1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
|
/* Matrix layout transformations.
Copyright (C) 2006, 2007 Free Software Foundation, Inc.
Contributed by Razya Ladelsky <razya@il.ibm.com>
Originally written by Revital Eres and Mustafa Hagog.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/*
Matrix flattening optimization tries to replace a N-dimensional
matrix with its equivalent M-dimensional matrix, where M < N.
This first implementation focuses on global matrices defined dynamically.
When N==1, we actually flatten the whole matrix.
For instance consider a two-dimensional array a [dim1] [dim2].
The code for allocating space for it usually looks like:
a = (int **) malloc(dim1 * sizeof(int *));
for (i=0; i<dim1; i++)
a[i] = (int *) malloc (dim2 * sizeof(int));
If the array "a" is found suitable for this optimization,
its allocation is replaced by:
a = (int *) malloc (dim1 * dim2 *sizeof(int));
and all the references to a[i][j] are replaced by a[i * dim2 + j].
The two main phases of the optimization are the analysis
and transformation.
The driver of the optimization is matrix_reorg ().
Analysis phase:
===============
We'll number the dimensions outside-in, meaning the most external
is 0, then 1, and so on.
The analysis part of the optimization determines K, the escape
level of a N-dimensional matrix (K <= N), that allows flattening of
the external dimensions 0,1,..., K-1. Escape level 0 means that the
whole matrix escapes and no flattening is possible.
The analysis part is implemented in analyze_matrix_allocation_site()
and analyze_matrix_accesses().
Transformation phase:
=====================
In this phase we define the new flattened matrices that replace the
original matrices in the code.
Implemented in transform_allocation_sites(),
transform_access_sites().
Matrix Transposing
==================
The idea of Matrix Transposing is organizing the matrix in a different
layout such that the dimensions are reordered.
This could produce better cache behavior in some cases.
For example, lets look at the matrix accesses in the following loop:
for (i=0; i<N; i++)
for (j=0; j<M; j++)
access to a[i][j]
This loop can produce good cache behavior because the elements of
the inner dimension are accessed sequentially.
However, if the accesses of the matrix were of the following form:
for (i=0; i<N; i++)
for (j=0; j<M; j++)
access to a[j][i]
In this loop we iterate the columns and not the rows.
Therefore, replacing the rows and columns
would have had an organization with better (cache) locality.
Replacing the dimensions of the matrix is called matrix transposing.
This example, of course, could be enhanced to multiple dimensions matrices
as well.
Since a program could include all kind of accesses, there is a decision
mechanism, implemented in analyze_transpose(), which implements a
heuristic that tries to determine whether to transpose the matrix or not,
according to the form of the more dominant accesses.
This decision is transferred to the flattening mechanism, and whether
the matrix was transposed or not, the matrix is flattened (if possible).
This decision making is based on profiling information and loop information.
If profiling information is available, decision making mechanism will be
operated, otherwise the matrix will only be flattened (if possible).
Both optimizations are described in the paper "Matrix flattening and
transposing in GCC" which was presented in GCC summit 2006.
http://www.gccsummit.org/2006/2006-GCC-Summit-Proceedings.pdf
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "c-tree.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "langhooks.h"
#include "hashtab.h"
#include "toplev.h"
#include "flags.h"
#include "ggc.h"
#include "debug.h"
#include "target.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "c-common.h"
#include "intl.h"
#include "function.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "opts.h"
#include "tree-data-ref.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
/*
We need to collect a lot of data from the original malloc,
particularly as the gimplifier has converted:
orig_var = (struct_type *) malloc (x * sizeof (struct_type *));
into
T3 = <constant> ; ** <constant> is amount to malloc; precomputed **
T4 = malloc (T3);
T5 = (struct_type *) T4;
orig_var = T5;
The following struct fields allow us to collect all the necessary data from
the gimplified program. The comments in the struct below are all based
on the gimple example above. */
struct malloc_call_data
{
tree call_stmt; /* Tree for "T4 = malloc (T3);" */
tree size_var; /* Var decl for T3. */
tree malloc_size; /* Tree for "<constant>", the rhs assigned to T3. */
};
/* The front end of the compiler, when parsing statements of the form:
var = (type_cast) malloc (sizeof (type));
always converts this single statement into the following statements
(GIMPLE form):
T.1 = sizeof (type);
T.2 = malloc (T.1);
T.3 = (type_cast) T.2;
var = T.3;
Since we need to create new malloc statements and modify the original
statements somewhat, we need to find all four of the above statements.
