1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
|
/* Code for RTL transformations to satisfy insn constraints.
Copyright (C) 2010-2013 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains code for 3 passes: constraint pass,
inheritance/split pass, and pass for undoing failed inheritance and
split.
The major goal of constraint pass is to transform RTL to satisfy
insn and address constraints by:
o choosing insn alternatives;
o generating *reload insns* (or reloads in brief) and *reload
pseudos* which will get necessary hard registers later;
o substituting pseudos with equivalent values and removing the
instructions that initialized those pseudos.
The constraint pass has biggest and most complicated code in LRA.
There are a lot of important details like:
o reuse of input reload pseudos to simplify reload pseudo
allocations;
o some heuristics to choose insn alternative to improve the
inheritance;
o early clobbers etc.
The pass is mimicking former reload pass in alternative choosing
because the reload pass is oriented to current machine description
model. It might be changed if the machine description model is
changed.
There is special code for preventing all LRA and this pass cycling
in case of bugs.
On the first iteration of the pass we process every instruction and
choose an alternative for each one. On subsequent iterations we try
to avoid reprocessing instructions if we can be sure that the old
choice is still valid.
The inheritance/spilt pass is to transform code to achieve
ineheritance and live range splitting. It is done on backward
traversal of EBBs.
The inheritance optimization goal is to reuse values in hard
registers. There is analogous optimization in old reload pass. The
inheritance is achieved by following transformation:
reload_p1 <- p reload_p1 <- p
... new_p <- reload_p1
... => ...
reload_p2 <- p reload_p2 <- new_p
where p is spilled and not changed between the insns. Reload_p1 is
also called *original pseudo* and new_p is called *inheritance
pseudo*.
The subsequent assignment pass will try to assign the same (or
another if it is not possible) hard register to new_p as to
reload_p1 or reload_p2.
If the assignment pass fails to assign a hard register to new_p,
this file will undo the inheritance and restore the original code.
This is because implementing the above sequence with a spilled
new_p would make the code much worse. The inheritance is done in
EBB scope. The above is just a simplified example to get an idea
of the inheritance as the inheritance is also done for non-reload
insns.
Splitting (transformation) is also done in EBB scope on the same
pass as the inheritance:
r <- ... or ... <- r r <- ... or ... <- r
... s <- r (new insn -- save)
... =>
... r <- s (new insn -- restore)
... <- r ... <- r
The *split pseudo* s is assigned to the hard register of the
original pseudo or hard register r.
Splitting is done:
o In EBBs with high register pressure for global pseudos (living
in at least 2 BBs) and assigned to hard registers when there
are more one reloads needing the hard registers;
o for pseudos needing save/restore code around calls.
If the split pseudo still has the same hard register as the
original pseudo after the subsequent assignment pass or the
original pseudo was split, the opposite transformation is done on
the same pass for undoing inheritance. */
#undef REG_OK_STRICT
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-codes.h"
#include "recog.h"
#include "output.h"
#include "addresses.h"
#include "target.h"
#include "function.h"
#include "expr.h"
#include "basic-block.h"
#include "except.h"
#include "optabs.h"
#include "df.h"
#include "ira.h"
#include "rtl-error.h"
#include "lra-int.h"
/* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
reload insns. */
static int bb_reload_num;
/* The current insn being processed and corresponding its data (basic
block, the insn data, the insn static data, and the mode of each
operand). */
static rtx curr_insn;
static basic_block curr_bb;
static lra_insn_recog_data_t curr_id;
static struct lra_static_insn_data *curr_static_id;
static enum machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
/* Start numbers for new registers and insns at the current constraints
pass start. */
static int new_regno_start;
static int new_insn_uid_start;
/* If LOC is nonnull, strip any outer subreg from it. */
static inline rtx *
strip_subreg (rtx *loc)
{
return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
}
/* Return hard regno of REGNO or if it is was not assigned to a hard
register, use a hard register from its allocno class. */
static int
get_try_hard_regno (int regno)
{
int hard_regno;
enum reg_class rclass;
if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
hard_regno = lra_get_regno_hard_regno (regno);
if (hard_regno >= 0)
return hard_regno;
rclass = lra_get_allocno_class (regno);
if (rclass == NO_REGS)
return -1;
return ira_class_hard_regs[rclass][0];
}
/* Return final hard regno (plus offset) which will be after
elimination. We do this for matching constraints because the final
hard regno could have a different class. */
static int
get_final_hard_regno (int hard_regno, int offset)
{
if (hard_regno < 0)
return hard_regno;
hard_regno = lra_get_elimination_hard_regno (hard_regno);
return hard_regno + offset;
}
/* Return hard regno of X after removing subreg and making
elimination. If X is not a register or subreg of register, return
-1. For pseudo use its assignment. */
static int
get_hard_regno (rtx x)
{
rtx reg;
int offset, hard_regno;
reg = x;
if (GET_CODE (x) == SUBREG)
reg = SUBREG_REG (x);
if (! REG_P (reg))
return -1;
if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
hard_regno = lra_get_regno_hard_regno (hard_regno);
if (hard_regno < 0)
return -1;
offset = 0;
if (GET_CODE (x) == SUBREG)
offset += subreg_regno_offset (hard_regno, GET_MODE (reg),
SUBREG_BYTE (x), GET_MODE (x));
return get_final_hard_regno (hard_regno, offset);
}
/* If REGNO is a hard register or has been allocated a hard register,
return the class of that register. If REGNO is a reload pseudo
created by the current constraints pass, return its allocno class.
Return NO_REGS otherwise. */
static enum reg_class
get_reg_class (int regno)
{
int hard_regno;
if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
hard_regno = lra_get_regno_hard_regno (regno);
if (hard_regno >= 0)
{
hard_regno = get_final_hard_regno (hard_regno, 0);
return REGNO_REG_CLASS (hard_regno);
}
if (regno >= new_regno_start)
return lra_get_allocno_class (regno);
return NO_REGS;
}
/* Return true if REG satisfies (or will satisfy) reg class constraint
CL. Use elimination first if REG is a hard register. If REG is a
reload pseudo created by this constraints pass, assume that it will
be allocated a hard register from its allocno class, but allow that
class to be narrowed to CL if it is currently a superset of CL.
If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
REGNO (reg), or NO_REGS if no change in its class was needed. */
static bool
in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
{
enum reg_class rclass, common_class;
enum machine_mode reg_mode;
int class_size, hard_regno, nregs, i, j;
int regno = REGNO (reg);
if (new_class != NULL)
*new_class = NO_REGS;
if (regno < FIRST_PSEUDO_REGISTER)
{
rtx final_reg = reg;
rtx *final_loc = &final_reg;
lra_eliminate_reg_if_possible (final_loc);
return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
}
reg_mode = GET_MODE (reg);
rclass = get_reg_class (regno);
if (regno < new_regno_start
/* Do not allow the constraints for reload instructions to
influence the classes of new pseudos. These reloads are
typically moves that have many alternatives, and restricting
reload pseudos for one alternative may lead to situations
where other reload pseudos are no longer allocatable. */
|| INSN_UID (curr_insn) >= new_insn_uid_start)
/* When we don't know what class will be used finally for reload
pseudos, we use ALL_REGS. */
return ((regno >= new_regno_start && rclass == ALL_REGS)
|| (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
&& ! hard_reg_set_subset_p (reg_class_contents[cl],
lra_no_alloc_regs)));
else
{
common_class = ira_reg_class_subset[rclass][cl];
if (new_class != NULL)
*new_class = common_class;
if (hard_reg_set_subset_p (reg_class_contents[common_class],
lra_no_alloc_regs))
return false;
/* Check that there are enough allocatable regs. */
class_size = ira_class_hard_regs_num[common_class];
for (i = 0; i < class_size; i++)
{
hard_regno = ira_class_hard_regs[common_class][i];
nregs = hard_regno_nregs[hard_regno][reg_mode];
if (nregs == 1)
return true;
for (j = 0; j < nregs; j++)
if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
|| ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
hard_regno + j))
break;
if (j >= nregs)
return true;
}
return false;
}
}
/* Return true if REGNO satisfies a memory constraint. */
static bool
in_mem_p (int regno)
{
return get_reg_class (regno) == NO_REGS;
}
/* If we have decided to substitute X with another value, return that
value, otherwise return X. */
static rtx
get_equiv_substitution (rtx x)
{
int regno;
rtx res;
if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
|| ! ira_reg_equiv[regno].defined_p
|| ! ira_reg_equiv[regno].profitable_p
|| lra_get_regno_hard_regno (regno) >= 0)
return x;
if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
return res;
if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
return res;
if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
return res;
gcc_unreachable ();
}
/* Set up curr_operand_mode. */
static void
init_curr_operand_mode (void)
{
int nop = curr_static_id->n_operands;
for (int i = 0; i < nop; i++)
{
enum machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
if (mode == VOIDmode)
{
/* The .md mode for address operands is the mode of the
addressed value rather than the mode of the address itself. */
if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
mode = Pmode;
else
mode = curr_static_id->operand[i].mode;
}
curr_operand_mode[i] = mode;
}
}
/* The page contains code to reuse input reloads. */
/* Structure describes input reload of the current insns. */
struct input_reload
{
/* Reloaded value. */
rtx input;
/* Reload pseudo used. */
rtx reg;
};
/* The number of elements in the following array. */
static int curr_insn_input_reloads_num;
/* Array containing info about input reloads. It is used to find the
same input reload and reuse the reload pseudo in this case. */
static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
/* Initiate data concerning reuse of input reloads for the current
insn. */
static void
init_curr_insn_input_reloads (void)
{
curr_insn_input_reloads_num = 0;
}
/* Change class of pseudo REGNO to NEW_CLASS. Print info about it
using TITLE. Output a new line if NL_P. */
static void
change_class (int regno, enum reg_class new_class,
const char *title, bool nl_p)
{
lra_assert (regno >= FIRST_PSEUDO_REGISTER);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "%s to class %s for r%d",
title, reg_class_names[new_class], regno);
setup_reg_classes (regno, new_class, NO_REGS, new_class);
if (lra_dump_file != NULL && nl_p)
fprintf (lra_dump_file, "\n");
}
/* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
created input reload pseudo (only if TYPE is not OP_OUT). The
result pseudo is returned through RESULT_REG. Return TRUE if we
created a new pseudo, FALSE if we reused the already created input
reload pseudo. Use TITLE to describe new registers for debug
purposes. */
static bool
get_reload_reg (enum op_type type, enum machine_mode mode, rtx original,
enum reg_class rclass, const char *title, rtx *result_reg)
{
int i, regno;
enum reg_class new_class;
if (type == OP_OUT)
{
*result_reg
= lra_create_new_reg_with_unique_value (mode, original, rclass, title);
return true;
}
/* Prevent reuse value of expression with side effects,
e.g. volatile memory. */
if (! side_effects_p (original))
for (i = 0; i < curr_insn_input_reloads_num; i++)
if (rtx_equal_p (curr_insn_input_reloads[i].input, original)
&& in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
{
rtx reg = curr_insn_input_reloads[i].reg;
regno = REGNO (reg);
/* If input is equal to original and both are VOIDmode,
GET_MODE (reg) might be still different from mode.
Ensure we don't return *result_reg with wrong mode. */
if (GET_MODE (reg) != mode)
{
if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
continue;
reg = lowpart_subreg (mode, reg, GET_MODE (reg));
if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
continue;
}
*result_reg = reg;
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
dump_value_slim (lra_dump_file, original, 1);
}
if (new_class != lra_get_allocno_class (regno))
change_class (regno, new_class, ", change", false);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n");
return false;
}
*result_reg = lra_create_new_reg (mode, original, rclass, title);
lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
return true;
}
/* The page contains code to extract memory address parts. */
/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
static inline bool
ok_for_index_p_nonstrict (rtx reg)
{
unsigned regno = REGNO (reg);
return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
}
/* A version of regno_ok_for_base_p for use here, when all pseudos
should count as OK. Arguments as for regno_ok_for_base_p. */
static inline bool
ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
enum rtx_code outer_code, enum rtx_code index_code)
{
unsigned regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER)
return true;
return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
}
/* The page contains major code to choose the current insn alternative
and generate reloads for it. */
/* Return the offset from REGNO of the least significant register
in (reg:MODE REGNO).
This function is used to tell whether two registers satisfy
a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
REGNO1 + lra_constraint_offset (REGNO1, MODE1)
== REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
int
lra_constraint_offset (int regno, enum machine_mode mode)
{
lra_assert (regno < FIRST_PSEUDO_REGISTER);
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& SCALAR_INT_MODE_P (mode))
return hard_regno_nregs[regno][mode] - 1;
return 0;
}
/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
if they are the same hard reg, and has special hacks for
auto-increment and auto-decrement. This is specifically intended for
process_alt_operands to use in determining whether two operands
match. X is the operand whose number is the lower of the two.
It is supposed that X is the output operand and Y is the input
operand. Y_HARD_REGNO is the final hard regno of register Y or
register in subreg Y as we know it now. Otherwise, it is a
negative value. */
static bool
operands_match_p (rtx x, rtx y, int y_hard_regno)
{
int i;
RTX_CODE code = GET_CODE (x);
const char *fmt;
if (x == y)
return true;
if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
&& (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
{
int j;
i = get_hard_regno (x);
if (i < 0)
goto slow;
if ((j = y_hard_regno) < 0)
goto slow;
i += lra_constraint_offset (i, GET_MODE (x));
j += lra_constraint_offset (j, GET_MODE (y));
return i == j;
}
/* If two operands must match, because they are really a single
operand of an assembler insn, then two post-increments are invalid
because the assembler insn would increment only once. On the
other hand, a post-increment matches ordinary indexing if the
post-increment is the output operand. */
if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
return operands_match_p (XEXP (x, 0), y, y_hard_regno);
/* Two pre-increments are invalid because the assembler insn would
increment only once. On the other hand, a pre-increment matches
ordinary indexing if the pre-increment is the input operand. */
if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
|| GET_CODE (y) == PRE_MODIFY)
return operands_match_p (x, XEXP (y, 0), -1);
slow:
if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
&& x == SUBREG_REG (y))
return true;
if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
&& SUBREG_REG (x) == y)
return true;
/* Now we have disposed of all the cases in which different rtx
codes can match. */
if (code != GET_CODE (y))
return false;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return false;
switch (code)
{
CASE_CONST_UNIQUE:
return false;
case LABEL_REF:
return XEXP (x, 0) == XEXP (y, 0);
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
default:
break;
}
/* Compare the elements. If any pair of corresponding elements fail
to match, return false for the whole things. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
int val, j;
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return false;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return false;
break;
case 'e':
val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
if (val == 0)
return false;
break;
case '0':
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return false;
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
{
val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
if (val == 0)
return false;
}
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's, except for
within LABEL_REFs and SYMBOL_REFs. */
default:
gcc_unreachable ();
}
}
return true;
}
/* True if X is a constant that can be forced into the constant pool.
MODE is the mode of the operand, or VOIDmode if not known. */
#define CONST_POOL_OK_P(MODE, X) \
((MODE) != VOIDmode \
&& CONSTANT_P (X) \
&& GET_CODE (X) != HIGH \
&& !targetm.cannot_force_const_mem (MODE, X))
/* True if C is a non-empty register class that has too few registers
to be safely used as a reload target class. */
#define SMALL_REGISTER_CLASS_P(C) \
(reg_class_size [(C)] == 1 \
|| (reg_class_size [(C)] >= 1 && targetm.class_likely_spilled_p (C)))
/* If REG is a reload pseudo, try to make its class satisfying CL. */
static void
narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
{
enum reg_class rclass;
/* Do not make more accurate class from reloads generated. They are
mostly moves with a lot of constraints. Making more accurate
class may results in very narrow class and impossibility of find
registers for several reloads of one insn. */
if (INSN_UID (curr_insn) >= new_insn_uid_start)
return;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
return;
if (in_class_p (reg, cl, &rclass) && rclass != cl)
change_class (REGNO (reg), rclass, " Change", true);
}
/* Generate reloads for matching OUT and INS (array of input operand
numbers with end marker -1) with reg class GOAL_CLASS. Add input
and output reloads correspondingly to the lists *BEFORE and *AFTER.
OUT might be negative. In this case we generate input reloads for
matched input operands INS. */
static void
match_reload (signed char out, signed char *ins, enum reg_class goal_class,
rtx *before, rtx *after)
{
int i, in;
rtx new_in_reg, new_out_reg, reg, clobber;
enum machine_mode inmode, outmode;
rtx in_rtx = *curr_id->operand_loc[ins[0]];
rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
inmode = curr_operand_mode[ins[0]];
outmode = out < 0 ? inmode : curr_operand_mode[out];
push_to_sequence (*before);
if (inmode != outmode)
{
if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
{
reg = new_in_reg
= lra_create_new_reg_with_unique_value (inmode, in_rtx,
goal_class, "");
if (SCALAR_INT_MODE_P (inmode))
new_out_reg = gen_lowpart_SUBREG (outmode, reg);
else
new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
/* If the input reg is dying here, we can use the same hard
register for REG and IN_RTX. We do it only for original
pseudos as reload pseudos can die although original
pseudos still live where reload pseudos dies. */
if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
&& find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx)))
lra_reg_info[REGNO (reg)].val = lra_reg_info[REGNO (in_rtx)].val;
}
else
{
reg = new_out_reg
= lra_create_new_reg_with_unique_value (outmode, out_rtx,
goal_class, "");
if (SCALAR_INT_MODE_P (outmode))
new_in_reg = gen_lowpart_SUBREG (inmode, reg);
else
new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
/* NEW_IN_REG is non-paradoxical subreg. We don't want
NEW_OUT_REG living above. We add clobber clause for
this. This is just a temporary clobber. We can remove
it at the end of LRA work. */
clobber = emit_clobber (new_out_reg);
LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
if (GET_CODE (in_rtx) == SUBREG)
{
rtx subreg_reg = SUBREG_REG (in_rtx);
/* If SUBREG_REG is dying here and sub-registers IN_RTX
and NEW_IN_REG are similar, we can use the same hard
register for REG and SUBREG_REG. */
if (REG_P (subreg_reg)
&& (int) REGNO (subreg_reg) < lra_new_regno_start
&& GET_MODE (subreg_reg) == outmode
&& SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
&& find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg)))
lra_reg_info[REGNO (reg)].val
= lra_reg_info[REGNO (subreg_reg)].val;
}
}
}
else
{
/* Pseudos have values -- see comments for lra_reg_info.
