1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
|
/* Loop unrolling and peeling.
Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "params.h"
#include "output.h"
#include "expr.h"
#include "hashtab.h"
#include "recog.h"
/* This pass performs loop unrolling and peeling. We only perform these
optimizations on innermost loops (with single exception) because
the impact on performance is greatest here, and we want to avoid
unnecessary code size growth. The gain is caused by greater sequentiality
of code, better code to optimize for further passes and in some cases
by fewer testings of exit conditions. The main problem is code growth,
that impacts performance negatively due to effect of caches.
What we do:
-- complete peeling of once-rolling loops; this is the above mentioned
exception, as this causes loop to be cancelled completely and
does not cause code growth
-- complete peeling of loops that roll (small) constant times.
-- simple peeling of first iterations of loops that do not roll much
(according to profile feedback)
-- unrolling of loops that roll constant times; this is almost always
win, as we get rid of exit condition tests.
-- unrolling of loops that roll number of times that we can compute
in runtime; we also get rid of exit condition tests here, but there
is the extra expense for calculating the number of iterations
-- simple unrolling of remaining loops; this is performed only if we
are asked to, as the gain is questionable in this case and often
it may even slow down the code
For more detailed descriptions of each of those, see comments at
appropriate function below.
There is a lot of parameters (defined and described in params.def) that
control how much we unroll/peel.
??? A great problem is that we don't have a good way how to determine
how many times we should unroll the loop; the experiments I have made
showed that this choice may affect performance in order of several %.
*/
/* Information about induction variables to split. */
struct iv_to_split
{
rtx insn; /* The insn in that the induction variable occurs. */
rtx base_var; /* The variable on that the values in the further
iterations are based. */
rtx step; /* Step of the induction variable. */
unsigned n_loc;
unsigned loc[3]; /* Location where the definition of the induction
variable occurs in the insn. For example if
N_LOC is 2, the expression is located at
XEXP (XEXP (single_set, loc[0]), loc[1]). */
};
/* Information about accumulators to expand. */
struct var_to_expand
{
rtx insn; /* The insn in that the variable expansion occurs. */
rtx reg; /* The accumulator which is expanded. */
VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
enum rtx_code op; /* The type of the accumulation - addition, subtraction
or multiplication. */
int expansion_count; /* Count the number of expansions generated so far. */
int reuse_expansion; /* The expansion we intend to reuse to expand
the accumulator. If REUSE_EXPANSION is 0 reuse
the original accumulator. Else use
var_expansions[REUSE_EXPANSION - 1]. */
unsigned accum_pos; /* The position in which the accumulator is placed in
the insn src. For example in x = x + something
accum_pos is 0 while in x = something + x accum_pos
is 1. */
};
/* Information about optimization applied in
the unrolled loop. */
struct opt_info
{
htab_t insns_to_split; /* A hashtable of insns to split. */
htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
to expand. */
unsigned first_new_block; /* The first basic block that was
duplicated. */
basic_block loop_exit; /* The loop exit basic block. */
basic_block loop_preheader; /* The loop preheader basic block. */
};
static void decide_unrolling_and_peeling (int);
static void peel_loops_completely (int);
static void decide_peel_simple (struct loop *, int);
static void decide_peel_once_rolling (struct loop *, int);
static void decide_peel_completely (struct loop *, int);
static void decide_unroll_stupid (struct loop *, int);
static void decide_unroll_constant_iterations (struct loop *, int);
static void decide_unroll_runtime_iterations (struct loop *, int);
static void peel_loop_simple (struct loop *);
static void peel_loop_completely (struct loop *);
static void unroll_loop_stupid (struct loop *);
static void unroll_loop_constant_iterations (struct loop *);
static void unroll_loop_runtime_iterations (struct loop *);
static struct opt_info *analyze_insns_in_loop (struct loop *);
static void opt_info_start_duplication (struct opt_info *);
static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
static void free_opt_info (struct opt_info *);
static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
static struct iv_to_split *analyze_iv_to_split_insn (rtx);
static void expand_var_during_unrolling (struct var_to_expand *, rtx);
static int insert_var_expansion_initialization (void **, void *);
static int combine_var_copies_in_loop_exit (void **, void *);
static int release_var_copies (void **, void *);
static rtx get_expansion (struct var_to_expand *);
/* Unroll and/or peel (depending on FLAGS) LOOPS. */
void
unroll_and_peel_loops (int flags)
{
struct loop *loop;
bool check;
loop_iterator li;
/* First perform complete loop peeling (it is almost surely a win,
and affects parameters for further decision a lot). */
peel_loops_completely (flags);
/* Now decide rest of unrolling and peeling. */
decide_unrolling_and_peeling (flags);
/* Scan the loops, inner ones first. */
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
{
check = true;
/* And perform the appropriate transformations. */
switch (loop->lpt_decision.decision)
{
case LPT_PEEL_COMPLETELY:
/* Already done. */
gcc_unreachable ();
case LPT_PEEL_SIMPLE:
peel_loop_simple (loop);
break;
case LPT_UNROLL_CONSTANT:
unroll_loop_constant_iterations (loop);
break;
case LPT_UNROLL_RUNTIME:
unroll_loop_runtime_iterations (loop);
break;
case LPT_UNROLL_STUPID:
unroll_loop_stupid (loop);
break;
case LPT_NONE:
check = false;
break;
default:
gcc_unreachable ();
}
if (check)
{
#ifdef ENABLE_CHECKING
verify_dominators (CDI_DOMINATORS);
verify_loop_structure ();
#endif
}
}
iv_analysis_done ();
}
/* Check whether exit of the LOOP is at the end of loop body. */
static bool
loop_exit_at_end_p (struct loop *loop)
{
struct niter_desc *desc = get_simple_loop_desc (loop);
rtx insn;
if (desc->in_edge->dest != loop->latch)
return false;
/* Check that the latch is empty. */
FOR_BB_INSNS (loop->latch, insn)
{
if (INSN_P (insn))
return false;
}
return true;
}
/* Depending on FLAGS, check whether to peel loops completely and do so. */
static void
peel_loops_completely (int flags)
{
struct loop *loop;
loop_iterator li;