Currently record_call_1 (called for building cgraph edges) finds and
records the statements containing the actual call to malloc, but we
need to find the rest of the variables/statements on our own. That
is what the following function does. */
static void
collect_data_for_malloc_call (tree stmt, struct malloc_call_data *m_data)
{
tree size_var = NULL;
tree malloc_fn_decl;
tree tmp;
tree arg1;
gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
tmp = get_call_expr_in (stmt);
malloc_fn_decl = CALL_EXPR_FN (tmp);
if (TREE_CODE (malloc_fn_decl) != ADDR_EXPR
|| TREE_CODE (TREE_OPERAND (malloc_fn_decl, 0)) != FUNCTION_DECL
|| DECL_FUNCTION_CODE (TREE_OPERAND (malloc_fn_decl, 0)) !=
BUILT_IN_MALLOC)
return;
arg1 = CALL_EXPR_ARG (tmp, 0);
size_var = arg1;
m_data->call_stmt = stmt;
m_data->size_var = size_var;
if (TREE_CODE (size_var) != VAR_DECL)
m_data->malloc_size = size_var;
else
m_data->malloc_size = NULL_TREE;
}
/* Information about matrix access site.
For example: if an access site of matrix arr is arr[i][j]
the ACCESS_SITE_INFO structure will have the address
of arr as its stmt. The INDEX_INFO will hold information about the
initial address and index of each dimension. */
struct access_site_info
{
/* The statement (INDIRECT_REF or POINTER_PLUS_EXPR). */
tree stmt;
/* In case of POINTER_PLUS_EXPR, what is the offset. */
tree offset;
/* The index which created the offset. */
tree index;
/* The indirection level of this statement. */
int level;
/* TRUE for allocation site FALSE for access site. */
bool is_alloc;
/* The function containing the access site. */
tree function_decl;
/* This access is iterated in the inner most loop */
bool iterated_by_inner_most_loop_p;
};
typedef struct access_site_info *access_site_info_p;
DEF_VEC_P (access_site_info_p);
DEF_VEC_ALLOC_P (access_site_info_p, heap);
/* Information about matrix to flatten. */
struct matrix_info
{
/* Decl tree of this matrix. */
tree decl;
/* Number of dimensions; number
of "*" in the type declaration. */
int num_dims;
/* Minimum indirection level that escapes, 0 means that
the whole matrix escapes, k means that dimensions
0 to ACTUAL_DIM - k escapes. */
int min_indirect_level_escape;
tree min_indirect_level_escape_stmt;
/* Is the matrix transposed. */
bool is_transposed_p;
/* Hold the allocation site for each level (dimension).
We can use NUM_DIMS as the upper bound and allocate the array
once with this number of elements and no need to use realloc and
MAX_MALLOCED_LEVEL. */
tree *malloc_for_level;
int max_malloced_level;
/* The location of the allocation sites (they must be in one
function). */
tree allocation_function_decl;
/* The calls to free for each level of indirection. */
struct free_info
{
tree stmt;
tree func;
} *free_stmts;
/* An array which holds for each dimension its size. where
dimension 0 is the outer most (one that contains all the others).
