summaryrefslogtreecommitdiff
path: root/gcc/local-alloc.c
blob: 5926d6af3549d4b53a9ebc3cae5b14992125314e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
/* Allocate registers within a basic block, for GNU compiler.
   Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Allocation of hard register numbers to pseudo registers is done in
   two passes.  In this pass we consider only regs that are born and
   die once within one basic block.  We do this one basic block at a
   time.  Then the next pass allocates the registers that remain.
   Two passes are used because this pass uses methods that work only
   on linear code, but that do a better job than the general methods
   used in global_alloc, and more quickly too.

   The assignments made are recorded in the vector reg_renumber
   whose space is allocated here.  The rtl code itself is not altered.

   We assign each instruction in the basic block a number
   which is its order from the beginning of the block.
   Then we can represent the lifetime of a pseudo register with
   a pair of numbers, and check for conflicts easily.
   We can record the availability of hard registers with a
   HARD_REG_SET for each instruction.  The HARD_REG_SET
   contains 0 or 1 for each hard reg.

   To avoid register shuffling, we tie registers together when one
   dies by being copied into another, or dies in an instruction that
   does arithmetic to produce another.  The tied registers are
   allocated as one.  Registers with different reg class preferences
   can never be tied unless the class preferred by one is a subclass
   of the one preferred by the other.

   Tying is represented with "quantity numbers".
   A non-tied register is given a new quantity number.
   Tied registers have the same quantity number.

   We have provision to exempt registers, even when they are contained
   within the block, that can be tied to others that are not contained in it.
   This is so that global_alloc could process them both and tie them then.
   But this is currently disabled since tying in global_alloc is not
   yet implemented.  */

/* Pseudos allocated here can be reallocated by global.c if the hard register
   is used as a spill register.  Currently we don't allocate such pseudos
   here if their preferred class is likely to be used by spills.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "regs.h"
#include "function.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "output.h"
#include "toplev.h"
#include "except.h"
#include "integrate.h"
#include "reload.h"
#include "ggc.h"
#include "timevar.h"
#include "tree-pass.h"
#include "df.h"
#include "dbgcnt.h"


/* Next quantity number available for allocation.  */

static int next_qty;

/* Information we maintain about each quantity.  */
struct qty
{
  /* The number of refs to quantity Q.  */

  int n_refs;

  /* The frequency of uses of quantity Q.  */

  int freq;

  /* Insn number (counting from head of basic block)
     where quantity Q was born.  -1 if birth has not been recorded.  */

  int birth;

  /* Insn number (counting from head of basic block)
     where given quantity died.  Due to the way tying is done,
     and the fact that we consider in this pass only regs that die but once,
     a quantity can die only once.  Each quantity's life span
     is a set of consecutive insns.  -1 if death has not been recorded.  */

  int death;

  /* Number of words needed to hold the data in given quantity.
     This depends on its machine mode.  It is used for these purposes:
     1. It is used in computing the relative importance of qtys,
	which determines the order in which we look for regs for them.
     2. It is used in rules that prevent tying several registers of
	different sizes in a way that is geometrically impossible
	(see combine_regs).  */

  int size;

  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */

  int n_calls_crossed;

  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */

  int freq_calls_crossed;

  /* Number of times a reg tied to given qty lives across a CALL_INSN
     that might throw.  */

  int n_throwing_calls_crossed;

  /* The register number of one pseudo register whose reg_qty value is Q.
     This register should be the head of the chain
     maintained in reg_next_in_qty.  */

  int first_reg;

  /* Reg class contained in (smaller than) the preferred classes of all
     the pseudo regs that are tied in given quantity.
     This is the preferred class for allocating that quantity.  */

  enum reg_class min_class;

  /* Register class within which we allocate given qty if we can't get
     its preferred class.  */

  enum reg_class alternate_class;

  /* This holds the mode of the registers that are tied to given qty,
     or VOIDmode if registers with differing modes are tied together.  */

  enum machine_mode mode;

  /* the hard reg number chosen for given quantity,
     or -1 if none was found.  */

  short phys_reg;
};

static struct qty *qty;

/* These fields are kept separately to speedup their clearing.  */

/* We maintain two hard register sets that indicate suggested hard registers
   for each quantity.  The first, phys_copy_sugg, contains hard registers
   that are tied to the quantity by a simple copy.  The second contains all
   hard registers that are tied to the quantity via an arithmetic operation.

   The former register set is given priority for allocation.  This tends to
   eliminate copy insns.  */

/* Element Q is a set of hard registers that are suggested for quantity Q by
   copy insns.  */

static HARD_REG_SET *qty_phys_copy_sugg;

/* Element Q is a set of hard registers that are suggested for quantity Q by
   arithmetic insns.  */

static HARD_REG_SET *qty_phys_sugg;

/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */

static short *qty_phys_num_copy_sugg;

/* Element Q is the number of suggested registers in qty_phys_sugg.  */

static short *qty_phys_num_sugg;

/* If (REG N) has been assigned a quantity number, is a register number
   of another register assigned the same quantity number, or -1 for the
   end of the chain.  qty->first_reg point to the head of this chain.  */

static int *reg_next_in_qty;

/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
   if it is >= 0,
   of -1 if this register cannot be allocated by local-alloc,
   or -2 if not known yet.

   Note that if we see a use or death of pseudo register N with
   reg_qty[N] == -2, register N must be local to the current block.  If
   it were used in more than one block, we would have reg_qty[N] == -1.
   This relies on the fact that if reg_basic_block[N] is >= 0, register N
   will not appear in any other block.  We save a considerable number of
   tests by exploiting this.

   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
   be referenced.  */

static int *reg_qty;

/* The offset (in words) of register N within its quantity.
   This can be nonzero if register N is SImode, and has been tied
   to a subreg of a DImode register.  */

static char *reg_offset;

/* Vector of substitutions of register numbers,
   used to map pseudo regs into hardware regs.
   This is set up as a result of register allocation.
   Element N is the hard reg assigned to pseudo reg N,
   or is -1 if no hard reg was assigned.
   If N is a hard reg number, element N is N.  */

short *reg_renumber;

/* Set of hard registers live at the current point in the scan
   of the instructions in a basic block.  */

static HARD_REG_SET regs_live;

/* Each set of hard registers indicates registers live at a particular
   point in the basic block.  For N even, regs_live_at[N] says which
   hard registers are needed *after* insn N/2 (i.e., they may not
   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.

   If an object is to conflict with the inputs of insn J but not the
   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
   if it is to conflict with the outputs of insn J but not the inputs of
   insn J + 1, it is said to die at index J*2 + 1.  */

static HARD_REG_SET *regs_live_at;

/* Communicate local vars `insn_number' and `insn'
   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
static int this_insn_number;
static rtx this_insn;

struct equivalence
{
  /* Set when an attempt should be made to replace a register
     with the associated src_p entry.  */

  char replace;

  /* Set when a REG_EQUIV note is found or created.  Use to
     keep track of what memory accesses might be created later,
     e.g. by reload.  */

  rtx replacement;

  rtx *src_p;

  /* Loop depth is used to recognize equivalences which appear
     to be present within the same loop (or in an inner loop).  */

  int loop_depth;

  /* The list of each instruction which initializes this register.  */

  rtx init_insns;

  /* Nonzero if this had a preexisting REG_EQUIV note.  */

  int is_arg_equivalence;
};

/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
   structure for that register.  */

static struct equivalence *reg_equiv;

/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
static int recorded_label_ref;

static void alloc_qty (int, enum machine_mode, int, int);
static void validate_equiv_mem_from_store (rtx, const_rtx, void *);
static int validate_equiv_mem (rtx, rtx, rtx);
static int equiv_init_varies_p (rtx);
static int equiv_init_movable_p (rtx, int);
static int contains_replace_regs (rtx);
static int memref_referenced_p (rtx, rtx);
static int memref_used_between_p (rtx, rtx, rtx);
static void no_equiv (rtx, const_rtx, void *);
static void block_alloc (basic_block);
static int qty_sugg_compare (int, int);
static int qty_sugg_compare_1 (const void *, const void *);
static int qty_compare (int, int);
static int qty_compare_1 (const void *, const void *);
static int combine_regs (rtx, rtx, int, int, rtx);
static int reg_meets_class_p (int, enum reg_class);
static void update_qty_class (int, int);
static void reg_is_set (rtx, const_rtx, void *);
static void reg_is_born (rtx, int);
static void wipe_dead_reg (rtx, int);
static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
			  int, int, basic_block);
static void mark_life (int, enum machine_mode, int);
static void post_mark_life (int, enum machine_mode, int, int, int);
static int requires_inout (const char *);

