summaryrefslogtreecommitdiff
path: root/gcc/jit/docs/intro/tutorial05.rst
blob: a5d3440616608f75c71ee5adb27d3a52bd7d7169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
.. Copyright (C) 2015-2018 Free Software Foundation, Inc.
   Originally contributed by David Malcolm <dmalcolm@redhat.com>

   This is free software: you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see
   <http://www.gnu.org/licenses/>.

Tutorial part 5: Implementing an Ahead-of-Time compiler
-------------------------------------------------------

If you have a pre-existing language frontend that's compatible with
libgccjit's license, it's possible to hook it up to libgccjit as a
backend.  In the previous example we showed
how to do that for in-memory JIT-compilation, but libgccjit can also
compile code directly to a file, allowing you to implement a more
traditional ahead-of-time compiler ("JIT" is something of a misnomer
for this use-case).

The essential difference is to compile the context using
:c:func:`gcc_jit_context_compile_to_file` rather than
:c:func:`gcc_jit_context_compile`.

The "brainf" language
*********************

In this example we use libgccjit to construct an ahead-of-time compiler
for an esoteric programming language that we shall refer to as "brainf".

brainf scripts operate on an array of bytes, with a notional data pointer
within the array.

brainf is hard for humans to read, but it's trivial to write a parser for
it, as there is no lexing; just a stream of bytes.  The operations are:

====================== =============================
Character              Meaning
====================== =============================
``>``                  ``idx += 1``
``<``                  ``idx -= 1``
``+``                  ``data[idx] += 1``
``-``                  ``data[idx] -= 1``
``.``                  ``output (data[idx])``
``,``                  ``data[idx] = input ()``
``[``                  loop until ``data[idx] == 0``
``]``                  end of loop
Anything else          ignored
====================== =============================

Unlike the previous example, we'll implement an ahead-of-time compiler,
which reads ``.bf`` scripts and outputs executables (though it would
be trivial to have it run them JIT-compiled in-process).

Here's what a simple ``.bf`` script looks like:

   .. literalinclude:: ../examples/emit-alphabet.bf
    :lines: 1-

.. note::

   This example makes use of whitespace and comments for legibility, but
   could have been written as::

     ++++++++++++++++++++++++++
     >+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<
     [>.+<-]

   It's not a particularly useful language, except for providing
   compiler-writers with a test case that's easy to parse.  The point
   is that you can use :c:func:`gcc_jit_context_compile_to_file`
   to use libgccjit as a backend for a pre-existing language frontend
   (provided that the pre-existing frontend is compatible with libgccjit's
   license).

Converting a brainf script to libgccjit IR
******************************************

As before we write simple code to populate a :c:type:`gcc_jit_context *`.

   .. literalinclude:: ../examples/tut05-bf.c
    :start-after: #define MAX_OPEN_PARENS 16
    :end-before: /* Entrypoint to the compiler.  */
    :language: c

Compiling a context to a file
*****************************

Unlike the previous tutorial, this time we'll compile the context
directly to an executable, using :c:func:`gcc_jit_context_compile_to_file`:

.. code-block:: c

    gcc_jit_context_compile_to_file (ctxt,
                                     GCC_JIT_OUTPUT_KIND_EXECUTABLE,
                                     output_file);

Here's the top-level of the compiler, which is what actually calls into
:c:func:`gcc_jit_context_compile_to_file`:

 .. literalinclude:: ../examples/tut05-bf.c
    :start-after: /* Entrypoint to the compiler.  */
    :end-before: /* Use the built compiler to compile the example to an executable:
    :language: c

Note how once the context is populated you could trivially instead compile
it to memory using :c:func:`gcc_jit_context_compile` and run it in-process
as in the previous tutorial.

To create an executable, we need to export a ``main`` function.  Here's
how to create one from the JIT API:

 .. literalinclude:: ../examples/tut05-bf.c
    :start-after: #include "libgccjit.h"
    :end-before: #define MAX_OPEN_PARENS 16
    :language: c

.. note::

   The above implementation ignores ``argc`` and ``argv``, but you could
   make use of them by exposing ``param_argc`` and ``param_argv`` to the
   caller.