*/
tree *dimension_size;
/* An array which holds for each dimension it's original size
(before transposing and flattening take place). */
tree *dimension_size_orig;
/* An array which holds for each dimension the size of the type of
of elements accessed in that level (in bytes). */
HOST_WIDE_INT *dimension_type_size;
int dimension_type_size_len;
/* An array collecting the count of accesses for each dimension. */
gcov_type *dim_hot_level;
/* An array of the accesses to be flattened.
elements are of type "struct access_site_info *". */
VEC (access_site_info_p, heap) * access_l;
/* A map of how the dimensions will be organized at the end of
the analyses. */
int *dim_map;
};
/* In each phi node we want to record the indirection level we have when we
get to the phi node. Usually we will have phi nodes with more than two
arguments, then we must assure that all of them get to the phi node with
the same indirection level, otherwise it's not safe to do the flattening.
So we record the information regarding the indirection level each time we
get to the phi node in this hash table. */
struct matrix_access_phi_node
{
tree phi;
int indirection_level;
};
/* We use this structure to find if the SSA variable is accessed inside the
tree and record the tree containing it. */
struct ssa_acc_in_tree
{
/* The variable whose accesses in the tree we are looking for. */
tree ssa_var;
/* The tree and code inside it the ssa_var is accessed, currently
it could be an INDIRECT_REF or CALL_EXPR. */
enum tree_code t_code;
tree t_tree;
/* The place in the containing tree. */
tree *tp;
tree second_op;
bool var_found;
};
static void analyze_matrix_accesses (struct matrix_info *, tree, int, bool,
sbitmap, bool);
static int transform_allocation_sites (void **, void *);
static int transform_access_sites (void **, void *);
static int analyze_transpose (void **, void *);
static int dump_matrix_reorg_analysis (void **, void *);
static bool check_transpose_p;
/* Hash function used for the phi nodes. */
static hashval_t
mat_acc_phi_hash (const void *p)
{
const struct matrix_access_phi_node *ma_phi = p;
return htab_hash_pointer (ma_phi->phi);
}
/* Equality means phi node pointers are the same. */
static int
mat_acc_phi_eq (const void *p1, const void *p2)
{
const struct matrix_access_phi_node *phi1 = p1;
const struct matrix_access_phi_node *phi2 = p2;
if (phi1->phi == phi2->phi)
return 1;
return 0;
}
/* Hold the PHI nodes we visit during the traversal for escaping
analysis. */
static htab_t htab_mat_acc_phi_nodes = NULL;
/* This hash-table holds the information about the matrices we are
going to handle. */
static htab_t matrices_to_reorg = NULL;
/* Return a hash for MTT, which is really a "matrix_info *". */
static hashval_t
mtt_info_hash (const void *mtt)
{
return htab_hash_pointer (((const struct matrix_info *) mtt)->decl);
}
/* Return true if MTT1 and MTT2 (which are really both of type
"matrix_info *") refer to the same decl. */
static int
mtt_info_eq (const void *mtt1, const void *mtt2)
{
const struct matrix_info *i1 = mtt1;
const struct matrix_info *i2 = mtt2;
if (i1->decl == i2->decl)
return true;
return false;
}
/* Return the inner most tree that is not a cast. */
static tree
get_inner_of_cast_expr (tree t)
{
while (TREE_CODE (t) == CONVERT_EXPR || TREE_CODE (t) == NOP_EXPR
|| TREE_CODE (t) == VIEW_CONVERT_EXPR)
t = TREE_OPERAND (t, 0);
return t;
}
/* Return false if STMT may contain a vector expression.
In this situation, all matrices should not be flattened. */
static bool
may_flatten_matrices_1 (tree stmt)
{
tree t;
switch (TREE_CODE (stmt))
{
case GIMPLE_MODIFY_STMT:
t = GIMPLE_STMT_OPERAND (stmt, 1);
while (TREE_CODE (t) == CONVERT_EXPR || TREE_CODE (t) == NOP_EXPR)
{
if (TREE_TYPE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
{
tree pointee;
pointee = TREE_TYPE (t);
while (POINTER_TYPE_P (pointee))
pointee = TREE_TYPE (pointee);
if (TREE_CODE (pointee) == VECTOR_TYPE)
{
if (dump_file)
fprintf (dump_file,
"Found vector type, don't flatten matrix\n");
return false;
}
}
t = TREE_OPERAND (t, 0);
}
break;
case ASM_EXPR:
/* Asm code could contain vector operations. */
return false;
break;
default:
break;
}
return true;
}
/* Return false if there are hand-written vectors in the program.
