop (or in an inner loop), then move the register
     initialization just before the use, so that they are in the same
     basic block.  */
  FOR_EACH_BB_REVERSE (bb)
    {
      loop_depth = bb->loop_depth;
      for (insn = BB_END (bb);
	   insn != PREV_INSN (BB_HEAD (bb));
	   insn = PREV_INSN (insn))
	{
	  rtx link;

	  if (! INSN_P (insn))
	    continue;

	  /* Don't substitute into a non-local goto, this confuses CFG.  */
	  if (JUMP_P (insn)
	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
	    continue;

	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    {
	      if (REG_NOTE_KIND (link) == REG_DEAD
		  /* Make sure this insn still refers to the register.  */
		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
		{
		  int regno = REGNO (XEXP (link, 0));
		  rtx equiv_insn;

		  if (! reg_equiv[regno].replace
		      || reg_equiv[regno].loop_depth < loop_depth
		      /* There is no sense to move insns if we did
			 register pressure-sensitive scheduling was
			 done because it will not improve allocation
			 but worsen insn schedule with a big
			 probability.  */
		      || (flag_sched_pressure && flag_schedule_insns))
		    continue;

		  /* reg_equiv[REGNO].replace gets set only when
		     REG_N_REFS[REGNO] is 2, i.e. the register is set
		     once and used once.  (If it were only set, but not used,
		     flow would have deleted the setting insns.)  Hence
		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
		  gcc_assert (reg_equiv[regno].init_insns
			      && !XEXP (reg_equiv[regno].init_insns, 1));
		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);

		  /* We may not move instructions that can throw, since
		     that changes basic block boundaries and we are not
		     prepared to adjust the CFG to match.  */
		  if (can_throw_internal (equiv_insn))
		    continue;

		  if (asm_noperands (PATTERN (equiv_insn)) < 0
		      && validate_replace_rtx (regno_reg_rtx[regno],
					       *(reg_equiv[regno].src_p), insn))
		    {
		      rtx equiv_link;
		      rtx last_link;
		      rtx note;

		      /* Find the last note.  */
		      for (last_link = link; XEXP (last_link, 1);
			   last_link = XEXP (last_link, 1))
			;

		      /* Append the REG_DEAD notes from equiv_insn.  */
		      equiv_link = REG_NOTES (equiv_insn);
		      while (equiv_link)
			{
			  note = equiv_link;
			  equiv_link = XEXP (equiv_link, 1);
			  if (REG_NOTE_KIND (note) == REG_DEAD)
			    {
			      remove_note (equiv_insn, note);
			      XEXP (last_link, 1) = note;
			      XEXP (note, 1) = NULL_RTX;
			      last_link = note;
			    }
			}

		      remove_death (regno, insn);
		      SET_REG_N_REFS (regno, 0);
		      REG_FREQ (regno) = 0;
		      delete_insn (equiv_insn);

		      reg_equiv[regno].init_insns
			= XEXP (reg_equiv[regno].init_insns, 1);

		      reg_equiv_init[regno] = NULL_RTX;
		      bitmap_set_bit (cleared_regs, regno);
		    }
		  /* Move the initialization of the register to just before
		     INSN.  Update the flow information.  */
		  else if (prev_nondebug_insn (insn) != equiv_insn)
		    {
		      rtx new_insn;

		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
		      REG_NOTES (equiv_insn) = 0;
		      /* Rescan it to process the notes.  */
		      df_insn_rescan (new_insn);

		      /* Make sure this insn is recognized before
			 reload begins, otherwise
			 eliminate_regs_in_insn will die.  */
		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);

		      delete_insn (equiv_insn);

		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;