Different pseudos with the same value do not conflict even if
they live in the same place. When we create a pseudo we
assign value of original pseudo (if any) from which we
created the new pseudo. If we create the pseudo from the
input pseudo, the new pseudo will no conflict with the input
pseudo which is wrong when the input pseudo lives after the
insn and as the new pseudo value is changed by the insn
output. Therefore we create the new pseudo from the output.
We cannot reuse the current output register because we might
have a situation like "a <- a op b", where the constraints
force the second input operand ("b") to match the output
operand ("a"). "b" must then be copied into a new register
so that it doesn't clobber the current value of "a". */
new_in_reg = new_out_reg
= lra_create_new_reg_with_unique_value (outmode, out_rtx,
goal_class, "");
}
/* In operand can be got from transformations before processing insn
constraints. One example of such transformations is subreg
reloading (see function simplify_operand_subreg). The new
pseudos created by the transformations might have inaccurate
class (ALL_REGS) and we should make their classes more
accurate. */
narrow_reload_pseudo_class (in_rtx, goal_class);
lra_emit_move (copy_rtx (new_in_reg), in_rtx);
*before = get_insns ();
end_sequence ();
for (i = 0; (in = ins[i]) >= 0; i++)
{
lra_assert
(GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
|| GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
*curr_id->operand_loc[in] = new_in_reg;
}
lra_update_dups (curr_id, ins);
if (out < 0)
return;
/* See a comment for the input operand above. */
narrow_reload_pseudo_class (out_rtx, goal_class);
if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
{
start_sequence ();
lra_emit_move (out_rtx, copy_rtx (new_out_reg));
emit_insn (*after);
*after = get_insns ();
end_sequence ();
}
*curr_id->operand_loc[out] = new_out_reg;
lra_update_dup (curr_id, out);
}
/* Return register class which is union of all reg classes in insn
constraint alternative string starting with P. */
static enum reg_class
reg_class_from_constraints (const char *p)
{
int c, len;
enum reg_class op_class = NO_REGS;
do
switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
{
case '#':
case ',':
return op_class;
case 'p':
op_class = (reg_class_subunion
[op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
ADDRESS, SCRATCH)]);
break;
case 'g':
case 'r':
op_class = reg_class_subunion[op_class][GENERAL_REGS];
break;
default:
if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
{
#ifdef EXTRA_CONSTRAINT_STR
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
op_class
= (reg_class_subunion
[op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
ADDRESS, SCRATCH)]);
#endif
break;
}
op_class
= reg_class_subunion[op_class][REG_CLASS_FROM_CONSTRAINT (c, p)];
break;
}
while ((p += len), c);
return op_class;
}
/* If OP is a register, return the class of the register as per
get_reg_class, otherwise return NO_REGS. */
static inline enum reg_class
get_op_class (rtx op)
{
return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
}
/* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
otherwise. If modes of MEM_PSEUDO and VAL are different, use
SUBREG for VAL to make them equal. */
static rtx
emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
{
if (GET_MODE (mem_pseudo) != GET_MODE (val))
val = gen_rtx_SUBREG (GET_MODE (mem_pseudo),
GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val,
0);
return (to_p
? gen_move_insn (mem_pseudo, val)
: gen_move_insn (val, mem_pseudo));
}
/* Process a special case insn (register move), return true if we
don't need to process it anymore. Return that RTL was changed
through CHANGE_P and macro SECONDARY_MEMORY_NEEDED says to use
secondary memory through SEC_MEM_P. */
static bool
check_and_process_move (bool *change_p, bool *sec_mem_p)
{
int sregno, dregno;
rtx set, dest, src, dreg, sreg, old_sreg, new_reg, before, scratch_reg;
enum reg_class dclass, sclass, secondary_class;
enum machine_mode sreg_mode;
secondary_reload_info sri;
*sec_mem_p = *change_p = false;
if ((set = single_set (curr_insn)) == NULL)
return false;
dreg = dest = SET_DEST (set);
sreg = src = SET_SRC (set);
/* Quick check on the right move insn which does not need
reloads. */
if ((dclass = get_op_class (dest)) != NO_REGS
&& (sclass = get_op_class (src)) != NO_REGS
/* The backend guarantees that register moves of cost 2 never
need reloads. */
&& targetm.register_move_cost (GET_MODE (src), dclass, sclass) == 2)
return true;
if (GET_CODE (dest) == SUBREG)
dreg = SUBREG_REG (dest);
if (GET_CODE (src) == SUBREG)
sreg = SUBREG_REG (src);
if (! REG_P (dreg) || ! REG_P (sreg))
return false;
sclass = dclass = NO_REGS;
dreg = get_equiv_substitution (dreg);
if (REG_P (dreg))
dclass = get_reg_class (REGNO (dreg));
if (dclass == ALL_REGS)
/* ALL_REGS is used for new pseudos created by transformations
like reload of SUBREG_REG (see function
simplify_operand_subreg). We don't know their class yet. We
should figure out the class from processing the insn
constraints not in this fast path function. Even if ALL_REGS
were a right class for the pseudo, secondary_... hooks usually
are not define for ALL_REGS. */
return false;
sreg_mode = GET_MODE (sreg);
old_sreg = sreg;
sreg = get_equiv_substitution (sreg);
if (REG_P (sreg))
sclass = get_reg_class (REGNO (sreg));
if (sclass == ALL_REGS)
/* See comments above. */
return false;
#ifdef SECONDARY_MEMORY_NEEDED
if (dclass != NO_REGS && sclass != NO_REGS
&& SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src)))
{
*sec_mem_p = true;
return false;
}
#endif
sri.prev_sri = NULL;
sri.icode = CODE_FOR_nothing;
sri.extra_cost = 0;
secondary_class = NO_REGS;
/* Set up hard register for a reload pseudo for hook
secondary_reload because some targets just ignore unassigned
pseudos in the hook. */
if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
{
dregno = REGNO (dreg);
reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
}
else
dregno = -1;
if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
{
sregno = REGNO (sreg);
reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
}
else
sregno = -1;
if (sclass != NO_REGS)
secondary_class
= (enum reg_class) targetm.secondary_reload (false, dest,
(reg_class_t) sclass,
GET_MODE (src), &sri);
if (sclass == NO_REGS
|| ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
&& dclass != NO_REGS))
{
enum reg_class old_sclass = secondary_class;
secondary_reload_info old_sri = sri;
sri.prev_sri = NULL;
sri.icode = CODE_FOR_nothing;
sri.extra_cost = 0;
secondary_class
= (enum reg_class) targetm.secondary_reload (true, sreg,
(reg_class_t) dclass,
sreg_mode, &sri);
/* Check the target hook consistency. */
lra_assert
((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
|| (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
|| (secondary_class == old_sclass && sri.icode == old_sri.icode));
}
if (sregno >= 0)
reg_renumber [sregno] = -1;
if (dregno >= 0)
reg_renumber [dregno] = -1;
if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
return false;
*change_p = true;
new_reg = NULL_RTX;
if (secondary_class != NO_REGS)
new_reg = lra_create_new_reg_with_unique_value (sreg_mode, NULL_RTX,
secondary_class,
"secondary");
start_sequence ();
if (old_sreg != sreg)
sreg = copy_rtx (sreg);
if (sri.icode == CODE_FOR_nothing)
lra_emit_move (new_reg, sreg);
else
{
enum reg_class scratch_class;
scratch_class = (reg_class_from_constraints
(insn_data[sri.icode].operand[2].constraint));
scratch_reg = (lra_create_new_reg_with_unique_value
(insn_data[sri.icode].operand[2].mode, NULL_RTX,
scratch_class, "scratch"));
emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
sreg, scratch_reg));
}
before = get_insns ();
end_sequence ();
lra_process_new_insns (curr_insn, before, NULL_RTX, "Inserting the move");
if (new_reg != NULL_RTX)
{
if (GET_CODE (src) == SUBREG)
SUBREG_REG (src) = new_reg;
else
SET_SRC (set) = new_reg;
}
else
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
dump_insn_slim (lra_dump_file, curr_insn);
}
lra_set_insn_deleted (curr_insn);
return true;
}
return false;
}
/* The following data describe the result of process_alt_operands.
The data are used in curr_insn_transform to generate reloads. */
/* The chosen reg classes which should be used for the corresponding
operands. */
static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
/* True if the operand should be the same as another operand and that
other operand does not need a reload. */
static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
/* True if the operand does not need a reload. */
static bool goal_alt_win[MAX_RECOG_OPERANDS];
/* True if the operand can be offsetable memory. */
static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
/* The number of an operand to which given operand can be matched to. */
static int goal_alt_matches[MAX_RECOG_OPERANDS];
/* The number of elements in the following array. */
static int goal_alt_dont_inherit_ops_num;
/* Numbers of operands whose reload pseudos should not be inherited. */
static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
/* True if the insn commutative operands should be swapped. */
static bool goal_alt_swapped;
/* The chosen insn alternative. */
static int goal_alt_number;
/* The following five variables are used to choose the best insn
alternative. They reflect final characteristics of the best
alternative. */
/* Number of necessary reloads and overall cost reflecting the
previous value and other unpleasantness of the best alternative. */
static int best_losers, best_overall;
/* Number of small register classes used for operands of the best
alternative. */
static int best_small_class_operands_num;
/* Overall number hard registers used for reloads. For example, on
some targets we need 2 general registers to reload DFmode and only
one floating point register. */
static int best_reload_nregs;
/* Overall number reflecting distances of previous reloading the same
value. The distances are counted from the current BB start. It is
used to improve inheritance chances. */
static int best_reload_sum;
/* True if the current insn should have no correspondingly input or
output reloads. */
static bool no_input_reloads_p, no_output_reloads_p;
/* True if we swapped the commutative operands in the current
insn. */
static int curr_swapped;
/* Arrange for address element *LOC to be a register of class CL.
Add any input reloads to list BEFORE. AFTER is nonnull if *LOC is an
automodified value; handle that case by adding the required output
reloads to list AFTER. Return true if the RTL was changed. */
static bool
process_addr_reg (rtx *loc, rtx *before, rtx *after, enum reg_class cl)
{
int regno;
enum reg_class rclass, new_class;
rtx reg;
rtx new_reg;
enum machine_mode mode;
bool before_p = false;
loc = strip_subreg (loc);
reg = *loc;
mode = GET_MODE (reg);
if (! REG_P (reg))
{
/* Always reload memory in an address even if the target supports
such addresses. */
new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
before_p = true;
}
else
{
regno = REGNO (reg);
rclass = get_reg_class (regno);
if ((*loc = get_equiv_substitution (reg)) != reg)
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
"Changing pseudo %d in address of insn %u on equiv ",
REGNO (reg), INSN_UID (curr_insn));
dump_value_slim (lra_dump_file, *loc, 1);
fprintf (lra_dump_file, "\n");
}
*loc = copy_rtx (*loc);
}
if (*loc != reg || ! in_class_p (reg, cl, &new_class))
{
reg = *loc;
if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
mode, reg, cl, "address", &new_reg))
before_p = true;
}
else if (new_class != NO_REGS && rclass != new_class)
{
change_class (regno, new_class, " Change", true);
return false;
}
else
return false;
}
if (before_p)
{
push_to_sequence (*before);
lra_emit_move (new_reg, reg);
*before = get_insns ();
end_sequence ();
}
*loc = new_reg;
if (after != NULL)
{
start_sequence ();
lra_emit_move (reg, new_reg);
emit_insn (*after);
*after = get_insns ();
end_sequence ();
}
return true;
}
/* Make reloads for subreg in operand NOP with internal subreg mode
REG_MODE, add new reloads for further processing. Return true if
any reload was generated. */
static bool
simplify_operand_subreg (int nop, enum machine_mode reg_mode)
{
int hard_regno;
rtx before, after;
enum machine_mode mode;
rtx reg, new_reg;
rtx operand = *curr_id->operand_loc[nop];
before = after = NULL_RTX;
if (GET_CODE (operand) != SUBREG)
return false;
mode = GET_MODE (operand);
reg = SUBREG_REG (operand);
/* If we change address for paradoxical subreg of memory, the
address might violate the necessary alignment or the access might
be slow. So take this into consideration. We should not worry
about access beyond allocated memory for paradoxical memory
subregs as we don't substitute such equiv memory (see processing
equivalences in function lra_constraints) and because for spilled
pseudos we allocate stack memory enough for the biggest
corresponding paradoxical subreg. */
if ((MEM_P (reg)
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
|| MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
|| (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER))
{
alter_subreg (curr_id->operand_loc[nop], false);
return true;
}
/* Put constant into memory when we have mixed modes. It generates
a better code in most cases as it does not need a secondary
reload memory. It also prevents LRA looping when LRA is using
secondary reload memory again and again. */
if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
&& SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
{
SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
alter_subreg (curr_id->operand_loc[nop], false);
return true;
}
/* Force a reload of the SUBREG_REG if this is a constant or PLUS or
if there may be a problem accessing OPERAND in the outer
mode. */
if ((REG_P (reg)
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
&& (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
/* Don't reload paradoxical subregs because we could be looping
having repeatedly final regno out of hard regs range. */
&& (hard_regno_nregs[hard_regno][GET_MODE (reg)]
>= hard_regno_nregs[hard_regno][mode])
&& simplify_subreg_regno (hard_regno, GET_MODE (reg),
SUBREG_BYTE (operand), mode) < 0)
|| CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
{
enum op_type type = curr_static_id->operand[nop].type;
/* The class will be defined later in curr_insn_transform. */
enum reg_class rclass
= (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
rclass, "subreg reg", &new_reg))
{
bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (new_reg));
if (type != OP_OUT
|| GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode))
{
push_to_sequence (before);
lra_emit_move (new_reg, reg);
before = get_insns ();
end_sequence ();
}
if (type != OP_IN)
{
start_sequence ();
lra_emit_move (reg, new_reg);
emit_insn (after);
after = get_insns ();
end_sequence ();
}
}
SUBREG_REG (operand) = new_reg;
lra_process_new_insns (curr_insn, before, after,
"Inserting subreg reload");
return true;
}
return false;
}
/* Return TRUE if X refers for a hard register from SET. */
static bool
uses_hard_regs_p (rtx x, HARD_REG_SET set)
{
int i, j, x_hard_regno;
enum machine_mode mode;
const char *fmt;
enum rtx_code code;
if (x == NULL_RTX)
return false;
code = GET_CODE (x);
mode = GET_MODE (x);
if (code == SUBREG)
{
x = SUBREG_REG (x);
code = GET_CODE (x);
if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
mode = GET_MODE (x);
}
if (REG_P (x))
{
x_hard_regno = get_hard_regno (x);
return (x_hard_regno >= 0
&& overlaps_hard_reg_set_p (set, mode, x_hard_regno));
}
if (MEM_P (x))
{
struct address_info ad;
decompose_mem_address (&ad, x);
if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
return true;
if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
return true;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (uses_hard_regs_p (XEXP (x, i), set))
return true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (uses_hard_regs_p (XVECEXP (x, i, j), set))
return true;
}
}
return false;
}
/* Return true if OP is a spilled pseudo. */
static inline bool
spilled_pseudo_p (rtx op)
{
return (REG_P (op)
&& REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
}
/* Return true if X is a general constant. */
static inline bool
general_constant_p (rtx x)
{
return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
}
/* Major function to choose the current insn alternative and what
operands should be reloaded and how. If ONLY_ALTERNATIVE is not
negative we should consider only this alternative. Return false if
we can not choose the alternative or find how to reload the
operands. */
static bool
process_alt_operands (int only_alternative)
{
bool ok_p = false;
int nop, small_class_operands_num, overall, nalt;
int n_alternatives = curr_static_id->n_alternatives;
int n_operands = curr_static_id->n_operands;
/* LOSERS counts the operands that don't fit this alternative and
would require loading. */
int losers;
/* REJECT is a count of how undesirable this alternative says it is
if any reloading is required. If the alternative matches exactly
then REJECT is ignored, but otherwise it gets this much counted
against it in addition to the reloading needed. */
int reject;
/* The number of elements in the following array. */
int early_clobbered_regs_num;
/* Numbers of operands which are early clobber registers. */
int early_clobbered_nops[MAX_RECOG_OPERANDS];
enum reg_class curr_alt[MAX_RECOG_OPERANDS];
HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
bool curr_alt_match_win[MAX_RECOG_OPERANDS];
bool curr_alt_win[MAX_RECOG_OPERANDS];
bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
int curr_alt_matches[MAX_RECOG_OPERANDS];
/* The number of elements in the following array. */
int curr_alt_dont_inherit_ops_num;
/* Numbers of operands whose reload pseudos should not be inherited. */
int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
rtx op;
/* The register when the operand is a subreg of register, otherwise the
operand itself. */
rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
/* The register if the operand is a register or subreg of register,
otherwise NULL. */
rtx operand_reg[MAX_RECOG_OPERANDS];
int hard_regno[MAX_RECOG_OPERANDS];
enum machine_mode biggest_mode[MAX_RECOG_OPERANDS];
int reload_nregs, reload_sum;
bool costly_p;
enum reg_class cl;
/* Calculate some data common for all alternatives to speed up the
function. */
for (nop = 0; nop < n_operands; nop++)
{
op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
/* The real hard regno of the operand after the allocation. */
hard_regno[nop] = get_hard_regno (op);
operand_reg[nop] = op;
biggest_mode[nop] = GET_MODE (operand_reg[nop]);
if (GET_CODE (operand_reg[nop]) == SUBREG)
{
operand_reg[nop] = SUBREG_REG (operand_reg[nop]);
if (GET_MODE_SIZE (biggest_mode[nop])
< GET_MODE_SIZE (GET_MODE (operand_reg[nop])))
biggest_mode[nop] = GET_MODE (operand_reg[nop]);
}
if (REG_P (operand_reg[nop]))
no_subreg_reg_operand[nop] = operand_reg[nop];
else
operand_reg[nop] = NULL_RTX;
}
/* The constraints are made of several alternatives. Each operand's
constraint looks like foo,bar,... with commas separating the
alternatives. The first alternatives for all operands go
together, the second alternatives go together, etc.
