summaryrefslogtreecommitdiff
path: root/gcc/loop.h
blob: 15c0c3c9cc0b76c4bfb5d0dc8d509adc915d56b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* Loop optimization definitions for GNU C-Compiler
   Copyright (C) 1991, 1995, 1998, 1999, 2000 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "varray.h"
#include "bitmap.h"

/* Flags passed to loop_optimize.  */
#define LOOP_UNROLL 1
#define LOOP_BCT 2

/* Get the loop info pointer of a loop.  */
#define LOOP_INFO(LOOP) ((struct loop_info *) (LOOP)->aux)

/* Get a pointer to the loop registers structure.  */
#define LOOP_REGS(LOOP) (&LOOP_INFO (loop)->regs)

/* Get a pointer to the loop induction variables structure.  */
#define LOOP_IVS(LOOP) (&LOOP_INFO (loop)->ivs)

/* Get the luid of an insn.  Catch the error of trying to reference the LUID
   of an insn added during loop, since these don't have LUIDs.  */

#define INSN_LUID(INSN)			\
  (INSN_UID (INSN) < max_uid_for_loop ? uid_luid[INSN_UID (INSN)] \
   : (abort (), -1))

/* A "basic induction variable" or biv is a pseudo reg that is set
   (within this loop) only by incrementing or decrementing it.  */
/* A "general induction variable" or giv is a pseudo reg whose
   value is a linear function of a biv.  */

/* Bivs are recognized by `basic_induction_var';
   Givs by `general_induct_var'.  */

/* An enum for the two different types of givs, those that are used
   as memory addresses and those that are calculated into registers.  */
enum g_types
{
  DEST_ADDR,
  DEST_REG
};

/* A `struct induction' is created for every instruction that sets
   an induction variable (either a biv or a giv).  */

struct induction
{
  rtx insn;			/* The insn that sets a biv or giv */
  rtx new_reg;			/* New register, containing strength reduced
				   version of this giv.  */
  rtx src_reg;			/* Biv from which this giv is computed.
				   (If this is a biv, then this is the biv.) */
  enum g_types giv_type;	/* Indicate whether DEST_ADDR or DEST_REG */
  rtx dest_reg;			/* Destination register for insn: this is the
				   register which was the biv or giv.
				   For a biv, this equals src_reg.
				   For a DEST_ADDR type giv, this is 0.  */
  rtx *location;		/* Place in the insn where this giv occurs.
				   If GIV_TYPE is DEST_REG, this is 0.  */
				/* For a biv, this is the place where add_val
				   was found.  */
  enum machine_mode mode;	/* The mode of this biv or giv */
  enum machine_mode mem_mode;	/* For DEST_ADDR, mode of the memory object.  */
  rtx mult_val;			/* Multiplicative factor for src_reg.  */
  rtx add_val;			/* Additive constant for that product.  */
  int benefit;			/* Gain from eliminating this insn.  */
  rtx final_value;		/* If the giv is used outside the loop, and its
				   final value could be calculated, it is put
				   here, and the giv is made replaceable.  Set
				   the giv to this value before the loop.  */
  unsigned combined_with;	/* The number of givs this giv has been
				   combined with.  If nonzero, this giv
				   cannot combine with any other giv.  */
  unsigned replaceable : 1;	/* 1 if we can substitute the strength-reduced
				   variable for the original variable.
				   0 means they must be kept separate and the
				   new one must be copied into the old pseudo
				   reg each time the old one is set.  */
  unsigned not_replaceable : 1;	/* Used to prevent duplicating work.  This is
				   1 if we know that the giv definitely can
				   not be made replaceable, in which case we
				   don't bother checking the variable again
				   even if further info is available.
				   Both this and the above can be zero.  */
  unsigned ignore : 1;		/* 1 prohibits further processing of giv */
  unsigned always_computable : 1;/* 1 if this value is computable every
				    iteration.  */
  unsigned always_executed : 1; /* 1 if this set occurs each iteration.  */
  unsigned maybe_multiple : 1;	/* Only used for a biv and  1 if this biv
				   update may be done multiple times per
				   iteration.  */
  unsigned cant_derive : 1;	/* For giv's, 1 if this giv cannot derive
				   another giv.  This occurs in many cases
				   where a giv's lifetime spans an update to
				   a biv.  */
  unsigned maybe_dead : 1;	/* 1 if this giv might be dead.  In that case,
				   we won't use it to eliminate a biv, it
				   would probably lose.  */
  unsigned auto_inc_opt : 1;	/* 1 if this giv had its increment output next
				   to it to try to form an auto-inc address.  */
  unsigned unrolled : 1;	/* 1 if new register has been allocated and
				   initialized in unrolled loop.  */
  unsigned shared : 1;
  unsigned no_const_addval : 1; /* 1 if add_val does not contain a const.  */
  int lifetime;			/* Length of life of this giv */
  rtx derive_adjustment;	/* If nonzero, is an adjustment to be
				   subtracted from add_val when this giv
				   derives another.  This occurs when the
				   giv spans a biv update by incrementation.  */
  rtx ext_dependant;		/* If nonzero, is a sign or zero extension
				   if a biv on which this giv is dependant.  */
  struct induction *next_iv;	/* For givs, links together all givs that are
				   based on the same biv.  For bivs, links
				   together all biv entries that refer to the
				   same biv register.  */
  struct induction *same;	/* If this giv has been combined with another
				   giv, this points to the base giv.  The base
				   giv will have COMBINED_WITH non-zero.  */
  struct induction *derived_from;/* For a giv, if we decided to derive this
				   giv from another one.  */
  HOST_WIDE_INT const_adjust;	/* Used by loop unrolling, when an address giv
				   is split, and a constant is eliminated from
				   the address, the -constant is stored here
				   for later use.  */
  int ix;			/* Used by recombine_givs, as n index into
				   the stats array.  */
  struct induction *same_insn;	/* If there are multiple identical givs in
				   the same insn, then all but one have this
				   field set, and they all point to the giv
				   that doesn't have this field set.  */
  rtx last_use;			/* For a giv made from a biv increment, this is
				   a substitute for the lifetime information.  */
};