/* Scan the loops, the inner ones first. */
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
{
loop->lpt_decision.decision = LPT_NONE;
if (dump_file)
fprintf (dump_file,
"\n;; *** Considering loop %d for complete peeling ***\n",
loop->num);
loop->ninsns = num_loop_insns (loop);
decide_peel_once_rolling (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_peel_completely (loop, flags);
if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
{
peel_loop_completely (loop);
#ifdef ENABLE_CHECKING
verify_dominators (CDI_DOMINATORS);
verify_loop_structure ();
#endif
}
}
}
/* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
static void
decide_unrolling_and_peeling (int flags)
{
struct loop *loop;
loop_iterator li;
/* Scan the loops, inner ones first. */
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
{
loop->lpt_decision.decision = LPT_NONE;
if (dump_file)
fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
/* Do not peel cold areas. */
if (!maybe_hot_bb_p (loop->header))
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, cold area\n");
continue;
}
/* Can the loop be manipulated? */
if (!can_duplicate_loop_p (loop))
{
if (dump_file)
fprintf (dump_file,
";; Not considering loop, cannot duplicate\n");
continue;
}
/* Skip non-innermost loops. */
if (loop->inner)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
continue;
}
loop->ninsns = num_loop_insns (loop);
loop->av_ninsns = average_num_loop_insns (loop);
/* Try transformations one by one in decreasing order of
priority. */
decide_unroll_constant_iterations (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_unroll_runtime_iterations (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_unroll_stupid (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_peel_simple (loop, flags);
}
}
/* Decide whether the LOOP is once rolling and suitable for complete
peeling. */
static void
decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
{
struct niter_desc *desc;
if (dump_file)
fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
/* Is the loop small enough? */
if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p
|| desc->assumptions
|| desc->infinite
|| !desc->const_iter
|| desc->niter != 0)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop rolls exactly once\n");
return;
}
/* Success. */
if (dump_file)
fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
}
/* Decide whether the LOOP is suitable for complete peeling. */
static void
decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
{
unsigned npeel;
struct niter_desc *desc;
if (dump_file)
fprintf (dump_file, "\n;; Considering peeling completely\n");
/* Skip non-innermost loops. */
if (loop->inner)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
return;
}
/* Do not peel cold areas. */
if (!maybe_hot_bb_p (loop->header))
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, cold area\n");
return;
}
/* Can the loop be manipulated? */
if (!can_duplicate_loop_p (loop))
{
if (dump_file)
fprintf (dump_file,
";; Not considering loop, cannot duplicate\n");
return;
}
/* npeel = number of iterations to peel. */
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
/* Is the loop small enough? */
if (!npeel)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p
|| desc->assumptions
|| !desc->const_iter
|| desc->infinite)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop iterates constant times\n");
return;
}
if (desc->niter > npeel - 1)
{
if (dump_file)
{
fprintf (dump_file,
";; Not peeling loop completely, rolls too much (");
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
}
return;
}
/* Success. */
if (dump_file)
fprintf (dump_file, ";; Decided to peel loop completely\n");
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
}
/* Peel all iterations of LOOP, remove exit edges and cancel the loop
completely. The transformation done:
for (i = 0; i < 4; i++)
body;
==>
i = 0;
body; i++;
body; i++;
body; i++;
body; i++;
*/
static void
peel_loop_completely (struct loop *loop)
{
sbitmap wont_exit;
unsigned HOST_WIDE_INT npeel;
unsigned i;
VEC (edge, heap) *remove_edges;
edge ein;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct opt_info *opt_info = NULL;
npeel = desc->niter;
if (npeel)
{
bool ok;
wont_exit = sbitmap_alloc (npeel + 1);
sbitmap_ones (wont_exit);
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
remove_edges = NULL;
if (flag_split_ivs_in_unroller)
opt_info = analyze_insns_in_loop (loop);
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
npeel,
wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ
| DLTHE_FLAG_COMPLETTE_PEEL
| (opt_info
? DLTHE_RECORD_COPY_NUMBER : 0));
gcc_assert (ok);
free (wont_exit);
if (opt_info)
{
apply_opt_in_copies (opt_info, npeel, false, true);
free_opt_info (opt_info);
}
/* Remove the exit edges. */
for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
remove_path (ein);
VEC_free (edge, heap, remove_edges);
}
ein = desc->in_edge;
free_simple_loop_desc (loop);
/* Now remove the unreachable part of the last iteration and cancel
the loop. */
remove_path (ein);
if (dump_file)
fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
}
/* Decide whether to unroll LOOP iterating constant number of times
and how much. */
static void
decide_unroll_constant_iterations (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file,
"\n;; Considering unrolling loop with constant "
"number of iterations\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p || !desc->const_iter || desc->assumptions)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop iterates constant times\n");
return;
}
/* Check whether the loop rolls enough to consider. */
if (desc->niter < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success; now compute number of iterations to unroll. We alter
nunroll so that as few as possible copies of loop body are
necessary, while still not decreasing the number of unrollings
too much (at most by 1). */
best_copies = 2 * nunroll + 10;
i = 2 * nunroll + 2;
if (i - 1 >= desc->niter)
i = desc->niter - 2;
for (; i >= nunroll - 1; i--)
{
unsigned exit_mod = desc->niter % (i + 1);
if (!loop_exit_at_end_p (loop))
n_copies = exit_mod + i + 1;
else if (exit_mod != (unsigned) i
|| desc->noloop_assumptions != NULL_RTX)
n_copies = exit_mod + i + 2;
else
n_copies = i + 1;
if (n_copies < best_copies)
{
best_copies = n_copies;
best_unroll = i;
}
}
if (dump_file)
fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
best_unroll + 1, best_copies, nunroll);
loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
loop->lpt_decision.times = best_unroll;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the constant times rolling loop, %d times.\n",