First loop over alternatives. */
for (nalt = 0; nalt < n_alternatives; nalt++)
{
/* Loop over operands for one constraint alternative. */
#ifdef HAVE_ATTR_enabled
if (curr_id->alternative_enabled_p != NULL
&& ! curr_id->alternative_enabled_p[nalt])
continue;
#endif
if (only_alternative >= 0 && nalt != only_alternative)
continue;
overall = losers = reject = reload_nregs = reload_sum = 0;
for (nop = 0; nop < n_operands; nop++)
reject += (curr_static_id
->operand_alternative[nalt * n_operands + nop].reject);
early_clobbered_regs_num = 0;
for (nop = 0; nop < n_operands; nop++)
{
const char *p;
char *end;
int len, c, m, i, opalt_num, this_alternative_matches;
bool win, did_match, offmemok, early_clobber_p;
/* false => this operand can be reloaded somehow for this
alternative. */
bool badop;
/* true => this operand can be reloaded if the alternative
allows regs. */
bool winreg;
/* True if a constant forced into memory would be OK for
this operand. */
bool constmemok;
enum reg_class this_alternative, this_costly_alternative;
HARD_REG_SET this_alternative_set, this_costly_alternative_set;
bool this_alternative_match_win, this_alternative_win;
bool this_alternative_offmemok;
enum machine_mode mode;
opalt_num = nalt * n_operands + nop;
if (curr_static_id->operand_alternative[opalt_num].anything_ok)
{
/* Fast track for no constraints at all. */
curr_alt[nop] = NO_REGS;
CLEAR_HARD_REG_SET (curr_alt_set[nop]);
curr_alt_win[nop] = true;
curr_alt_match_win[nop] = false;
curr_alt_offmemok[nop] = false;
curr_alt_matches[nop] = -1;
continue;
}
op = no_subreg_reg_operand[nop];
mode = curr_operand_mode[nop];
win = did_match = winreg = offmemok = constmemok = false;
badop = true;
early_clobber_p = false;
p = curr_static_id->operand_alternative[opalt_num].constraint;
this_costly_alternative = this_alternative = NO_REGS;
/* We update set of possible hard regs besides its class
because reg class might be inaccurate. For example,
union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
is translated in HI_REGS because classes are merged by
pairs and there is no accurate intermediate class. */
CLEAR_HARD_REG_SET (this_alternative_set);
CLEAR_HARD_REG_SET (this_costly_alternative_set);
this_alternative_win = false;
this_alternative_match_win = false;
this_alternative_offmemok = false;
this_alternative_matches = -1;
/* An empty constraint should be excluded by the fast
track. */
lra_assert (*p != 0 && *p != ',');
/* Scan this alternative's specs for this operand; set WIN
if the operand fits any letter in this alternative.
Otherwise, clear BADOP if this operand could fit some
letter after reloads, or set WINREG if this operand could
fit after reloads provided the constraint allows some
registers. */
costly_p = false;
do
{
switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
{
case '\0':
len = 0;
break;
case ',':
c = '\0';
break;
case '=': case '+': case '?': case '*': case '!':
case ' ': case '\t':
break;
case '%':
/* We only support one commutative marker, the first
one. We already set commutative above. */
break;
case '&':
early_clobber_p = true;
break;
case '#':
/* Ignore rest of this alternative. */
c = '\0';
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
int m_hregno;
bool match_p;
m = strtoul (p, &end, 10);
p = end;
len = 0;
lra_assert (nop > m);
this_alternative_matches = m;
m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
/* We are supposed to match a previous operand.
If we do, we win if that one did. If we do
not, count both of the operands as losers.
(This is too conservative, since most of the
time only a single reload insn will be needed
to make the two operands win. As a result,
this alternative may be rejected when it is
actually desirable.) */
match_p = false;
if (operands_match_p (*curr_id->operand_loc[nop],
*curr_id->operand_loc[m], m_hregno))
{
/* We should reject matching of an early
clobber operand if the matching operand is
not dying in the insn. */
if (! curr_static_id->operand[m].early_clobber
|| operand_reg[nop] == NULL_RTX
|| (find_regno_note (curr_insn, REG_DEAD,
REGNO (op))
|| REGNO (op) == REGNO (operand_reg[m])))
match_p = true;
}
if (match_p)
{
/* If we are matching a non-offsettable
address where an offsettable address was
expected, then we must reject this
combination, because we can't reload
it. */
if (curr_alt_offmemok[m]
&& MEM_P (*curr_id->operand_loc[m])
&& curr_alt[m] == NO_REGS && ! curr_alt_win[m])
continue;
}
else
{
/* Operands don't match. Both operands must
allow a reload register, otherwise we
cannot make them match. */
if (curr_alt[m] == NO_REGS)
break;
/* Retroactively mark the operand we had to
match as a loser, if it wasn't already and
it wasn't matched to a register constraint
(e.g it might be matched by memory). */
if (curr_alt_win[m]
&& (operand_reg[m] == NULL_RTX
|| hard_regno[m] < 0))
{
losers++;
reload_nregs
+= (ira_reg_class_max_nregs[curr_alt[m]]
[GET_MODE (*curr_id->operand_loc[m])]);
}
/* We prefer no matching alternatives because
it gives more freedom in RA. */
if (operand_reg[nop] == NULL_RTX
|| (find_regno_note (curr_insn, REG_DEAD,
REGNO (operand_reg[nop]))
== NULL_RTX))
reject += 2;
}
/* If we have to reload this operand and some
previous operand also had to match the same
thing as this operand, we don't know how to do
that. */
if (!match_p || !curr_alt_win[m])
{
for (i = 0; i < nop; i++)
if (curr_alt_matches[i] == m)
break;
if (i < nop)
break;
}
else
did_match = true;
/* This can be fixed with reloads if the operand
we are supposed to match can be fixed with
reloads. */
badop = false;
this_alternative = curr_alt[m];
COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
winreg = this_alternative != NO_REGS;
break;
}
case 'p':
cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
ADDRESS, SCRATCH);
this_alternative = reg_class_subunion[this_alternative][cl];
IOR_HARD_REG_SET (this_alternative_set,
reg_class_contents[cl]);
if (costly_p)
{
this_costly_alternative
= reg_class_subunion[this_costly_alternative][cl];
IOR_HARD_REG_SET (this_costly_alternative_set,
reg_class_contents[cl]);
}
win = true;
badop = false;
break;
case TARGET_MEM_CONSTRAINT:
if (MEM_P (op) || spilled_pseudo_p (op))
win = true;
/* We can put constant or pseudo value into memory
to satisfy the constraint. */
if (CONST_POOL_OK_P (mode, op) || REG_P (op))
badop = false;
constmemok = true;
break;
case '<':
if (MEM_P (op)
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
win = true;
break;
case '>':
if (MEM_P (op)
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|| GET_CODE (XEXP (op, 0)) == POST_INC))
win = true;
break;
/* Memory op whose address is not offsettable. */
case 'V':
if (MEM_P (op)
&& ! offsettable_nonstrict_memref_p (op))
win = true;
break;
/* Memory operand whose address is offsettable. */
case 'o':
if ((MEM_P (op)
&& offsettable_nonstrict_memref_p (op))
|| spilled_pseudo_p (op))
win = true;
/* We can put constant or pseudo value into memory
or make memory address offsetable to satisfy the
constraint. */
if (CONST_POOL_OK_P (mode, op) || MEM_P (op) || REG_P (op))
badop = false;
constmemok = true;
offmemok = true;
break;
case 'E':
case 'F':
if (GET_CODE (op) == CONST_DOUBLE
|| (GET_CODE (op) == CONST_VECTOR
&& (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)))
win = true;
break;
case 'G':
case 'H':
if (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
win = true;
break;
case 's':
if (CONST_INT_P (op)
|| (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode))
break;
case 'i':
if (general_constant_p (op))
win = true;
break;
case 'n':
if (CONST_INT_P (op)
|| (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode))
win = true;
break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
if (CONST_INT_P (op)
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
win = true;
break;
case 'X':
/* This constraint should be excluded by the fast
track. */
gcc_unreachable ();
break;
case 'g':
if (MEM_P (op)
|| general_constant_p (op)
|| spilled_pseudo_p (op))
win = true;
/* Drop through into 'r' case. */
case 'r':
this_alternative
= reg_class_subunion[this_alternative][GENERAL_REGS];
IOR_HARD_REG_SET (this_alternative_set,
reg_class_contents[GENERAL_REGS]);
if (costly_p)
{
this_costly_alternative
= (reg_class_subunion
[this_costly_alternative][GENERAL_REGS]);
IOR_HARD_REG_SET (this_costly_alternative_set,
reg_class_contents[GENERAL_REGS]);
}
goto reg;
default:
if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
{
#ifdef EXTRA_CONSTRAINT_STR
if (EXTRA_MEMORY_CONSTRAINT (c, p))
{
if (EXTRA_CONSTRAINT_STR (op, c, p))
win = true;
else if (spilled_pseudo_p (op))
win = true;
/* If we didn't already win, we can reload
constants via force_const_mem or put the
pseudo value into memory, or make other
memory by reloading the address like for
'o'. */
if (CONST_POOL_OK_P (mode, op)
|| MEM_P (op) || REG_P (op))
badop = false;
constmemok = true;
offmemok = true;
break;
}
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
{
if (EXTRA_CONSTRAINT_STR (op, c, p))
win = true;
/* If we didn't already win, we can reload
the address into a base register. */
cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
ADDRESS, SCRATCH);
this_alternative
= reg_class_subunion[this_alternative][cl];
IOR_HARD_REG_SET (this_alternative_set,
reg_class_contents[cl]);
if (costly_p)
{
this_costly_alternative
= (reg_class_subunion
[this_costly_alternative][cl]);
IOR_HARD_REG_SET (this_costly_alternative_set,
reg_class_contents[cl]);
}
badop = false;
break;
}
if (EXTRA_CONSTRAINT_STR (op, c, p))
win = true;
#endif
break;
}
cl = REG_CLASS_FROM_CONSTRAINT (c, p);
this_alternative = reg_class_subunion[this_alternative][cl];
IOR_HARD_REG_SET (this_alternative_set,
reg_class_contents[cl]);
if (costly_p)
{
this_costly_alternative
= reg_class_subunion[this_costly_alternative][cl];
IOR_HARD_REG_SET (this_costly_alternative_set,
reg_class_contents[cl]);
}
reg:
if (mode == BLKmode)
break;
winreg = true;
if (REG_P (op))
{
if (hard_regno[nop] >= 0
&& in_hard_reg_set_p (this_alternative_set,
mode, hard_regno[nop]))
win = true;
else if (hard_regno[nop] < 0
&& in_class_p (op, this_alternative, NULL))
win = true;
}
break;
}
if (c != ' ' && c != '\t')
costly_p = c == '*';
}
while ((p += len), c);
/* Record which operands fit this alternative. */
if (win)
{
this_alternative_win = true;
if (operand_reg[nop] != NULL_RTX)
{
if (hard_regno[nop] >= 0)
{
if (in_hard_reg_set_p (this_costly_alternative_set,
mode, hard_regno[nop]))
reject++;
}
else
{
/* Prefer won reg to spilled pseudo under other equal
conditions. */
reject++;
if (in_class_p (operand_reg[nop],
this_costly_alternative, NULL))
reject++;
}
/* We simulate the behaviour of old reload here.
Although scratches need hard registers and it
might result in spilling other pseudos, no reload
insns are generated for the scratches. So it
might cost something but probably less than old
reload pass believes. */
if (lra_former_scratch_p (REGNO (operand_reg[nop])))
reject += LRA_LOSER_COST_FACTOR;
}
}
else if (did_match)
this_alternative_match_win = true;
else
{
int const_to_mem = 0;
bool no_regs_p;
/* If this alternative asks for a specific reg class, see if there
is at least one allocatable register in that class. */
no_regs_p
= (this_alternative == NO_REGS
|| (hard_reg_set_subset_p
(reg_class_contents[this_alternative],
lra_no_alloc_regs)));
/* For asms, verify that the class for this alternative is possible
for the mode that is specified. */
if (!no_regs_p && REG_P (op) && INSN_CODE (curr_insn) < 0)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (HARD_REGNO_MODE_OK (i, mode)
&& in_hard_reg_set_p (reg_class_contents[this_alternative], mode, i))
break;
if (i == FIRST_PSEUDO_REGISTER)
winreg = false;
}
/* If this operand accepts a register, and if the
register class has at least one allocatable register,
then this operand can be reloaded. */
if (winreg && !no_regs_p)
badop = false;
if (badop)
goto fail;
this_alternative_offmemok = offmemok;
if (this_costly_alternative != NO_REGS)
reject++;
/* If the operand is dying, has a matching constraint,
and satisfies constraints of the matched operand
which failed to satisfy the own constraints, we do
not need to generate a reload insn for this
operand. */
if (!(this_alternative_matches >= 0
&& !curr_alt_win[this_alternative_matches]
&& REG_P (op)
&& find_regno_note (curr_insn, REG_DEAD, REGNO (op))
&& (hard_regno[nop] >= 0
? in_hard_reg_set_p (this_alternative_set,
mode, hard_regno[nop])
: in_class_p (op, this_alternative, NULL))))
{
/* Strict_low_part requires to reload the register
not the sub-register. In this case we should
check that a final reload hard reg can hold the
value mode. */
if (curr_static_id->operand[nop].strict_low
&& REG_P (op)
&& hard_regno[nop] < 0
&& GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
&& ira_class_hard_regs_num[this_alternative] > 0
&& ! HARD_REGNO_MODE_OK (ira_class_hard_regs
[this_alternative][0],
GET_MODE (op)))
goto fail;
losers++;
}
if (operand_reg[nop] != NULL_RTX
/* Output operands and matched input operands are
not inherited. The following conditions do not
exactly describe the previous statement but they
are pretty close. */
&& curr_static_id->operand[nop].type != OP_OUT
&& (this_alternative_matches < 0
|| curr_static_id->operand[nop].type != OP_IN))
{
int last_reload = (lra_reg_info[ORIGINAL_REGNO
(operand_reg[nop])]
.last_reload);
if (last_reload > bb_reload_num)
reload_sum += last_reload - bb_reload_num;
}
/* If this is a constant that is reloaded into the
desired class by copying it to memory first, count
that as another reload. This is consistent with
other code and is required to avoid choosing another
alternative when the constant is moved into memory.
Note that the test here is precisely the same as in
the code below that calls force_const_mem. */
if (CONST_POOL_OK_P (mode, op)
&& ((targetm.preferred_reload_class
(op, this_alternative) == NO_REGS)
|| no_input_reloads_p))
{
const_to_mem = 1;
if (! no_regs_p)
losers++;
}
/* Alternative loses if it requires a type of reload not
permitted for this insn. We can always reload
objects with a REG_UNUSED note. */
if ((curr_static_id->operand[nop].type != OP_IN
&& no_output_reloads_p
&& ! find_reg_note (curr_insn, REG_UNUSED, op))
|| (curr_static_id->operand[nop].type != OP_OUT
&& no_input_reloads_p && ! const_to_mem))
goto fail;
/* Check strong discouragement of reload of non-constant
into class THIS_ALTERNATIVE. */
if (! CONSTANT_P (op) && ! no_regs_p
&& (targetm.preferred_reload_class
(op, this_alternative) == NO_REGS
|| (curr_static_id->operand[nop].type == OP_OUT
&& (targetm.preferred_output_reload_class
(op, this_alternative) == NO_REGS))))
reject += LRA_MAX_REJECT;
if (! ((const_to_mem && constmemok)
|| (MEM_P (op) && offmemok)))
{
/* We prefer to reload pseudos over reloading other
things, since such reloads may be able to be
eliminated later. So bump REJECT in other cases.