Upon compiling this C code, we obtain a bf-to-machine-code compiler;
let's call it ``bfc``:

.. code-block:: console

  $ gcc \
      tut05-bf.c \
      -o bfc \
      -lgccjit

We can now use ``bfc`` to compile .bf files into machine code executables:

.. code-block:: console

  $ ./bfc \
       emit-alphabet.bf \
       a.out

which we can run directly:

.. code-block:: console

  $ ./a.out
  ABCDEFGHIJKLMNOPQRSTUVWXYZ

Success!

We can also inspect the generated executable using standard tools:

.. code-block:: console

  $ objdump -d a.out |less

which shows that libgccjit has managed to optimize the function
somewhat (for example, the runs of 26 and 65 increment operations
have become integer constants 0x1a and 0x41):

.. code-block:: console

  0000000000400620 <main>:
    400620:     80 3d 39 0a 20 00 00    cmpb   $0x0,0x200a39(%rip)        # 601060 <data
    400627:     74 07                   je     400630 <main
    400629:     eb fe                   jmp    400629 <main+0x9>
    40062b:     0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
    400630:     48 83 ec 08             sub    $0x8,%rsp
    400634:     0f b6 05 26 0a 20 00    movzbl 0x200a26(%rip),%eax        # 601061 <data_cells+0x1>
    40063b:     c6 05 1e 0a 20 00 1a    movb   $0x1a,0x200a1e(%rip)       # 601060 <data_cells>
    400642:     8d 78 41                lea    0x41(%rax),%edi
    400645:     40 88 3d 15 0a 20 00    mov    %dil,0x200a15(%rip)        # 601061 <data_cells+0x1>
    40064c:     0f 1f 40 00             nopl   0x0(%rax)
    400650:     40 0f b6 ff             movzbl %dil,%edi
    400654:     e8 87 fe ff ff          callq  4004e0 <putchar@plt>
    400659:     0f b6 05 01 0a 20 00    movzbl 0x200a01(%rip),%eax        # 601061 <data_cells+0x1>
    400660:     80 2d f9 09 20 00 01    subb   $0x1,0x2009f9(%rip)        # 601060 <data_cells>
    400667:     8d 78 01                lea    0x1(%rax),%edi
    40066a:     40 88 3d f0 09 20 00    mov    %dil,0x2009f0(%rip)        # 601061 <data_cells+0x1>
    400671:     75 dd                   jne    400650 <main+0x30>
    400673:     31 c0                   xor    %eax,%eax
    400675:     48 83 c4 08             add    $0x8,%rsp
    400679:     c3                      retq
    40067a:     66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)

We also set up debugging information (via
:c:func:`gcc_jit_context_new_location` and
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO`), so it's possible to use ``gdb``
to singlestep through the generated binary and inspect the internal
state ``idx`` and ``data_cells``:

.. code-block:: console

  (gdb) break main
  Breakpoint 1 at 0x400790
  (gdb) run
  Starting program: a.out

  Breakpoint 1, 0x0000000000400790 in main (argc=1, argv=0x7fffffffe448)
  (gdb) stepi
  0x0000000000400797 in main (argc=1, argv=0x7fffffffe448)
  (gdb) stepi
  0x00000000004007a0 in main (argc=1, argv=0x7fffffffe448)
  (gdb) stepi
  9     >+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<
  (gdb) list
  4
  5     cell 0 = 26
  6     ++++++++++++++++++++++++++
  7
  8     cell 1 = 65
  9     >+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<
  10
  11    while cell#0 != 0
  12    [
  13     >
  (gdb) n
  6     ++++++++++++++++++++++++++
  (gdb) n
  9     >+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<
  (gdb) p idx
  $1 = 1
  (gdb) p data_cells
  $2 = "\032", '\000' <repeats 29998 times>
  (gdb) p data_cells[0]
  $3 = 26 '\032'
  (gdb) p data_cells[1]
  $4 = 0 '\000'
  (gdb) list
  4
  5     cell 0 = 26
  6     ++++++++++++++++++++++++++
  7
  8     cell 1 = 65
  9     >+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<
  10
  11    while cell#0 != 0
  12    [
  13     >


Other forms of ahead-of-time-compilation
****************************************

The above demonstrates compiling a :c:type:`gcc_jit_context *` directly
to an executable.  It's also possible to compile it to an object file,
and to a dynamic library.  See the documentation of
:c:func:`gcc_jit_context_compile_to_file` for more information.