loop->lpt_decision.times);
}
/* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
times. The transformation does this:
for (i = 0; i < 102; i++)
body;
==>
i = 0;
body; i++;
body; i++;
while (i < 102)
{
body; i++;
body; i++;
body; i++;
body; i++;
}
*/
static void
unroll_loop_constant_iterations (struct loop *loop)
{
unsigned HOST_WIDE_INT niter;
unsigned exit_mod;
sbitmap wont_exit;
unsigned i;
VEC (edge, heap) *remove_edges;
edge e;
unsigned max_unroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
bool exit_at_end = loop_exit_at_end_p (loop);
struct opt_info *opt_info = NULL;
bool ok;
niter = desc->niter;
/* Should not get here (such loop should be peeled instead). */
gcc_assert (niter > max_unroll + 1);
exit_mod = niter % (max_unroll + 1);
wont_exit = sbitmap_alloc (max_unroll + 1);
sbitmap_ones (wont_exit);
remove_edges = NULL;
if (flag_split_ivs_in_unroller
|| flag_variable_expansion_in_unroller)
opt_info = analyze_insns_in_loop (loop);
if (!exit_at_end)
{
/* The exit is not at the end of the loop; leave exit test
in the first copy, so that the loops that start with test
of exit condition have continuous body after unrolling. */
if (dump_file)
fprintf (dump_file, ";; Condition on beginning of loop.\n");
/* Peel exit_mod iterations. */
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
if (exit_mod)
{
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
exit_mod,
wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ
| (opt_info && exit_mod > 1
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
if (opt_info && exit_mod > 1)
apply_opt_in_copies (opt_info, exit_mod, false, false);
desc->noloop_assumptions = NULL_RTX;
desc->niter -= exit_mod;
desc->niter_max -= exit_mod;
}
SET_BIT (wont_exit, 1);
}
else
{
/* Leave exit test in last copy, for the same reason as above if
the loop tests the condition at the end of loop body. */
if (dump_file)
fprintf (dump_file, ";; Condition on end of loop.\n");
/* We know that niter >= max_unroll + 2; so we do not need to care of
case when we would exit before reaching the loop. So just peel
exit_mod + 1 iterations. */
if (exit_mod != max_unroll
|| desc->noloop_assumptions)
{
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
exit_mod + 1,
wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ
| (opt_info && exit_mod > 0
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
if (opt_info && exit_mod > 0)
apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
desc->niter -= exit_mod + 1;
desc->niter_max -= exit_mod + 1;
desc->noloop_assumptions = NULL_RTX;
SET_BIT (wont_exit, 0);
SET_BIT (wont_exit, 1);
}
RESET_BIT (wont_exit, max_unroll);
}
/* Now unroll the loop. */
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
max_unroll,
wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ
| (opt_info
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
if (opt_info)
{
apply_opt_in_copies (opt_info, max_unroll, true, true);
free_opt_info (opt_info);
}
free (wont_exit);
if (exit_at_end)
{
basic_block exit_block = get_bb_copy (desc->in_edge->src);
/* Find a new in and out edge; they are in the last copy we have made. */
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
{
desc->out_edge = EDGE_SUCC (exit_block, 0);
desc->in_edge = EDGE_SUCC (exit_block, 1);
}
else
{
desc->out_edge = EDGE_SUCC (exit_block, 1);
desc->in_edge = EDGE_SUCC (exit_block, 0);
}
}
desc->niter /= max_unroll + 1;
desc->niter_max /= max_unroll + 1;
desc->niter_expr = GEN_INT (desc->niter);
/* Remove the edges. */
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
remove_path (e);
VEC_free (edge, heap, remove_edges);
if (dump_file)
fprintf (dump_file,
";; Unrolled loop %d times, constant # of iterations %i insns\n",
max_unroll, num_loop_insns (loop));
}
/* Decide whether to unroll LOOP iterating runtime computable number of times
and how much. */
static void
decide_unroll_runtime_iterations (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file,
"\n;; Considering unrolling loop with runtime "
"computable number of iterations\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check simpleness. */
if (!desc->simple_p || desc->assumptions)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the number of iterations "
"can be counted in runtime\n");
return;
}
if (desc->const_iter)
{
if (dump_file)
fprintf (dump_file, ";; Loop iterates constant times\n");
return;
}
/* If we have profile feedback, check whether the loop rolls. */
if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success; now force nunroll to be power of 2, as we are unable to
cope with overflows in computation of number of iterations. */
for (i = 1; 2 * i <= nunroll; i *= 2)
continue;
loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
loop->lpt_decision.times = i - 1;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the runtime computable "
"times rolling loop, %d times.\n",
loop->lpt_decision.times);
}
/* Splits edge E and inserts the sequence of instructions INSNS on it, and
returns the newly created block. If INSNS is NULL_RTX, nothing is changed
and NULL is returned instead. */
basic_block
split_edge_and_insert (edge e, rtx insns)
{
basic_block bb;
if (!insns)
return NULL;
bb = split_edge (e);
emit_insn_after (insns, BB_END (bb));
/* ??? We used to assume that INSNS can contain control flow insns, and
that we had to try to find sub basic blocks in BB to maintain a valid
CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
and call break_superblocks when going out of cfglayout mode. But it
turns out that this never happens; and that if it does ever happen,
the verify_flow_info call in loop_optimizer_finalize would fail.
There are two reasons why we expected we could have control flow insns
in INSNS. The first is when a comparison has to be done in parts, and
the second is when the number of iterations is computed for loops with
the number of iterations known at runtime. In both cases, test cases
to get control flow in INSNS appear to be impossible to construct:
* If do_compare_rtx_and_jump needs several branches to do comparison
in a mode that needs comparison by parts, we cannot analyze the
number of iterations of the loop, and we never get to unrolling it.
* The code in expand_divmod that was suspected to cause creation of
branching code seems to be only accessed for signed division. The
divisions used by # of iterations analysis are always unsigned.
Problems might arise on architectures that emits branching code
for some operations that may appear in the unroller (especially
for division), but we have no such architectures.