/* Allocate a new quantity (new within current basic block)
   for register number REGNO which is born at index BIRTH
   within the block.  MODE and SIZE are info on reg REGNO.  */

static void
alloc_qty (int regno, enum machine_mode mode, int size, int birth)
{
  int qtyno = next_qty++;

  reg_qty[regno] = qtyno;
  reg_offset[regno] = 0;
  reg_next_in_qty[regno] = -1;

  qty[qtyno].first_reg = regno;
  qty[qtyno].size = size;
  qty[qtyno].mode = mode;
  qty[qtyno].birth = birth;
  qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
  qty[qtyno].freq_calls_crossed = REG_FREQ_CALLS_CROSSED (regno);
  qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
  qty[qtyno].min_class = reg_preferred_class (regno);
  qty[qtyno].alternate_class = reg_alternate_class (regno);
  qty[qtyno].n_refs = REG_N_REFS (regno);
  qty[qtyno].freq = REG_FREQ (regno);
}

/* Main entry point of this file.  */

static int
local_alloc (void)
{
  int i;
  int max_qty;
  basic_block b;

  /* We need to keep track of whether or not we recorded a LABEL_REF so
     that we know if the jump optimizer needs to be rerun.  */
  recorded_label_ref = 0;

  /* Leaf functions and non-leaf functions have different needs.
     If defined, let the machine say what kind of ordering we
     should use.  */
#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
  ORDER_REGS_FOR_LOCAL_ALLOC;
#endif

  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
     registers.  */
  update_equiv_regs ();

  /* This sets the maximum number of quantities we can have.  Quantity
     numbers start at zero and we can have one for each pseudo.  */
  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);

  /* Allocate vectors of temporary data.
     See the declarations of these variables, above,
     for what they mean.  */

  qty = XNEWVEC (struct qty, max_qty);
  qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
  qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
  qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
  qty_phys_num_sugg = XNEWVEC (short, max_qty);

  reg_qty = XNEWVEC (int, max_regno);
  reg_offset = XNEWVEC (char, max_regno);
  reg_next_in_qty = XNEWVEC (int, max_regno);

  /* Determine which pseudo-registers can be allocated by local-alloc.
     In general, these are the registers used only in a single block and
     which only die once.

     We need not be concerned with which block actually uses the register
     since we will never see it outside that block.  */

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS && REG_N_DEATHS (i) == 1)
	reg_qty[i] = -2;
      else
	reg_qty[i] = -1;
    }

  /* Force loop below to initialize entire quantity array.  */
  next_qty = max_qty;

  /* Allocate each block's local registers, block by block.  */

  FOR_EACH_BB (b)
    {
      /* NEXT_QTY indicates which elements of the `qty_...'
	 vectors might need to be initialized because they were used
	 for the previous block; it is set to the entire array before
	 block 0.  Initialize those, with explicit loop if there are few,
	 else with bzero and bcopy.  Do not initialize vectors that are
	 explicit set by `alloc_qty'.  */

      if (next_qty < 6)
	{
	  for (i = 0; i < next_qty; i++)
	    {
	      CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
	      qty_phys_num_copy_sugg[i] = 0;
	      CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
	      qty_phys_num_sugg[i] = 0;
	    }
	}
      else
	{
#define CLEAR(vector)  \
	  memset ((vector), 0, (sizeof (*(vector))) * next_qty);

	  CLEAR (qty_phys_copy_sugg);
	  CLEAR (qty_phys_num_copy_sugg);
	  CLEAR (qty_phys_sugg);
	  CLEAR (qty_phys_num_sugg);
	}

      next_qty = 0;

      block_alloc (b);
    }

  free (qty);
  free (qty_phys_copy_sugg);
  free (qty_phys_num_copy_sugg);
  free (qty_phys_sugg);
  free (qty_phys_num_sugg);

  free (reg_qty);
  free (reg_offset);
  free (reg_next_in_qty);

  return recorded_label_ref;
}

/* Used for communication between the following two functions: contains
   a MEM that we wish to ensure remains unchanged.  */
static rtx equiv_mem;

/* Set nonzero if EQUIV_MEM is modified.  */
static int equiv_mem_modified;

/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
   Called via note_stores.  */

static void
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
			       void *data ATTRIBUTE_UNUSED)
{
  if ((REG_P (dest)
       && reg_overlap_mentioned_p (dest, equiv_mem))
      || (MEM_P (dest)
	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
    equiv_mem_modified = 1;
}

/* Verify that no store between START and the death of REG invalidates
   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
   by storing into an overlapping memory location, or with a non-const
   CALL_INSN.

   Return 1 if MEMREF remains valid.  */

static int
validate_equiv_mem (rtx start, rtx reg, rtx memref)
{
  rtx insn;
  rtx note;

  equiv_mem = memref;
  equiv_mem_modified = 0;

  /* If the memory reference has side effects or is volatile, it isn't a
     valid equivalence.  */
  if (side_effects_p (memref))
    return 0;

  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	continue;

      if (find_reg_note (insn, REG_DEAD, reg))
	return 1;

      if (CALL_P (insn) && ! MEM_READONLY_P (memref)
	  && ! RTL_CONST_OR_PURE_CALL_P (insn))
	return 0;

      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);

      /* If a register mentioned in MEMREF is modified via an
	 auto-increment, we lose the equivalence.  Do the same if one
	 dies; although we could extend the life, it doesn't seem worth
	 the trouble.  */

      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	if ((REG_NOTE_KIND (note) == REG_INC
	     || REG_NOTE_KIND (note) == REG_DEAD)
	    && REG_P (XEXP (note, 0))
	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
	  return 0;
    }

  return 0;
}

/* Returns zero if X is known to be invariant.  */

static int
equiv_init_varies_p (rtx x)
{
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;

  switch (code)
    {
    case MEM:
      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case REG:
      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

      /* Fall through.  */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (equiv_init_varies_p (XEXP (x, i)))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
	    return 1;
      }

  return 0;
}

/* Returns nonzero if X (used to initialize register REGNO) is movable.
   X is only movable if the registers it uses have equivalent initializations
   which appear to be within the same loop (or in an inner loop) and movable
   or if they are not candidates for local_alloc and don't vary.  */

static int
equiv_init_movable_p (rtx x, int regno)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SET:
      return equiv_init_movable_p (SET_SRC (x), regno);

    case CC0:
    case CLOBBER:
      return 0;

    case PRE_INC:
    case PRE_DEC:
    case POST_INC:
    case POST_DEC:
    case PRE_MODIFY:
    case POST_MODIFY:
      return 0;

    case REG:
      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
	      && reg_equiv[REGNO (x)].replace)
	     || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));

    case UNSPEC_VOLATILE:
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 0;

      /* Fall through.  */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (! equiv_init_movable_p (XEXP (x, i), regno))
	  return 0;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
	    return 0;
	break;
      }

  return 1;
}

/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */

static int
contains_replace_regs (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case PC:
    case CC0:
    case HIGH:
      return 0;

    case REG:
      return reg_equiv[REGNO (x)].replace;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (contains_replace_regs (XEXP (x, i)))
	  return 1;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (contains_replace_regs (XVECEXP (x, i, j)))
	    return 1;
	break;
      }

  return 0;
}

/* TRUE if X references a memory location that would be affected by a store
   to MEMREF.  */

static int
memref_referenced_p (rtx memref, rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case PC:
    case CC0:
    case HIGH:
    case LO_SUM:
      return 0;

    case REG:
      return (reg_equiv[REGNO (x)].replacement
	      && memref_referenced_p (memref,
				      reg_equiv[REGNO (x)].replacement));

    case MEM:
      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
	return 1;
      break;

    case SET:
      /* If we are setting a MEM, it doesn't count (its address does), but any
	 other SET_DEST that has a MEM in it is referencing the MEM.  */
      if (MEM_P (SET_DEST (x)))
	{
	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
	    return 1;
	}
      else if (memref_referenced_p (memref, SET_DEST (x)))
	return 1;

      return memref_referenced_p (memref, SET_SRC (x));

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    switch (fmt[i])
      {
      case 'e':
	if (memref_referenced_p (memref, XEXP (x, i)))
	  return 1;
	break;
      case 'E':
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
	    return 1;
	break;
      }

  return 0;
}

/* TRUE if some insn in the range (START, END] references a memory location
   that would be affected by a store to MEMREF.  */

static int
memref_used_between_p (rtx memref, rtx start, rtx end)
{
  rtx insn;

  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
       insn = NEXT_INSN (insn))
    {
      if (!INSN_P (insn))
	continue;
      
      if (memref_referenced_p (memref, PATTERN (insn)))
	return 1;

      /* Nonconst functions may access memory.  */
      if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
	return 1;
    }

  return 0;
}

/* Find registers that are equivalent to a single value throughout the
   compilation (either because they can be referenced in memory or are set once
   from a single constant).  Lower their priority for a register.