We disable the flattening in such a case. */
static bool
may_flatten_matrices (struct cgraph_node *node)
{
tree decl;
struct function *func;
basic_block bb;
block_stmt_iterator bsi;
decl = node->decl;
if (node->analyzed)
{
func = DECL_STRUCT_FUNCTION (decl);
FOR_EACH_BB_FN (bb, func)
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
if (!may_flatten_matrices_1 (bsi_stmt (bsi)))
return false;
}
return true;
}
/* Given a VAR_DECL, check its type to determine whether it is
a definition of a dynamic allocated matrix and therefore is
a suitable candidate for the matrix flattening optimization.
Return NULL if VAR_DECL is not such decl. Otherwise, allocate
a MATRIX_INFO structure, fill it with the relevant information
and return a pointer to it.
TODO: handle also statically defined arrays. */
static struct matrix_info *
analyze_matrix_decl (tree var_decl)
{
struct matrix_info *m_node, tmpmi, *mi;
tree var_type;
int dim_num = 0;
gcc_assert (matrices_to_reorg);
if (TREE_CODE (var_decl) == PARM_DECL)
var_type = DECL_ARG_TYPE (var_decl);
else if (TREE_CODE (var_decl) == VAR_DECL)
var_type = TREE_TYPE (var_decl);
else
return NULL;
if (!POINTER_TYPE_P (var_type))
return NULL;
while (POINTER_TYPE_P (var_type))
{
var_type = TREE_TYPE (var_type);
dim_num++;
}
if (dim_num <= 1)
return NULL;
if (!COMPLETE_TYPE_P (var_type)
|| TREE_CODE (TYPE_SIZE_UNIT (var_type)) != INTEGER_CST)
return NULL;
/* Check to see if this pointer is already in there. */
tmpmi.decl = var_decl;
mi = htab_find (matrices_to_reorg, &tmpmi);
if (mi)
return NULL;
/* Record the matrix. */
m_node = (struct matrix_info *) xcalloc (1, sizeof (struct matrix_info));
m_node->decl = var_decl;
m_node->num_dims = dim_num;
m_node->free_stmts
= (struct free_info *) xcalloc (dim_num, sizeof (struct free_info));
/* Init min_indirect_level_escape to -1 to indicate that no escape
analysis has been done yet. */
m_node->min_indirect_level_escape = -1;
m_node->is_transposed_p = false;
return m_node;
}
/* Free matrix E. */
static void
mat_free (void *e)
{
struct matrix_info *mat = (struct matrix_info *) e;
if (!mat)
return;
if (mat->free_stmts)
free (mat->free_stmts);
if (mat->dim_hot_level)
free (mat->dim_hot_level);
if (mat->malloc_for_level)
free (mat->malloc_for_level);
}
/* Find all potential matrices.
TODO: currently we handle only multidimensional
dynamically allocated arrays. */
static void
find_matrices_decl (void)
{
struct matrix_info *tmp;
PTR *slot;
struct varpool_node *vnode;
gcc_assert (matrices_to_reorg);
/* For every global variable in the program:
Check to see if it's of a candidate type and record it. */
for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed)
{
tree var_decl = vnode->decl;
if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
continue;
if (matrices_to_reorg)
if ((tmp = analyze_matrix_decl (var_decl)))
{
if (!TREE_ADDRESSABLE (var_decl))
{
slot = htab_find_slot (matrices_to_reorg, tmp, INSERT);
*slot = tmp;
}
}
}
return;
}
/* Mark that the matrix MI escapes at level L. */
static void
mark_min_matrix_escape_level (struct matrix_info *mi, int l, tree s)
{
if (mi->min_indirect_level_escape == -1
|| (mi->min_indirect_level_escape > l))
{
mi->min_indirect_level_escape = l;
mi->min_indirect_level_escape_stmt = s;
}
}
/* Find if the SSA variable is accessed inside the
tree and record the tree containing it.
