summaryrefslogtreecommitdiff
path: root/gcc/match.pd
blob: fc374de4121b98d990c336f1348f4b743157bfb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
   This file is consumed by genmatch which produces gimple-match.c
   and generic-match.c from it.

   Copyright (C) 2014-2015 Free Software Foundation, Inc.
   Contributed by Richard Biener <rguenther@suse.de>
   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* Generic tree predicates we inherit.  */
(define_predicates
   integer_onep integer_zerop integer_all_onesp integer_minus_onep
   integer_each_onep integer_truep
   real_zerop real_onep real_minus_onep
   CONSTANT_CLASS_P
   tree_expr_nonnegative_p)

/* Operator lists.  */
(define_operator_list tcc_comparison
  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
(define_operator_list inverted_tcc_comparison
  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
(define_operator_list inverted_tcc_comparison_with_nans
  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)


/* Simplifications of operations with one constant operand and
   simplifications to constants or single values.  */

(for op (plus pointer_plus minus bit_ior bit_xor)
  (simplify
    (op @0 integer_zerop)
    (non_lvalue @0)))

/* 0 +p index -> (type)index */
(simplify
 (pointer_plus integer_zerop @1)
 (non_lvalue (convert @1)))

/* See if ARG1 is zero and X + ARG1 reduces to X.
   Likewise if the operands are reversed.  */
(simplify
 (plus:c @0 real_zerop@1)
 (if (fold_real_zero_addition_p (type, @1, 0))
  (non_lvalue @0)))

/* See if ARG1 is zero and X - ARG1 reduces to X.  */
(simplify
 (minus @0 real_zerop@1)
 (if (fold_real_zero_addition_p (type, @1, 1))
  (non_lvalue @0)))

/* Simplify x - x.
   This is unsafe for certain floats even in non-IEEE formats.
   In IEEE, it is unsafe because it does wrong for NaNs.
   Also note that operand_equal_p is always false if an operand
   is volatile.  */
(simplify
 (minus @0 @0)
 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
  { build_zero_cst (type); }))

(simplify
 (mult @0 integer_zerop@1)
 @1)

/* Maybe fold x * 0 to 0.  The expressions aren't the same
   when x is NaN, since x * 0 is also NaN.  Nor are they the
   same in modes with signed zeros, since multiplying a
   negative value by 0 gives -0, not +0.  */
(simplify
 (mult @0 real_zerop@1)
 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
  @1))

/* In IEEE floating point, x*1 is not equivalent to x for snans.
   Likewise for complex arithmetic with signed zeros.  */
(simplify
 (mult @0 real_onep)
 (if (!HONOR_SNANS (element_mode (type))
      && (!HONOR_SIGNED_ZEROS (element_mode (type))
          || !COMPLEX_FLOAT_TYPE_P (type)))
  (non_lvalue @0)))

/* Transform x * -1.0 into -x.  */
(simplify
 (mult @0 real_minus_onep)
  (if (!HONOR_SNANS (element_mode (type))
       && (!HONOR_SIGNED_ZEROS (element_mode (type))
           || !COMPLEX_FLOAT_TYPE_P (type)))
   (negate @0)))

/* Make sure to preserve divisions by zero.  This is the reason why
   we don't simplify x / x to 1 or 0 / x to 0.  */
(for op (mult trunc_div ceil_div floor_div round_div exact_div)
  (simplify
    (op @0 integer_onep)
    (non_lvalue @0)))

/* X / -1 is -X.  */
(for div (trunc_div ceil_div floor_div round_div exact_div)
 (simplify
   (div @0 integer_minus_onep@1)
   (if (!TYPE_UNSIGNED (type))
    (negate @0))))

/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
(simplify
 (floor_div @0 @1)
 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
      && TYPE_UNSIGNED (type))
  (trunc_div @0 @1)))

/* Combine two successive divisions.  Note that combining ceil_div
   and floor_div is trickier and combining round_div even more so.  */
(for div (trunc_div exact_div)
 (simplify
  (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
  (with {
    bool overflow_p;
    wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
   }
   (if (!overflow_p)
    (div @0 { wide_int_to_tree (type, mul); }))
   (if (overflow_p
        && (TYPE_UNSIGNED (type)
	    || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
    { build_zero_cst (type); }))))