Don't do this in the case where we are forcing a
constant into memory and it will then win since
we don't want to have a different alternative
match then. */
if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
reject += 2;
if (! no_regs_p)
reload_nregs
+= ira_reg_class_max_nregs[this_alternative][mode];
}
/* We are trying to spill pseudo into memory. It is
usually more costly than moving to a hard register
although it might takes the same number of
reloads. */
if (no_regs_p && REG_P (op))
reject++;
#ifdef SECONDARY_MEMORY_NEEDED
/* If reload requires moving value through secondary
memory, it will need one more insn at least. */
if (this_alternative != NO_REGS
&& REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
&& ((curr_static_id->operand[nop].type != OP_OUT
&& SECONDARY_MEMORY_NEEDED (cl, this_alternative,
GET_MODE (op)))
|| (curr_static_id->operand[nop].type != OP_IN
&& SECONDARY_MEMORY_NEEDED (this_alternative, cl,
GET_MODE (op)))))
losers++;
#endif
/* Input reloads can be inherited more often than output
reloads can be removed, so penalize output
reloads. */
if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
reject++;
}
if (early_clobber_p)
reject++;
/* ??? We check early clobbers after processing all operands
(see loop below) and there we update the costs more.
Should we update the cost (may be approximately) here
because of early clobber register reloads or it is a rare
or non-important thing to be worth to do it. */
overall = losers * LRA_LOSER_COST_FACTOR + reject;
if ((best_losers == 0 || losers != 0) && best_overall < overall)
goto fail;
curr_alt[nop] = this_alternative;
COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
curr_alt_win[nop] = this_alternative_win;
curr_alt_match_win[nop] = this_alternative_match_win;
curr_alt_offmemok[nop] = this_alternative_offmemok;
curr_alt_matches[nop] = this_alternative_matches;
if (this_alternative_matches >= 0
&& !did_match && !this_alternative_win)
curr_alt_win[this_alternative_matches] = false;
if (early_clobber_p && operand_reg[nop] != NULL_RTX)
early_clobbered_nops[early_clobbered_regs_num++] = nop;
}
ok_p = true;
curr_alt_dont_inherit_ops_num = 0;
for (nop = 0; nop < early_clobbered_regs_num; nop++)
{
int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
HARD_REG_SET temp_set;
i = early_clobbered_nops[nop];
if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
|| hard_regno[i] < 0)
continue;
lra_assert (operand_reg[i] != NULL_RTX);
clobbered_hard_regno = hard_regno[i];
CLEAR_HARD_REG_SET (temp_set);
add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
first_conflict_j = last_conflict_j = -1;
for (j = 0; j < n_operands; j++)
if (j == i
/* We don't want process insides of match_operator and
match_parallel because otherwise we would process
their operands once again generating a wrong
code. */
|| curr_static_id->operand[j].is_operator)
continue;
else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
|| (curr_alt_matches[i] == j && curr_alt_match_win[i]))
continue;
/* If we don't reload j-th operand, check conflicts. */
else if ((curr_alt_win[j] || curr_alt_match_win[j])
&& uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
{
if (first_conflict_j < 0)
first_conflict_j = j;
last_conflict_j = j;
}
if (last_conflict_j < 0)
continue;
/* If earlyclobber operand conflicts with another
non-matching operand which is actually the same register
as the earlyclobber operand, it is better to reload the
another operand as an operand matching the earlyclobber
operand can be also the same. */
if (first_conflict_j == last_conflict_j
&& operand_reg[last_conflict_j]
!= NULL_RTX && ! curr_alt_match_win[last_conflict_j]
&& REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
{
curr_alt_win[last_conflict_j] = false;
curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
= last_conflict_j;
losers++;
overall += LRA_LOSER_COST_FACTOR;
}
else
{
/* We need to reload early clobbered register and the
matched registers. */
for (j = 0; j < n_operands; j++)
if (curr_alt_matches[j] == i)
{
curr_alt_match_win[j] = false;
losers++;
overall += LRA_LOSER_COST_FACTOR;
}
if (! curr_alt_match_win[i])
curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
else
{
/* Remember pseudos used for match reloads are never
inherited. */
lra_assert (curr_alt_matches[i] >= 0);
curr_alt_win[curr_alt_matches[i]] = false;
}
curr_alt_win[i] = curr_alt_match_win[i] = false;
losers++;
overall += LRA_LOSER_COST_FACTOR;
}
}
small_class_operands_num = 0;
for (nop = 0; nop < n_operands; nop++)
small_class_operands_num
+= SMALL_REGISTER_CLASS_P (curr_alt[nop]) ? 1 : 0;
/* If this alternative can be made to work by reloading, and it
needs less reloading than the others checked so far, record
it as the chosen goal for reloading. */
if ((best_losers != 0 && losers == 0)
|| (((best_losers == 0 && losers == 0)
|| (best_losers != 0 && losers != 0))
&& (best_overall > overall
|| (best_overall == overall
/* If the cost of the reloads is the same,
prefer alternative which requires minimal
number of small register classes for the
operands. This improves chances of reloads
for insn requiring small register
classes. */
&& (small_class_operands_num
< best_small_class_operands_num
|| (small_class_operands_num
== best_small_class_operands_num
&& (reload_nregs < best_reload_nregs
|| (reload_nregs == best_reload_nregs
&& best_reload_sum < reload_sum))))))))
{
for (nop = 0; nop < n_operands; nop++)
{
goal_alt_win[nop] = curr_alt_win[nop];
goal_alt_match_win[nop] = curr_alt_match_win[nop];
goal_alt_matches[nop] = curr_alt_matches[nop];
goal_alt[nop] = curr_alt[nop];
goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
}
goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
goal_alt_swapped = curr_swapped;
best_overall = overall;
best_losers = losers;
best_small_class_operands_num = small_class_operands_num;
best_reload_nregs = reload_nregs;
best_reload_sum = reload_sum;
goal_alt_number = nalt;
}
if (losers == 0)
/* Everything is satisfied. Do not process alternatives
anymore. */
break;
fail:
;
}
return ok_p;
}
/* Return 1 if ADDR is a valid memory address for mode MODE in address
space AS, and check that each pseudo has the proper kind of hard
reg. */
static int
valid_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
rtx addr, addr_space_t as)
{
#ifdef GO_IF_LEGITIMATE_ADDRESS
lra_assert (ADDR_SPACE_GENERIC_P (as));
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
return 0;
win:
return 1;
#else
return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
#endif
}
/* Return whether address AD is valid. */
static bool
valid_address_p (struct address_info *ad)
{
/* Some ports do not check displacements for eliminable registers,
so we replace them temporarily with the elimination target. */
rtx saved_base_reg = NULL_RTX;
rtx saved_index_reg = NULL_RTX;
rtx *base_term = strip_subreg (ad->base_term);
rtx *index_term = strip_subreg (ad->index_term);
if (base_term != NULL)
{
saved_base_reg = *base_term;
lra_eliminate_reg_if_possible (base_term);
if (ad->base_term2 != NULL)
*ad->base_term2 = *ad->base_term;
}
if (index_term != NULL)
{
saved_index_reg = *index_term;
lra_eliminate_reg_if_possible (index_term);
}
bool ok_p = valid_address_p (ad->mode, *ad->outer, ad->as);
if (saved_base_reg != NULL_RTX)
{
*base_term = saved_base_reg;
if (ad->base_term2 != NULL)
*ad->base_term2 = *ad->base_term;
}
if (saved_index_reg != NULL_RTX)
*index_term = saved_index_reg;
return ok_p;
}
/* Make reload base reg + disp from address AD. Return the new pseudo. */
static rtx
base_plus_disp_to_reg (struct address_info *ad)
{
enum reg_class cl;
rtx new_reg;
lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
get_index_code (ad));
new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
cl, "base + disp");
lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
return new_reg;
}
/* Return true if we can add a displacement to address AD, even if that
makes the address invalid. The fix-up code requires any new address
to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
static bool
can_add_disp_p (struct address_info *ad)
{
return (!ad->autoinc_p
&& ad->segment == NULL
&& ad->base == ad->base_term
&& ad->disp == ad->disp_term);
}
/* Make equiv substitution in address AD. Return true if a substitution
was made. */
static bool
equiv_address_substitution (struct address_info *ad)
{
rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
HOST_WIDE_INT disp, scale;
bool change_p;
base_term = strip_subreg (ad->base_term);
if (base_term == NULL)
base_reg = new_base_reg = NULL_RTX;
else
{
base_reg = *base_term;
new_base_reg = get_equiv_substitution (base_reg);
}
index_term = strip_subreg (ad->index_term);
if (index_term == NULL)
index_reg = new_index_reg = NULL_RTX;
else
{
index_reg = *index_term;
new_index_reg = get_equiv_substitution (index_reg);
}
if (base_reg == new_base_reg && index_reg == new_index_reg)
return false;
disp = 0;
change_p = false;
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, "Changing address in insn %d ",
INSN_UID (curr_insn));
dump_value_slim (lra_dump_file, *ad->outer, 1);
}
if (base_reg != new_base_reg)
{
if (REG_P (new_base_reg))
{
*base_term = new_base_reg;
change_p = true;
}
else if (GET_CODE (new_base_reg) == PLUS
&& REG_P (XEXP (new_base_reg, 0))
&& CONST_INT_P (XEXP (new_base_reg, 1))
&& can_add_disp_p (ad))
{
disp += INTVAL (XEXP (new_base_reg, 1));
*base_term = XEXP (new_base_reg, 0);
change_p = true;
}
if (ad->base_term2 != NULL)
*ad->base_term2 = *ad->base_term;
}
if (index_reg != new_index_reg)
{
if (REG_P (new_index_reg))
{
*index_term = new_index_reg;
change_p = true;
}
else if (GET_CODE (new_index_reg) == PLUS
&& REG_P (XEXP (new_index_reg, 0))
&& CONST_INT_P (XEXP (new_index_reg, 1))
&& can_add_disp_p (ad)
&& (scale = get_index_scale (ad)))
{
disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
*index_term = XEXP (new_index_reg, 0);
change_p = true;
}
}
if (disp != 0)
{
if (ad->disp != NULL)
*ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
else
{
*ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
update_address (ad);
}
change_p = true;
}
if (lra_dump_file != NULL)
{
if (! change_p)
fprintf (lra_dump_file, " -- no change\n");
else
{
fprintf (lra_dump_file, " on equiv ");
dump_value_slim (lra_dump_file, *ad->outer, 1);
fprintf (lra_dump_file, "\n");
}
}
return change_p;
}
/* Major function to make reloads for an address in operand NOP.
The supported cases are:
1) an address that existed before LRA started, at which point it must
have been valid. These addresses are subject to elimination and
may have become invalid due to the elimination offset being out
of range.
2) an address created by forcing a constant to memory (force_const_to_mem).
The initial form of these addresses might not be valid, and it is this
function's job to make them valid.
3) a frame address formed from a register and a (possibly zero)
constant offset. As above, these addresses might not be valid
and this function must make them so.
Add reloads to the lists *BEFORE and *AFTER. We might need to add
reloads to *AFTER because of inc/dec, {pre, post} modify in the
address. Return true for any RTL change. */
static bool
process_address (int nop, rtx *before, rtx *after)
{
struct address_info ad;
rtx new_reg;
rtx op = *curr_id->operand_loc[nop];
const char *constraint = curr_static_id->operand[nop].constraint;
bool change_p;
if (constraint[0] == 'p'
|| EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint))
decompose_lea_address (&ad, curr_id->operand_loc[nop]);
else if (MEM_P (op))
decompose_mem_address (&ad, op);
else if (GET_CODE (op) == SUBREG
&& MEM_P (SUBREG_REG (op)))
decompose_mem_address (&ad, SUBREG_REG (op));
else
return false;
change_p = equiv_address_substitution (&ad);
if (ad.base_term != NULL
&& (process_addr_reg
(ad.base_term, before,
(ad.autoinc_p
&& !(REG_P (*ad.base_term)
&& find_regno_note (curr_insn, REG_DEAD,
REGNO (*ad.base_term)) != NULL_RTX)
? after : NULL),
base_reg_class (ad.mode, ad.as, ad.base_outer_code,
get_index_code (&ad)))))
{
change_p = true;
if (ad.base_term2 != NULL)
*ad.base_term2 = *ad.base_term;
}
if (ad.index_term != NULL
&& process_addr_reg (ad.index_term, before, NULL, INDEX_REG_CLASS))
change_p = true;
/* There are three cases where the shape of *AD.INNER may now be invalid:
1) the original address was valid, but either elimination or
equiv_address_substitution applied a displacement that made
it invalid.
2) the address is an invalid symbolic address created by
force_const_to_mem.
3) the address is a frame address with an invalid offset.
All these cases involve a displacement and a non-autoinc address,
so there is no point revalidating other types. */
if (ad.disp == NULL || ad.autoinc_p || valid_address_p (&ad))
return change_p;
/* Any index existed before LRA started, so we can assume that the
presence and shape of the index is valid. */
push_to_sequence (*before);
gcc_assert (ad.segment == NULL);
gcc_assert (ad.disp == ad.disp_term);
if (ad.base == NULL)
{
if (ad.index == NULL)
{
int code = -1;
enum reg_class cl = base_reg_class (ad.mode, ad.as,
SCRATCH, SCRATCH);
rtx disp = *ad.disp;
new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
#ifdef HAVE_lo_sum
{
rtx insn;
rtx last = get_last_insn ();
/* disp => lo_sum (new_base, disp), case (2) above. */
insn = emit_insn (gen_rtx_SET
(VOIDmode, new_reg,
gen_rtx_HIGH (Pmode, copy_rtx (disp))));
code = recog_memoized (insn);
if (code >= 0)
{
*ad.disp = gen_rtx_LO_SUM (Pmode, new_reg, disp);
if (! valid_address_p (ad.mode, *ad.outer, ad.as))
{
*ad.disp = disp;
code = -1;
}
}
if (code < 0)
delete_insns_since (last);
}
#endif
if (code < 0)
{
/* disp => new_base, case (2) above. */
lra_emit_move (new_reg, disp);
*ad.disp = new_reg;
}
}
else
{
/* index * scale + disp => new base + index * scale,
case (1) above. */
enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
GET_CODE (*ad.index));
lra_assert (INDEX_REG_CLASS != NO_REGS);
new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
lra_emit_move (new_reg, *ad.disp);
*ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
new_reg, *ad.index);
}
}
else if (ad.index == NULL)
{
/* base + disp => new base, cases (1) and (3) above. */
/* Another option would be to reload the displacement into an
index register. However, postreload has code to optimize
address reloads that have the same base and different
displacements, so reloading into an index register would
not necessarily be a win. */
new_reg = base_plus_disp_to_reg (&ad);
*ad.inner = new_reg;
}
else
{
/* base + scale * index + disp => new base + scale * index,
case (1) above. */
new_reg = base_plus_disp_to_reg (&ad);
*ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
new_reg, *ad.index);
}
*before = get_insns ();
end_sequence ();
return true;
}
/* Emit insns to reload VALUE into a new register. VALUE is an
auto-increment or auto-decrement RTX whose operand is a register or
memory location; so reloading involves incrementing that location.
IN is either identical to VALUE, or some cheaper place to reload
value being incremented/decremented from.
INC_AMOUNT is the number to increment or decrement by (always
positive and ignored for POST_MODIFY/PRE_MODIFY).
Return pseudo containing the result. */
static rtx
emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
{
/* REG or MEM to be copied and incremented. */
rtx incloc = XEXP (value, 0);
/* Nonzero if increment after copying. */
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
|| GET_CODE (value) == POST_MODIFY);
rtx last;
rtx inc;
rtx add_insn;
int code;
rtx real_in = in == value ? incloc : in;
rtx result;
bool plus_p = true;
if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
{
lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
|| GET_CODE (XEXP (value, 1)) == MINUS);
lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
inc = XEXP (XEXP (value, 1), 1);
}
else
{
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
inc_amount = -inc_amount;
inc = GEN_INT (inc_amount);
}
if (! post && REG_P (incloc))
result = incloc;
else
result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
"INC/DEC result");
if (real_in != result)
{
/* First copy the location to the result register. */
lra_assert (REG_P (result));
emit_insn (gen_move_insn (result, real_in));
}
/* We suppose that there are insns to add/sub with the constant
increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
old reload worked with this assumption. If the assumption
becomes wrong, we should use approach in function
base_plus_disp_to_reg. */
if (in == value)
{
/* See if we can directly increment INCLOC. */
last = get_last_insn ();
add_insn = emit_insn (plus_p
? gen_add2_insn (incloc, inc)
: gen_sub2_insn (incloc, inc));
code = recog_memoized (add_insn);
if (code >= 0)
{
if (! post && result != incloc)
emit_insn (gen_move_insn (result, incloc));
return result;
}
delete_insns_since (last);
}
/* If couldn't do the increment directly, must increment in RESULT.
The way we do this depends on whether this is pre- or
post-increment. For pre-increment, copy INCLOC to the reload
register, increment it there, then save back. */
if (! post)
{
if (real_in != result)
emit_insn (gen_move_insn (result, real_in));
if (plus_p)
emit_insn (gen_add2_insn (result, inc));
else
emit_insn (gen_sub2_insn (result, inc));
if (result != incloc)
emit_insn (gen_move_insn (incloc, result));
}
else
{
/* Post-increment.
Because this might be a jump insn or a compare, and because
RESULT may not be available after the insn in an input
reload, we must do the incrementing before the insn being
reloaded for.