Considering all this, it was decided that we should for now assume
that INSNS can in theory contain control flow insns, but in practice
it never does. So we don't handle the theoretical case, and should
a real failure ever show up, we have a pretty good clue for how to
fix it. */
return bb;
}
/* Unroll LOOP for that we are able to count number of iterations in runtime
LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
extra care for case n < 0):
for (i = 0; i < n; i++)
body;
==>
i = 0;
mod = n % 4;
switch (mod)
{
case 3:
body; i++;
case 2:
body; i++;
case 1:
body; i++;
case 0: ;
}
while (i < n)
{
body; i++;
body; i++;
body; i++;
body; i++;
}
*/
static void
unroll_loop_runtime_iterations (struct loop *loop)
{
rtx old_niter, niter, init_code, branch_code, tmp;
unsigned i, j, p;
basic_block preheader, *body, swtch, ezc_swtch;
VEC (basic_block, heap) *dom_bbs;
sbitmap wont_exit;
int may_exit_copy;
unsigned n_peel;
VEC (edge, heap) *remove_edges;
edge e;
bool extra_zero_check, last_may_exit;
unsigned max_unroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
bool exit_at_end = loop_exit_at_end_p (loop);
struct opt_info *opt_info = NULL;
bool ok;
if (flag_split_ivs_in_unroller
|| flag_variable_expansion_in_unroller)
opt_info = analyze_insns_in_loop (loop);
/* Remember blocks whose dominators will have to be updated. */
dom_bbs = NULL;
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
VEC (basic_block, heap) *ldom;
basic_block bb;
ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
for (j = 0; VEC_iterate (basic_block, ldom, j, bb); j++)
if (!flow_bb_inside_loop_p (loop, bb))
VEC_safe_push (basic_block, heap, dom_bbs, bb);
VEC_free (basic_block, heap, ldom);
}
free (body);
if (!exit_at_end)
{
/* Leave exit in first copy (for explanation why see comment in
unroll_loop_constant_iterations). */
may_exit_copy = 0;
n_peel = max_unroll - 1;
extra_zero_check = true;
last_may_exit = false;
}
else
{
/* Leave exit in last copy (for explanation why see comment in
unroll_loop_constant_iterations). */
may_exit_copy = max_unroll;
n_peel = max_unroll;
extra_zero_check = false;
last_may_exit = true;
}
/* Get expression for number of iterations. */
start_sequence ();
old_niter = niter = gen_reg_rtx (desc->mode);
tmp = force_operand (copy_rtx (desc->niter_expr), niter);
if (tmp != niter)
emit_move_insn (niter, tmp);
/* Count modulo by ANDing it with max_unroll; we use the fact that
the number of unrollings is a power of two, and thus this is correct
even if there is overflow in the computation. */
niter = expand_simple_binop (desc->mode, AND,
niter,
GEN_INT (max_unroll),
NULL_RTX, 0, OPTAB_LIB_WIDEN);
init_code = get_insns ();
end_sequence ();
/* Precondition the loop. */
split_edge_and_insert (loop_preheader_edge (loop), init_code);
remove_edges = NULL;
wont_exit = sbitmap_alloc (max_unroll + 2);
/* Peel the first copy of loop body (almost always we must leave exit test
here; the only exception is when we have extra zero check and the number
of iterations is reliable. Also record the place of (possible) extra
zero check. */
sbitmap_zero (wont_exit);
if (extra_zero_check
&& !desc->noloop_assumptions)
SET_BIT (wont_exit, 1);
ezc_swtch = loop_preheader_edge (loop)->src;
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1, wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ);
gcc_assert (ok);
/* Record the place where switch will be built for preconditioning. */
swtch = split_edge (loop_preheader_edge (loop));
for (i = 0; i < n_peel; i++)
{
/* Peel the copy. */
sbitmap_zero (wont_exit);
if (i != n_peel - 1 || !last_may_exit)
SET_BIT (wont_exit, 1);
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1, wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ);
gcc_assert (ok);
/* Create item for switch. */
j = n_peel - i - (extra_zero_check ? 0 : 1);
p = REG_BR_PROB_BASE / (i + 2);
preheader = split_edge (loop_preheader_edge (loop));
branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
block_label (preheader), p,
NULL_RTX);
/* We rely on the fact that the compare and jump cannot be optimized out,
and hence the cfg we create is correct. */
gcc_assert (branch_code != NULL_RTX);
swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
e = make_edge (swtch, preheader,
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
e->probability = p;
}
if (extra_zero_check)
{
/* Add branch for zero iterations. */
p = REG_BR_PROB_BASE / (max_unroll + 1);
swtch = ezc_swtch;
preheader = split_edge (loop_preheader_edge (loop));
branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
block_label (preheader), p,
NULL_RTX);
gcc_assert (branch_code != NULL_RTX);
swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
e = make_edge (swtch, preheader,
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
e->probability = p;
}
/* Recount dominators for outer blocks. */
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
/* And unroll loop. */
sbitmap_ones (wont_exit);
RESET_BIT (wont_exit, may_exit_copy);
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
max_unroll,
wont_exit, desc->out_edge,
&remove_edges,
DLTHE_FLAG_UPDATE_FREQ
| (opt_info
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
if (opt_info)
{
apply_opt_in_copies (opt_info, max_unroll, true, true);
free_opt_info (opt_info);
}
free (wont_exit);
if (exit_at_end)
{
basic_block exit_block = get_bb_copy (desc->in_edge->src);
/* Find a new in and out edge; they are in the last copy we have
made. */
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
{
desc->out_edge = EDGE_SUCC (exit_block, 0);
desc->in_edge = EDGE_SUCC (exit_block, 1);
}
else
{
desc->out_edge = EDGE_SUCC (exit_block, 1);
desc->in_edge = EDGE_SUCC (exit_block, 0);
}
}
/* Remove the edges. */
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
remove_path (e);
VEC_free (edge, heap, remove_edges);
/* We must be careful when updating the number of iterations due to
preconditioning and the fact that the value must be valid at entry
of the loop. After passing through the above code, we see that
the correct new number of iterations is this: */
gcc_assert (!desc->const_iter);
desc->niter_expr =
simplify_gen_binary (UDIV, desc->mode, old_niter,
GEN_INT (max_unroll + 1));
desc->niter_max /= max_unroll + 1;
if (exit_at_end)
{
desc->niter_expr =
simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
desc->noloop_assumptions = NULL_RTX;
desc->niter_max--;
}
if (dump_file)
fprintf (dump_file,
";; Unrolled loop %d times, counting # of iterations "
"in runtime, %i insns\n",
max_unroll, num_loop_insns (loop));
VEC_free (basic_block, heap, dom_bbs);
}
/* Decide whether to simply peel LOOP and how much. */
static void