/* Optimize A / A to 1.0 if we don't care about
   NaNs or Infinities.  */
(simplify
 (rdiv @0 @0)
 (if (FLOAT_TYPE_P (type)
      && ! HONOR_NANS (type)
      && ! HONOR_INFINITIES (element_mode (type)))
  { build_one_cst (type); }))

/* Optimize -A / A to -1.0 if we don't care about
   NaNs or Infinities.  */
(simplify
 (rdiv:c @0 (negate @0))
 (if (FLOAT_TYPE_P (type)
      && ! HONOR_NANS (type)
      && ! HONOR_INFINITIES (element_mode (type)))
  { build_minus_one_cst (type); }))

/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
(simplify
 (rdiv @0 real_onep)
 (if (!HONOR_SNANS (element_mode (type)))
  (non_lvalue @0)))

/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
(simplify
 (rdiv @0 real_minus_onep)
 (if (!HONOR_SNANS (element_mode (type)))
  (negate @0)))

/* If ARG1 is a constant, we can convert this to a multiply by the
   reciprocal.  This does not have the same rounding properties,
   so only do this if -freciprocal-math.  We can actually
   always safely do it if ARG1 is a power of two, but it's hard to
   tell if it is or not in a portable manner.  */
(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
 (simplify
  (rdiv @0 cst@1)
  (if (optimize)
   (if (flag_reciprocal_math
	&& !real_zerop (@1))
    (with
     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
     (if (tem)
      (mult @0 { tem; } ))))
   (if (cst != COMPLEX_CST)
    (with { tree inverse = exact_inverse (type, @1); }
     (if (inverse)
      (mult @0 { inverse; } )))))))

/* Same applies to modulo operations, but fold is inconsistent here
   and simplifies 0 % x to 0, only preserving literal 0 % 0.  */
(for mod (ceil_mod floor_mod round_mod trunc_mod)
 /* 0 % X is always zero.  */
 (simplify
  (mod integer_zerop@0 @1)
  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
  (if (!integer_zerop (@1))
   @0))
 /* X % 1 is always zero.  */
 (simplify
  (mod @0 integer_onep)
  { build_zero_cst (type); })
 /* X % -1 is zero.  */
 (simplify
  (mod @0 integer_minus_onep@1)
  (if (!TYPE_UNSIGNED (type))
   { build_zero_cst (type); })))

/* X % -C is the same as X % C.  */
(simplify
 (trunc_mod @0 INTEGER_CST@1)
  (if (TYPE_SIGN (type) == SIGNED
       && !TREE_OVERFLOW (@1)
       && wi::neg_p (@1)
       && !TYPE_OVERFLOW_TRAPS (type)
       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
       && !sign_bit_p (@1, @1))
   (trunc_mod @0 (negate @1))))

/* x | ~0 -> ~0  */
(simplify
  (bit_ior @0 integer_all_onesp@1)
  @1)

/* x & 0 -> 0  */
(simplify
  (bit_and @0 integer_zerop@1)
  @1)

/* x ^ x -> 0 */
(simplify
  (bit_xor @0 @0)
  { build_zero_cst (type); })

/* Canonicalize X ^ ~0 to ~X.  */
(simplify
  (bit_xor @0 integer_all_onesp@1)
  (bit_not @0))

/* x & ~0 -> x  */
(simplify
 (bit_and @0 integer_all_onesp)
  (non_lvalue @0))

/* x & x -> x,  x | x -> x  */
(for bitop (bit_and bit_ior)
 (simplify
  (bitop @0 @0)
  (non_lvalue @0)))

(simplify
 (abs (negate @0))
 (abs @0))
(simplify
 (abs tree_expr_nonnegative_p@0)
 @0)