We have already copied IN to RESULT. Increment the copy in
RESULT, save that back, then decrement RESULT so it has
the original value. */
if (plus_p)
emit_insn (gen_add2_insn (result, inc));
else
emit_insn (gen_sub2_insn (result, inc));
emit_insn (gen_move_insn (incloc, result));
/* Restore non-modified value for the result. We prefer this
way because it does not require an additional hard
register. */
if (plus_p)
{
if (CONST_INT_P (inc))
emit_insn (gen_add2_insn (result, GEN_INT (-INTVAL (inc))));
else
emit_insn (gen_sub2_insn (result, inc));
}
else
emit_insn (gen_add2_insn (result, inc));
}
return result;
}
/* Swap operands NOP and NOP + 1. */
static inline void
swap_operands (int nop)
{
enum machine_mode mode = curr_operand_mode[nop];
curr_operand_mode[nop] = curr_operand_mode[nop + 1];
curr_operand_mode[nop + 1] = mode;
rtx x = *curr_id->operand_loc[nop];
*curr_id->operand_loc[nop] = *curr_id->operand_loc[nop + 1];
*curr_id->operand_loc[nop + 1] = x;
/* Swap the duplicates too. */
lra_update_dup (curr_id, nop);
lra_update_dup (curr_id, nop + 1);
}
/* Main entry point of the constraint code: search the body of the
current insn to choose the best alternative. It is mimicking insn
alternative cost calculation model of former reload pass. That is
because machine descriptions were written to use this model. This
model can be changed in future. Make commutative operand exchange
if it is chosen.
Return true if some RTL changes happened during function call. */
static bool
curr_insn_transform (void)
{
int i, j, k;
int n_operands;
int n_alternatives;
int commutative;
signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
signed char match_inputs[MAX_RECOG_OPERANDS + 1];
rtx before, after;
bool alt_p = false;
/* Flag that the insn has been changed through a transformation. */
bool change_p;
bool sec_mem_p;
#ifdef SECONDARY_MEMORY_NEEDED
bool use_sec_mem_p;
#endif
int max_regno_before;
int reused_alternative_num;
no_input_reloads_p = no_output_reloads_p = false;
goal_alt_number = -1;
if (check_and_process_move (&change_p, &sec_mem_p))
return change_p;
/* JUMP_INSNs and CALL_INSNs are not allowed to have any output
reloads; neither are insns that SET cc0. Insns that use CC0 are
not allowed to have any input reloads. */
if (JUMP_P (curr_insn) || CALL_P (curr_insn))
no_output_reloads_p = true;
#ifdef HAVE_cc0
if (reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
no_input_reloads_p = true;
if (reg_set_p (cc0_rtx, PATTERN (curr_insn)))
no_output_reloads_p = true;
#endif
n_operands = curr_static_id->n_operands;
n_alternatives = curr_static_id->n_alternatives;
/* Just return "no reloads" if insn has no operands with
constraints. */
if (n_operands == 0 || n_alternatives == 0)
return false;
max_regno_before = max_reg_num ();
for (i = 0; i < n_operands; i++)
{
goal_alt_matched[i][0] = -1;
goal_alt_matches[i] = -1;
}
commutative = curr_static_id->commutative;
/* Now see what we need for pseudos that didn't get hard regs or got
the wrong kind of hard reg. For this, we must consider all the
operands together against the register constraints. */
best_losers = best_overall = INT_MAX;
best_small_class_operands_num = best_reload_sum = 0;
curr_swapped = false;
goal_alt_swapped = false;
/* Make equivalence substitution and memory subreg elimination
before address processing because an address legitimacy can
depend on memory mode. */
for (i = 0; i < n_operands; i++)
{
rtx op = *curr_id->operand_loc[i];
rtx subst, old = op;
bool op_change_p = false;
if (GET_CODE (old) == SUBREG)
old = SUBREG_REG (old);
subst = get_equiv_substitution (old);
if (subst != old)
{
subst = copy_rtx (subst);
lra_assert (REG_P (old));
if (GET_CODE (op) == SUBREG)
SUBREG_REG (op) = subst;
else
*curr_id->operand_loc[i] = subst;
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
"Changing pseudo %d in operand %i of insn %u on equiv ",
REGNO (old), i, INSN_UID (curr_insn));
dump_value_slim (lra_dump_file, subst, 1);
fprintf (lra_dump_file, "\n");
}
op_change_p = change_p = true;
}
if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
{
change_p = true;
lra_update_dup (curr_id, i);
}
}
/* Reload address registers and displacements. We do it before
finding an alternative because of memory constraints. */
before = after = NULL_RTX;
for (i = 0; i < n_operands; i++)
if (! curr_static_id->operand[i].is_operator
&& process_address (i, &before, &after))
{
change_p = true;
lra_update_dup (curr_id, i);
}
if (change_p)
/* If we've changed the instruction then any alternative that
we chose previously may no longer be valid. */
lra_set_used_insn_alternative (curr_insn, -1);
try_swapped:
reused_alternative_num = curr_id->used_insn_alternative;
if (lra_dump_file != NULL && reused_alternative_num >= 0)
fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
reused_alternative_num, INSN_UID (curr_insn));
if (process_alt_operands (reused_alternative_num))
alt_p = true;
/* If insn is commutative (it's safe to exchange a certain pair of
operands) then we need to try each alternative twice, the second
time matching those two operands as if we had exchanged them. To
do this, really exchange them in operands.
If we have just tried the alternatives the second time, return
operands to normal and drop through. */
if (reused_alternative_num < 0 && commutative >= 0)
{
curr_swapped = !curr_swapped;
if (curr_swapped)
{
swap_operands (commutative);
goto try_swapped;
}
else
swap_operands (commutative);
}
if (! alt_p && ! sec_mem_p)
{
/* No alternative works with reloads?? */
if (INSN_CODE (curr_insn) >= 0)
fatal_insn ("unable to generate reloads for:", curr_insn);
error_for_asm (curr_insn,
"inconsistent operand constraints in an %<asm%>");
/* Avoid further trouble with this insn. */
PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
lra_invalidate_insn_data (curr_insn);
return true;
}
/* If the best alternative is with operands 1 and 2 swapped, swap
them. Update the operand numbers of any reloads already
pushed. */
if (goal_alt_swapped)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
INSN_UID (curr_insn));
/* Swap the duplicates too. */
swap_operands (commutative);
change_p = true;
}
#ifdef SECONDARY_MEMORY_NEEDED
/* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
too conservatively. So we use the secondary memory only if there
is no any alternative without reloads. */
use_sec_mem_p = false;
if (! alt_p)
use_sec_mem_p = true;
else if (sec_mem_p)
{
for (i = 0; i < n_operands; i++)
if (! goal_alt_win[i] && ! goal_alt_match_win[i])
break;
use_sec_mem_p = i < n_operands;
}
if (use_sec_mem_p)
{
rtx new_reg, src, dest, rld;
enum machine_mode sec_mode, rld_mode;
lra_assert (sec_mem_p);
lra_assert (curr_static_id->operand[0].type == OP_OUT
&& curr_static_id->operand[1].type == OP_IN);
dest = *curr_id->operand_loc[0];
src = *curr_id->operand_loc[1];
rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
? dest : src);
rld_mode = GET_MODE (rld);
#ifdef SECONDARY_MEMORY_NEEDED_MODE
sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
#else
sec_mode = rld_mode;
#endif
new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
NO_REGS, "secondary");
/* If the mode is changed, it should be wider. */
lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
if (sec_mode != rld_mode)
{
/* If the target says specifically to use another mode for
secondary memory moves we can not reuse the original
insn. */
after = emit_spill_move (false, new_reg, dest);
lra_process_new_insns (curr_insn, NULL_RTX, after,
"Inserting the sec. move");
before = emit_spill_move (true, new_reg, src);
lra_process_new_insns (curr_insn, before, NULL_RTX, "Changing on");
lra_set_insn_deleted (curr_insn);
}
else if (dest == rld)
{
*curr_id->operand_loc[0] = new_reg;
after = emit_spill_move (false, new_reg, dest);
lra_process_new_insns (curr_insn, NULL_RTX, after,
"Inserting the sec. move");
}
else
{
*curr_id->operand_loc[1] = new_reg;
before = emit_spill_move (true, new_reg, src);
lra_process_new_insns (curr_insn, before, NULL_RTX,
"Inserting the sec. move");
}
lra_update_insn_regno_info (curr_insn);
return true;
}
#endif
lra_assert (goal_alt_number >= 0);
lra_set_used_insn_alternative (curr_insn, goal_alt_number);
if (lra_dump_file != NULL)
{
const char *p;
fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
goal_alt_number, INSN_UID (curr_insn));
for (i = 0; i < n_operands; i++)
{
p = (curr_static_id->operand_alternative
[goal_alt_number * n_operands + i].constraint);
if (*p == '\0')
continue;
fprintf (lra_dump_file, " (%d) ", i);
for (; *p != '\0' && *p != ',' && *p != '#'; p++)
fputc (*p, lra_dump_file);
}
fprintf (lra_dump_file, "\n");
}
/* Right now, for any pair of operands I and J that are required to
match, with J < I, goal_alt_matches[I] is J. Add I to
goal_alt_matched[J]. */
for (i = 0; i < n_operands; i++)
if ((j = goal_alt_matches[i]) >= 0)
{
for (k = 0; goal_alt_matched[j][k] >= 0; k++)
;
/* We allow matching one output operand and several input
operands. */
lra_assert (k == 0
|| (curr_static_id->operand[j].type == OP_OUT
&& curr_static_id->operand[i].type == OP_IN
&& (curr_static_id->operand
[goal_alt_matched[j][0]].type == OP_IN)));
goal_alt_matched[j][k] = i;
goal_alt_matched[j][k + 1] = -1;
}
for (i = 0; i < n_operands; i++)
goal_alt_win[i] |= goal_alt_match_win[i];
/* Any constants that aren't allowed and can't be reloaded into
registers are here changed into memory references. */
for (i = 0; i < n_operands; i++)
if (goal_alt_win[i])
{
int regno;
enum reg_class new_class;
rtx reg = *curr_id->operand_loc[i];
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
{
bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
if (new_class != NO_REGS && get_reg_class (regno) != new_class)
{
lra_assert (ok_p);
change_class (regno, new_class, " Change", true);
}
}
}
else
{
const char *constraint;
char c;
rtx op = *curr_id->operand_loc[i];
rtx subreg = NULL_RTX;
enum machine_mode mode = curr_operand_mode[i];
if (GET_CODE (op) == SUBREG)
{
subreg = op;
op = SUBREG_REG (op);
mode = GET_MODE (op);
}
if (CONST_POOL_OK_P (mode, op)
&& ((targetm.preferred_reload_class
(op, (enum reg_class) goal_alt[i]) == NO_REGS)
|| no_input_reloads_p))
{
rtx tem = force_const_mem (mode, op);
change_p = true;
if (subreg != NULL_RTX)
tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
*curr_id->operand_loc[i] = tem;
lra_update_dup (curr_id, i);
process_address (i, &before, &after);
/* If the alternative accepts constant pool refs directly
there will be no reload needed at all. */
if (subreg != NULL_RTX)
continue;
/* Skip alternatives before the one requested. */
constraint = (curr_static_id->operand_alternative
[goal_alt_number * n_operands + i].constraint);
for (;
(c = *constraint) && c != ',' && c != '#';
constraint += CONSTRAINT_LEN (c, constraint))
{
if (c == TARGET_MEM_CONSTRAINT || c == 'o')
break;
#ifdef EXTRA_CONSTRAINT_STR
if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
&& EXTRA_CONSTRAINT_STR (tem, c, constraint))
break;
#endif
}
if (c == '\0' || c == ',' || c == '#')
continue;
goal_alt_win[i] = true;
}
}
for (i = 0; i < n_operands; i++)
{
rtx old, new_reg;
rtx op = *curr_id->operand_loc[i];
if (goal_alt_win[i])
{
if (goal_alt[i] == NO_REGS
&& REG_P (op)
/* When we assign NO_REGS it means that we will not
assign a hard register to the scratch pseudo by
assigment pass and the scratch pseudo will be
spilled. Spilled scratch pseudos are transformed
back to scratches at the LRA end. */
&& lra_former_scratch_operand_p (curr_insn, i))
change_class (REGNO (op), NO_REGS, " Change", true);
continue;
}
/* Operands that match previous ones have already been handled. */
if (goal_alt_matches[i] >= 0)
continue;
/* We should not have an operand with a non-offsettable address
appearing where an offsettable address will do. It also may
be a case when the address should be special in other words
not a general one (e.g. it needs no index reg). */
if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
{
enum reg_class rclass;
rtx *loc = &XEXP (op, 0);
enum rtx_code code = GET_CODE (*loc);
push_to_sequence (before);
rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
MEM, SCRATCH);
if (GET_RTX_CLASS (code) == RTX_AUTOINC)
new_reg = emit_inc (rclass, *loc, *loc,
/* This value does not matter for MODIFY. */
GET_MODE_SIZE (GET_MODE (op)));
else if (get_reload_reg (OP_IN, Pmode, *loc, rclass,
"offsetable address", &new_reg))
lra_emit_move (new_reg, *loc);
before = get_insns ();
end_sequence ();
*loc = new_reg;
lra_update_dup (curr_id, i);
}
else if (goal_alt_matched[i][0] == -1)
{
enum machine_mode mode;
rtx reg, *loc;
int hard_regno, byte;
enum op_type type = curr_static_id->operand[i].type;
loc = curr_id->operand_loc[i];
mode = curr_operand_mode[i];
if (GET_CODE (*loc) == SUBREG)
{
reg = SUBREG_REG (*loc);
byte = SUBREG_BYTE (*loc);
if (REG_P (reg)
/* Strict_low_part requires reload the register not
the sub-register. */
&& (curr_static_id->operand[i].strict_low
|| (GET_MODE_SIZE (mode)
<= GET_MODE_SIZE (GET_MODE (reg))
&& (hard_regno
= get_try_hard_regno (REGNO (reg))) >= 0
&& (simplify_subreg_regno
(hard_regno,
GET_MODE (reg), byte, mode) < 0)
&& (goal_alt[i] == NO_REGS
|| (simplify_subreg_regno
(ira_class_hard_regs[goal_alt[i]][0],
GET_MODE (reg), byte, mode) >= 0)))))
{
loc = &SUBREG_REG (*loc);
mode = GET_MODE (*loc);
}
}
old = *loc;
if (get_reload_reg (type, mode, old, goal_alt[i], "", &new_reg)
&& type != OP_OUT)
{
push_to_sequence (before);
lra_emit_move (new_reg, old);
before = get_insns ();
end_sequence ();
}
*loc = new_reg;
if (type != OP_IN
&& find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
{
start_sequence ();
lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
emit_insn (after);
after = get_insns ();
end_sequence ();
*loc = new_reg;
}
for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
if (goal_alt_dont_inherit_ops[j] == i)
{
lra_set_regno_unique_value (REGNO (new_reg));
break;
}
lra_update_dup (curr_id, i);
}
else if (curr_static_id->operand[i].type == OP_IN
&& (curr_static_id->operand[goal_alt_matched[i][0]].type
== OP_OUT))
{
/* generate reloads for input and matched outputs. */
match_inputs[0] = i;
match_inputs[1] = -1;
match_reload (goal_alt_matched[i][0], match_inputs,
goal_alt[i], &before, &after);
}
else if (curr_static_id->operand[i].type == OP_OUT
&& (curr_static_id->operand[goal_alt_matched[i][0]].type
== OP_IN))
/* Generate reloads for output and matched inputs. */
match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after);
else if (curr_static_id->operand[i].type == OP_IN
&& (curr_static_id->operand[goal_alt_matched[i][0]].type
== OP_IN))
{
/* Generate reloads for matched inputs. */
match_inputs[0] = i;
for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
match_inputs[j + 1] = k;
match_inputs[j + 1] = -1;
match_reload (-1, match_inputs, goal_alt[i], &before, &after);
}
else
/* We must generate code in any case when function
process_alt_operands decides that it is possible. */
gcc_unreachable ();
}
if (before != NULL_RTX || after != NULL_RTX
|| max_regno_before != max_reg_num ())
change_p = true;
if (change_p)
{
lra_update_operator_dups (curr_id);
/* Something changes -- process the insn. */
lra_update_insn_regno_info (curr_insn);
}
lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
return change_p;
}
/* Return true if X is in LIST. */
static bool
in_list_p (rtx x, rtx list)
{
for (; list != NULL_RTX; list = XEXP (list, 1))
if (XEXP (list, 0) == x)
return true;
return false;
}
/* Return true if X contains an allocatable hard register (if
HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
static bool
contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
{
int i, j;
const char *fmt;
enum rtx_code code;
code = GET_CODE (x);
if (REG_P (x))
{
int regno = REGNO (x);
HARD_REG_SET alloc_regs;
if (hard_reg_p)
{
if (regno >= FIRST_PSEUDO_REGISTER)
regno = lra_get_regno_hard_regno (regno);
if (regno < 0)
return false;
COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
}
else
{
if (regno < FIRST_PSEUDO_REGISTER)
return false;
if (! spilled_p)
return true;
return lra_get_regno_hard_regno (regno) < 0;
}
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
return true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
return true;
}
}
return false;
}
/* Process all regs in location *LOC and change them on equivalent
substitution. Return true if any change was done. */
static bool
loc_equivalence_change_p (rtx *loc)
{
rtx subst, reg, x = *loc;
bool result = false;
enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
if (code == SUBREG)
{
reg = SUBREG_REG (x);
if ((subst = get_equiv_substitution (reg)) != reg
&& GET_MODE (subst) == VOIDmode)
{
/* We cannot reload debug location. Simplify subreg here
while we know the inner mode. */
*loc = simplify_gen_subreg (GET_MODE (x), subst,
GET_MODE (reg), SUBREG_BYTE (x));
return true;
}
}
if (code == REG && (subst = get_equiv_substitution (x)) != x)
{
*loc = subst;
return true;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
result = loc_equivalence_change_p (&XEXP (x, i)) || result;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
result
= loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
}
return result;
}
/* Similar to loc_equivalence_change_p, but for use as
simplify_replace_fn_rtx callback. */
static rtx
loc_equivalence_callback (rtx loc, const_rtx, void *)
{
if (!REG_P (loc))
return NULL_RTX;
rtx subst = get_equiv_substitution (loc);
if (subst != loc)
return subst;
return NULL_RTX;
}
/* Maximum number of generated reload insns per an insn. It is for
preventing this pass cycling in a bug case. */
#define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
/* The current iteration number of this LRA pass. */
int lra_constraint_iter;
/* The current iteration number of this LRA pass after the last spill
pass. */
int lra_constraint_iter_after_spill;
/* True if we substituted equiv which needs checking register
allocation correctness because the equivalent value contains
allocatable hard registers or when we restore multi-register
pseudo. */
bool lra_risky_transformations_p;
/* Return true if REGNO is referenced in more than one block. */
static bool
multi_block_pseudo_p (int regno)
{
basic_block bb = NULL;
unsigned int uid;
bitmap_iterator bi;
if (regno < FIRST_PSEUDO_REGISTER)
return false;
EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
if (bb == NULL)
bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
return true;
return false;
}
/* Return true if LIST contains a deleted insn. */
static bool
contains_deleted_insn_p (rtx list)
{
for (; list != NULL_RTX; list = XEXP (list, 1))
if (NOTE_P (XEXP (list, 0))
&& NOTE_KIND (XEXP (list, 0)) == NOTE_INSN_DELETED)
return true;
return false;
}
/* Return true if X contains a pseudo dying in INSN. */
static bool
dead_pseudo_p (rtx x, rtx insn)
{
int i, j;
const char *fmt;
enum rtx_code code;
if (REG_P (x))
return (insn != NULL_RTX
&& find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
code = GET_CODE (x);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (dead_pseudo_p (XEXP (x, i), insn))
return true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (dead_pseudo_p (XVECEXP (x, i, j), insn))
return true;
}
}
return false;
}
/* Return true if INSN contains a dying pseudo in INSN right hand
side. */
static bool
insn_rhs_dead_pseudo_p (rtx insn)
{
rtx set = single_set (insn);
gcc_assert (set != NULL);
return dead_pseudo_p (SET_SRC (set), insn);
}
/* Return true if any init insn of REGNO contains a dying pseudo in
insn right hand side. */
static bool
init_insn_rhs_dead_pseudo_p (int regno)
{
rtx insns = ira_reg_equiv[regno].init_insns;
if (insns == NULL)
return false;
if (INSN_P (insns))
return insn_rhs_dead_pseudo_p (insns);
for (; insns != NULL_RTX; insns = XEXP (insns, 1))
if (insn_rhs_dead_pseudo_p (XEXP (insns, 0)))
return true;
return false;
}
/* Entry function of LRA constraint pass. Return true if the
constraint pass did change the code. */
bool
lra_constraints (bool first_p)
{
bool changed_p;
int i, hard_regno, new_insns_num;
unsigned int min_len, new_min_len, uid;
rtx set, x, reg, dest_reg;
basic_block last_bb;
bitmap_head equiv_insn_bitmap;
bitmap_iterator bi;
lra_constraint_iter++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
lra_constraint_iter);
lra_constraint_iter_after_spill++;
if (lra_constraint_iter_after_spill > LRA_MAX_CONSTRAINT_ITERATION_NUMBER)
internal_error
("Maximum number of LRA constraint passes is achieved (%d)\n",
LRA_MAX_CONSTRAINT_ITERATION_NUMBER);
changed_p = false;
lra_risky_transformations_p = false;
new_insn_uid_start = get_max_uid ();
new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
bitmap_initialize (&equiv_insn_bitmap, ®_obstack);
for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
if (lra_reg_info[i].nrefs != 0)
{
ira_reg_equiv[i].profitable_p = true;
reg = regno_reg_rtx[i];
if ((hard_regno = lra_get_regno_hard_regno (i)) >= 0)
{
int j, nregs;
nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
for (j = 0; j < nregs; j++)
df_set_regs_ever_live (hard_regno + j, true);
}
else if ((x = get_equiv_substitution (reg)) != reg)
{
bool pseudo_p = contains_reg_p (x, false, false);
rtx set, insn;
/* After RTL transformation, we can not guarantee that
pseudo in the substitution was not reloaded which might
make equivalence invalid. For example, in reverse
equiv of p0
p0 <- ...