		      REG_BASIC_BLOCK (regno) = bb->index;
		      REG_N_CALLS_CROSSED (regno) = 0;
		      REG_FREQ_CALLS_CROSSED (regno) = 0;
		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
		      REG_LIVE_LENGTH (regno) = 2;

		      if (insn == BB_HEAD (bb))
			BB_HEAD (bb) = PREV_INSN (insn);

		      reg_equiv_init[regno]
			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
		      bitmap_set_bit (cleared_regs, regno);
		    }
		}
	    }
	}
    }

  if (!bitmap_empty_p (cleared_regs))
    {
      FOR_EACH_BB (bb)
	{
	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
	}

      /* Last pass - adjust debug insns referencing cleared regs.  */
      if (MAY_HAVE_DEBUG_INSNS)
	for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	  if (DEBUG_INSN_P (insn))
	    {
	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
	      INSN_VAR_LOCATION_LOC (insn)
		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
					   adjust_cleared_regs,
					   (void *) cleared_regs);
	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
		df_insn_rescan (insn);
	    }
    }

  BITMAP_FREE (cleared_regs);

  out:
  /* Clean up.  */

  end_alias_analysis ();
  free (reg_equiv);
  return recorded_label_ref;
}



/* Print chain C to FILE.  */
static void
print_insn_chain (FILE *file, struct insn_chain *c)
{
  fprintf (file, "insn=%d, ", INSN_UID(c->insn));
  bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
  bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
}


/* Print all reload_insn_chains to FILE.  */
static void
print_insn_chains (FILE *file)
{
  struct insn_chain *c;
  for (c = reload_insn_chain; c ; c = c->next)
    print_insn_chain (file, c);
}

/* Return true if pseudo REGNO should be added to set live_throughout
   or dead_or_set of the insn chains for reload consideration.  */
static bool
pseudo_for_reload_consideration_p (int regno)
{
  /* Consider spilled pseudos too for IRA because they still have a
     chance to get hard-registers in the reload when IRA is used.  */
  return (reg_renumber[regno] >= 0 || ira_conflicts_p);
}

/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
   REG to the number of nregs, and INIT_VALUE to get the
   initialization.  ALLOCNUM need not be the regno of REG.  */
static void
init_live_subregs (bool init_value, sbitmap *live_subregs,
		   int *live_subregs_used, int allocnum, rtx reg)
{
  unsigned int regno = REGNO (SUBREG_REG (reg));
  int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));

  gcc_assert (size > 0);

  /* Been there, done that.  */
  if (live_subregs_used[allocnum])
    return;

  /* Create a new one with zeros.  */
  if (live_subregs[allocnum] == NULL)
    live_subregs[allocnum] = sbitmap_alloc (size);

  /* If the entire reg was live before blasting into subregs, we need
     to init all of the subregs to ones else init to 0.  */
  if (init_value)
    sbitmap_ones (live_subregs[allocnum]);
  else
    sbitmap_zero (live_subregs[allocnum]);

  /* Set the number of bits that we really want.  */
  live_subregs_used[allocnum] = size;
}

/* Walk the insns of the current function and build reload_insn_chain,
   and record register life information.  */
static void
build_insn_chain (void)
{
  unsigned int i;
  struct insn_chain **p = &reload_insn_chain;
  basic_block bb;
  struct insn_chain *c = NULL;
  struct insn_chain *next = NULL;
  bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
  bitmap elim_regset = BITMAP_ALLOC (NULL);
  /* live_subregs is a vector used to keep accurate information about
     which hardregs are live in multiword pseudos.  live_subregs and
     live_subregs_used are indexed by pseudo number.  The live_subreg
     entry for a particular pseudo is only used if the corresponding
     element is non zero in live_subregs_used.  The value in
     live_subregs_used is number of bytes that the pseudo can
     occupy.  */
  sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
  int *live_subregs_used = XNEWVEC (int, max_regno);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (eliminable_regset, i))
      bitmap_set_bit (elim_regset, i);
  FOR_EACH_BB_REVERSE (bb)
    {
      bitmap_iterator bi;
      rtx insn;

      CLEAR_REG_SET (live_relevant_regs);
      memset (live_subregs_used, 0, max_regno * sizeof (int));