/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
   when profitable.
   For bitwise binary operations apply operand conversions to the
   binary operation result instead of to the operands.  This allows
   to combine successive conversions and bitwise binary operations.
   We combine the above two cases by using a conditional convert.  */
(for bitop (bit_and bit_ior bit_xor)
 (simplify
  (bitop (convert @0) (convert? @1))
  (if (((TREE_CODE (@1) == INTEGER_CST
	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
	 && int_fits_type_p (@1, TREE_TYPE (@0)))
	|| (GIMPLE && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1)))
	|| (GENERIC && TREE_TYPE (@0) == TREE_TYPE (@1)))
       /* ???  This transform conflicts with fold-const.c doing
	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
	  constants (if x has signed type, the sign bit cannot be set
	  in c).  This folds extension into the BIT_AND_EXPR.
	  Restrict it to GIMPLE to avoid endless recursions.  */
       && (bitop != BIT_AND_EXPR || GIMPLE)
       && (/* That's a good idea if the conversion widens the operand, thus
	      after hoisting the conversion the operation will be narrower.  */
	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
	   /* It's also a good idea if the conversion is to a non-integer
	      mode.  */
	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
	   /* Or if the precision of TO is not the same as the precision
	      of its mode.  */
	   || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
   (convert (bitop @0 (convert @1))))))

/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
(for bitop (bit_and bit_ior bit_xor)
 (simplify
  (bitop (bit_and:c @0 @1) (bit_and @2 @1))
  (bit_and (bitop @0 @2) @1)))

/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
(simplify
  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))

/* Combine successive equal operations with constants.  */
(for bitop (bit_and bit_ior bit_xor)
 (simplify
  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
  (bitop @0 (bitop @1 @2))))

/* Try simple folding for X op !X, and X op X with the help
   of the truth_valued_p and logical_inverted_value predicates.  */
(match truth_valued_p
 @0
 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
 (match truth_valued_p
  (op @0 @1)))
(match truth_valued_p
  (truth_not @0))

(match (logical_inverted_value @0)
 (bit_not truth_valued_p@0))
(match (logical_inverted_value @0)
 (eq @0 integer_zerop))
(match (logical_inverted_value @0)
 (ne truth_valued_p@0 integer_truep))
(match (logical_inverted_value @0)
 (bit_xor truth_valued_p@0 integer_truep))

/* X & !X -> 0.  */
(simplify
 (bit_and:c @0 (logical_inverted_value @0))
 { build_zero_cst (type); })
/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
(for op (bit_ior bit_xor)
 (simplify
  (op:c truth_valued_p@0 (logical_inverted_value @0))
  { constant_boolean_node (true, type); }))

(for bitop (bit_and bit_ior)
     rbitop (bit_ior bit_and)
  /* (x | y) & x -> x */
  /* (x & y) | x -> x */
 (simplify
  (bitop:c (rbitop:c @0 @1) @0)
  @0)
 /* (~x | y) & x -> x & y */
 /* (~x & y) | x -> x | y */
 (simplify
  (bitop:c (rbitop:c (bit_not @0) @1) @0)
  (bitop @0 @1)))

/* If arg1 and arg2 are booleans (or any single bit type)
   then try to simplify:

   (~X & Y) -> X < Y
   (X & ~Y) -> Y < X
   (~X | Y) -> X <= Y
   (X | ~Y) -> Y <= X

   But only do this if our result feeds into a comparison as
   this transformation is not always a win, particularly on
   targets with and-not instructions.
   -> simplify_bitwise_binary_boolean */
(simplify
  (ne (bit_and:c (bit_not @0) @1) integer_zerop)
  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
       && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
   (lt @0 @1)))
(simplify
  (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
       && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
   (le @0 @1)))

/* ~~x -> x */
(simplify
  (bit_not (bit_not @0))
  @0)

/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
(simplify
  (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
  (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
	&& (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
   (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))


/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
(simplify
  (pointer_plus (pointer_plus@2 @0 @1) @3)
  (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
   (pointer_plus @0 (plus @1 @3))))

/* Pattern match
     tem1 = (long) ptr1;
     tem2 = (long) ptr2;
     tem3 = tem2 - tem1;
     tem4 = (unsigned long) tem3;
     tem5 = ptr1 + tem4;
   and produce
     tem5 = ptr2;  */
(simplify
  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
  /* Conditionally look through a sign-changing conversion.  */
  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
	    || (GENERIC && type == TREE_TYPE (@1))))
   @1))

/* Pattern match
     tem = (sizetype) ptr;
     tem = tem & algn;
     tem = -tem;
     ... = ptr p+ tem;
   and produce the simpler and easier to analyze with respect to alignment
     ... = ptr & ~algn;  */
(simplify
  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
   (bit_and @0 { algn; })))


/* We can't reassociate at all for saturating types.  */
(if (!TYPE_SATURATING (type))