   If such a register is only referenced once, try substituting its value
   into the using insn.  If it succeeds, we can eliminate the register
   completely.

   Initialize the REG_EQUIV_INIT array of initializing insns.

   Return non-zero if jump label rebuilding should be done.  */

int
update_equiv_regs (void)
{
  rtx insn;
  basic_block bb;
  int loop_depth;
  bitmap cleared_regs;
  
  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
  reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
  reg_equiv_init_size = max_regno;

  init_alias_analysis ();

  /* Scan the insns and find which registers have equivalences.  Do this
     in a separate scan of the insns because (due to -fcse-follow-jumps)
     a register can be set below its use.  */
  FOR_EACH_BB (bb)
    {
      loop_depth = bb->loop_depth;

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  rtx note;
	  rtx set;
	  rtx dest, src;
	  int regno;

	  if (! INSN_P (insn))
	    continue;

	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_INC)
	      no_equiv (XEXP (note, 0), note, NULL);

	  set = single_set (insn);

	  /* If this insn contains more (or less) than a single SET,
	     only mark all destinations as having no known equivalence.  */
	  if (set == 0)
	    {
	      note_stores (PATTERN (insn), no_equiv, NULL);
	      continue;
	    }
	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      int i;

	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
		{
		  rtx part = XVECEXP (PATTERN (insn), 0, i);
		  if (part != set)
		    note_stores (part, no_equiv, NULL);
		}
	    }

	  dest = SET_DEST (set);
	  src = SET_SRC (set);

	  /* See if this is setting up the equivalence between an argument
	     register and its stack slot.  */
	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
	  if (note)
	    {
	      gcc_assert (REG_P (dest));
	      regno = REGNO (dest);

	      /* Note that we don't want to clear reg_equiv_init even if there
		 are multiple sets of this register.  */
	      reg_equiv[regno].is_arg_equivalence = 1;

	      /* Record for reload that this is an equivalencing insn.  */
	      if (rtx_equal_p (src, XEXP (note, 0)))
		reg_equiv_init[regno]
		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);

	      /* Continue normally in case this is a candidate for
		 replacements.  */
	    }

	  if (!optimize)
	    continue;

	  /* We only handle the case of a pseudo register being set
	     once, or always to the same value.  */
	  /* ??? The mn10200 port breaks if we add equivalences for
	     values that need an ADDRESS_REGS register and set them equivalent
	     to a MEM of a pseudo.  The actual problem is in the over-conservative
	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
	     calculate_needs, but we traditionally work around this problem
	     here by rejecting equivalences when the destination is in a register
	     that's likely spilled.  This is fragile, of course, since the
	     preferred class of a pseudo depends on all instructions that set
	     or use it.  */

	  if (!REG_P (dest)
	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
	      || reg_equiv[regno].init_insns == const0_rtx
	      || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
	    {
	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
		 also set somewhere else to a constant.  */
	      note_stores (set, no_equiv, NULL);
	      continue;
	    }

	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);

	  /* cse sometimes generates function invariants, but doesn't put a
	     REG_EQUAL note on the insn.  Since this note would be redundant,
	     there's no point creating it earlier than here.  */
	  if (! note && ! rtx_varies_p (src, 0))
	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));

	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
	     since it represents a function call */
	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
	    note = NULL_RTX;

	  if (DF_REG_DEF_COUNT (regno) != 1
	      && (! note
		  || rtx_varies_p (XEXP (note, 0), 0)
		  || (reg_equiv[regno].replacement
		      && ! rtx_equal_p (XEXP (note, 0),
					reg_equiv[regno].replacement))))
	    {
	      no_equiv (dest, set, NULL);
	      continue;
	    }
	  /* Record this insn as initializing this register.  */
	  reg_equiv[regno].init_insns
	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);

	  /* If this register is known to be equal to a constant, record that
	     it is always equivalent to the constant.  */
	  if (DF_REG_DEF_COUNT (regno) == 1
	      && note && ! rtx_varies_p (XEXP (note, 0), 0))
	    {
	      rtx note_value = XEXP (note, 0);
	      remove_note (insn, note);
	      set_unique_reg_note (insn, REG_EQUIV, note_value);
	    }

	  /* If this insn introduces a "constant" register, decrease the priority
	     of that register.  Record this insn if the register is only used once
	     more and the equivalence value is the same as our source.

	     The latter condition is checked for two reasons:  First, it is an
	     indication that it may be more efficient to actually emit the insn
	     as written (if no registers are available, reload will substitute
	     the equivalence).  Secondly, it avoids problems with any registers
	     dying in this insn whose death notes would be missed.

	     If we don't have a REG_EQUIV note, see if this insn is loading
	     a register used only in one basic block from a MEM.  If so, and the
	     MEM remains unchanged for the life of the register, add a REG_EQUIV
	     note.  */

	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);

	  if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
	      && MEM_P (SET_SRC (set))
	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
	    note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));

	  if (note)
	    {
	      int regno = REGNO (dest);
	      rtx x = XEXP (note, 0);

	      /* If we haven't done so, record for reload that this is an
		 equivalencing insn.  */
	      if (!reg_equiv[regno].is_arg_equivalence)
		reg_equiv_init[regno]
		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);

	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
		 We might end up substituting the LABEL_REF for uses of the
		 pseudo here or later.  That kind of transformation may turn an
		 indirect jump into a direct jump, in which case we must rerun the
		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
	      if (GET_CODE (x) == LABEL_REF
		  || (GET_CODE (x) == CONST
		      && GET_CODE (XEXP (x, 0)) == PLUS
		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
		recorded_label_ref = 1;

	      reg_equiv[regno].replacement = x;
	      reg_equiv[regno].src_p = &SET_SRC (set);
	      reg_equiv[regno].loop_depth = loop_depth;

	      /* Don't mess with things live during setjmp.  */
	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
		{
		  /* Note that the statement below does not affect the priority
		     in local-alloc!  */
		  REG_LIVE_LENGTH (regno) *= 2;

		  /* If the register is referenced exactly twice, meaning it is
		     set once and used once, indicate that the reference may be
		     replaced by the equivalence we computed above.  Do this
		     even if the register is only used in one block so that
		     dependencies can be handled where the last register is
		     used in a different block (i.e. HIGH / LO_SUM sequences)
		     and to reduce the number of registers alive across
		     calls.  */

		  if (REG_N_REFS (regno) == 2
		      && (rtx_equal_p (x, src)
			  || ! equiv_init_varies_p (src))
		      && NONJUMP_INSN_P (insn)
		      && equiv_init_movable_p (PATTERN (insn), regno))
		    reg_equiv[regno].replace = 1;
		}
	    }
	}
    }

  if (!optimize)
    goto out;

  /* A second pass, to gather additional equivalences with memory.  This needs
     to be done after we know which registers we are going to replace.  */

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      rtx set, src, dest;
      unsigned regno;

      if (! INSN_P (insn))
	continue;

      set = single_set (insn);
      if (! set)
	continue;

      dest = SET_DEST (set);
      src = SET_SRC (set);

      /* If this sets a MEM to the contents of a REG that is only used
	 in a single basic block, see if the register is always equivalent
	 to that memory location and if moving the store from INSN to the
	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
	 initializing insn.

	 Don't add a REG_EQUIV note if the insn already has one.  The existing
	 REG_EQUIV is likely more useful than the one we are adding.