/* A `struct iv_class' is created for each biv.  */

struct iv_class
{
  unsigned int regno;		/* Pseudo reg which is the biv.  */
  int biv_count;		/* Number of insns setting this reg.  */
  struct induction *biv;	/* List of all insns that set this reg.  */
  int giv_count;		/* Number of DEST_REG givs computed from this
				   biv.  The resulting count is only used in
				   check_dbra_loop.  */
  struct induction *giv;	/* List of all insns that compute a giv
				   from this reg.  */
  int total_benefit;		/* Sum of BENEFITs of all those givs */
  rtx initial_value;		/* Value of reg at loop start */
  rtx initial_test;		/* Test performed on BIV before loop */
  struct iv_class *next;	/* Links all class structures together */
  rtx init_insn;		/* insn which initializes biv, 0 if none.  */
  rtx init_set;			/* SET of INIT_INSN, if any.  */
  unsigned incremented : 1;	/* 1 if somewhere incremented/decremented */
  unsigned eliminable : 1;	/* 1 if plausible candidate for elimination.  */
  unsigned nonneg : 1;		/* 1 if we added a REG_NONNEG note for this.  */
  unsigned reversed : 1;	/* 1 if we reversed the loop that this
				   biv controls.  */
};

typedef struct loop_mem_info
{
  rtx mem;      /* The MEM itself.  */
  rtx reg;      /* Corresponding pseudo, if any.  */
  int optimize; /* Nonzero if we can optimize access to this MEM.  */
} loop_mem_info;

struct loop_ivs
{
  /* Indexed by register number, indicates whether or not register is
     an induction variable, and if so what type.  */
  varray_type reg_iv_type;

  /* Indexed by register number, contains pointer to `struct
     induction' if register is an induction variable.  This holds
     general info for all induction variables.  */
  varray_type reg_iv_info;

  /* Indexed by register number, contains pointer to `struct iv_class'
     if register is a basic induction variable.  This holds info
     describing the class (a related group) of induction variables
     that the biv belongs to.  */
  struct iv_class **reg_biv_class;

  /* The head of a list which links together (via the next field)
     every iv class for the current loop.  */
  struct iv_class *loop_iv_list;

  /* Givs made from biv increments are always splittable for loop
     unrolling.  Since there is no regscan info for them, we have to
     keep track of them separately.  */
  unsigned int first_increment_giv;
  unsigned int last_increment_giv;
};

struct loop_regs
{
  int num;

  /* Indexed by register number, contains the number of times the reg
     is set during the loop being scanned.
     During code motion, a negative value indicates a reg that has been
     made a candidate; in particular -2 means that it is an candidate that
     we know is equal to a constant and -1 means that it is an candidate
     not known equal to a constant.
     After code motion, regs moved have 0 (which is accurate now)
     while the failed candidates have the original number of times set.

     Therefore, at all times, == 0 indicates an invariant register;
     < 0 a conditionally invariant one.  */
  varray_type set_in_loop;

  /* Original value of set_in_loop; same except that this value
     is not set negative for a reg whose sets have been made candidates
     and not set to 0 for a reg that is moved.  */
  varray_type n_times_set;

  /* Index by register number, 1 indicates that the register
     cannot be moved or strength reduced.  */
  varray_type may_not_optimize;

  /* Contains the insn in which a register was used if it was used
     exactly once; contains const0_rtx if it was used more than once.  */
  varray_type single_usage;

  /* Nonzero means reg N has already been moved out of one loop.
     This reduces the desire to move it out of another.  */
  char *moved_once;

  int multiple_uses;
};