 /* Contract negates.  */
 /* A + (-B) -> A - B */
 (simplify
  (plus:c (convert1? @0) (convert2? (negate @1)))
  /* Apply STRIP_NOPS on @0 and the negate.  */
  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
       && tree_nop_conversion_p (type, TREE_TYPE (@1))
       && !TYPE_OVERFLOW_SANITIZED (type))
   (minus (convert @0) (convert @1))))
 /* A - (-B) -> A + B */
 (simplify
  (minus (convert1? @0) (convert2? (negate @1)))
  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
       && tree_nop_conversion_p (type, TREE_TYPE (@1))
       && !TYPE_OVERFLOW_SANITIZED (type))
   (plus (convert @0) (convert @1))))
 /* -(-A) -> A */
 (simplify
  (negate (convert? (negate @1)))
  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
       && !TYPE_OVERFLOW_SANITIZED (type))
   (convert @1)))

 /* We can't reassociate floating-point or fixed-point plus or minus
    because of saturation to +-Inf.  */
 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))

  /* Match patterns that allow contracting a plus-minus pair
     irrespective of overflow issues.  */
  /* (A +- B) - A       ->  +- B */
  /* (A +- B) -+ B      ->  A */
  /* A - (A +- B)       -> -+ B */
  /* A +- (B -+ A)      ->  +- B */
  (simplify
    (minus (plus:c @0 @1) @0)
    @1)
  (simplify
    (minus (minus @0 @1) @0)
    (negate @1))
  (simplify
    (plus:c (minus @0 @1) @1)
    @0)
  (simplify
   (minus @0 (plus:c @0 @1))
   (negate @1))
  (simplify
   (minus @0 (minus @0 @1))
   @1)

  /* (A +- CST) +- CST -> A + CST  */
  (for outer_op (plus minus)
   (for inner_op (plus minus)
    (simplify
     (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
     /* If the constant operation overflows we cannot do the transform
	as we would introduce undefined overflow, for example
	with (a - 1) + INT_MIN.  */
     (with { tree cst = fold_binary (outer_op == inner_op
				     ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
      (if (cst && !TREE_OVERFLOW (cst))
       (inner_op @0 { cst; } ))))))

  /* (CST - A) +- CST -> CST - A  */
  (for outer_op (plus minus)
   (simplify
    (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
    (with { tree cst = fold_binary (outer_op, type, @1, @2); }
     (if (cst && !TREE_OVERFLOW (cst))
      (minus { cst; } @0)))))

  /* ~A + A -> -1 */
  (simplify
   (plus:c (bit_not @0) @0)
   (if (!TYPE_OVERFLOW_TRAPS (type))
    { build_all_ones_cst (type); }))

  /* ~A + 1 -> -A */
  (simplify
   (plus (convert? (bit_not @0)) integer_each_onep)
   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
    (negate (convert @0))))

  /* -A - 1 -> ~A */
  (simplify
   (minus (convert? (negate @0)) integer_each_onep)
   (if (!TYPE_OVERFLOW_TRAPS (type)
	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
    (bit_not (convert @0))))

  /* -1 - A -> ~A */
  (simplify
   (minus integer_all_onesp @0)
   (if (TREE_CODE (type) != COMPLEX_TYPE)
    (bit_not @0)))

  /* (T)(P + A) - (T)P -> (T) A */
  (for add (plus pointer_plus)
   (simplify
    (minus (convert (add @0 @1))
     (convert @0))
    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
	 /* For integer types, if A has a smaller type
	    than T the result depends on the possible
	    overflow in P + A.
	    E.g. T=size_t, A=(unsigned)429497295, P>0.
	    However, if an overflow in P + A would cause
	    undefined behavior, we can assume that there
	    is no overflow.  */
	 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
	 /* For pointer types, if the conversion of A to the
	    final type requires a sign- or zero-extension,
	    then we have to punt - it is not defined which
	    one is correct.  */
	 || (POINTER_TYPE_P (TREE_TYPE (@0))
	     && TREE_CODE (@1) == INTEGER_CST
	     && tree_int_cst_sign_bit (@1) == 0))
     (convert @1))))))


/* Simplifications of MIN_EXPR and MAX_EXPR.  */

(for minmax (min max)
 (simplify
  (minmax @0 @0)
  @0))
(simplify
 (min @0 @1)
 (if (INTEGRAL_TYPE_P (type)
      && TYPE_MIN_VALUE (type)
      && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
  @1))
(simplify
 (max @0 @1)
 (if (INTEGRAL_TYPE_P (type)
      && TYPE_MAX_VALUE (type)
      && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
  @1))