	 If one of the regs in the address has reg_equiv[REGNO].replace set,
	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
	 optimization may move the set of this register immediately before
	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
	 the mention in the REG_EQUIV note would be to an uninitialized
	 pseudo.  */

      if (MEM_P (dest) && REG_P (src)
	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
	  && DF_REG_DEF_COUNT (regno) == 1
	  && reg_equiv[regno].init_insns != 0
	  && reg_equiv[regno].init_insns != const0_rtx
	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
			      REG_EQUIV, NULL_RTX)
	  && ! contains_replace_regs (XEXP (dest, 0)))
	{
	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
	  if (validate_equiv_mem (init_insn, src, dest)
	      && ! memref_used_between_p (dest, init_insn, insn)
	      /* Attaching a REG_EQUIV note will fail if INIT_INSN has
		 multiple sets.  */
	      && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
	    {
	      /* This insn makes the equivalence, not the one initializing
		 the register.  */
	      reg_equiv_init[regno]
		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
	      df_notes_rescan (init_insn);
	    }
	}
    }

  cleared_regs = BITMAP_ALLOC (NULL);
  /* Now scan all regs killed in an insn to see if any of them are
     registers only used that once.  If so, see if we can replace the
     reference with the equivalent form.  If we can, delete the
     initializing reference and this register will go away.  If we
     can't replace the reference, and the initializing reference is
     within the same loop (or in an inner loop), then move the register
     initialization just before the use, so that they are in the same
     basic block.  */
  FOR_EACH_BB_REVERSE (bb)
    {
      loop_depth = bb->loop_depth;
      for (insn = BB_END (bb);
	   insn != PREV_INSN (BB_HEAD (bb));
	   insn = PREV_INSN (insn))
	{
	  rtx link;

	  if (! INSN_P (insn))
	    continue;

	  /* Don't substitute into a non-local goto, this confuses CFG.  */
	  if (JUMP_P (insn)
	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
	    continue;

	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    {
	      if (REG_NOTE_KIND (link) == REG_DEAD
		  /* Make sure this insn still refers to the register.  */
		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
		{
		  int regno = REGNO (XEXP (link, 0));
		  rtx equiv_insn;

		  if (! reg_equiv[regno].replace
		      || reg_equiv[regno].loop_depth < loop_depth)
		    continue;

		  /* reg_equiv[REGNO].replace gets set only when
		     REG_N_REFS[REGNO] is 2, i.e. the register is set
		     once and used once.  (If it were only set, but not used,
		     flow would have deleted the setting insns.)  Hence
		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
		  gcc_assert (reg_equiv[regno].init_insns
			      && !XEXP (reg_equiv[regno].init_insns, 1));
		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);

		  /* We may not move instructions that can throw, since
		     that changes basic block boundaries and we are not
		     prepared to adjust the CFG to match.  */
		  if (can_throw_internal (equiv_insn))
		    continue;

		  if (asm_noperands (PATTERN (equiv_insn)) < 0
		      && validate_replace_rtx (regno_reg_rtx[regno],
					       *(reg_equiv[regno].src_p), insn))
		    {
		      rtx equiv_link;
		      rtx last_link;
		      rtx note;

		      /* Find the last note.  */
		      for (last_link = link; XEXP (last_link, 1);
			   last_link = XEXP (last_link, 1))
			;

		      /* Append the REG_DEAD notes from equiv_insn.  */
		      equiv_link = REG_NOTES (equiv_insn);
		      while (equiv_link)
			{
			  note = equiv_link;
			  equiv_link = XEXP (equiv_link, 1);
			  if (REG_NOTE_KIND (note) == REG_DEAD)
			    {
			      remove_note (equiv_insn, note);
			      XEXP (last_link, 1) = note;
			      XEXP (note, 1) = NULL_RTX;
			      last_link = note;
			    }
			}

		      remove_death (regno, insn);
		      SET_REG_N_REFS (regno, 0);
		      REG_FREQ (regno) = 0;
		      delete_insn (equiv_insn);

		      reg_equiv[regno].init_insns
			= XEXP (reg_equiv[regno].init_insns, 1);

		      reg_equiv_init[regno] = NULL_RTX;
		      bitmap_set_bit (cleared_regs, regno);
		    }
		  /* Move the initialization of the register to just before
		     INSN.  Update the flow information.  */
		  else if (PREV_INSN (insn) != equiv_insn)
		    {
		      rtx new_insn;

		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
		      REG_NOTES (equiv_insn) = 0;
		      /* Rescan it to process the notes.  */
		      df_insn_rescan (new_insn);

		      /* Make sure this insn is recognized before
			 reload begins, otherwise
			 eliminate_regs_in_insn will die.  */
		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);

		      delete_insn (equiv_insn);

		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;

		      REG_BASIC_BLOCK (regno) = bb->index;
		      REG_N_CALLS_CROSSED (regno) = 0;
		      REG_FREQ_CALLS_CROSSED (regno) = 0;
		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
		      REG_LIVE_LENGTH (regno) = 2;

		      if (insn == BB_HEAD (bb))
			BB_HEAD (bb) = PREV_INSN (insn);

		      reg_equiv_init[regno]
			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
		      bitmap_set_bit (cleared_regs, regno);
		    }
		}
	    }
	}
    }

  if (!bitmap_empty_p (cleared_regs))
    FOR_EACH_BB (bb)
      {
	bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
	bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
	bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
	bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
      }

  BITMAP_FREE (cleared_regs);

  out:
  /* Clean up.  */

  end_alias_analysis ();
  free (reg_equiv);
  return recorded_label_ref;
}

/* Mark REG as having no known equivalence.
   Some instructions might have been processed before and furnished
   with REG_EQUIV notes for this register; these notes will have to be
   removed.
   STORE is the piece of RTL that does the non-constant / conflicting
   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
   but needs to be there because this function is called from note_stores.  */
static void
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
{
  int regno;
  rtx list;

  if (!REG_P (reg))
    return;
  regno = REGNO (reg);
  list = reg_equiv[regno].init_insns;
  if (list == const0_rtx)
    return;
  reg_equiv[regno].init_insns = const0_rtx;
  reg_equiv[regno].replacement = NULL_RTX;
  /* This doesn't matter for equivalences made for argument registers, we
     should keep their initialization insns.  */
  if (reg_equiv[regno].is_arg_equivalence)
    return;
  reg_equiv_init[regno] = NULL_RTX;
  for (; list; list =  XEXP (list, 1))
    {
      rtx insn = XEXP (list, 0);
      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
    }
}

/* Allocate hard regs to the pseudo regs used only within block number B.
   Only the pseudos that die but once can be handled.  */

static void
block_alloc (basic_block b)
{
  int i, q;
  rtx insn;
  rtx hard_reg;
  int insn_number = 0;
  int insn_count = 0;
  int max_uid = get_max_uid ();
  int *qty_order;
  struct df_ref ** def_rec;

  /* Count the instructions in the basic block.  */

  insn = BB_END (b);
  while (1)
    {
      if (!NOTE_P (insn))
	{
	  ++insn_count;
	  gcc_assert (insn_count <= max_uid);
	}
      if (insn == BB_HEAD (b))
	break;
      insn = PREV_INSN (insn);
    }

  /* +2 to leave room for a post_mark_life at the last insn and for
     the birth of a CLOBBER in the first insn.  */
  regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);

  /* Initialize table of hardware registers currently live.  */

  REG_SET_TO_HARD_REG_SET (regs_live, DF_LR_IN (b));

  /* This is conservative, as this would include registers that are
     artificial-def'ed-but-not-used.  However, artificial-defs are
     rare, and such uninitialized use is rarer still, and the chance
     of this having any performance impact is even less, while the
     benefit is not having to compute and keep the TOP set around.  */
  for (def_rec = df_get_artificial_defs (b->index); *def_rec; def_rec++)
    {
      int regno = DF_REF_REGNO (*def_rec);
      if (regno < FIRST_PSEUDO_REGISTER)
	SET_HARD_REG_BIT (regs_live, regno);
    }

  /* This loop scans the instructions of the basic block
     and assigns quantities to registers.
     It computes which registers to tie.  */

  insn = BB_HEAD (b);
  while (1)
    {
      if (!NOTE_P (insn))
	insn_number++;

      if (INSN_P (insn))
	{
	  rtx link;
	  int win = 0;
	  rtx r0, r1 = NULL_RTX;
	  int combined_regno = -1;
	  int i;

	  this_insn_number = insn_number;
	  this_insn = insn;

	  extract_insn (insn);
	  which_alternative = -1;

	  /* Is this insn suitable for tying two registers?
	     If so, try doing that.
	     Suitable insns are those with at least two operands and where
	     operand 0 is an output that is a register that is not
	     earlyclobber.

