1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
.. Copyright (C) 2014-2020 Free Software Foundation, Inc.
Originally contributed by David Malcolm <dmalcolm@redhat.com>
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
Tutorial part 3: Loops and variables
------------------------------------
Consider this C function:
.. code-block:: c
int loop_test (int n)
{
int sum = 0;
for (int i = 0; i < n; i++)
sum += i * i;
return sum;
}
This example demonstrates some more features of libgccjit, with local
variables and a loop.
To break this down into libgccjit terms, it's usually easier to reword
the `for` loop as a `while` loop, giving:
.. code-block:: c
int loop_test (int n)
{
int sum = 0;
int i = 0;
while (i < n)
{
sum += i * i;
i++;
}
return sum;
}
Here's what the final control flow graph will look like:
.. figure:: sum-of-squares.png
:alt: image of a control flow graph
As before, we include the libgccjit header and make a
:c:type:`gcc_jit_context *`.
.. code-block:: c
#include <libgccjit.h>
void test (void)
{
gcc_jit_context *ctxt;
ctxt = gcc_jit_context_acquire ();
The function works with the C `int` type:
.. code-block:: c
gcc_jit_type *the_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
gcc_jit_type *return_type = the_type;
though we could equally well make it work on, say, `double`:
.. code-block:: c
gcc_jit_type *the_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_DOUBLE);
Let's build the function:
.. code-block:: c
gcc_jit_param *n =
gcc_jit_context_new_param (ctxt, NULL, the_type, "n");
gcc_jit_param *params[1] = {n};
gcc_jit_function *func =
gcc_jit_context_new_function (ctxt, NULL,
GCC_JIT_FUNCTION_EXPORTED,
return_type,
"loop_test",
1, params, 0);
Expressions: lvalues and rvalues
********************************
The base class of expression is the :c:type:`gcc_jit_rvalue *`,
representing an expression that can be on the *right*-hand side of
an assignment: a value that can be computed somehow, and assigned
*to* a storage area (such as a variable). It has a specific
:c:type:`gcc_jit_type *`.
Anothe important class is :c:type:`gcc_jit_lvalue *`.
A :c:type:`gcc_jit_lvalue *`. is something that can of the *left*-hand
side of an assignment: a storage area (such as a variable).
In other words, every assignment can be thought of as:
.. code-block:: c
LVALUE = RVALUE;
Note that :c:type:`gcc_jit_lvalue *` is a subclass of
:c:type:`gcc_jit_rvalue *`, where in an assignment of the form:
.. code-block:: c
LVALUE_A = LVALUE_B;
the `LVALUE_B` implies reading the current value of that storage
area, assigning it into the `LVALUE_A`.
So far the only expressions we've seen are `i * i`:
.. code-block:: c
gcc_jit_rvalue *expr =
gcc_jit_context_new_binary_op (
ctxt, NULL,
GCC_JIT_BINARY_OP_MULT, int_type,
gcc_jit_param_as_rvalue (param_i),
gcc_jit_param_as_rvalue (param_i));
which is a :c:type:`gcc_jit_rvalue *`, and the various function
parameters: `param_i` and `param_n`, instances of
:c:type:`gcc_jit_param *`, which is a subclass of
:c:type:`gcc_jit_lvalue *` (and, in turn, of :c:type:`gcc_jit_rvalue *`):
we can both read from and write to function parameters within the
body of a function.
Our new example has a couple of local variables. We create them by
calling :c:func:`gcc_jit_function_new_local`, supplying a type and a
name:
.. code-block:: c
/* Build locals: */
gcc_jit_lvalue *i =
gcc_jit_function_new_local (func, NULL, the_type, "i");
gcc_jit_lvalue *sum =
gcc_jit_function_new_local (func, NULL, the_type, "sum");
These are instances of :c:type:`gcc_jit_lvalue *` - they can be read from
and written to.
Note that there is no precanned way to create *and* initialize a variable
like in C:
.. code-block:: c
int i = 0;
Instead, having added the local to the function, we have to separately add
an assignment of `0` to `local_i` at the beginning of the function.
Control flow
************
This function has a loop, so we need to build some basic blocks to
handle the control flow. In this case, we need 4 blocks:
1. before the loop (initializing the locals)
2. the conditional at the top of the loop (comparing `i < n`)
3. the body of the loop
4. after the loop terminates (`return sum`)
so we create these as :c:type:`gcc_jit_block *` instances within the
:c:type:`gcc_jit_function *`:
.. code-block:: c
gcc_jit_block *b_initial =
gcc_jit_function_new_block (func, "initial");
gcc_jit_block *b_loop_cond =
gcc_jit_function_new_block (func, "loop_cond");
gcc_jit_block *b_loop_body =
gcc_jit_function_new_block (func, "loop_body");
gcc_jit_block *b_after_loop =
gcc_jit_function_new_block (func, "after_loop");
We now populate each block with statements.