      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
	{
	  if (i >= FIRST_PSEUDO_REGISTER)
	    break;
	  bitmap_set_bit (live_relevant_regs, i);
	}

      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
				FIRST_PSEUDO_REGISTER, i, bi)
	{
	  if (pseudo_for_reload_consideration_p (i))
	    bitmap_set_bit (live_relevant_regs, i);
	}

      FOR_BB_INSNS_REVERSE (bb, insn)
	{
	  if (!NOTE_P (insn) && !BARRIER_P (insn))
	    {
	      unsigned int uid = INSN_UID (insn);
	      df_ref *def_rec;
	      df_ref *use_rec;

	      c = new_insn_chain ();
	      c->next = next;
	      next = c;
	      *p = c;
	      p = &c->prev;

	      c->insn = insn;
	      c->block = bb->index;

	      if (INSN_P (insn))
		for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
		  {
		    df_ref def = *def_rec;
		    unsigned int regno = DF_REF_REGNO (def);

		    /* Ignore may clobbers because these are generated
		       from calls. However, every other kind of def is
		       added to dead_or_set.  */
		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
		      {
			if (regno < FIRST_PSEUDO_REGISTER)
			  {
			    if (!fixed_regs[regno])
			      bitmap_set_bit (&c->dead_or_set, regno);
			  }
			else if (pseudo_for_reload_consideration_p (regno))
			  bitmap_set_bit (&c->dead_or_set, regno);
		      }

		    if ((regno < FIRST_PSEUDO_REGISTER
			 || reg_renumber[regno] >= 0
			 || ira_conflicts_p)
			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
		      {
			rtx reg = DF_REF_REG (def);

			/* We can model subregs, but not if they are
			   wrapped in ZERO_EXTRACTS.  */
			if (GET_CODE (reg) == SUBREG
			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
			  {
			    unsigned int start = SUBREG_BYTE (reg);
			    unsigned int last = start
			      + GET_MODE_SIZE (GET_MODE (reg));

			    init_live_subregs
			      (bitmap_bit_p (live_relevant_regs, regno),
			       live_subregs, live_subregs_used, regno, reg);

			    if (!DF_REF_FLAGS_IS_SET
				(def, DF_REF_STRICT_LOW_PART))
			      {
				/* Expand the range to cover entire words.
				   Bytes added here are "don't care".  */
				start
				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
				last = ((last + UNITS_PER_WORD - 1)
					/ UNITS_PER_WORD * UNITS_PER_WORD);
			      }

			    /* Ignore the paradoxical bits.  */
			    if ((int)last > live_subregs_used[regno])
			      last = live_subregs_used[regno];

			    while (start < last)
			      {
				RESET_BIT (live_subregs[regno], start);
				start++;
			      }

			    if (sbitmap_empty_p (live_subregs[regno]))
			      {
				live_subregs_used[regno] = 0;
				bitmap_clear_bit (live_relevant_regs, regno);
			      }
			    else
			      /* Set live_relevant_regs here because
				 that bit has to be true to get us to
				 look at the live_subregs fields.  */
			      bitmap_set_bit (live_relevant_regs, regno);
			  }
			else
			  {
			    /* DF_REF_PARTIAL is generated for
			       subregs, STRICT_LOW_PART, and
			       ZERO_EXTRACT.  We handle the subreg
			       case above so here we have to keep from
			       modeling the def as a killing def.  */
			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
			      {
				bitmap_clear_bit (live_relevant_regs, regno);
				live_subregs_used[regno] = 0;
			      }
			  }
		      }
		  }

	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
	      bitmap_copy (&c->live_throughout, live_relevant_regs);

	      if (INSN_P (insn))
		for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
		  {
		    df_ref use = *use_rec;
		    unsigned int regno = DF_REF_REGNO (use);
		    rtx reg = DF_REF_REG (use);