	     We can tie operand 0 with some operand that dies in this insn.
	     First look for operands that are required to be in the same
	     register as operand 0.  If we find such, only try tying that
	     operand or one that can be put into that operand if the
	     operation is commutative.  If we don't find an operand
	     that is required to be in the same register as operand 0,
	     we can tie with any operand.

	     Subregs in place of regs are also ok.

	     If tying is done, WIN is set nonzero.  */

	  if (optimize
	      && recog_data.n_operands > 1
	      && recog_data.constraints[0][0] == '='
	      && recog_data.constraints[0][1] != '&')
	    {
	      /* If non-negative, is an operand that must match operand 0.  */
	      int must_match_0 = -1;
	      /* Counts number of alternatives that require a match with
		 operand 0.  */
	      int n_matching_alts = 0;

	      for (i = 1; i < recog_data.n_operands; i++)
		{
		  const char *p = recog_data.constraints[i];
		  int this_match = requires_inout (p);

		  n_matching_alts += this_match;
		  if (this_match == recog_data.n_alternatives)
		    must_match_0 = i;
		}

	      r0 = recog_data.operand[0];
	      for (i = 1; i < recog_data.n_operands; i++)
		{
		  /* Skip this operand if we found an operand that
		     must match operand 0 and this operand isn't it
		     and can't be made to be it by commutativity.  */

		  if (must_match_0 >= 0 && i != must_match_0
		      && ! (i == must_match_0 + 1
			    && recog_data.constraints[i-1][0] == '%')
		      && ! (i == must_match_0 - 1
			    && recog_data.constraints[i][0] == '%'))
		    continue;

		  /* Likewise if each alternative has some operand that
		     must match operand zero.  In that case, skip any
		     operand that doesn't list operand 0 since we know that
		     the operand always conflicts with operand 0.  We
		     ignore commutativity in this case to keep things simple.  */
		  if (n_matching_alts == recog_data.n_alternatives
		      && 0 == requires_inout (recog_data.constraints[i]))
		    continue;

		  r1 = recog_data.operand[i];

		  /* If the operand is an address, find a register in it.
		     There may be more than one register, but we only try one
		     of them.  */
		  if (recog_data.constraints[i][0] == 'p'
		      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
						   recog_data.constraints[i]))
		    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
		      r1 = XEXP (r1, 0);

		  /* Avoid making a call-saved register unnecessarily
                     clobbered.  */
		  hard_reg = get_hard_reg_initial_reg (r1);
		  if (hard_reg != NULL_RTX)
		    {
		      if (REG_P (hard_reg)
			  && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
			  && !call_used_regs[REGNO (hard_reg)])
			continue;
		    }

		  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
		    {
		      /* We have two priorities for hard register preferences.
			 If we have a move insn or an insn whose first input
			 can only be in the same register as the output, give
			 priority to an equivalence found from that insn.  */
		      int may_save_copy
			= (r1 == recog_data.operand[i] && must_match_0 >= 0);

		      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
			win = combine_regs (r1, r0, may_save_copy,
					    insn_number, insn);
		    }
		  if (win)
		    break;
		}
	    }

	  /* If registers were just tied, set COMBINED_REGNO
	     to the number of the register used in this insn
	     that was tied to the register set in this insn.
	     This register's qty should not be "killed".  */

	  if (win)
	    {
	      while (GET_CODE (r1) == SUBREG)
		r1 = SUBREG_REG (r1);
	      combined_regno = REGNO (r1);
	    }

	  /* Mark the death of everything that dies in this instruction.  */

	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    if (REG_NOTE_KIND (link) == REG_DEAD
		&& REG_P (XEXP (link, 0))
		&& combined_regno != (int) REGNO (XEXP (link, 0)))
	      wipe_dead_reg (XEXP (link, 0), 0);

	  /* Allocate qty numbers for all registers local to this block
	     that are born (set) in this instruction.
	     A pseudo that already has a qty is not changed.  */

	  note_stores (PATTERN (insn), reg_is_set, NULL);

	  /* If anything is set in this insn and then unused, mark it as dying
	     after this insn, so it will conflict with our outputs.  This
	     can't match with something that combined, and it doesn't matter
	     if it did.  Do this after the calls to reg_is_set since these
	     die after, not during, the current insn.  */

	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    if (REG_NOTE_KIND (link) == REG_UNUSED
		&& REG_P (XEXP (link, 0)))
	      wipe_dead_reg (XEXP (link, 0), 1);
	}

      /* Set the registers live after INSN_NUMBER.  Note that we never
	 record the registers live before the block's first insn, since no
	 pseudos we care about are live before that insn.  */

      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);

      if (insn == BB_END (b))
	break;

      insn = NEXT_INSN (insn);
    }

  /* Now every register that is local to this basic block
     should have been given a quantity, or else -1 meaning ignore it.
     Every quantity should have a known birth and death.

     Order the qtys so we assign them registers in order of the
     number of suggested registers they need so we allocate those with
     the most restrictive needs first.  */

  qty_order = XNEWVEC (int, next_qty);
  for (i = 0; i < next_qty; i++)
    qty_order[i] = i;

#define EXCHANGE(I1, I2)  \
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }

  switch (next_qty)
    {
    case 3:
      /* Make qty_order[2] be the one to allocate last.  */
      if (qty_sugg_compare (0, 1) > 0)
	EXCHANGE (0, 1);
      if (qty_sugg_compare (1, 2) > 0)
	EXCHANGE (2, 1);

      /* ... Fall through ...  */
    case 2:
      /* Put the best one to allocate in qty_order[0].  */
      if (qty_sugg_compare (0, 1) > 0)
	EXCHANGE (0, 1);

      /* ... Fall through ...  */

    case 1:
    case 0:
      /* Nothing to do here.  */
      break;

    default:
      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
    }

  /* Try to put each quantity in a suggested physical register, if it has one.
     This may cause registers to be allocated that otherwise wouldn't be, but
     this seems acceptable in local allocation (unlike global allocation).  */
  for (i = 0; i < next_qty; i++)
    {
      q = qty_order[i];
      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
	qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
					 0, 1, qty[q].birth, qty[q].death, b);
      else
	qty[q].phys_reg = -1;
    }

  /* Order the qtys so we assign them registers in order of
     decreasing length of life.  Normally call qsort, but if we
     have only a very small number of quantities, sort them ourselves.  */

  for (i = 0; i < next_qty; i++)
    qty_order[i] = i;

#define EXCHANGE(I1, I2)  \
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }

  switch (next_qty)
    {
    case 3:
      /* Make qty_order[2] be the one to allocate last.  */
      if (qty_compare (0, 1) > 0)
	EXCHANGE (0, 1);
      if (qty_compare (1, 2) > 0)
	EXCHANGE (2, 1);

      /* ... Fall through ...  */
    case 2:
      /* Put the best one to allocate in qty_order[0].  */
      if (qty_compare (0, 1) > 0)
	EXCHANGE (0, 1);

      /* ... Fall through ...  */

    case 1:
    case 0:
      /* Nothing to do here.  */
      break;

    default:
      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
    }

  /* Now for each qty that is not a hardware register,
     look for a hardware register to put it in.
     First try the register class that is cheapest for this qty,
     if there is more than one class.  */

  for (i = 0; i < next_qty; i++)
    {
      q = qty_order[i];
      if (qty[q].phys_reg < 0)
	{
#ifdef INSN_SCHEDULING
	  /* These values represent the adjusted lifetime of a qty so
	     that it conflicts with qtys which appear near the start/end
	     of this qty's lifetime.

	     The purpose behind extending the lifetime of this qty is to
	     discourage the register allocator from creating false
	     dependencies.

	     The adjustment value is chosen to indicate that this qty
	     conflicts with all the qtys in the instructions immediately
	     before and after the lifetime of this qty.

	     Experiments have shown that higher values tend to hurt
	     overall code performance.

	     If allocation using the extended lifetime fails we will try
	     again with the qty's unadjusted lifetime.  */
	  int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
	  int fake_death = MIN (insn_number * 2 + 1,
				qty[q].death + 2 - qty[q].death % 2);
#endif

	  if (N_REG_CLASSES > 1)
	    {
#ifdef INSN_SCHEDULING
	      /* We try to avoid using hard registers allocated to qtys which
		 are born immediately after this qty or die immediately before
		 this qty.