decide_peel_simple (struct loop *loop, int flags)
{
unsigned npeel;
struct niter_desc *desc;
if (!(flags & UAP_PEEL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file, "\n;; Considering simply peeling loop\n");
/* npeel = number of iterations to peel. */
npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
/* Skip big loops. */
if (!npeel)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (desc->simple_p && !desc->assumptions && desc->const_iter)
{
if (dump_file)
fprintf (dump_file, ";; Loop iterates constant times\n");
return;
}
/* Do not simply peel loops with branches inside -- it increases number
of mispredicts. */
if (num_loop_branches (loop) > 1)
{
if (dump_file)
fprintf (dump_file, ";; Not peeling, contains branches\n");
return;
}
if (loop->header->count)
{
unsigned niter = expected_loop_iterations (loop);
if (niter + 1 > npeel)
{
if (dump_file)
{
fprintf (dump_file, ";; Not peeling loop, rolls too much (");
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
(HOST_WIDEST_INT) (niter + 1));
fprintf (dump_file, " iterations > %d [maximum peelings])\n",
npeel);
}
return;
}
npeel = niter + 1;
}
else
{
/* For now we have no good heuristics to decide whether loop peeling
will be effective, so disable it. */
if (dump_file)
fprintf (dump_file,
";; Not peeling loop, no evidence it will be profitable\n");
return;
}
/* Success. */
loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
loop->lpt_decision.times = npeel;
if (dump_file)
fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
loop->lpt_decision.times);
}
/* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
while (cond)
body;
==>
if (!cond) goto end;
body;
if (!cond) goto end;
body;
while (cond)
body;
end: ;
*/
static void
peel_loop_simple (struct loop *loop)
{
sbitmap wont_exit;
unsigned npeel = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct opt_info *opt_info = NULL;
bool ok;
if (flag_split_ivs_in_unroller && npeel > 1)
opt_info = analyze_insns_in_loop (loop);
wont_exit = sbitmap_alloc (npeel + 1);
sbitmap_zero (wont_exit);
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
npeel, wont_exit, NULL,
NULL, DLTHE_FLAG_UPDATE_FREQ
| (opt_info
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
free (wont_exit);
if (opt_info)
{
apply_opt_in_copies (opt_info, npeel, false, false);
free_opt_info (opt_info);
}
if (desc->simple_p)
{
if (desc->const_iter)
{
desc->niter -= npeel;
desc->niter_expr = GEN_INT (desc->niter);
desc->noloop_assumptions = NULL_RTX;
}
else
{
/* We cannot just update niter_expr, as its value might be clobbered
inside loop. We could handle this by counting the number into
temporary just like we do in runtime unrolling, but it does not
seem worthwhile. */
free_simple_loop_desc (loop);
}
}
if (dump_file)
fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
}
/* Decide whether to unroll LOOP stupidly and how much. */
static void
decide_unroll_stupid (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL_ALL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check simpleness. */
if (desc->simple_p && !desc->assumptions)
{
if (dump_file)
fprintf (dump_file, ";; The loop is simple\n");
return;
}
/* Do not unroll loops with branches inside -- it increases number
of mispredicts. */
if (num_loop_branches (loop) > 1)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling, contains branches\n");
return;
}
/* If we have profile feedback, check whether the loop rolls. */
if (loop->header->count
&& expected_loop_iterations (loop) < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success. Now force nunroll to be power of 2, as it seems that this
improves results (partially because of better alignments, partially
because of some dark magic). */
for (i = 1; 2 * i <= nunroll; i *= 2)
continue;
loop->lpt_decision.decision = LPT_UNROLL_STUPID;
loop->lpt_decision.times = i - 1;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the loop stupidly, %d times.\n",
loop->lpt_decision.times);
}
/* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
while (cond)
body;
==>
while (cond)
{
body;
if (!cond) break;
body;
if (!cond) break;
body;
if (!cond) break;
body;
}
*/
static void
unroll_loop_stupid (struct loop *loop)
{
sbitmap wont_exit;
unsigned nunroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct opt_info *opt_info = NULL;
bool ok;
if (flag_split_ivs_in_unroller
|| flag_variable_expansion_in_unroller)
opt_info = analyze_insns_in_loop (loop);
wont_exit = sbitmap_alloc (nunroll + 1);
sbitmap_zero (wont_exit);
opt_info_start_duplication (opt_info);
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
nunroll, wont_exit,
NULL, NULL,
DLTHE_FLAG_UPDATE_FREQ
| (opt_info
? DLTHE_RECORD_COPY_NUMBER
: 0));
gcc_assert (ok);
if (opt_info)
{
apply_opt_in_copies (opt_info, nunroll, true, true);
free_opt_info (opt_info);
}
free (wont_exit);
if (desc->simple_p)
{
/* We indeed may get here provided that there are nontrivial assumptions
for a loop to be really simple. We could update the counts, but the
problem is that we are unable to decide which exit will be taken
(not really true in case the number of iterations is constant,
but noone will do anything with this information, so we do not
worry about it). */
desc->simple_p = false;
}
if (dump_file)
fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
nunroll, num_loop_insns (loop));
}
/* A hash function for information about insns to split. */
static hashval_t
si_info_hash (const void *ivts)
{
return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
}
/* An equality functions for information about insns to split. */
static int
si_info_eq (const void *ivts1, const void *ivts2)
{
const struct iv_to_split *i1 = ivts1;
const struct iv_to_split *i2 = ivts2;
return i1->insn == i2->insn;
}
/* Return a hash for VES, which is really a "var_to_expand *". */
static hashval_t
ve_info_hash (const void *ves)
{
return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
}
/* Return true if IVTS1 and IVTS2 (which are really both of type
"var_to_expand *") refer to the same instruction. */
static int
ve_info_eq (const void *ivts1, const void *ivts2)
{
const struct var_to_expand *i1 = ivts1;
const struct var_to_expand *i2 = ivts2;
return i1->insn == i2->insn;
}
/* Returns true if REG is referenced in one insn in LOOP. */
bool
referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
{
basic_block *body, bb;
unsigned i;
int count_ref = 0;
rtx insn;
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = body[i];
FOR_BB_INSNS (bb, insn)
{
if (rtx_referenced_p (reg, insn))
count_ref++;
}
}
return (count_ref == 1);
}
/* Determine whether INSN contains an accumulator
which can be expanded into separate copies,
one for each copy of the LOOP body.