		    /* DF_REF_READ_WRITE on a use means that this use
		       is fabricated from a def that is a partial set
		       to a multiword reg.  Here, we only model the
		       subreg case that is not wrapped in ZERO_EXTRACT
		       precisely so we do not need to look at the
		       fabricated use. */
		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
		      continue;

		    /* Add the last use of each var to dead_or_set.  */
		    if (!bitmap_bit_p (live_relevant_regs, regno))
		      {
			if (regno < FIRST_PSEUDO_REGISTER)
			  {
			    if (!fixed_regs[regno])
			      bitmap_set_bit (&c->dead_or_set, regno);
			  }
			else if (pseudo_for_reload_consideration_p (regno))
			  bitmap_set_bit (&c->dead_or_set, regno);
		      }

		    if (regno < FIRST_PSEUDO_REGISTER
			|| pseudo_for_reload_consideration_p (regno))
		      {
			if (GET_CODE (reg) == SUBREG
			    && !DF_REF_FLAGS_IS_SET (use,
						     DF_REF_SIGN_EXTRACT
						     | DF_REF_ZERO_EXTRACT))
			  {
			    unsigned int start = SUBREG_BYTE (reg);
			    unsigned int last = start
			      + GET_MODE_SIZE (GET_MODE (reg));

			    init_live_subregs
			      (bitmap_bit_p (live_relevant_regs, regno),
			       live_subregs, live_subregs_used, regno, reg);

			    /* Ignore the paradoxical bits.  */
			    if ((int)last > live_subregs_used[regno])
			      last = live_subregs_used[regno];

			    while (start < last)
			      {
				SET_BIT (live_subregs[regno], start);
				start++;
			      }
			  }
			else
			  /* Resetting the live_subregs_used is
			     effectively saying do not use the subregs
			     because we are reading the whole
			     pseudo.  */
			  live_subregs_used[regno] = 0;
			bitmap_set_bit (live_relevant_regs, regno);
		      }
		  }
	    }
	}

      /* FIXME!! The following code is a disaster.  Reload needs to see the
	 labels and jump tables that are just hanging out in between
	 the basic blocks.  See pr33676.  */
      insn = BB_HEAD (bb);

      /* Skip over the barriers and cruft.  */
      while (insn && (BARRIER_P (insn) || NOTE_P (insn)
		      || BLOCK_FOR_INSN (insn) == bb))
	insn = PREV_INSN (insn);

      /* While we add anything except barriers and notes, the focus is
	 to get the labels and jump tables into the
	 reload_insn_chain.  */
      while (insn)
	{
	  if (!NOTE_P (insn) && !BARRIER_P (insn))
	    {
	      if (BLOCK_FOR_INSN (insn))
		break;

	      c = new_insn_chain ();
	      c->next = next;
	      next = c;
	      *p = c;
	      p = &c->prev;

	      /* The block makes no sense here, but it is what the old
		 code did.  */
	      c->block = bb->index;
	      c->insn = insn;
	      bitmap_copy (&c->live_throughout, live_relevant_regs);
	    }
	  insn = PREV_INSN (insn);
	}
    }

  for (i = 0; i < (unsigned int) max_regno; i++)
    if (live_subregs[i])
      free (live_subregs[i]);

  reload_insn_chain = c;
  *p = NULL;

  free (live_subregs);
  free (live_subregs_used);
  BITMAP_FREE (live_relevant_regs);
  BITMAP_FREE (elim_regset);

  if (dump_file)
    print_insn_chains (dump_file);
}

/* Allocate memory for reg_equiv_memory_loc.  */
static void
init_reg_equiv_memory_loc (void)
{
  max_regno = max_reg_num ();

  /* And the reg_equiv_memory_loc array.  */
  VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
  memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
	  sizeof (rtx) * max_regno);
  reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
}

/* All natural loops.  */
struct loops ira_loops;

/* True if we have allocno conflicts.  It is false for non-optimized
   mode or when the conflict table is too big.  */
bool ira_conflicts_p;