The entry block `b_initial` consists of initializations followed by a jump
to the conditional. We assign `0` to `i` and to `sum`, using
:c:func:`gcc_jit_block_add_assignment` to add
an assignment statement, and using :c:func:`gcc_jit_context_zero` to get
the constant value `0` for the relevant type for the right-hand side of
the assignment:
.. code-block:: c
/* sum = 0; */
gcc_jit_block_add_assignment (
b_initial, NULL,
sum,
gcc_jit_context_zero (ctxt, the_type));
/* i = 0; */
gcc_jit_block_add_assignment (
b_initial, NULL,
i,
gcc_jit_context_zero (ctxt, the_type));
We can then terminate the entry block by jumping to the conditional:
.. code-block:: c
gcc_jit_block_end_with_jump (b_initial, NULL, b_loop_cond);
The conditional block is equivalent to the line `while (i < n)` from our
C example. It contains a single statement: a conditional, which jumps to
one of two destination blocks depending on a boolean
:c:type:`gcc_jit_rvalue *`, in this case the comparison of `i` and `n`.
We build the comparison using :c:func:`gcc_jit_context_new_comparison`:
.. code-block:: c
/* (i >= n) */
gcc_jit_rvalue *guard =
gcc_jit_context_new_comparison (
ctxt, NULL,
GCC_JIT_COMPARISON_GE,
gcc_jit_lvalue_as_rvalue (i),
gcc_jit_param_as_rvalue (n));
and can then use this to add `b_loop_cond`'s sole statement, via
:c:func:`gcc_jit_block_end_with_conditional`:
.. code-block:: c
/* Equivalent to:
if (guard)
goto after_loop;
else
goto loop_body; */
gcc_jit_block_end_with_conditional (
b_loop_cond, NULL,
guard,
b_after_loop, /* on_true */
b_loop_body); /* on_false */
Next, we populate the body of the loop.
The C statement `sum += i * i;` is an assignment operation, where an
lvalue is modified "in-place". We use
:c:func:`gcc_jit_block_add_assignment_op` to handle these operations:
.. code-block:: c
/* sum += i * i */
gcc_jit_block_add_assignment_op (
b_loop_body, NULL,
sum,
GCC_JIT_BINARY_OP_PLUS,
gcc_jit_context_new_binary_op (
ctxt, NULL,
GCC_JIT_BINARY_OP_MULT, the_type,
gcc_jit_lvalue_as_rvalue (i),
gcc_jit_lvalue_as_rvalue (i)));
The `i++` can be thought of as `i += 1`, and can thus be handled in
a similar way. We use :c:func:`gcc_jit_context_one` to get the constant
value `1` (for the relevant type) for the right-hand side
of the assignment.
.. code-block:: c
/* i++ */
gcc_jit_block_add_assignment_op (
b_loop_body, NULL,
i,
GCC_JIT_BINARY_OP_PLUS,
gcc_jit_context_one (ctxt, the_type));
.. note::
For numeric constants other than 0 or 1, we could use
:c:func:`gcc_jit_context_new_rvalue_from_int` and
:c:func:`gcc_jit_context_new_rvalue_from_double`.
The loop body completes by jumping back to the conditional:
.. code-block:: c
gcc_jit_block_end_with_jump (b_loop_body, NULL, b_loop_cond);
Finally, we populate the `b_after_loop` block, reached when the loop
conditional is false. We want to generate the equivalent of:
.. code-block:: c
return sum;
so the block is just one statement:
.. code-block:: c
/* return sum */
gcc_jit_block_end_with_return (
b_after_loop,
NULL,
gcc_jit_lvalue_as_rvalue (sum));
.. note::
You can intermingle block creation with statement creation,
but given that the terminator statements generally include references
to other blocks, I find it's clearer to create all the blocks,
*then* all the statements.
We've finished populating the function. As before, we can now compile it
to machine code:
.. code-block:: c
gcc_jit_result *result;
result = gcc_jit_context_compile (ctxt);
typedef int (*loop_test_fn_type) (int);
loop_test_fn_type loop_test =
(loop_test_fn_type)gcc_jit_result_get_code (result, "loop_test");
if (!loop_test)
goto error;
printf ("result: %d", loop_test (10));
.. code-block:: bash
result: 285
Visualizing the control flow graph
**********************************
You can see the control flow graph of a function using
:c:func:`gcc_jit_function_dump_to_dot`:
.. code-block:: c
gcc_jit_function_dump_to_dot (func, "/tmp/sum-of-squares.dot");
giving a .dot file in GraphViz format.
You can convert this to an image using `dot`:
.. code-block:: bash
$ dot -Tpng /tmp/sum-of-squares.dot -o /tmp/sum-of-squares.png
or use a viewer (my preferred one is xdot.py; see
https://github.com/jrfonseca/xdot.py; on Fedora you can
install it with `yum install python-xdot`):
.. figure:: sum-of-squares.png
:alt: image of a control flow graph
Full example
************
.. literalinclude:: ../examples/tut03-sum-of-squares.c
:lines: 1-
:language: c
Building and running it:
.. code-block:: console
$ gcc \
tut03-sum-of-squares.c \
-o tut03-sum-of-squares \
-lgccjit
# Run the built program:
$ ./tut03-sum-of-squares
loop_test returned: 285
|