/* Information pertaining to a loop.  */

struct loop_info
{
  /* Nonzero if there is a subroutine call in the current loop.  */
  int has_call;
  /* Nonzero if there is a volatile memory reference in the current
     loop.  */
  int has_volatile;
  /* Nonzero if there is a tablejump in the current loop.  */
  int has_tablejump;
  /* Nonzero if there are ways to leave the loop other than falling
     off the end.  */
  int has_multiple_exit_targets;
  /* Nonzero if there is an indirect jump in the current function.  */
  int has_indirect_jump;
  /* Register or constant initial loop value.  */
  rtx initial_value;
  /* Register or constant value used for comparison test.  */
  rtx comparison_value;
  /* Register or constant approximate final value.  */
  rtx final_value;
  /* Register or constant initial loop value with term common to
     final_value removed.  */
  rtx initial_equiv_value;
  /* Register or constant final loop value with term common to
     initial_value removed.  */
  rtx final_equiv_value;
  /* Register corresponding to iteration variable.  */
  rtx iteration_var;
  /* Constant loop increment.  */
  rtx increment;
  enum rtx_code comparison_code;
  /* Holds the number of loop iterations.  It is zero if the number
     could not be calculated.  Must be unsigned since the number of
     iterations can be as high as 2^wordsize - 1.  For loops with a
     wider iterator, this number will be zero if the number of loop
     iterations is too large for an unsigned integer to hold.  */
  unsigned HOST_WIDE_INT n_iterations;
  /* The number of times the loop body was unrolled.  */
  unsigned int unroll_number;
  int used_count_register;
  /* The loop iterator induction variable.  */
  struct iv_class *iv;
  /* List of MEMs that are stored in this loop.  */
  rtx store_mems;
  /* Array of MEMs that are used (read or written) in this loop, but
     cannot be aliased by anything in this loop, except perhaps
     themselves.  In other words, if mems[i] is altered during
     the loop, it is altered by an expression that is rtx_equal_p to
     it.  */
  loop_mem_info *mems;
  /* The index of the next available slot in MEMS.  */
  int mems_idx;
  /* The number of elements allocated in MEMS.  */
  int mems_allocated;
  /* Nonzero if we don't know what MEMs were changed in the current
     loop.  This happens if the loop contains a call (in which case
     `has_call' will also be set) or if we store into more than
     NUM_STORES MEMs.  */
  int unknown_address_altered;
  /* The above doesn't count any readonly memory locations that are
     stored.  This does.  */
  int unknown_constant_address_altered;
  /* Count of memory write instructions discovered in the loop.  */
  int num_mem_sets;
  /* The insn where the first of these was found.  */
  rtx first_loop_store_insn;
  /* The registers used the in loop.  */
  struct loop_regs regs;
  /* The induction variable information in loop.  */
  struct loop_ivs ivs;
};

/* Definitions used by the basic induction variable discovery code.  */
enum iv_mode
{
  UNKNOWN_INDUCT,
  BASIC_INDUCT,
  NOT_BASIC_INDUCT,
  GENERAL_INDUCT
};

/* Variables declared in loop.c, but also needed in unroll.c.  */

extern int *uid_luid;
extern int max_uid_for_loop;
extern unsigned int max_reg_before_loop;
extern struct loop **uid_loop;
extern FILE *loop_dump_stream;

#define REG_IV_TYPE(ivs, n) \
  (*(enum iv_mode *) &VARRAY_INT(ivs->reg_iv_type, (n)))
#define REG_IV_INFO(ivs, n) \
  (*(struct induction **) &VARRAY_GENERIC_PTR(ivs->reg_iv_info, (n)))

/* Forward declarations for non-static functions declared in loop.c and
   unroll.c.  */
int loop_invariant_p PARAMS ((const struct loop *, rtx));
rtx get_condition_for_loop PARAMS ((const struct loop *, rtx));
void emit_iv_add_mult PARAMS ((rtx, rtx, rtx, rtx, rtx));
rtx express_from PARAMS ((struct induction *, struct induction *));
rtx extend_value_for_giv PARAMS ((struct induction *, rtx));

void unroll_loop PARAMS ((struct loop *, int, rtx, int));
rtx biv_total_increment PARAMS ((struct iv_class *));
unsigned HOST_WIDE_INT loop_iterations PARAMS ((struct loop *));
int precondition_loop_p PARAMS ((const struct loop *,
				 rtx *, rtx *, rtx *,
				 enum machine_mode *mode));
rtx final_biv_value PARAMS ((const struct loop *, struct iv_class *));
rtx final_giv_value PARAMS ((const struct loop *, struct induction *));
void emit_unrolled_add PARAMS ((rtx, rtx, rtx));
int back_branch_in_range_p PARAMS ((const struct loop *, rtx));

int loop_insn_first_p PARAMS ((rtx, rtx));
typedef rtx (*loop_insn_callback) PARAMS ((struct loop *, rtx, int, int));
void for_each_insn_in_loop PARAMS ((struct loop *, loop_insn_callback));

/* Forward declarations for non-static functions declared in doloop.c.  */
int doloop_optimize PARAMS ((const struct loop *));