/* This is the main entry of IRA.  */
static void
ira (FILE *f)
{
  int overall_cost_before, allocated_reg_info_size;
  bool loops_p;
  int max_regno_before_ira, ira_max_point_before_emit;
  int rebuild_p;
  int saved_flag_ira_share_spill_slots;
  basic_block bb;

  timevar_push (TV_IRA);

  if (flag_caller_saves)
    init_caller_save ();

  if (flag_ira_verbose < 10)
    {
      internal_flag_ira_verbose = flag_ira_verbose;
      ira_dump_file = f;
    }
  else
    {
      internal_flag_ira_verbose = flag_ira_verbose - 10;
      ira_dump_file = stderr;
    }

  ira_conflicts_p = optimize > 0;
  setup_prohibited_mode_move_regs ();

  df_note_add_problem ();

  if (optimize == 1)
    {
      df_live_add_problem ();
      df_live_set_all_dirty ();
    }
#ifdef ENABLE_CHECKING
  df->changeable_flags |= DF_VERIFY_SCHEDULED;
#endif
  df_analyze ();
  df_clear_flags (DF_NO_INSN_RESCAN);
  regstat_init_n_sets_and_refs ();
  regstat_compute_ri ();

  /* If we are not optimizing, then this is the only place before
     register allocation where dataflow is done.  And that is needed
     to generate these warnings.  */
  if (warn_clobbered)
    generate_setjmp_warnings ();

  /* Determine if the current function is a leaf before running IRA
     since this can impact optimizations done by the prologue and
     epilogue thus changing register elimination offsets.  */
  current_function_is_leaf = leaf_function_p ();

  if (resize_reg_info () && flag_ira_loop_pressure)
    ira_set_pseudo_classes (ira_dump_file);

  rebuild_p = update_equiv_regs ();

#ifndef IRA_NO_OBSTACK
  gcc_obstack_init (&ira_obstack);
#endif
  bitmap_obstack_initialize (&ira_bitmap_obstack);
  if (optimize)
    {
      max_regno = max_reg_num ();
      ira_reg_equiv_len = max_regno;
      ira_reg_equiv_invariant_p
	= (bool *) ira_allocate (max_regno * sizeof (bool));
      memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
      ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
      memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
      find_reg_equiv_invariant_const ();
      if (rebuild_p)
	{
	  timevar_push (TV_JUMP);
	  rebuild_jump_labels (get_insns ());
	  if (purge_all_dead_edges ())
	    delete_unreachable_blocks ();
	  timevar_pop (TV_JUMP);
	}
    }

  max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
  ira_setup_eliminable_regset ();

  ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
  ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
  ira_move_loops_num = ira_additional_jumps_num = 0;

  ira_assert (current_loops == NULL);
  flow_loops_find (&ira_loops);
  record_loop_exits ();
  current_loops = &ira_loops;

  init_reg_equiv_memory_loc ();

  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
    fprintf (ira_dump_file, "Building IRA IR\n");
  loops_p = ira_build (optimize
		       && (flag_ira_region == IRA_REGION_ALL
			   || flag_ira_region == IRA_REGION_MIXED));

  ira_assert (ira_conflicts_p || !loops_p);

  saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
  if (too_high_register_pressure_p () || cfun->calls_setjmp)
    /* It is just wasting compiler's time to pack spilled pseudos into
       stack slots in this case -- prohibit it.  We also do this if
       there is setjmp call because a variable not modified between
       setjmp and longjmp the compiler is required to preserve its
       value and sharing slots does not guarantee it.  */
    flag_ira_share_spill_slots = FALSE;

  ira_color ();

  ira_max_point_before_emit = ira_max_point;

  ira_initiate_emit_data ();

  ira_emit (loops_p);

  if (ira_conflicts_p)
    {
      max_regno = max_reg_num ();

      if (! loops_p)
	ira_initiate_assign ();
      else
	{
	  expand_reg_info (allocated_reg_info_size);
	  setup_preferred_alternate_classes_for_new_pseudos
	    (allocated_reg_info_size);
	  allocated_reg_info_size = max_regno;