...
equiv_mem <- p0
the memory address register was reloaded before the 2nd
insn. */
if ((! first_p && pseudo_p)
/* We don't use DF for compilation speed sake. So it
is problematic to update live info when we use an
equivalence containing pseudos in more than one
BB. */
|| (pseudo_p && multi_block_pseudo_p (i))
/* If an init insn was deleted for some reason, cancel
the equiv. We could update the equiv insns after
transformations including an equiv insn deletion
but it is not worthy as such cases are extremely
rare. */
|| contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
/* If it is not a reverse equivalence, we check that a
pseudo in rhs of the init insn is not dying in the
insn. Otherwise, the live info at the beginning of
the corresponding BB might be wrong after we
removed the insn. When the equiv can be a
constant, the right hand side of the init insn can
be a pseudo. */
|| (! ((insn = ira_reg_equiv[i].init_insns) != NULL_RTX
&& INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& REG_P (SET_DEST (set))
&& (int) REGNO (SET_DEST (set)) == i)
&& init_insn_rhs_dead_pseudo_p (i))
/* Prevent access beyond equivalent memory for
paradoxical subregs. */
|| (MEM_P (x)
&& (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
> GET_MODE_SIZE (GET_MODE (x)))))
ira_reg_equiv[i].defined_p = false;
if (contains_reg_p (x, false, true))
ira_reg_equiv[i].profitable_p = false;
if (get_equiv_substitution (reg) != reg)
bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
}
}
/* We should add all insns containing pseudos which should be
substituted by their equivalences. */
EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
lra_push_insn_by_uid (uid);
lra_eliminate (false);
min_len = lra_insn_stack_length ();
new_insns_num = 0;
last_bb = NULL;
changed_p = false;
while ((new_min_len = lra_insn_stack_length ()) != 0)
{
curr_insn = lra_pop_insn ();
--new_min_len;
curr_bb = BLOCK_FOR_INSN (curr_insn);
if (curr_bb != last_bb)
{
last_bb = curr_bb;
bb_reload_num = lra_curr_reload_num;
}
if (min_len > new_min_len)
{
min_len = new_min_len;
new_insns_num = 0;
}
if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
internal_error
("Max. number of generated reload insns per insn is achieved (%d)\n",
MAX_RELOAD_INSNS_NUMBER);
new_insns_num++;
if (DEBUG_INSN_P (curr_insn))
{
/* We need to check equivalence in debug insn and change
pseudo to the equivalent value if necessary. */
curr_id = lra_get_insn_recog_data (curr_insn);
if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
{
rtx old = *curr_id->operand_loc[0];
*curr_id->operand_loc[0]
= simplify_replace_fn_rtx (old, NULL_RTX,
loc_equivalence_callback, NULL);
if (old != *curr_id->operand_loc[0])
{
lra_update_insn_regno_info (curr_insn);
changed_p = true;
}
}
}
else if (INSN_P (curr_insn))
{
if ((set = single_set (curr_insn)) != NULL_RTX)
{
dest_reg = SET_DEST (set);
/* The equivalence pseudo could be set up as SUBREG in a
case when it is a call restore insn in a mode
different from the pseudo mode. */
if (GET_CODE (dest_reg) == SUBREG)
dest_reg = SUBREG_REG (dest_reg);
if ((REG_P (dest_reg)
&& (x = get_equiv_substitution (dest_reg)) != dest_reg
/* Remove insns which set up a pseudo whose value
can not be changed. Such insns might be not in
init_insns because we don't update equiv data
during insn transformations.
As an example, let suppose that a pseudo got
hard register and on the 1st pass was not
changed to equivalent constant. We generate an
additional insn setting up the pseudo because of
secondary memory movement. Then the pseudo is
spilled and we use the equiv constant. In this
case we should remove the additional insn and
this insn is not init_insns list. */
&& (! MEM_P (x) || MEM_READONLY_P (x)
|| in_list_p (curr_insn,
ira_reg_equiv
[REGNO (dest_reg)].init_insns)))
|| (((x = get_equiv_substitution (SET_SRC (set)))
!= SET_SRC (set))
&& in_list_p (curr_insn,
ira_reg_equiv
[REGNO (SET_SRC (set))].init_insns)))
{
/* This is equiv init insn of pseudo which did not get a
hard register -- remove the insn. */
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Removing equiv init insn %i (freq=%d)\n",
INSN_UID (curr_insn),
BLOCK_FOR_INSN (curr_insn)->frequency);
dump_insn_slim (lra_dump_file, curr_insn);
}
if (contains_reg_p (x, true, false))
lra_risky_transformations_p = true;
lra_set_insn_deleted (curr_insn);
continue;
}
}
curr_id = lra_get_insn_recog_data (curr_insn);
curr_static_id = curr_id->insn_static_data;
init_curr_insn_input_reloads ();
init_curr_operand_mode ();
if (curr_insn_transform ())
changed_p = true;
/* Check non-transformed insns too for equiv change as USE
or CLOBBER don't need reloads but can contain pseudos
being changed on their equivalences. */
else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
&& loc_equivalence_change_p (&PATTERN (curr_insn)))
{
lra_update_insn_regno_info (curr_insn);
changed_p = true;
}
}
}
bitmap_clear (&equiv_insn_bitmap);
/* If we used a new hard regno, changed_p should be true because the
hard reg is assigned to a new pseudo. */
#ifdef ENABLE_CHECKING
if (! changed_p)
{
for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
if (lra_reg_info[i].nrefs != 0
&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
{
int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
for (j = 0; j < nregs; j++)
lra_assert (df_regs_ever_live_p (hard_regno + j));
}
}
#endif
return changed_p;
}
/* Initiate the LRA constraint pass. It is done once per
function. */
void
lra_constraints_init (void)
{
}
/* Finalize the LRA constraint pass. It is done once per
function. */
void
lra_constraints_finish (void)
{
}
/* This page contains code to do inheritance/split
transformations. */
/* Number of reloads passed so far in current EBB. */
static int reloads_num;
/* Number of calls passed so far in current EBB. */
static int calls_num;
/* Current reload pseudo check for validity of elements in
USAGE_INSNS. */
static int curr_usage_insns_check;
/* Info about last usage of registers in EBB to do inheritance/split
transformation. Inheritance transformation is done from a spilled
pseudo and split transformations from a hard register or a pseudo
assigned to a hard register. */
struct usage_insns
{
/* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
value INSNS is valid. The insns is chain of optional debug insns
and a finishing non-debug insn using the corresponding reg. */
int check;
/* Value of global reloads_num at the last insn in INSNS. */
int reloads_num;
/* Value of global reloads_nums at the last insn in INSNS. */
int calls_num;
/* It can be true only for splitting. And it means that the restore
insn should be put after insn given by the following member. */
bool after_p;
/* Next insns in the current EBB which use the original reg and the
original reg value is not changed between the current insn and
the next insns. In order words, e.g. for inheritance, if we need
to use the original reg value again in the next insns we can try
to use the value in a hard register from a reload insn of the
current insn. */
rtx insns;
};
/* Map: regno -> corresponding pseudo usage insns. */
static struct usage_insns *usage_insns;
static void
setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
{
usage_insns[regno].check = curr_usage_insns_check;
usage_insns[regno].insns = insn;
usage_insns[regno].reloads_num = reloads_num;
usage_insns[regno].calls_num = calls_num;
usage_insns[regno].after_p = after_p;
}
/* The function is used to form list REGNO usages which consists of
optional debug insns finished by a non-debug insn using REGNO.
RELOADS_NUM is current number of reload insns processed so far. */
static void
add_next_usage_insn (int regno, rtx insn, int reloads_num)
{
rtx next_usage_insns;
if (usage_insns[regno].check == curr_usage_insns_check
&& (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
&& DEBUG_INSN_P (insn))
{
/* Check that we did not add the debug insn yet. */
if (next_usage_insns != insn
&& (GET_CODE (next_usage_insns) != INSN_LIST
|| XEXP (next_usage_insns, 0) != insn))
usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
next_usage_insns);
}
else if (NONDEBUG_INSN_P (insn))
setup_next_usage_insn (regno, insn, reloads_num, false);
else
usage_insns[regno].check = 0;
}
/* Replace all references to register OLD_REGNO in *LOC with pseudo
register NEW_REG. Return true if any change was made. */
static bool
substitute_pseudo (rtx *loc, int old_regno, rtx new_reg)
{
rtx x = *loc;
bool result = false;
enum rtx_code code;
const char *fmt;
int i, j;
if (x == NULL_RTX)
return false;
code = GET_CODE (x);
if (code == REG && (int) REGNO (x) == old_regno)
{
enum machine_mode mode = GET_MODE (*loc);
enum machine_mode inner_mode = GET_MODE (new_reg);
if (mode != inner_mode)
{
if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
|| ! SCALAR_INT_MODE_P (inner_mode))
new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
else
new_reg = gen_lowpart_SUBREG (mode, new_reg);
}
*loc = new_reg;
return true;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (substitute_pseudo (&XEXP (x, i), old_regno, new_reg))
result = true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg))
result = true;
}
}
return result;
}
/* Return first non-debug insn in list USAGE_INSNS. */
static rtx
skip_usage_debug_insns (rtx usage_insns)
{
rtx insn;
/* Skip debug insns. */
for (insn = usage_insns;
insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
insn = XEXP (insn, 1))
;
return insn;
}
/* Return true if we need secondary memory moves for insn in
USAGE_INSNS after inserting inherited pseudo of class INHER_CL
into the insn. */
static bool
check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
rtx usage_insns ATTRIBUTE_UNUSED)
{
#ifndef SECONDARY_MEMORY_NEEDED
return false;
#else
rtx insn, set, dest;
enum reg_class cl;
if (inher_cl == ALL_REGS
|| (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
return false;
lra_assert (INSN_P (insn));
if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
return false;
dest = SET_DEST (set);
if (! REG_P (dest))
return false;
lra_assert (inher_cl != NO_REGS);
cl = get_reg_class (REGNO (dest));
return (cl != NO_REGS && cl != ALL_REGS
&& SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
#endif
}
/* Registers involved in inheritance/split in the current EBB
(inheritance/split pseudos and original registers). */
static bitmap_head check_only_regs;
/* Do inheritance transformations for insn INSN, which defines (if
DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
instruction in the EBB next uses ORIGINAL_REGNO; it has the same
form as the "insns" field of usage_insns. Return true if we
succeed in such transformation.
The transformations look like:
p <- ... i <- ...
... p <- i (new insn)
... =>
<- ... p ... <- ... i ...
or
... i <- p (new insn)
<- ... p ... <- ... i ...
... =>
<- ... p ... <- ... i ...
where p is a spilled original pseudo and i is a new inheritance pseudo.
The inheritance pseudo has the smallest class of two classes CL and
class of ORIGINAL REGNO. */
static bool
inherit_reload_reg (bool def_p, int original_regno,
enum reg_class cl, rtx insn, rtx next_usage_insns)
{
enum reg_class rclass = lra_get_allocno_class (original_regno);
rtx original_reg = regno_reg_rtx[original_regno];
rtx new_reg, new_insns, usage_insn;
lra_assert (! usage_insns[original_regno].after_p);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
if (! ira_reg_classes_intersect_p[cl][rclass])
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Rejecting inheritance for %d "
"because of disjoint classes %s and %s\n",
original_regno, reg_class_names[cl],
reg_class_names[rclass]);
fprintf (lra_dump_file,
" >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
}
return false;
}
if ((ira_class_subset_p[cl][rclass] && cl != rclass)
/* We don't use a subset of two classes because it can be
NO_REGS. This transformation is still profitable in most
cases even if the classes are not intersected as register
move is probably cheaper than a memory load. */
|| ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
reg_class_names[cl], reg_class_names[rclass]);
rclass = cl;
}
if (check_secondary_memory_needed_p (rclass, next_usage_insns))
{
/* Reject inheritance resulting in secondary memory moves.