for (i = 0 ; i < n; i++)
sum += a[i];
==>
sum += a[i]
....
i = i+1;
sum1 += a[i]
....
i = i+1
sum2 += a[i];
....
Return NULL if INSN contains no opportunity for expansion of accumulator.
Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
information and return a pointer to it.
*/
static struct var_to_expand *
analyze_insn_to_expand_var (struct loop *loop, rtx insn)
{
rtx set, dest, src, op1, op2, something;
struct var_to_expand *ves;
enum machine_mode mode1, mode2;
unsigned accum_pos;
set = single_set (insn);
if (!set)
return NULL;
dest = SET_DEST (set);
src = SET_SRC (set);
if (GET_CODE (src) != PLUS
&& GET_CODE (src) != MINUS
&& GET_CODE (src) != MULT)
return NULL;
/* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
in MD. But if there is no optab to generate the insn, we can not
perform the variable expansion. This can happen if an MD provides
an insn but not a named pattern to generate it, for example to avoid
producing code that needs additional mode switches like for x87/mmx.
So we check have_insn_for which looks for an optab for the operation
in SRC. If it doesn't exist, we can't perform the expansion even
though INSN is valid. */
if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
return NULL;
op1 = XEXP (src, 0);
op2 = XEXP (src, 1);
if (!REG_P (dest)
&& !(GET_CODE (dest) == SUBREG
&& REG_P (SUBREG_REG (dest))))
return NULL;
if (rtx_equal_p (dest, op1))
accum_pos = 0;
else if (rtx_equal_p (dest, op2))
accum_pos = 1;
else
return NULL;
/* The method of expansion that we are using; which includes
the initialization of the expansions with zero and the summation of
the expansions at the end of the computation will yield wrong results
for (x = something - x) thus avoid using it in that case. */
if (accum_pos == 1
&& GET_CODE (src) == MINUS)
return NULL;
something = (accum_pos == 0)? op2 : op1;
if (!referenced_in_one_insn_in_loop_p (loop, dest))
return NULL;
if (rtx_referenced_p (dest, something))
return NULL;
mode1 = GET_MODE (dest);
mode2 = GET_MODE (something);
if ((FLOAT_MODE_P (mode1)
|| FLOAT_MODE_P (mode2))
&& !flag_unsafe_math_optimizations)
return NULL;
if (dump_file)
{
fprintf (dump_file,
"\n;; Expanding Accumulator ");
print_rtl (dump_file, dest);
fprintf (dump_file, "\n");
}
/* Record the accumulator to expand. */
ves = XNEW (struct var_to_expand);
ves->insn = insn;
ves->var_expansions = VEC_alloc (rtx, heap, 1);
ves->reg = copy_rtx (dest);
ves->op = GET_CODE (src);
ves->expansion_count = 0;
ves->reuse_expansion = 0;
ves->accum_pos = accum_pos;
return ves;
}
/* Determine whether there is an induction variable in INSN that
we would like to split during unrolling.
I.e. replace
i = i + 1;
...
i = i + 1;
...
i = i + 1;
...
type chains by
i0 = i + 1
...
i = i0 + 1
...
i = i0 + 2
...
Return NULL if INSN contains no interesting IVs. Otherwise, allocate
an IV_TO_SPLIT structure, fill it with the relevant information and return a
pointer to it. */
static struct iv_to_split *
analyze_iv_to_split_insn (rtx insn)
{
rtx set, dest;
struct rtx_iv iv;
struct iv_to_split *ivts;
bool ok;
/* For now we just split the basic induction variables. Later this may be
extended for example by selecting also addresses of memory references. */
set = single_set (insn);
if (!set)
return NULL;
dest = SET_DEST (set);
if (!REG_P (dest))
return NULL;
if (!biv_p (insn, dest))
return NULL;
ok = iv_analyze_result (insn, dest, &iv);
/* This used to be an assert under the assumption that if biv_p returns
true that iv_analyze_result must also return true. However, that
assumption is not strictly correct as evidenced by pr25569.
Returning NULL when iv_analyze_result returns false is safe and
avoids the problems in pr25569 until the iv_analyze_* routines
can be fixed, which is apparently hard and time consuming
according to their author. */
if (! ok)
return NULL;
if (iv.step == const0_rtx
|| iv.mode != iv.extend_mode)
return NULL;
/* Record the insn to split. */
ivts = XNEW (struct iv_to_split);
ivts->insn = insn;
ivts->base_var = NULL_RTX;
ivts->step = iv.step;
ivts->n_loc = 1;
ivts->loc[0] = 1;
return ivts;
}
/* Determines which of insns in LOOP can be optimized.