/* Simplifications of shift and rotates.  */

(for rotate (lrotate rrotate)
 (simplify
  (rotate integer_all_onesp@0 @1)
  @0))

/* Optimize -1 >> x for arithmetic right shifts.  */
(simplify
 (rshift integer_all_onesp@0 @1)
 (if (!TYPE_UNSIGNED (type)
      && tree_expr_nonnegative_p (@1))
  @0))

(for shiftrotate (lrotate rrotate lshift rshift)
 (simplify
  (shiftrotate @0 integer_zerop)
  (non_lvalue @0))
 (simplify
  (shiftrotate integer_zerop@0 @1)
  @0)
 /* Prefer vector1 << scalar to vector1 << vector2
    if vector2 is uniform.  */
 (for vec (VECTOR_CST CONSTRUCTOR)
  (simplify
   (shiftrotate @0 vec@1)
   (with { tree tem = uniform_vector_p (@1); }
    (if (tem)
     (shiftrotate @0 { tem; }))))))

/* Rewrite an LROTATE_EXPR by a constant into an
   RROTATE_EXPR by a new constant.  */
(simplify
 (lrotate @0 INTEGER_CST@1)
 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
			    build_int_cst (TREE_TYPE (@1),
					   element_precision (type)), @1); }))

/* ((1 << A) & 1) != 0 -> A == 0
   ((1 << A) & 1) == 0 -> A != 0 */
(for cmp (ne eq)
     icmp (eq ne)
 (simplify
  (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
  (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))

/* Simplifications of conversions.  */

/* Basic strip-useless-type-conversions / strip_nops.  */
(for cvt (convert view_convert float fix_trunc)
 (simplify
  (cvt @0)
  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
       || (GENERIC && type == TREE_TYPE (@0)))
   @0)))

/* Contract view-conversions.  */
(simplify
  (view_convert (view_convert @0))
  (view_convert @0))

/* For integral conversions with the same precision or pointer
   conversions use a NOP_EXPR instead.  */
(simplify
  (view_convert @0)
  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
   (convert @0)))

/* Strip inner integral conversions that do not change precision or size.  */
(simplify
  (view_convert (convert@0 @1))
  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
       && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
   (view_convert @1)))

/* Re-association barriers around constants and other re-association
   barriers can be removed.  */
(simplify
 (paren CONSTANT_CLASS_P@0)
 @0)
(simplify
 (paren (paren@1 @0))
 @1)

/* Handle cases of two conversions in a row.  */
(for ocvt (convert float fix_trunc)
 (for icvt (convert float)
  (simplify
   (ocvt (icvt@1 @0))
   (with
    {
      tree inside_type = TREE_TYPE (@0);
      tree inter_type = TREE_TYPE (@1);
      int inside_int = INTEGRAL_TYPE_P (inside_type);
      int inside_ptr = POINTER_TYPE_P (inside_type);
      int inside_float = FLOAT_TYPE_P (inside_type);
      int inside_vec = VECTOR_TYPE_P (inside_type);
      unsigned int inside_prec = TYPE_PRECISION (inside_type);
      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
      int inter_int = INTEGRAL_TYPE_P (inter_type);
      int inter_ptr = POINTER_TYPE_P (inter_type);
      int inter_float = FLOAT_TYPE_P (inter_type);
      int inter_vec = VECTOR_TYPE_P (inter_type);
      unsigned int inter_prec = TYPE_PRECISION (inter_type);
      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
      int final_int = INTEGRAL_TYPE_P (type);
      int final_ptr = POINTER_TYPE_P (type);
      int final_float = FLOAT_TYPE_P (type);
      int final_vec = VECTOR_TYPE_P (type);
      unsigned int final_prec = TYPE_PRECISION (type);
      int final_unsignedp = TYPE_UNSIGNED (type);
    }
   /* In addition to the cases of two conversions in a row
      handled below, if we are converting something to its own
      type via an object of identical or wider precision, neither
      conversion is needed.  */
   (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
	 || (GENERIC
	     && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
	&& (((inter_int || inter_ptr) && final_int)
	    || (inter_float && final_float))
	&& inter_prec >= final_prec)
    (ocvt @0))