		 This optimization is only appropriate when we will run
		 a scheduling pass after reload and we are not optimizing
		 for code size.  */
	      if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
		  && optimize_bb_for_speed_p (b)
		  && !SMALL_REGISTER_CLASSES)
		{
		  qty[q].phys_reg = find_free_reg (qty[q].min_class,
						   qty[q].mode, q, 0, 0,
						   fake_birth, fake_death, b);
		  if (qty[q].phys_reg >= 0)
		    continue;
		}
#endif
	      qty[q].phys_reg = find_free_reg (qty[q].min_class,
					       qty[q].mode, q, 0, 0,
					       qty[q].birth, qty[q].death, b);
	      if (qty[q].phys_reg >= 0)
		continue;
	    }

#ifdef INSN_SCHEDULING
	  /* Similarly, avoid false dependencies.  */
	  if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
	      && optimize_bb_for_speed_p (b)
	      && !SMALL_REGISTER_CLASSES
	      && qty[q].alternate_class != NO_REGS)
	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
					     qty[q].mode, q, 0, 0,
					     fake_birth, fake_death, b);
#endif
	  if (qty[q].alternate_class != NO_REGS)
	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
					     qty[q].mode, q, 0, 0,
					     qty[q].birth, qty[q].death, b);
	}
    }

  /* Now propagate the register assignments
     to the pseudo regs belonging to the qtys.  */

  for (q = 0; q < next_qty; q++)
    if (qty[q].phys_reg >= 0)
      {
	for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
	  reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
      }

  /* Clean up.  */
  free (regs_live_at);
  free (qty_order);
}

/* Compare two quantities' priority for getting real registers.
   We give shorter-lived quantities higher priority.
   Quantities with more references are also preferred, as are quantities that
   require multiple registers.  This is the identical prioritization as
   done by global-alloc.

   We used to give preference to registers with *longer* lives, but using
   the same algorithm in both local- and global-alloc can speed up execution
   of some programs by as much as a factor of three!  */

/* Note that the quotient will never be bigger than
   the value of floor_log2 times the maximum number of
   times a register can occur in one insn (surely less than 100)
   weighted by frequency (max REG_FREQ_MAX).
   Multiplying this by 10000/REG_FREQ_MAX can't overflow.
   QTY_CMP_PRI is also used by qty_sugg_compare.  */

#define QTY_CMP_PRI(q)		\
  ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
	  / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))

static int
qty_compare (int q1, int q2)
{
  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
}

static int
qty_compare_1 (const void *q1p, const void *q2p)
{
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
  int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);

  if (tem != 0)
    return tem;

  /* If qtys are equally good, sort by qty number,
     so that the results of qsort leave nothing to chance.  */
  return q1 - q2;
}

/* Compare two quantities' priority for getting real registers.  This version
   is called for quantities that have suggested hard registers.  First priority
   goes to quantities that have copy preferences, then to those that have
   normal preferences.  Within those groups, quantities with the lower
   number of preferences have the highest priority.  Of those, we use the same
   algorithm as above.  */

#define QTY_CMP_SUGG(q)		\
  (qty_phys_num_copy_sugg[q]		\
    ? qty_phys_num_copy_sugg[q]	\
    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)

static int
qty_sugg_compare (int q1, int q2)
{
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);

  if (tem != 0)
    return tem;

  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
}

static int
qty_sugg_compare_1 (const void *q1p, const void *q2p)
{
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);

  if (tem != 0)
    return tem;

  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
  if (tem != 0)
    return tem;

  /* If qtys are equally good, sort by qty number,
     so that the results of qsort leave nothing to chance.  */
  return q1 - q2;
}

#undef QTY_CMP_SUGG
#undef QTY_CMP_PRI

/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
   Returns 1 if have done so, or 0 if cannot.

   Combining registers means marking them as having the same quantity
   and adjusting the offsets within the quantity if either of
   them is a SUBREG.

   We don't actually combine a hard reg with a pseudo; instead
   we just record the hard reg as the suggestion for the pseudo's quantity.
   If we really combined them, we could lose if the pseudo lives
   across an insn that clobbers the hard reg (eg, movmem).

   MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
   SETREG or if the input and output must share a register.
   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.

   There are elaborate checks for the validity of combining.  */

static int
combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
	      rtx insn)
{
  int ureg, sreg;
  int offset = 0;
  int usize, ssize;
  int sqty;

  /* Determine the numbers and sizes of registers being used.  If a subreg
     is present that does not change the entire register, don't consider
     this a copy insn.  */

  while (GET_CODE (usedreg) == SUBREG)
    {
      rtx subreg = SUBREG_REG (usedreg);

      if (REG_P (subreg))
	{
	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
	    may_save_copy = 0;

	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
	    offset += subreg_regno_offset (REGNO (subreg),
					   GET_MODE (subreg),
					   SUBREG_BYTE (usedreg),
					   GET_MODE (usedreg));
	  else
	    offset += (SUBREG_BYTE (usedreg)
		      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
	}

      usedreg = subreg;
    }

  if (!REG_P (usedreg))
    return 0;

  ureg = REGNO (usedreg);
  if (ureg < FIRST_PSEUDO_REGISTER)
    usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
  else
    usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
	      + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
	     / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));

  while (GET_CODE (setreg) == SUBREG)
    {
      rtx subreg = SUBREG_REG (setreg);

      if (REG_P (subreg))
	{
	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
	    may_save_copy = 0;

	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
	    offset -= subreg_regno_offset (REGNO (subreg),
					   GET_MODE (subreg),
					   SUBREG_BYTE (setreg),
					   GET_MODE (setreg));
	  else
	    offset -= (SUBREG_BYTE (setreg)
		      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
	}

      setreg = subreg;
    }

  if (!REG_P (setreg))
    return 0;

  sreg = REGNO (setreg);
  if (sreg < FIRST_PSEUDO_REGISTER)
    ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
  else
    ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
	      + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
	     / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));

  /* If UREG is a pseudo-register that hasn't already been assigned a
     quantity number, it means that it is not local to this block or dies
     more than once.  In either event, we can't do anything with it.  */
  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
      /* Do not combine registers unless one fits within the other.  */
      || (offset > 0 && usize + offset > ssize)
      || (offset < 0 && usize + offset < ssize)
      /* Do not combine with a smaller already-assigned object
	 if that smaller object is already combined with something bigger.  */
      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
	  && usize < qty[reg_qty[ureg]].size)
      /* Can't combine if SREG is not a register we can allocate.  */
      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
      /* Don't tie something to itself.  In most cases it would make no
	 difference, but it would screw up if the reg being tied to itself
	 also dies in this insn.  */
      || ureg == sreg
      /* Don't try to connect two different hardware registers.  */
      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
      /* Don't connect two different machine modes if they have different
	 implications as to which registers may be used.  */
      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
    return 0;

  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
     qty_phys_sugg for the pseudo instead of tying them.

     Return "failure" so that the lifespan of UREG is terminated here;
     that way the two lifespans will be disjoint and nothing will prevent
     the pseudo reg from being given this hard reg.  */

  if (ureg < FIRST_PSEUDO_REGISTER)
    {
      /* Allocate a quantity number so we have a place to put our
	 suggestions.  */
      if (reg_qty[sreg] == -2)
	reg_is_born (setreg, 2 * insn_number);

      if (reg_qty[sreg] >= 0)
	{
	  if (may_save_copy
	      && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
	    {
	      SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
	      qty_phys_num_copy_sugg[reg_qty[sreg]]++;
	    }
	  else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
	    {
	      SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
	      qty_phys_num_sugg[reg_qty[sreg]]++;
	    }
	}
      return 0;
    }

  /* Similarly for SREG a hard register and UREG a pseudo register.  */

  if (sreg < FIRST_PSEUDO_REGISTER)
    {
      if (may_save_copy
	  && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
	{
	  SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
	  qty_phys_num_copy_sugg[reg_qty[ureg]]++;
	}
      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
	{
	  SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
	  qty_phys_num_sugg[reg_qty[ureg]]++;
	}
      return 0;
    }

  /* At this point we know that SREG and UREG are both pseudos.
     Do nothing if SREG already has a quantity or is a register that we
     don't allocate.  */
  if (reg_qty[sreg] >= -1
      /* If we are not going to let any regs live across calls,
	 don't tie a call-crossing reg to a non-call-crossing reg.  */
      || (cfun->has_nonlocal_label
	  && ((REG_N_CALLS_CROSSED (ureg) > 0)
	      != (REG_N_CALLS_CROSSED (sreg) > 0))))
    return 0;