Return a OPT_INFO struct with the relevant hash tables filled
with all insns to be optimized. The FIRST_NEW_BLOCK field
is undefined for the return value. */
static struct opt_info *
analyze_insns_in_loop (struct loop *loop)
{
basic_block *body, bb;
unsigned i;
struct opt_info *opt_info = XCNEW (struct opt_info);
rtx insn;
struct iv_to_split *ivts = NULL;
struct var_to_expand *ves = NULL;
PTR *slot1;
PTR *slot2;
VEC (edge, heap) *edges = get_loop_exit_edges (loop);
edge exit;
bool can_apply = false;
iv_analysis_loop_init (loop);
body = get_loop_body (loop);
if (flag_split_ivs_in_unroller)
opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
si_info_hash, si_info_eq, free);
/* Record the loop exit bb and loop preheader before the unrolling. */
opt_info->loop_preheader = loop_preheader_edge (loop)->src;
if (VEC_length (edge, edges) == 1)
{
exit = VEC_index (edge, edges, 0);
if (!(exit->flags & EDGE_COMPLEX))
{
opt_info->loop_exit = split_edge (exit);
can_apply = true;
}
}
if (flag_variable_expansion_in_unroller
&& can_apply)
opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
ve_info_hash, ve_info_eq, free);
for (i = 0; i < loop->num_nodes; i++)
{
bb = body[i];
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
continue;
FOR_BB_INSNS (bb, insn)
{
if (!INSN_P (insn))
continue;
if (opt_info->insns_to_split)
ivts = analyze_iv_to_split_insn (insn);
if (ivts)
{
slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
*slot1 = ivts;
continue;
}
if (opt_info->insns_with_var_to_expand)
ves = analyze_insn_to_expand_var (loop, insn);
if (ves)
{
slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
*slot2 = ves;
}
}
}
VEC_free (edge, heap, edges);
free (body);
return opt_info;
}
/* Called just before loop duplication. Records start of duplicated area
to OPT_INFO. */
static void
opt_info_start_duplication (struct opt_info *opt_info)
{
if (opt_info)
opt_info->first_new_block = last_basic_block;
}
/* Determine the number of iterations between initialization of the base
variable and the current copy (N_COPY). N_COPIES is the total number
of newly created copies. UNROLLING is true if we are unrolling
(not peeling) the loop. */
static unsigned
determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
{
if (unrolling)
{
/* If we are unrolling, initialization is done in the original loop
body (number 0). */
return n_copy;
}
else
{
/* If we are peeling, the copy in that the initialization occurs has
number 1. The original loop (number 0) is the last. */
if (n_copy)
return n_copy - 1;
else
return n_copies;
}
}
/* Locate in EXPR the expression corresponding to the location recorded
in IVTS, and return a pointer to the RTX for this location. */
static rtx *
get_ivts_expr (rtx expr, struct iv_to_split *ivts)
{
unsigned i;
rtx *ret = &expr;
for (i = 0; i < ivts->n_loc; i++)
ret = &XEXP (*ret, ivts->loc[i]);
return ret;
}
/* Allocate basic variable for the induction variable chain. Callback for
htab_traverse. */
static int
allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct iv_to_split *ivts = *slot;
rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
ivts->base_var = gen_reg_rtx (GET_MODE (expr));
return 1;
}
/* Insert initialization of basic variable of IVTS before INSN, taking
the initial value from INSN. */
static void
insert_base_initialization (struct iv_to_split *ivts, rtx insn)
{
rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
rtx seq;
start_sequence ();
expr = force_operand (expr, ivts->base_var);
if (expr != ivts->base_var)
emit_move_insn (ivts->base_var, expr);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
}
/* Replace the use of induction variable described in IVTS in INSN
by base variable + DELTA * step. */
static void
split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
{
rtx expr, *loc, seq, incr, var;
enum machine_mode mode = GET_MODE (ivts->base_var);
rtx src, dest, set;
/* Construct base + DELTA * step. */
if (!delta)
expr = ivts->base_var;
else
{
incr = simplify_gen_binary (MULT, mode,
ivts->step, gen_int_mode (delta, mode));
expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
ivts->base_var, incr);
}
/* Figure out where to do the replacement. */
loc = get_ivts_expr (single_set (insn), ivts);
/* If we can make the replacement right away, we're done. */
if (validate_change (insn, loc, expr, 0))
return;
/* Otherwise, force EXPR into a register and try again. */
start_sequence ();
var = gen_reg_rtx (mode);
expr = force_operand (expr, var);
if (expr != var)
emit_move_insn (var, expr);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
if (validate_change (insn, loc, var, 0))
return;
/* The last chance. Try recreating the assignment in insn
completely from scratch. */
set = single_set (insn);
gcc_assert (set);
start_sequence ();
*loc = var;
src = copy_rtx (SET_SRC (set));
dest = copy_rtx (SET_DEST (set));
src = force_operand (src, dest);
if (src != dest)
emit_move_insn (dest, src);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
delete_insn (insn);
}
/* Return one expansion of the accumulator recorded in struct VE. */
static rtx
get_expansion (struct var_to_expand *ve)
{
rtx reg;
if (ve->reuse_expansion == 0)
reg = ve->reg;
else
reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
ve->reuse_expansion = 0;
else
ve->reuse_expansion++;
return reg;
}
/* Given INSN replace the uses of the accumulator recorded in VE
with a new register. */
static void
expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
{
rtx new_reg, set;
bool really_new_expansion = false;
set = single_set (insn);
gcc_assert (set);
/* Generate a new register only if the expansion limit has not been
reached. Else reuse an already existing expansion. */
if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
{
really_new_expansion = true;
new_reg = gen_reg_rtx (GET_MODE (ve->reg));
}
else
new_reg = get_expansion (ve);
validate_change (insn, &SET_DEST (set), new_reg, 1);
validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
if (apply_change_group ())
if (really_new_expansion)
{
VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
ve->expansion_count++;
}
}
/* Initialize the variable expansions in loop preheader.
Callbacks for htab_traverse. PLACE_P is the loop-preheader
basic block where the initialization of the expansions
should take place. The expansions are initialized with (-0)
when the operation is plus or minus to honor sign zero.
This way we can prevent cases where the sign of the final result is
effected by the sign of the expansion.
Here is an example to demonstrate this:
for (i = 0 ; i < n; i++)
sum += something;
==>
sum += something
....
i = i+1;
sum1 += something
....
i = i+1
sum2 += something;
....