   /* Likewise, if the intermediate and initial types are either both
      float or both integer, we don't need the middle conversion if the
      former is wider than the latter and doesn't change the signedness
      (for integers).  Avoid this if the final type is a pointer since
      then we sometimes need the middle conversion.  Likewise if the
      final type has a precision not equal to the size of its mode.  */
   (if (((inter_int && inside_int)
	 || (inter_float && inside_float)
	 || (inter_vec && inside_vec))
	&& inter_prec >= inside_prec
	&& (inter_float || inter_vec
	    || inter_unsignedp == inside_unsignedp)
	&& ! (final_prec != GET_MODE_PRECISION (element_mode (type))
	      && element_mode (type) == element_mode (inter_type))
	&& ! final_ptr
	&& (! final_vec || inter_prec == inside_prec))
    (ocvt @0))

   /* If we have a sign-extension of a zero-extended value, we can
      replace that by a single zero-extension.  Likewise if the
      final conversion does not change precision we can drop the
      intermediate conversion.  */
   (if (inside_int && inter_int && final_int
	&& ((inside_prec < inter_prec && inter_prec < final_prec
	     && inside_unsignedp && !inter_unsignedp)
	    || final_prec == inter_prec))
    (ocvt @0))

   /* Two conversions in a row are not needed unless:
	- some conversion is floating-point (overstrict for now), or
	- some conversion is a vector (overstrict for now), or
	- the intermediate type is narrower than both initial and
	  final, or
	- the intermediate type and innermost type differ in signedness,
	  and the outermost type is wider than the intermediate, or
	- the initial type is a pointer type and the precisions of the
	  intermediate and final types differ, or
	- the final type is a pointer type and the precisions of the
	  initial and intermediate types differ.  */
   (if (! inside_float && ! inter_float && ! final_float
	&& ! inside_vec && ! inter_vec && ! final_vec
	&& (inter_prec >= inside_prec || inter_prec >= final_prec)
	&& ! (inside_int && inter_int
	      && inter_unsignedp != inside_unsignedp
	      && inter_prec < final_prec)
	&& ((inter_unsignedp && inter_prec > inside_prec)
	    == (final_unsignedp && final_prec > inter_prec))
	&& ! (inside_ptr && inter_prec != final_prec)
	&& ! (final_ptr && inside_prec != inter_prec)
	&& ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
	      && TYPE_MODE (type) == TYPE_MODE (inter_type)))
    (ocvt @0))

   /* A truncation to an unsigned type (a zero-extension) should be
      canonicalized as bitwise and of a mask.  */
   (if (final_int && inter_int && inside_int
	&& final_prec == inside_prec
	&& final_prec > inter_prec
	&& inter_unsignedp)
    (convert (bit_and @0 { wide_int_to_tree
	                     (inside_type,
			      wi::mask (inter_prec, false,
					TYPE_PRECISION (inside_type))); })))

   /* If we are converting an integer to a floating-point that can
      represent it exactly and back to an integer, we can skip the
      floating-point conversion.  */
   (if (inside_int && inter_float && final_int &&
	(unsigned) significand_size (TYPE_MODE (inter_type))
	>= inside_prec - !inside_unsignedp)
    (convert @0))))))

/* If we have a narrowing conversion to an integral type that is fed by a
   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
   masks off bits outside the final type (and nothing else).  */
(simplify
  (convert (bit_and @0 INTEGER_CST@1))
  (if (INTEGRAL_TYPE_P (type)
       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
						    TYPE_PRECISION (type)), 0))
   (convert @0)))


/* (X /[ex] A) * A -> X.  */
(simplify
  (mult (convert? (exact_div @0 @1)) @1)
  /* Look through a sign-changing conversion.  */
  (if (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
   (convert @0)))

/* Canonicalization of binary operations.  */

/* Convert X + -C into X - C.  */
(simplify
 (plus @0 REAL_CST@1)
 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
  (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
    (minus @0 { tem; })))))

/* Convert x+x into x*2.0.  */
(simplify
 (plus @0 @0)
 (if (SCALAR_FLOAT_TYPE_P (type))
  (mult @0 { build_real (type, dconst2); })))

(simplify
 (minus integer_zerop @1)
 (negate @1))