Otherwise, there is a danger in LRA cycling. Also such
transformation will be unprofitable. */
if (lra_dump_file != NULL)
{
rtx insn = skip_usage_debug_insns (next_usage_insns);
rtx set = single_set (insn);
lra_assert (set != NULL_RTX);
rtx dest = SET_DEST (set);
lra_assert (REG_P (dest));
fprintf (lra_dump_file,
" Rejecting inheritance for insn %d(%s)<-%d(%s) "
"as secondary mem is needed\n",
REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
original_regno, reg_class_names[rclass]);
fprintf (lra_dump_file,
" >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
}
return false;
}
new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
rclass, "inheritance");
start_sequence ();
if (def_p)
emit_move_insn (original_reg, new_reg);
else
emit_move_insn (new_reg, original_reg);
new_insns = get_insns ();
end_sequence ();
if (NEXT_INSN (new_insns) != NULL_RTX)
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Rejecting inheritance %d->%d "
"as it results in 2 or more insns:\n",
original_regno, REGNO (new_reg));
dump_rtl_slim (lra_dump_file, new_insns, NULL_RTX, -1, 0);
fprintf (lra_dump_file,
" >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
}
return false;
}
substitute_pseudo (&insn, original_regno, new_reg);
lra_update_insn_regno_info (insn);
if (! def_p)
/* We now have a new usage insn for original regno. */
setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
bitmap_set_bit (&check_only_regs, REGNO (new_reg));
bitmap_set_bit (&check_only_regs, original_regno);
bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
if (def_p)
lra_process_new_insns (insn, NULL_RTX, new_insns,
"Add original<-inheritance");
else
lra_process_new_insns (insn, new_insns, NULL_RTX,
"Add inheritance<-original");
while (next_usage_insns != NULL_RTX)
{
if (GET_CODE (next_usage_insns) != INSN_LIST)
{
usage_insn = next_usage_insns;
lra_assert (NONDEBUG_INSN_P (usage_insn));
next_usage_insns = NULL;
}
else
{
usage_insn = XEXP (next_usage_insns, 0);
lra_assert (DEBUG_INSN_P (usage_insn));
next_usage_insns = XEXP (next_usage_insns, 1);
}
substitute_pseudo (&usage_insn, original_regno, new_reg);
lra_update_insn_regno_info (usage_insn);
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Inheritance reuse change %d->%d (bb%d):\n",
original_regno, REGNO (new_reg),
BLOCK_FOR_INSN (usage_insn)->index);
dump_insn_slim (lra_dump_file, usage_insn);
}
}
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
return true;
}
/* Return true if we need a caller save/restore for pseudo REGNO which
was assigned to a hard register. */
static inline bool
need_for_call_save_p (int regno)
{
lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
return (usage_insns[regno].calls_num < calls_num
&& (overlaps_hard_reg_set_p
(call_used_reg_set,
PSEUDO_REGNO_MODE (regno), reg_renumber[regno])));
}
/* Global registers occuring in the current EBB. */
static bitmap_head ebb_global_regs;
/* Return true if we need a split for hard register REGNO or pseudo
REGNO which was assigned to a hard register.
POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
used for reloads since the EBB end. It is an approximation of the
used hard registers in the split range. The exact value would
require expensive calculations. If we were aggressive with
splitting because of the approximation, the split pseudo will save
the same hard register assignment and will be removed in the undo
pass. We still need the approximation because too aggressive
splitting would result in too inaccurate cost calculation in the
assignment pass because of too many generated moves which will be
probably removed in the undo pass. */
static inline bool
need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
{
int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
lra_assert (hard_regno >= 0);
return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
/* Don't split eliminable hard registers, otherwise we can
split hard registers like hard frame pointer, which
lives on BB start/end according to DF-infrastructure,
when there is a pseudo assigned to the register and
living in the same BB. */
&& (regno >= FIRST_PSEUDO_REGISTER
|| ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
&& ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
/* We need at least 2 reloads to make pseudo splitting
profitable. We should provide hard regno splitting in
any case to solve 1st insn scheduling problem when
moving hard register definition up might result in
impossibility to find hard register for reload pseudo of
small register class. */
&& (usage_insns[regno].reloads_num
+ (regno < FIRST_PSEUDO_REGISTER ? 0 : 2) < reloads_num)
&& (regno < FIRST_PSEUDO_REGISTER
/* For short living pseudos, spilling + inheritance can
be considered a substitution for splitting.
Therefore we do not splitting for local pseudos. It
decreases also aggressiveness of splitting. The
minimal number of references is chosen taking into
account that for 2 references splitting has no sense
as we can just spill the pseudo. */
|| (regno >= FIRST_PSEUDO_REGISTER
&& lra_reg_info[regno].nrefs > 3
&& bitmap_bit_p (&ebb_global_regs, regno))))
|| (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
}
/* Return class for the split pseudo created from original pseudo with
ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
results in no secondary memory movements. */
static enum reg_class
choose_split_class (enum reg_class allocno_class,
int hard_regno ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
#ifndef SECONDARY_MEMORY_NEEDED
return allocno_class;
#else
int i;
enum reg_class cl, best_cl = NO_REGS;
enum reg_class hard_reg_class ATTRIBUTE_UNUSED
= REGNO_REG_CLASS (hard_regno);
if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
&& TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
return allocno_class;
for (i = 0;
(cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
i++)
if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
&& ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
&& TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
&& (best_cl == NO_REGS
|| ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
best_cl = cl;
return best_cl;
#endif
}
/* Do split transformations for insn INSN, which defines or uses
ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
the EBB next uses ORIGINAL_REGNO; it has the same form as the
"insns" field of usage_insns.
The transformations look like:
p <- ... p <- ...
... s <- p (new insn -- save)
... =>
... p <- s (new insn -- restore)
<- ... p ... <- ... p ...
or
<- ... p ... <- ... p ...
... s <- p (new insn -- save)
... =>
... p <- s (new insn -- restore)
<- ... p ... <- ... p ...
where p is an original pseudo got a hard register or a hard
register and s is a new split pseudo. The save is put before INSN
if BEFORE_P is true. Return true if we succeed in such
transformation. */
static bool
split_reg (bool before_p, int original_regno, rtx insn, rtx next_usage_insns)
{
enum reg_class rclass;
rtx original_reg;
int hard_regno;
rtx new_reg, save, restore, usage_insn;
bool after_p;
bool call_save_p;
if (original_regno < FIRST_PSEUDO_REGISTER)
{
rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
hard_regno = original_regno;
call_save_p = false;
}
else
{
hard_regno = reg_renumber[original_regno];
rclass = lra_get_allocno_class (original_regno);
original_reg = regno_reg_rtx[original_regno];
call_save_p = need_for_call_save_p (original_regno);
}
original_reg = regno_reg_rtx[original_regno];
lra_assert (hard_regno >= 0);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" ((((((((((((((((((((((((((((((((((((((((((((((((\n");
if (call_save_p)
{
enum machine_mode sec_mode;
#ifdef SECONDARY_MEMORY_NEEDED_MODE
sec_mode = SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (original_reg));
#else
sec_mode = GET_MODE (original_reg);
#endif
new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
NO_REGS, "save");
}
else
{
rclass = choose_split_class (rclass, hard_regno,
GET_MODE (original_reg));
if (rclass == NO_REGS)
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Rejecting split of %d(%s): "
"no good reg class for %d(%s)\n",
original_regno,
reg_class_names[lra_get_allocno_class (original_regno)],
hard_regno,
reg_class_names[REGNO_REG_CLASS (hard_regno)]);
fprintf
(lra_dump_file,
" ))))))))))))))))))))))))))))))))))))))))))))))))\n");
}
return false;
}
new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
rclass, "split");
reg_renumber[REGNO (new_reg)] = hard_regno;
}
save = emit_spill_move (true, new_reg, original_reg);
if (NEXT_INSN (save) != NULL_RTX)
{
lra_assert (! call_save_p);
if (lra_dump_file != NULL)
{
fprintf
(lra_dump_file,
" Rejecting split %d->%d resulting in > 2 %s save insns:\n",
original_regno, REGNO (new_reg), call_save_p ? "call" : "");
dump_rtl_slim (lra_dump_file, save, NULL_RTX, -1, 0);
fprintf (lra_dump_file,
" ))))))))))))))))))))))))))))))))))))))))))))))))\n");
}
return false;
}
restore = emit_spill_move (false, new_reg, original_reg);
if (NEXT_INSN (restore) != NULL_RTX)
{
lra_assert (! call_save_p);
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
" Rejecting split %d->%d "
"resulting in > 2 %s restore insns:\n",
original_regno, REGNO (new_reg), call_save_p ? "call" : "");
dump_rtl_slim (lra_dump_file, restore, NULL_RTX, -1, 0);
fprintf (lra_dump_file,
" ))))))))))))))))))))))))))))))))))))))))))))))))\n");
}
return false;
}
after_p = usage_insns[original_regno].after_p;
lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
bitmap_set_bit (&check_only_regs, REGNO (new_reg));
bitmap_set_bit (&check_only_regs, original_regno);
bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
for (;;)
{
if (GET_CODE (next_usage_insns) != INSN_LIST)
{
usage_insn = next_usage_insns;
break;
}
usage_insn = XEXP (next_usage_insns, 0);
lra_assert (DEBUG_INSN_P (usage_insn));
next_usage_insns = XEXP (next_usage_insns, 1);
substitute_pseudo (&usage_insn, original_regno, new_reg);
lra_update_insn_regno_info (usage_insn);
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
original_regno, REGNO (new_reg));
dump_insn_slim (lra_dump_file, usage_insn);
}
}
lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
lra_assert (usage_insn != insn || (after_p && before_p));
lra_process_new_insns (usage_insn, after_p ? NULL_RTX : restore,
after_p ? restore : NULL_RTX,
call_save_p
? "Add reg<-save" : "Add reg<-split");
lra_process_new_insns (insn, before_p ? save : NULL_RTX,
before_p ? NULL_RTX : save,
call_save_p
? "Add save<-reg" : "Add split<-reg");
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" ))))))))))))))))))))))))))))))))))))))))))))))))\n");
return true;
}
/* Recognize that we need a split transformation for insn INSN, which
defines or uses REGNO in its insn biggest MODE (we use it only if
REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
hard registers which might be used for reloads since the EBB end.
Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
uid before starting INSN processing. Return true if we succeed in
such transformation. */
static bool
split_if_necessary (int regno, enum machine_mode mode,
HARD_REG_SET potential_reload_hard_regs,
bool before_p, rtx insn, int max_uid)
{
bool res = false;
int i, nregs = 1;
rtx next_usage_insns;
if (regno < FIRST_PSEUDO_REGISTER)
nregs = hard_regno_nregs[regno][mode];
for (i = 0; i < nregs; i++)
if (usage_insns[regno + i].check == curr_usage_insns_check
&& (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
/* To avoid processing the register twice or more. */
&& ((GET_CODE (next_usage_insns) != INSN_LIST
&& INSN_UID (next_usage_insns) < max_uid)
|| (GET_CODE (next_usage_insns) == INSN_LIST
&& (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
&& need_for_split_p (potential_reload_hard_regs, regno + i)
&& split_reg (before_p, regno + i, insn, next_usage_insns))
res = true;
return res;
}
/* Check only registers living at the current program point in the
current EBB. */
static bitmap_head live_regs;
/* Update live info in EBB given by its HEAD and TAIL insns after
inheritance/split transformation. The function removes dead moves
too. */
static void
update_ebb_live_info (rtx head, rtx tail)
{
unsigned int j;
int regno;
bool live_p;
rtx prev_insn, set;
bool remove_p;
basic_block last_bb, prev_bb, curr_bb;
bitmap_iterator bi;
struct lra_insn_reg *reg;
edge e;
edge_iterator ei;
last_bb = BLOCK_FOR_INSN (tail);
prev_bb = NULL;
for (curr_insn = tail;
curr_insn != PREV_INSN (head);
curr_insn = prev_insn)
{
prev_insn = PREV_INSN (curr_insn);
/* We need to process empty blocks too. They contain
NOTE_INSN_BASIC_BLOCK referring for the basic block. */
if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
continue;
curr_bb = BLOCK_FOR_INSN (curr_insn);
if (curr_bb != prev_bb)
{
if (prev_bb != NULL)
{
/* Update df_get_live_in (prev_bb): */
EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
if (bitmap_bit_p (&live_regs, j))
bitmap_set_bit (df_get_live_in (prev_bb), j);
else
bitmap_clear_bit (df_get_live_in (prev_bb), j);
}
if (curr_bb != last_bb)
{
/* Update df_get_live_out (curr_bb): */
EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
{
live_p = bitmap_bit_p (&live_regs, j);
if (! live_p)
FOR_EACH_EDGE (e, ei, curr_bb->succs)
if (bitmap_bit_p (df_get_live_in (e->dest), j))
{
live_p = true;
break;
}
if (live_p)
bitmap_set_bit (df_get_live_out (curr_bb), j);
else
bitmap_clear_bit (df_get_live_out (curr_bb), j);
}
}
prev_bb = curr_bb;
bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
}
if (! NONDEBUG_INSN_P (curr_insn))
continue;
curr_id = lra_get_insn_recog_data (curr_insn);
remove_p = false;
if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set))
&& (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
&& bitmap_bit_p (&check_only_regs, regno)
&& ! bitmap_bit_p (&live_regs, regno))
remove_p = true;
/* See which defined values die here. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type == OP_OUT && ! reg->subreg_p)
bitmap_clear_bit (&live_regs, reg->regno);
/* Mark each used value as live. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type == OP_IN
&& bitmap_bit_p (&check_only_regs, reg->regno))
bitmap_set_bit (&live_regs, reg->regno);
/* It is quite important to remove dead move insns because it
means removing dead store. We don't need to process them for
constraints. */
if (remove_p)
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Removing dead insn:\n ");
dump_insn_slim (lra_dump_file, curr_insn);
}
lra_set_insn_deleted (curr_insn);
}
}
}
/* The structure describes info to do an inheritance for the current
insn. We need to collect such info first before doing the
transformations because the transformations change the insn
internal representation. */
struct to_inherit
{
/* Original regno. */
int regno;
/* Subsequent insns which can inherit original reg value. */
rtx insns;
};
/* Array containing all info for doing inheritance from the current
insn. */
static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
/* Number elements in the previous array. */
static int to_inherit_num;
/* Add inheritance info REGNO and INSNS. Their meaning is described in
structure to_inherit. */
static void
add_to_inherit (int regno, rtx insns)
{
int i;
for (i = 0; i < to_inherit_num; i++)
if (to_inherit[i].regno == regno)
return;
lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
to_inherit[to_inherit_num].regno = regno;
to_inherit[to_inherit_num++].insns = insns;
}
/* Return the last non-debug insn in basic block BB, or the block begin
note if none. */
static rtx
get_last_insertion_point (basic_block bb)
{
rtx insn;
FOR_BB_INSNS_REVERSE (bb, insn)
if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
return insn;
gcc_unreachable ();
}
/* Set up RES by registers living on edges FROM except the edge (FROM,
TO) or by registers set up in a jump insn in BB FROM. */
static void
get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
{
rtx last;
struct lra_insn_reg *reg;
edge e;
edge_iterator ei;
lra_assert (to != NULL);
bitmap_clear (res);
FOR_EACH_EDGE (e, ei, from->succs)
if (e->dest != to)
bitmap_ior_into (res, df_get_live_in (e->dest));
last = get_last_insertion_point (from);
if (! JUMP_P (last))
return;
curr_id = lra_get_insn_recog_data (last);
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
bitmap_set_bit (res, reg->regno);
}
/* Used as a temporary results of some bitmap calculations. */
static bitmap_head temp_bitmap;
/* Do inheritance/split transformations in EBB starting with HEAD and
finishing on TAIL. We process EBB insns in the reverse order.
Return true if we did any inheritance/split transformation in the
EBB.