When SUM is initialized with -zero and SOMETHING is also -zero; the
final result of sum should be -zero thus the expansions sum1 and sum2
should be initialized with -zero as well (otherwise we will get +zero
as the final result). */
static int
insert_var_expansion_initialization (void **slot, void *place_p)
{
struct var_to_expand *ve = *slot;
basic_block place = (basic_block)place_p;
rtx seq, var, zero_init, insn;
unsigned i;
enum machine_mode mode = GET_MODE (ve->reg);
bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
if (VEC_length (rtx, ve->var_expansions) == 0)
return 1;
start_sequence ();
if (ve->op == PLUS || ve->op == MINUS)
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
{
if (honor_signed_zero_p)
zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
else
zero_init = CONST0_RTX (mode);
emit_move_insn (var, zero_init);
}
else if (ve->op == MULT)
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
{
zero_init = CONST1_RTX (GET_MODE (var));
emit_move_insn (var, zero_init);
}
seq = get_insns ();
end_sequence ();
insn = BB_HEAD (place);
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
insn = NEXT_INSN (insn);
emit_insn_after (seq, insn);
/* Continue traversing the hash table. */
return 1;
}
/* Combine the variable expansions at the loop exit.
Callbacks for htab_traverse. PLACE_P is the loop exit
basic block where the summation of the expansions should
take place. */
static int
combine_var_copies_in_loop_exit (void **slot, void *place_p)
{
struct var_to_expand *ve = *slot;
basic_block place = (basic_block)place_p;
rtx sum = ve->reg;
rtx expr, seq, var, insn;
unsigned i;
if (VEC_length (rtx, ve->var_expansions) == 0)
return 1;
start_sequence ();
if (ve->op == PLUS || ve->op == MINUS)
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
{
sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
var, sum);
}
else if (ve->op == MULT)
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
{
sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
var, sum);
}
expr = force_operand (sum, ve->reg);
if (expr != ve->reg)
emit_move_insn (ve->reg, expr);
seq = get_insns ();
end_sequence ();
insn = BB_HEAD (place);
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
insn = NEXT_INSN (insn);
emit_insn_after (seq, insn);
/* Continue traversing the hash table. */
return 1;
}
/* Apply loop optimizations in loop copies using the
data which gathered during the unrolling. Structure
OPT_INFO record that data.
UNROLLING is true if we unrolled (not peeled) the loop.
REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
the loop (as it should happen in complete unrolling, but not in ordinary
peeling of the loop). */
static void
apply_opt_in_copies (struct opt_info *opt_info,
unsigned n_copies, bool unrolling,
bool rewrite_original_loop)
{
unsigned i, delta;
basic_block bb, orig_bb;
rtx insn, orig_insn, next;
struct iv_to_split ivts_templ, *ivts;
struct var_to_expand ve_templ, *ves;
/* Sanity check -- we need to put initialization in the original loop
body. */
gcc_assert (!unrolling || rewrite_original_loop);
/* Allocate the basic variables (i0). */
if (opt_info->insns_to_split)
htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
orig_bb = get_bb_original (bb);
/* bb->aux holds position in copy sequence initialized by
duplicate_loop_to_header_edge. */
delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
unrolling);
bb->aux = 0;
orig_insn = BB_HEAD (orig_bb);
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
{
next = NEXT_INSN (insn);
if (!INSN_P (insn))
continue;
while (!INSN_P (orig_insn))
orig_insn = NEXT_INSN (orig_insn);
ivts_templ.insn = orig_insn;
ve_templ.insn = orig_insn;
/* Apply splitting iv optimization. */
if (opt_info->insns_to_split)
{
ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
if (ivts)
{
gcc_assert (GET_CODE (PATTERN (insn))
== GET_CODE (PATTERN (orig_insn)));
if (!delta)
insert_base_initialization (ivts, insn);
split_iv (ivts, insn, delta);
}
}
/* Apply variable expansion optimization. */
if (unrolling && opt_info->insns_with_var_to_expand)
{
ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
if (ves)
{
gcc_assert (GET_CODE (PATTERN (insn))
== GET_CODE (PATTERN (orig_insn)));
expand_var_during_unrolling (ves, insn);
}
}
orig_insn = NEXT_INSN (orig_insn);
}
}
if (!rewrite_original_loop)
return;
/* Initialize the variable expansions in the loop preheader
and take care of combining them at the loop exit. */
if (opt_info->insns_with_var_to_expand)
{
htab_traverse (opt_info->insns_with_var_to_expand,
insert_var_expansion_initialization,
opt_info->loop_preheader);
htab_traverse (opt_info->insns_with_var_to_expand,
combine_var_copies_in_loop_exit,
opt_info->loop_exit);
}
/* Rewrite also the original loop body. Find them as originals of the blocks
in the last copied iteration, i.e. those that have
get_bb_copy (get_bb_original (bb)) == bb. */
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
orig_bb = get_bb_original (bb);
if (get_bb_copy (orig_bb) != bb)
continue;
delta = determine_split_iv_delta (0, n_copies, unrolling);
for (orig_insn = BB_HEAD (orig_bb);
orig_insn != NEXT_INSN (BB_END (bb));
orig_insn = next)
{
next = NEXT_INSN (orig_insn);
if (!INSN_P (orig_insn))
continue;
ivts_templ.insn = orig_insn;
if (opt_info->insns_to_split)
{
ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
if (ivts)
{
if (!delta)
insert_base_initialization (ivts, orig_insn);
split_iv (ivts, orig_insn, delta);
continue;
}
}
}
}
}
/* Release the data structures used for the variable expansion
optimization. Callbacks for htab_traverse. */
static int
release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct var_to_expand *ve = *slot;
VEC_free (rtx, heap, ve->var_expansions);
/* Continue traversing the hash table. */
return 1;
}
/* Release OPT_INFO. */
static void
free_opt_info (struct opt_info *opt_info)
{
if (opt_info->insns_to_split)
htab_delete (opt_info->insns_to_split);
if (opt_info->insns_with_var_to_expand)
{
htab_traverse (opt_info->insns_with_var_to_expand,
release_var_copies, NULL);
htab_delete (opt_info->insns_with_var_to_expand);
}
free (opt_info);
}
|