/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
   ARG0 is zero and X + ARG0 reduces to X, since that would mean
   (-ARG1 + ARG0) reduces to -ARG1.  */
(simplify
 (minus real_zerop@0 @1)
 (if (fold_real_zero_addition_p (type, @0, 0))
  (negate @1)))

/* Transform x * -1 into -x.  */
(simplify
 (mult @0 integer_minus_onep)
 (negate @0))

/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
(simplify
 (complex (realpart @0) (imagpart @0))
 @0)
(simplify
 (realpart (complex @0 @1))
 @0)
(simplify
 (imagpart (complex @0 @1))
 @1)


/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
 (simplify
  (bswap (bswap @0))
  @0)
 (simplify
  (bswap (bit_not (bswap @0)))
  (bit_not @0))
 (for bitop (bit_xor bit_ior bit_and)
  (simplify
   (bswap (bitop:c (bswap @0) @1))
   (bitop @0 (bswap @1)))))


/* Combine COND_EXPRs and VEC_COND_EXPRs.  */

/* Simplify constant conditions.
   Only optimize constant conditions when the selected branch
   has the same type as the COND_EXPR.  This avoids optimizing
   away "c ? x : throw", where the throw has a void type.
   Note that we cannot throw away the fold-const.c variant nor
   this one as we depend on doing this transform before possibly
   A ? B : B -> B triggers and the fold-const.c one can optimize
   0 ? A : B to B even if A has side-effects.  Something
   genmatch cannot handle.  */
(simplify
 (cond INTEGER_CST@0 @1 @2)
 (if (integer_zerop (@0)
      && (!VOID_TYPE_P (TREE_TYPE (@2))
	  || VOID_TYPE_P (type)))
  @2)
 (if (!integer_zerop (@0)
      && (!VOID_TYPE_P (TREE_TYPE (@1))
	  || VOID_TYPE_P (type)))
  @1))
(simplify
 (vec_cond VECTOR_CST@0 @1 @2)
 (if (integer_all_onesp (@0))
  @1)
 (if (integer_zerop (@0))
  @2))

(for cnd (cond vec_cond)
 /* A ? B : (A ? X : C) -> A ? B : C.  */
 (simplify
  (cnd @0 (cnd @0 @1 @2) @3)
  (cnd @0 @1 @3))
 (simplify
  (cnd @0 @1 (cnd @0 @2 @3))
  (cnd @0 @1 @3))

 /* A ? B : B -> B.  */
 (simplify
  (cnd @0 @1 @1)
  @1)

 /* !A ? B : C -> A ? C : B.  */
 (simplify
  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
  (cnd @0 @2 @1)))


/* Simplifications of comparisons.  */

/* We can simplify a logical negation of a comparison to the
   inverted comparison.  As we cannot compute an expression
   operator using invert_tree_comparison we have to simulate
   that with expression code iteration.  */
(for cmp (tcc_comparison)
     icmp (inverted_tcc_comparison)
     ncmp (inverted_tcc_comparison_with_nans)
 /* Ideally we'd like to combine the following two patterns
    and handle some more cases by using
      (logical_inverted_value (cmp @0 @1))
    here but for that genmatch would need to "inline" that.
    For now implement what forward_propagate_comparison did.  */
 (simplify
  (bit_not (cmp @0 @1))
  (if (VECTOR_TYPE_P (type)
       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
   /* Comparison inversion may be impossible for trapping math,
      invert_tree_comparison will tell us.  But we can't use
      a computed operator in the replacement tree thus we have
      to play the trick below.  */
   (with { enum tree_code ic = invert_tree_comparison
             (cmp, HONOR_NANS (@0)); }
    (if (ic == icmp)
     (icmp @0 @1))
    (if (ic == ncmp)
     (ncmp @0 @1)))))
 (simplify
  (bit_xor (cmp @0 @1) integer_truep)
  (with { enum tree_code ic = invert_tree_comparison
            (cmp, HONOR_NANS (@0)); }
   (if (ic == icmp)
    (icmp @0 @1))
   (if (ic == ncmp)
    (ncmp @0 @1)))))

/* Unordered tests if either argument is a NaN.  */
(simplify
 (bit_ior (unordered @0 @0) (unordered @1 @1))
 (if ((GIMPLE && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1)))
      || (GENERIC && TREE_TYPE (@0) == TREE_TYPE (@1)))
  (unordered @0 @1)))
(simplify
 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
 @2)