	  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "Flattening IR\n");
	  ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
	  /* New insns were generated: add notes and recalculate live
	     info.  */
	  df_analyze ();

	  flow_loops_find (&ira_loops);
	  record_loop_exits ();
	  current_loops = &ira_loops;

	  setup_allocno_assignment_flags ();
	  ira_initiate_assign ();
	  ira_reassign_conflict_allocnos (max_regno);
	}
    }

  ira_finish_emit_data ();

  setup_reg_renumber ();

  calculate_allocation_cost ();

#ifdef ENABLE_IRA_CHECKING
  if (ira_conflicts_p)
    check_allocation ();
#endif

  if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
    df_analyze ();

  init_reg_equiv_memory_loc ();

  if (max_regno != max_regno_before_ira)
    {
      regstat_free_n_sets_and_refs ();
      regstat_free_ri ();
      regstat_init_n_sets_and_refs ();
      regstat_compute_ri ();
    }

  allocate_initial_values (reg_equiv_memory_loc);

  overall_cost_before = ira_overall_cost;
  if (ira_conflicts_p)
    {
      fix_reg_equiv_init ();

#ifdef ENABLE_IRA_CHECKING
      print_redundant_copies ();
#endif

      ira_spilled_reg_stack_slots_num = 0;
      ira_spilled_reg_stack_slots
	= ((struct ira_spilled_reg_stack_slot *)
	   ira_allocate (max_regno
			 * sizeof (struct ira_spilled_reg_stack_slot)));
      memset (ira_spilled_reg_stack_slots, 0,
	      max_regno * sizeof (struct ira_spilled_reg_stack_slot));
    }

  timevar_pop (TV_IRA);

  timevar_push (TV_RELOAD);
  df_set_flags (DF_NO_INSN_RESCAN);
  build_insn_chain ();

  reload_completed = !reload (get_insns (), ira_conflicts_p);

  timevar_pop (TV_RELOAD);

  timevar_push (TV_IRA);

  if (ira_conflicts_p)
    {
      ira_free (ira_spilled_reg_stack_slots);

      ira_finish_assign ();

    }
  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
      && overall_cost_before != ira_overall_cost)
    fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
  ira_destroy ();

  flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;

  flow_loops_free (&ira_loops);
  free_dominance_info (CDI_DOMINATORS);
  FOR_ALL_BB (bb)
    bb->loop_father = NULL;
  current_loops = NULL;

  regstat_free_ri ();
  regstat_free_n_sets_and_refs ();

  if (optimize)
    {
      cleanup_cfg (CLEANUP_EXPENSIVE);

      ira_free (ira_reg_equiv_invariant_p);
      ira_free (ira_reg_equiv_const);
    }

  bitmap_obstack_release (&ira_bitmap_obstack);
#ifndef IRA_NO_OBSTACK
  obstack_free (&ira_obstack, NULL);
#endif

  /* The code after the reload has changed so much that at this point
     we might as well just rescan everything.  Not that
     df_rescan_all_insns is not going to help here because it does not
     touch the artificial uses and defs.  */
  df_finish_pass (true);
  if (optimize > 1)
    df_live_add_problem ();
  df_scan_alloc (NULL);
  df_scan_blocks ();

  if (optimize)
    df_analyze ();

  timevar_pop (TV_IRA);
}



static bool
gate_ira (void)
{
  return true;
}

/* Run the integrated register allocator.  */
static unsigned int
rest_of_handle_ira (void)
{
  ira (dump_file);
  return 0;
}

struct rtl_opt_pass pass_ira =
{
 {
  RTL_PASS,
  "ira",                                /* name */
  gate_ira,                             /* gate */
  rest_of_handle_ira,		        /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_NONE,	                        /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_ggc_collect                      /* todo_flags_finish */
 }
};