  /* We don't already know about SREG, so tie it to UREG
     if this is the last use of UREG, provided the classes they want
     are compatible.  */

  if (find_regno_note (insn, REG_DEAD, ureg)
      && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
    {
      /* Add SREG to UREG's quantity.  */
      sqty = reg_qty[ureg];
      reg_qty[sreg] = sqty;
      reg_offset[sreg] = reg_offset[ureg] + offset;
      reg_next_in_qty[sreg] = qty[sqty].first_reg;
      qty[sqty].first_reg = sreg;

      /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
      update_qty_class (sqty, sreg);

      /* Update info about quantity SQTY.  */
      qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
      qty[sqty].freq_calls_crossed += REG_FREQ_CALLS_CROSSED (sreg);
      qty[sqty].n_throwing_calls_crossed
	+= REG_N_THROWING_CALLS_CROSSED (sreg);
      qty[sqty].n_refs += REG_N_REFS (sreg);
      qty[sqty].freq += REG_FREQ (sreg);
      if (usize < ssize)
	{
	  int i;

	  for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
	    reg_offset[i] -= offset;

	  qty[sqty].size = ssize;
	  qty[sqty].mode = GET_MODE (setreg);
	}
    }
  else
    return 0;

  return 1;
}

/* Return 1 if the preferred class of REG allows it to be tied
   to a quantity or register whose class is CLASS.
   True if REG's reg class either contains or is contained in CLASS.  */

static int
reg_meets_class_p (int reg, enum reg_class rclass)
{
  enum reg_class rclass2 = reg_preferred_class (reg);
  return (reg_class_subset_p (rclass2, rclass)
	  || reg_class_subset_p (rclass, rclass2));
}

/* Update the class of QTYNO assuming that REG is being tied to it.  */

static void
update_qty_class (int qtyno, int reg)
{
  enum reg_class rclass = reg_preferred_class (reg);
  if (reg_class_subset_p (rclass, qty[qtyno].min_class))
    qty[qtyno].min_class = rclass;

  rclass = reg_alternate_class (reg);
  if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
    qty[qtyno].alternate_class = rclass;
}

/* Handle something which alters the value of an rtx REG.

   REG is whatever is set or clobbered.  SETTER is the rtx that
   is modifying the register.

   If it is not really a register, we do nothing.
   The file-global variables `this_insn' and `this_insn_number'
   carry info from `block_alloc'.  */

static void
reg_is_set (rtx reg, const_rtx setter, void *data ATTRIBUTE_UNUSED)
{
  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
     a hard register.  These may actually not exist any more.  */

  if (GET_CODE (reg) != SUBREG
      && !REG_P (reg))
    return;

  /* Mark this register as being born.  If it is used in a CLOBBER, mark
     it as being born halfway between the previous insn and this insn so that
     it conflicts with our inputs but not the outputs of the previous insn.  */

  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
}

/* Handle beginning of the life of register REG.
   BIRTH is the index at which this is happening.  */

static void
reg_is_born (rtx reg, int birth)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    {
      regno = REGNO (SUBREG_REG (reg));
      if (regno < FIRST_PSEUDO_REGISTER)
	regno = subreg_regno (reg);
    }
  else
    regno = REGNO (reg);

  if (regno < FIRST_PSEUDO_REGISTER)
    {
      mark_life (regno, GET_MODE (reg), 1);

      /* If the register was to have been born earlier that the present
	 insn, mark it as live where it is actually born.  */
      if (birth < 2 * this_insn_number)
	post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
    }
  else
    {
      if (reg_qty[regno] == -2)
	alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);

      /* If this register has a quantity number, show that it isn't dead.  */
      if (reg_qty[regno] >= 0)
	qty[reg_qty[regno]].death = -1;
    }
}

/* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
   REG is an output that is dying (i.e., it is never used), otherwise it
   is an input (the normal case).
   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */

static void
wipe_dead_reg (rtx reg, int output_p)
{
  int regno = REGNO (reg);

  /* If this insn has multiple results,
     and the dead reg is used in one of the results,
     extend its life to after this insn,
     so it won't get allocated together with any other result of this insn.

     It is unsafe to use !single_set here since it will ignore an unused
     output.  Just because an output is unused does not mean the compiler
     can assume the side effect will not occur.   Consider if REG appears
     in the address of an output and we reload the output.  If we allocate
     REG to the same hard register as an unused output we could set the hard
     register before the output reload insn.  */
  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
      && multiple_sets (this_insn))
    {
      int i;
      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
	{
	  rtx set = XVECEXP (PATTERN (this_insn), 0, i);
	  if (GET_CODE (set) == SET
	      && !REG_P (SET_DEST (set))
	      && !rtx_equal_p (reg, SET_DEST (set))
	      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
	    output_p = 1;
	}
    }

  /* If this register is used in an auto-increment address, then extend its
     life to after this insn, so that it won't get allocated together with
     the result of this insn.  */
  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
    output_p = 1;

  if (regno < FIRST_PSEUDO_REGISTER)
    {
      mark_life (regno, GET_MODE (reg), 0);

      /* If a hard register is dying as an output, mark it as in use at
	 the beginning of this insn (the above statement would cause this
	 not to happen).  */
      if (output_p)
	post_mark_life (regno, GET_MODE (reg), 1,
			2 * this_insn_number, 2 * this_insn_number + 1);
    }

  else if (reg_qty[regno] >= 0)
    qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
}

/* Find a block of SIZE words of hard regs in reg_class CLASS
   that can hold something of machine-mode MODE
     (but actually we test only the first of the block for holding MODE)
   and still free between insn BORN_INDEX and insn DEAD_INDEX,
   and return the number of the first of them.
   Return -1 if such a block cannot be found.
   If QTYNO crosses calls, insist on a register preserved by calls,
   unless ACCEPT_CALL_CLOBBERED is nonzero.

   If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
   register is available.  If not, return -1.  */

static int
find_free_reg (enum reg_class rclass, enum machine_mode mode, int qtyno,
	       int accept_call_clobbered, int just_try_suggested,
	       int born_index, int dead_index, basic_block bb)
{
  int i, ins;
  HARD_REG_SET first_used, used;
#ifdef ELIMINABLE_REGS
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif

  /* Validate our parameters.  */
  gcc_assert (born_index >= 0 && born_index <= dead_index);

  /* Don't let a pseudo live in a reg across a function call
     if we might get a nonlocal goto.  */
  if (cfun->has_nonlocal_label
      && qty[qtyno].n_calls_crossed > 0)
    return -1;

  if (accept_call_clobbered)
    COPY_HARD_REG_SET (used, call_fixed_reg_set);
  else if (qty[qtyno].n_calls_crossed == 0)
    COPY_HARD_REG_SET (used, fixed_reg_set);
  else
    COPY_HARD_REG_SET (used, call_used_reg_set);

  if (accept_call_clobbered)
    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);

  for (ins = born_index; ins < dead_index; ins++)
    IOR_HARD_REG_SET (used, regs_live_at[ins]);

  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) rclass]);

  /* Don't use the frame pointer reg in local-alloc even if
     we may omit the frame pointer, because if we do that and then we
     need a frame pointer, reload won't know how to move the pseudo
     to another hard reg.  It can move only regs made by global-alloc.