/* Simplification of math builtins.  */

(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)


/* fold_builtin_logarithm */
(if (flag_unsafe_math_optimizations)
 /* Special case, optimize logN(expN(x)) = x.  */
 (for logs (LOG LOG2 LOG10)
      exps (EXP EXP2 EXP10)
  (simplify
   (logs (exps @0))
    @0))
 /* Optimize logN(func()) for various exponential functions.  We
    want to determine the value "x" and the power "exponent" in
    order to transform logN(x**exponent) into exponent*logN(x).  */
 (for logs (LOG LOG LOG LOG
            LOG2 LOG2 LOG2 LOG2
	    LOG10 LOG10 LOG10 LOG10)
      exps (EXP EXP2 EXP10 POW10)
  (simplify
   (logs (exps @0))
   (with {
     tree x;
     switch (exps)
       {
       CASE_FLT_FN (BUILT_IN_EXP):
         /* Prepare to do logN(exp(exponent) -> exponent*logN(e).  */
	 x = build_real (type, real_value_truncate (TYPE_MODE (type),
						    dconst_e ()));
         break;
       CASE_FLT_FN (BUILT_IN_EXP2):
         /* Prepare to do logN(exp2(exponent) -> exponent*logN(2).  */
         x = build_real (type, dconst2);
         break;
       CASE_FLT_FN (BUILT_IN_EXP10):
       CASE_FLT_FN (BUILT_IN_POW10):
	 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10).  */
	 {
	   REAL_VALUE_TYPE dconst10;
	   real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
	   x = build_real (type, dconst10);
	 }
         break;
       }
     }
    (mult (logs { x; }) @0))))
 (for logs (LOG LOG
            LOG2 LOG2
	    LOG10 LOG10)
      exps (SQRT CBRT)
  (simplify
   (logs (exps @0))
   (with {
     tree x;
     switch (exps)
       {
       CASE_FLT_FN (BUILT_IN_SQRT):
	 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x).  */
	 x = build_real (type, dconsthalf);
         break;
       CASE_FLT_FN (BUILT_IN_CBRT):
	 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x).  */
         x = build_real (type, real_value_truncate (TYPE_MODE (type),
						    dconst_third ()));
         break;
       }
     }
    (mult { x; } (logs @0)))))
 /* logN(pow(x,exponent) -> exponent*logN(x).  */
 (for logs (LOG LOG2 LOG10)
      pows (POW)
  (simplify
   (logs (pows @0 @1))
   (mult @1 (logs @0)))))

/* Narrowing of arithmetic and logical operations. 

   These are conceptually similar to the transformations performed for
   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
   term we want to move all that code out of the front-ends into here.  */

/* If we have a narrowing conversion of an arithmetic operation where
   both operands are widening conversions from the same type as the outer
   narrowing conversion.  Then convert the innermost operands to a suitable
   unsigned type (to avoid introducing undefined behaviour), perform the
   operation and convert the result to the desired type.  */
(for op (plus minus)
  (simplify
    (convert (op (convert@2 @0) (convert@3 @1)))
    (if (INTEGRAL_TYPE_P (type)
	 /* We check for type compatibility between @0 and @1 below,
	    so there's no need to check that @1/@3 are integral types.  */
	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
	 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
	 /* The precision of the type of each operand must match the
	    precision of the mode of each operand, similarly for the
	    result.  */
	 && (TYPE_PRECISION (TREE_TYPE (@0))
	     == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
	 && (TYPE_PRECISION (TREE_TYPE (@1))
	     == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
	 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
	 /* The inner conversion must be a widening conversion.  */
	 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
	 && ((GENERIC 
	      && (TYPE_MAIN_VARIANT (TREE_TYPE (@0))
		  == TYPE_MAIN_VARIANT (TREE_TYPE (@1)))
	      && (TYPE_MAIN_VARIANT (TREE_TYPE (@0))
		  == TYPE_MAIN_VARIANT (type)))
	     || (GIMPLE
		 && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1))
		 && types_compatible_p (TREE_TYPE (@0), type))))
      (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
	(convert (op @0 @1)))
      (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
	(convert (op (convert:utype @0) (convert:utype @1)))))))