We should avoid excessive splitting which results in worse code
because of inaccurate cost calculations for spilling new split
pseudos in such case. To achieve this we do splitting only if
register pressure is high in given basic block and there are reload
pseudos requiring hard registers. We could do more register
pressure calculations at any given program point to avoid necessary
splitting even more but it is to expensive and the current approach
works well enough. */
static bool
inherit_in_ebb (rtx head, rtx tail)
{
int i, src_regno, dst_regno, nregs;
bool change_p, succ_p;
rtx prev_insn, next_usage_insns, set, last_insn;
enum reg_class cl;
struct lra_insn_reg *reg;
basic_block last_processed_bb, curr_bb = NULL;
HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
bitmap to_process;
unsigned int j;
bitmap_iterator bi;
bool head_p, after_p;
change_p = false;
curr_usage_insns_check++;
reloads_num = calls_num = 0;
bitmap_clear (&check_only_regs);
last_processed_bb = NULL;
CLEAR_HARD_REG_SET (potential_reload_hard_regs);
CLEAR_HARD_REG_SET (live_hard_regs);
/* We don't process new insns generated in the loop. */
for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
{
prev_insn = PREV_INSN (curr_insn);
if (BLOCK_FOR_INSN (curr_insn) != NULL)
curr_bb = BLOCK_FOR_INSN (curr_insn);
if (last_processed_bb != curr_bb)
{
/* We are at the end of BB. Add qualified living
pseudos for potential splitting. */
to_process = df_get_live_out (curr_bb);
if (last_processed_bb != NULL)
{
/* We are somewhere in the middle of EBB. */
get_live_on_other_edges (curr_bb, last_processed_bb,
&temp_bitmap);
to_process = &temp_bitmap;
}
last_processed_bb = curr_bb;
last_insn = get_last_insertion_point (curr_bb);
after_p = (! JUMP_P (last_insn)
&& (! CALL_P (last_insn)
|| (find_reg_note (last_insn,
REG_NORETURN, NULL_RTX) == NULL_RTX
&& ! SIBLING_CALL_P (last_insn))));
REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_out (curr_bb));
IOR_HARD_REG_SET (live_hard_regs, eliminable_regset);
IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
CLEAR_HARD_REG_SET (potential_reload_hard_regs);
EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
{
if ((int) j >= lra_constraint_new_regno_start)
break;
if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
{
if (j < FIRST_PSEUDO_REGISTER)
SET_HARD_REG_BIT (live_hard_regs, j);
else
add_to_hard_reg_set (&live_hard_regs,
PSEUDO_REGNO_MODE (j),
reg_renumber[j]);
setup_next_usage_insn (j, last_insn, reloads_num, after_p);
}
}
}
src_regno = dst_regno = -1;
if (NONDEBUG_INSN_P (curr_insn)
&& (set = single_set (curr_insn)) != NULL_RTX
&& REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
{
src_regno = REGNO (SET_SRC (set));
dst_regno = REGNO (SET_DEST (set));
}
if (src_regno < lra_constraint_new_regno_start
&& src_regno >= FIRST_PSEUDO_REGISTER
&& reg_renumber[src_regno] < 0
&& dst_regno >= lra_constraint_new_regno_start
&& (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
{
/* 'reload_pseudo <- original_pseudo'. */
reloads_num++;
succ_p = false;
if (usage_insns[src_regno].check == curr_usage_insns_check
&& (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
succ_p = inherit_reload_reg (false, src_regno, cl,
curr_insn, next_usage_insns);
if (succ_p)
change_p = true;
else
setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
IOR_HARD_REG_SET (potential_reload_hard_regs,
reg_class_contents[cl]);
}
else if (src_regno >= lra_constraint_new_regno_start
&& dst_regno < lra_constraint_new_regno_start
&& dst_regno >= FIRST_PSEUDO_REGISTER
&& reg_renumber[dst_regno] < 0
&& (cl = lra_get_allocno_class (src_regno)) != NO_REGS
&& usage_insns[dst_regno].check == curr_usage_insns_check
&& (next_usage_insns
= usage_insns[dst_regno].insns) != NULL_RTX)
{
reloads_num++;
/* 'original_pseudo <- reload_pseudo'. */
if (! JUMP_P (curr_insn)
&& inherit_reload_reg (true, dst_regno, cl,
curr_insn, next_usage_insns))
change_p = true;
/* Invalidate. */
usage_insns[dst_regno].check = 0;
if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
IOR_HARD_REG_SET (potential_reload_hard_regs,
reg_class_contents[cl]);
}
else if (INSN_P (curr_insn))
{
int max_uid = get_max_uid ();
curr_id = lra_get_insn_recog_data (curr_insn);
to_inherit_num = 0;
/* Process insn definitions. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& (dst_regno = reg->regno) < lra_constraint_new_regno_start)
{
if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
&& reg_renumber[dst_regno] < 0 && ! reg->subreg_p
&& usage_insns[dst_regno].check == curr_usage_insns_check
&& (next_usage_insns
= usage_insns[dst_regno].insns) != NULL_RTX)
{
struct lra_insn_reg *r;
for (r = curr_id->regs; r != NULL; r = r->next)
if (r->type != OP_OUT && r->regno == dst_regno)
break;
/* Don't do inheritance if the pseudo is also
used in the insn. */
if (r == NULL)
/* We can not do inheritance right now
because the current insn reg info (chain
regs) can change after that. */
add_to_inherit (dst_regno, next_usage_insns);
}
/* We can not process one reg twice here because of
usage_insns invalidation. */
if ((dst_regno < FIRST_PSEUDO_REGISTER
|| reg_renumber[dst_regno] >= 0)
&& ! reg->subreg_p && reg->type == OP_OUT)
{
HARD_REG_SET s;
if (split_if_necessary (dst_regno, reg->biggest_mode,
potential_reload_hard_regs,
false, curr_insn, max_uid))
change_p = true;
CLEAR_HARD_REG_SET (s);
if (dst_regno < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
else
add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
reg_renumber[dst_regno]);
AND_COMPL_HARD_REG_SET (live_hard_regs, s);
}
/* We should invalidate potential inheritance or
splitting for the current insn usages to the next
usage insns (see code below) as the output pseudo
prevents this. */
if ((dst_regno >= FIRST_PSEUDO_REGISTER
&& reg_renumber[dst_regno] < 0)
|| (reg->type == OP_OUT && ! reg->subreg_p
&& (dst_regno < FIRST_PSEUDO_REGISTER
|| reg_renumber[dst_regno] >= 0)))
{
/* Invalidate. */
if (dst_regno >= FIRST_PSEUDO_REGISTER)
usage_insns[dst_regno].check = 0;
else
{
nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
for (i = 0; i < nregs; i++)
usage_insns[dst_regno + i].check = 0;
}
}
}
if (! JUMP_P (curr_insn))
for (i = 0; i < to_inherit_num; i++)
if (inherit_reload_reg (true, to_inherit[i].regno,
ALL_REGS, curr_insn,
to_inherit[i].insns))
change_p = true;
if (CALL_P (curr_insn))
{
rtx cheap, pat, dest, restore;
int regno, hard_regno;
calls_num++;
if ((cheap = find_reg_note (curr_insn,
REG_RETURNED, NULL_RTX)) != NULL_RTX
&& ((cheap = XEXP (cheap, 0)), true)
&& (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
&& (hard_regno = reg_renumber[regno]) >= 0
/* If there are pending saves/restores, the
optimization is not worth. */
&& usage_insns[regno].calls_num == calls_num - 1
&& TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
{
/* Restore the pseudo from the call result as
REG_RETURNED note says that the pseudo value is
in the call result and the pseudo is an argument
of the call. */
pat = PATTERN (curr_insn);
if (GET_CODE (pat) == PARALLEL)
pat = XVECEXP (pat, 0, 0);
dest = SET_DEST (pat);
start_sequence ();
emit_move_insn (cheap, copy_rtx (dest));
restore = get_insns ();
end_sequence ();
lra_process_new_insns (curr_insn, NULL, restore,
"Inserting call parameter restore");
/* We don't need to save/restore of the pseudo from
this call. */
usage_insns[regno].calls_num = calls_num;
bitmap_set_bit (&check_only_regs, regno);
}
}
to_inherit_num = 0;
/* Process insn usages. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if ((reg->type != OP_OUT
|| (reg->type == OP_OUT && reg->subreg_p))
&& (src_regno = reg->regno) < lra_constraint_new_regno_start)
{
if (src_regno >= FIRST_PSEUDO_REGISTER
&& reg_renumber[src_regno] < 0 && reg->type == OP_IN)
{
if (usage_insns[src_regno].check == curr_usage_insns_check
&& (next_usage_insns
= usage_insns[src_regno].insns) != NULL_RTX
&& NONDEBUG_INSN_P (curr_insn))
add_to_inherit (src_regno, next_usage_insns);
else
/* Add usages. */
add_next_usage_insn (src_regno, curr_insn, reloads_num);
}
else if (src_regno < FIRST_PSEUDO_REGISTER
|| reg_renumber[src_regno] >= 0)
{
bool before_p;
rtx use_insn = curr_insn;
before_p = (JUMP_P (curr_insn)
|| (CALL_P (curr_insn) && reg->type == OP_IN));
if (NONDEBUG_INSN_P (curr_insn)
&& split_if_necessary (src_regno, reg->biggest_mode,
potential_reload_hard_regs,
before_p, curr_insn, max_uid))
{
if (reg->subreg_p)
lra_risky_transformations_p = true;
change_p = true;
/* Invalidate. */
usage_insns[src_regno].check = 0;
if (before_p)
use_insn = PREV_INSN (curr_insn);
}
if (NONDEBUG_INSN_P (curr_insn))
{
if (src_regno < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (&live_hard_regs,
reg->biggest_mode, src_regno);
else
add_to_hard_reg_set (&live_hard_regs,
PSEUDO_REGNO_MODE (src_regno),
reg_renumber[src_regno]);
}
add_next_usage_insn (src_regno, use_insn, reloads_num);
}
}
for (i = 0; i < to_inherit_num; i++)
{
src_regno = to_inherit[i].regno;
if (inherit_reload_reg (false, src_regno, ALL_REGS,
curr_insn, to_inherit[i].insns))
change_p = true;
else
setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
}
}
/* We reached the start of the current basic block. */
if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
|| BLOCK_FOR_INSN (prev_insn) != curr_bb)
{
/* We reached the beginning of the current block -- do
rest of spliting in the current BB. */
to_process = df_get_live_in (curr_bb);
if (BLOCK_FOR_INSN (head) != curr_bb)
{
/* We are somewhere in the middle of EBB. */
get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
curr_bb, &temp_bitmap);
to_process = &temp_bitmap;
}
head_p = true;
EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
{
if ((int) j >= lra_constraint_new_regno_start)
break;
if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
&& usage_insns[j].check == curr_usage_insns_check
&& (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
{
if (need_for_split_p (potential_reload_hard_regs, j))
{
if (lra_dump_file != NULL && head_p)
{
fprintf (lra_dump_file,
" ----------------------------------\n");
head_p = false;
}
if (split_reg (false, j, bb_note (curr_bb),
next_usage_insns))
change_p = true;
}
usage_insns[j].check = 0;
}
}
}
}
return change_p;
}
/* This value affects EBB forming. If probability of edge from EBB to
a BB is not greater than the following value, we don't add the BB
to EBB. */
#define EBB_PROBABILITY_CUTOFF (REG_BR_PROB_BASE / 2)
/* Current number of inheritance/split iteration. */
int lra_inheritance_iter;
/* Entry function for inheritance/split pass. */
void
lra_inheritance (void)
{
int i;
basic_block bb, start_bb;
edge e;
lra_inheritance_iter++;
if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
return;
timevar_push (TV_LRA_INHERITANCE);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
lra_inheritance_iter);
curr_usage_insns_check = 0;
usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
for (i = 0; i < lra_constraint_new_regno_start; i++)
usage_insns[i].check = 0;
bitmap_initialize (&check_only_regs, ®_obstack);
bitmap_initialize (&live_regs, ®_obstack);
bitmap_initialize (&temp_bitmap, ®_obstack);
bitmap_initialize (&ebb_global_regs, ®_obstack);
FOR_EACH_BB (bb)
{
start_bb = bb;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "EBB");
/* Form a EBB starting with BB. */
bitmap_clear (&ebb_global_regs);
bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
for (;;)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " %d", bb->index);
if (bb->next_bb == EXIT_BLOCK_PTR || LABEL_P (BB_HEAD (bb->next_bb)))
break;
e = find_fallthru_edge (bb->succs);
if (! e)
break;
if (e->probability <= EBB_PROBABILITY_CUTOFF)
break;
bb = bb->next_bb;
}
bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n");
if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
/* Remember that the EBB head and tail can change in
inherit_in_ebb. */
update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
}
bitmap_clear (&ebb_global_regs);
bitmap_clear (&temp_bitmap);
bitmap_clear (&live_regs);
bitmap_clear (&check_only_regs);
free (usage_insns);
timevar_pop (TV_LRA_INHERITANCE);
}
/* This page contains code to undo failed inheritance/split
transformations. */
/* Current number of iteration undoing inheritance/split. */
int lra_undo_inheritance_iter;
/* Fix BB live info LIVE after removing pseudos created on pass doing
inheritance/split which are REMOVED_PSEUDOS. */
static void
fix_bb_live_info (bitmap live, bitmap removed_pseudos)
{
unsigned int regno;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
if (bitmap_clear_bit (live, regno))
bitmap_set_bit (live, lra_reg_info[regno].restore_regno);
}
/* Return regno of the (subreg of) REG. Otherwise, return a negative
number. */
static int
get_regno (rtx reg)
{
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (REG_P (reg))
return REGNO (reg);
return -1;
}
/* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
return true if we did any change. The undo transformations for
inheritance looks like
i <- i2
p <- i => p <- i2
or removing
p <- i, i <- p, and i <- i3
where p is original pseudo from which inheritance pseudo i was
created, i and i3 are removed inheritance pseudos, i2 is another
not removed inheritance pseudo. All split pseudos or other
occurrences of removed inheritance pseudos are changed on the
corresponding original pseudos.
The function also schedules insns changed and created during
inheritance/split pass for processing by the subsequent constraint
pass. */
static bool
remove_inheritance_pseudos (bitmap remove_pseudos)
{
basic_block bb;
int regno, sregno, prev_sregno, dregno, restore_regno;
rtx set, prev_set, prev_insn;
bool change_p, done_p;
change_p = ! bitmap_empty_p (remove_pseudos);
/* We can not finish the function right away if CHANGE_P is true
because we need to marks insns affected by previous
inheritance/split pass for processing by the subsequent
constraint pass. */
FOR_EACH_BB (bb)
{
fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
FOR_BB_INSNS_REVERSE (bb, curr_insn)
{
if (! INSN_P (curr_insn))
continue;
done_p = false;
sregno = dregno = -1;
if (change_p && NONDEBUG_INSN_P (curr_insn)
&& (set = single_set (curr_insn)) != NULL_RTX)
{
dregno = get_regno (SET_DEST (set));
sregno = get_regno (SET_SRC (set));
}
if (sregno >= 0 && dregno >= 0)
{
if ((bitmap_bit_p (remove_pseudos, sregno)
&& (lra_reg_info[sregno].restore_regno == dregno
|| (bitmap_bit_p (remove_pseudos, dregno)
&& (lra_reg_info[sregno].restore_regno
== lra_reg_info[dregno].restore_regno))))
|| (bitmap_bit_p (remove_pseudos, dregno)
&& lra_reg_info[dregno].restore_regno == sregno))
/* One of the following cases:
original <- removed inheritance pseudo
removed inherit pseudo <- another removed inherit pseudo
removed inherit pseudo <- original pseudo
Or
removed_split_pseudo <- original_reg
original_reg <- removed_split_pseudo */
{
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Removing %s:\n",
bitmap_bit_p (&lra_split_regs, sregno)
|| bitmap_bit_p (&lra_split_regs, dregno)
? "split" : "inheritance");
dump_insn_slim (lra_dump_file, curr_insn);
}
lra_set_insn_deleted (curr_insn);
done_p = true;
}
else if (bitmap_bit_p (remove_pseudos, sregno)
&& bitmap_bit_p (&lra_inheritance_pseudos, sregno))
{
/* Search the following pattern:
inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
original_pseudo <- inherit_or_split_pseudo1
where the 2nd insn is the current insn and
inherit_or_split_pseudo2 is not removed. If it is found,
change the current insn onto:
original_pseudo <- inherit_or_split_pseudo2. */
for (prev_insn = PREV_INSN (curr_insn);
prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
prev_insn = PREV_INSN (prev_insn))
;
if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
&& (prev_set = single_set (prev_insn)) != NULL_RTX
/* There should be no subregs in insn we are
searching because only the original reg might
be in subreg when we changed the mode of
load/store for splitting. */
&& REG_P (SET_DEST (prev_set))
&& REG_P (SET_SRC (prev_set))
&& (int) REGNO (SET_DEST (prev_set)) == sregno
&& ((prev_sregno = REGNO (SET_SRC (prev_set)))
>= FIRST_PSEUDO_REGISTER)
/* As we consider chain of inheritance or
splitting described in above comment we should
check that sregno and prev_sregno were
inheritance/split pseudos created from the
same original regno. */
&& (lra_reg_info[sregno].restore_regno
== lra_reg_info[prev_sregno].restore_regno)
&& ! bitmap_bit_p (remove_pseudos, prev_sregno))
{
lra_assert (GET_MODE (SET_SRC (prev_set))
== GET_MODE (regno_reg_rtx[sregno]));
if (GET_CODE (SET_SRC (set)) == SUBREG)
SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
else
SET_SRC (set) = SET_SRC (prev_set);
lra_push_insn_and_update_insn_regno_info (curr_insn);
lra_set_used_insn_alternative_by_uid
(INSN_UID (curr_insn), -1);
done_p = true;
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Change reload insn:\n");
dump_insn_slim (lra_dump_file, curr_insn);
}
}
}
}
if (! done_p)
{
struct lra_insn_reg *reg;
bool restored_regs_p = false;
bool kept_regs_p = false;
curr_id = lra_get_insn_recog_data (curr_insn);
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
{
regno = reg->regno;
restore_regno = lra_reg_info[regno].restore_regno;
if (restore_regno >= 0)
{
if (change_p && bitmap_bit_p (remove_pseudos, regno))
{
substitute_pseudo (&curr_insn, regno,
regno_reg_rtx[restore_regno]);
restored_regs_p = true;
}
else
kept_regs_p = true;
}
}
if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
{
/* The instruction has changed since the previous
constraints pass. */
lra_push_insn_and_update_insn_regno_info (curr_insn);
lra_set_used_insn_alternative_by_uid
(INSN_UID (curr_insn), -1);
}
else if (restored_regs_p)
/* The instruction has been restored to the form that
it had during the previous constraints pass. */
lra_update_insn_regno_info (curr_insn);
if (restored_regs_p && lra_dump_file != NULL)
{
fprintf (lra_dump_file, " Insn after restoring regs:\n");
dump_insn_slim (lra_dump_file, curr_insn);
}
}
}
}
return change_p;
}
/* Entry function for undoing inheritance/split transformation. Return true
if we did any RTL change in this pass. */
bool
lra_undo_inheritance (void)
{
unsigned int regno;
int restore_regno, hard_regno;
int n_all_inherit, n_inherit, n_all_split, n_split;
bitmap_head remove_pseudos;
bitmap_iterator bi;
bool change_p;
lra_undo_inheritance_iter++;
if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
return false;
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
"\n********** Undoing inheritance #%d: **********\n\n",
lra_undo_inheritance_iter);
bitmap_initialize (&remove_pseudos, ®_obstack);
n_inherit = n_all_inherit = 0;
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
if (lra_reg_info[regno].restore_regno >= 0)
{
n_all_inherit++;
if (reg_renumber[regno] < 0)
bitmap_set_bit (&remove_pseudos, regno);
else
n_inherit++;
}
if (lra_dump_file != NULL && n_all_inherit != 0)
fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
n_inherit, n_all_inherit,
(double) n_inherit / n_all_inherit * 100);
n_split = n_all_split = 0;
EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0)
{
n_all_split++;
hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
? reg_renumber[restore_regno] : restore_regno);
if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
bitmap_set_bit (&remove_pseudos, regno);
else
{
n_split++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
regno, restore_regno);
}
}
if (lra_dump_file != NULL && n_all_split != 0)
fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
n_split, n_all_split,
(double) n_split / n_all_split * 100);
change_p = remove_inheritance_pseudos (&remove_pseudos);
bitmap_clear (&remove_pseudos);
/* Clear restore_regnos. */
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
lra_reg_info[regno].restore_regno = -1;
EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
lra_reg_info[regno].restore_regno = -1;
return change_p;
}
|