     This is true of any register that can be eliminated.  */
#ifdef ELIMINABLE_REGS
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
    SET_HARD_REG_BIT (used, eliminables[i].from);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
     that it might be eliminated into.  */
  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
#endif
#else
  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
#endif

#ifdef CANNOT_CHANGE_MODE_CLASS
  cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
#endif

  /* Normally, the registers that can be used for the first register in
     a multi-register quantity are the same as those that can be used for
     subsequent registers.  However, if just trying suggested registers,
     restrict our consideration to them.  If there are copy-suggested
     register, try them.  Otherwise, try the arithmetic-suggested
     registers.  */
  COPY_HARD_REG_SET (first_used, used);

  if (just_try_suggested)
    {
      if (qty_phys_num_copy_sugg[qtyno] != 0)
	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
      else
	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
    }

  /* If at least one would be suitable, test each hard reg.  */
  if (!hard_reg_set_subset_p (reg_class_contents[(int) ALL_REGS], first_used))
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      {
#ifdef REG_ALLOC_ORDER
	int regno = reg_alloc_order[i];
#else
	int regno = i;
#endif
	if (!TEST_HARD_REG_BIT (first_used, regno)
	    && HARD_REGNO_MODE_OK (regno, mode)
	    && (qty[qtyno].n_calls_crossed == 0
		|| accept_call_clobbered
		|| !HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
	  {
	    int j;
	    int size1 = hard_regno_nregs[regno][mode];
	    j = 1;
	    while (j < size1 && !TEST_HARD_REG_BIT (used, regno + j))
	      j++;
	    if (j == size1)
	      {
		/* Mark that this register is in use between its birth
		   and death insns.  */
		post_mark_life (regno, mode, 1, born_index, dead_index);
		return regno;
	      }
#ifndef REG_ALLOC_ORDER
	    /* Skip starting points we know will lose.  */
	    i += j;
#endif
	  }
      }

  /* If we are just trying suggested register, we have just tried copy-
     suggested registers, and there are arithmetic-suggested registers,
     try them.  */

  /* If it would be profitable to allocate a call-clobbered register
     and save and restore it around calls, do that.  */
  if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
      && qty_phys_num_sugg[qtyno] != 0)
    {
      /* Don't try the copy-suggested regs again.  */
      qty_phys_num_copy_sugg[qtyno] = 0;
      return find_free_reg (rclass, mode, qtyno, accept_call_clobbered, 1,
			    born_index, dead_index, bb);
    }

  /* We need not check to see if the current function has nonlocal
     labels because we don't put any pseudos that are live over calls in
     registers in that case.  Avoid putting pseudos crossing calls that
     might throw into call used registers.  */

  if (! accept_call_clobbered
      && flag_caller_saves
      && ! just_try_suggested
      && qty[qtyno].n_calls_crossed != 0
      && qty[qtyno].n_throwing_calls_crossed == 0
      && CALLER_SAVE_PROFITABLE (optimize_bb_for_size_p (bb) ? qty[qtyno].n_refs
      				 : qty[qtyno].freq,
				 optimize_bb_for_size_p (bb) ? qty[qtyno].n_calls_crossed
				 : qty[qtyno].freq_calls_crossed))
    {
      i = find_free_reg (rclass, mode, qtyno, 1, 0, born_index, dead_index, bb);
      if (i >= 0)
	caller_save_needed = 1;
      return i;
    }
  return -1;
}

/* Mark that REGNO with machine-mode MODE is live starting from the current
   insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
   is zero).  */

static void
mark_life (int regno, enum machine_mode mode, int life)
{
  if (life)
    add_to_hard_reg_set (&regs_live, mode, regno);
  else
    remove_from_hard_reg_set (&regs_live, mode, regno);
}

/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
   is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
   to insn number DEATH (exclusive).  */

static void
post_mark_life (int regno, enum machine_mode mode, int life, int birth,
		int death)
{
  HARD_REG_SET this_reg;

  CLEAR_HARD_REG_SET (this_reg);
  add_to_hard_reg_set (&this_reg, mode, regno);

  if (life)
    while (birth < death)
      {
	IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
	birth++;
      }
  else
    while (birth < death)
      {
	AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
	birth++;
      }
}

/* Return the number of alternatives for which the constraint string P
   indicates that the operand must be equal to operand 0 and that no register
   is acceptable.  */

static int
requires_inout (const char *p)
{
  char c;
  int found_zero = 0;
  int reg_allowed = 0;
  int num_matching_alts = 0;
  int len;

  for ( ; (c = *p); p += len)
    {
      len = CONSTRAINT_LEN (c, p);
      switch (c)
	{
	case '=':  case '+':  case '?':
	case '#':  case '&':  case '!':
	case '*':  case '%':
	case 'm':  case '<':  case '>':  case 'V':  case 'o':
	case 'E':  case 'F':  case 'G':  case 'H':
	case 's':  case 'i':  case 'n':
	case 'I':  case 'J':  case 'K':  case 'L':
	case 'M':  case 'N':  case 'O':  case 'P':
	case 'X':
	  /* These don't say anything we care about.  */
	  break;

	case ',':
	  if (found_zero && ! reg_allowed)
	    num_matching_alts++;

	  found_zero = reg_allowed = 0;
	  break;

	case '0':
	  found_zero = 1;
	  break;

	case '1':  case '2':  case '3':  case '4': case '5':
	case '6':  case '7':  case '8':  case '9':
	  /* Skip the balance of the matching constraint.  */
	  do
	    p++;
	  while (ISDIGIT (*p));
	  len = 0;
	  break;

	default:
	  if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
	      && !EXTRA_ADDRESS_CONSTRAINT (c, p))
	    break;
	  /* Fall through.  */
	case 'p':
	case 'g': case 'r':
	  reg_allowed = 1;
	  break;
	}
    }

  if (found_zero && ! reg_allowed)
    num_matching_alts++;

  return num_matching_alts;
}

void
dump_local_alloc (FILE *file)
{
  int i;
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] != -1)
      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
}

#ifdef STACK_REGS
static void
find_stack_regs (void)
{
  bitmap stack_regs = BITMAP_ALLOC (NULL);
  int i;
  HARD_REG_SET stack_hard_regs, used;
  basic_block bb;
  
  /* Any register that MAY be allocated to a register stack (like the
     387) is treated poorly.  Each such register is marked as being
     live everywhere.  This keeps the register allocator and the
     subsequent passes from doing anything useful with these values.

     FIXME: This seems like an incredibly poor idea.  */

  CLEAR_HARD_REG_SET (stack_hard_regs);
  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
    SET_HARD_REG_BIT (stack_hard_regs, i);

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]);
      IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]);
      AND_HARD_REG_SET (used, stack_hard_regs);
      if (!hard_reg_set_empty_p (used))
	bitmap_set_bit (stack_regs, i);
    }

  if (dump_file)
    bitmap_print (dump_file, stack_regs, "stack regs:", "\n");

  FOR_EACH_BB (bb)
    {
      bitmap_ior_into (DF_LIVE_IN (bb), stack_regs);
      bitmap_and_into (DF_LIVE_IN (bb), DF_LR_IN (bb));
      bitmap_ior_into (DF_LIVE_OUT (bb), stack_regs);
      bitmap_and_into (DF_LIVE_OUT (bb), DF_LR_OUT (bb));
    }
  BITMAP_FREE (stack_regs);
}
#endif

static bool
gate_handle_local_alloc (void)
{
  return ! flag_ira;
}

/* Run old register allocator.  Return TRUE if we must exit
   rest_of_compilation upon return.  */
static unsigned int
rest_of_handle_local_alloc (void)
{
  int rebuild_notes;
  int max_regno = max_reg_num ();

  df_note_add_problem ();

  if (optimize == 1)
    {
      df_live_add_problem ();
      df_live_set_all_dirty ();
    }
#ifdef ENABLE_CHECKING
  df->changeable_flags |= DF_VERIFY_SCHEDULED;
#endif
  df_analyze ();
#ifdef STACK_REGS
  if (optimize)
    find_stack_regs ();
#endif
  regstat_init_n_sets_and_refs ();
  regstat_compute_ri ();

  /* If we are not optimizing, then this is the only place before
     register allocation where dataflow is done.  And that is needed
     to generate these warnings.  */
  if (warn_clobbered)
    generate_setjmp_warnings ();

  /* Determine if the current function is a leaf before running reload
     since this can impact optimizations done by the prologue and
     epilogue thus changing register elimination offsets.  */
  current_function_is_leaf = leaf_function_p ();

  /* And the reg_equiv_memory_loc array.  */
  VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
  memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
	  sizeof (rtx) * max_regno);
  reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);

  allocate_initial_values (reg_equiv_memory_loc);

  regclass (get_insns (), max_regno);
  rebuild_notes = local_alloc ();

  /* Local allocation may have turned an indirect jump into a direct
     jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
     instructions.  */
  if (rebuild_notes)
    {
      timevar_push (TV_JUMP);

      rebuild_jump_labels (get_insns ());
      purge_all_dead_edges ();
      timevar_pop (TV_JUMP);
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      timevar_push (TV_DUMP);
      dump_flow_info (dump_file, dump_flags);
      dump_local_alloc (dump_file);
      timevar_pop (TV_DUMP);
    }
  return 0;
}

struct rtl_opt_pass pass_local_alloc =
{
 {
  RTL_PASS,
  "lreg",                               /* name */
  gate_handle_local_alloc,              /* gate */
  rest_of_handle_local_alloc,           /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_LOCAL_ALLOC,                       /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_ggc_collect                      /* todo_flags_finish */
 }
};