The only relevant uses are the case of SSA_NAME, or SSA inside
INDIRECT_REF, CALL_EXPR, PLUS_EXPR, POINTER_PLUS_EXPR, MULT_EXPR. */
static void
ssa_accessed_in_tree (tree t, struct ssa_acc_in_tree *a)
{
tree call, decl;
tree arg;
call_expr_arg_iterator iter;
a->t_code = TREE_CODE (t);
switch (a->t_code)
{
tree op1, op2;
case SSA_NAME:
if (t == a->ssa_var)
a->var_found = true;
break;
case INDIRECT_REF:
if (SSA_VAR_P (TREE_OPERAND (t, 0))
&& TREE_OPERAND (t, 0) == a->ssa_var)
a->var_found = true;
break;
case CALL_EXPR:
FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
{
if (arg == a->ssa_var)
{
a->var_found = true;
call = get_call_expr_in (t);
if (call && (decl = get_callee_fndecl (call)))
a->t_tree = decl;
break;
}
}
break;
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MULT_EXPR:
op1 = TREE_OPERAND (t, 0);
op2 = TREE_OPERAND (t, 1);
if (op1 == a->ssa_var)
{
a->var_found = true;
a->second_op = op2;
}
else if (op2 == a->ssa_var)
{
a->var_found = true;
a->second_op = op1;
}
break;
default:
break;
}
}
/* Record the access/allocation site information for matrix MI so we can
handle it later in transformation. */
static void
record_access_alloc_site_info (struct matrix_info *mi, tree stmt, tree offset,
tree index, int level, bool is_alloc)
{
struct access_site_info *acc_info;
if (!mi->access_l)
mi->access_l = VEC_alloc (access_site_info_p, heap, 100);
acc_info
= (struct access_site_info *)
xcalloc (1, sizeof (struct access_site_info));
acc_info->stmt = stmt;
acc_info->offset = offset;
acc_info->index = index;
acc_info->function_decl = current_function_decl;
acc_info->level = level;
acc_info->is_alloc = is_alloc;
VEC_safe_push (access_site_info_p, heap, mi->access_l, acc_info);
}
/* Record the malloc as the allocation site of the given LEVEL. But
first we Make sure that all the size parameters passed to malloc in
all the allocation sites could be pre-calculated before the call to
the malloc of level 0 (the main malloc call). */
static void
add_allocation_site (struct matrix_info *mi, tree stmt, int level)
{
struct malloc_call_data mcd;
/* Make sure that the allocation sites are in the same function. */
if (!mi->allocation_function_decl)
mi->allocation_function_decl = current_function_decl;
else if (mi->allocation_function_decl != current_function_decl)
{
int min_malloc_level;
gcc_assert (mi->malloc_for_level);
/* Find the minimum malloc level that already has been seen;
we known its allocation function must be
MI->allocation_function_decl since it's different than
CURRENT_FUNCTION_DECL then the escaping level should be
MIN (LEVEL, MIN_MALLOC_LEVEL) - 1 , and the allocation function
must be set accordingly. */
for (min_malloc_level = 0;
min_malloc_level < mi->max_malloced_level
&& mi->malloc_for_level[min_malloc_level]; min_malloc_level++);
if (level < min_malloc_level)
{
mi->allocation_function_decl = current_function_decl;
mark_min_matrix_escape_level (mi, min_malloc_level, stmt);
}
else
{
mark_min_matrix_escape_level (mi, level, stmt);
/* cannot be that (level == min_malloc_level)
we would have returned earlier. */
return;
}
}
/* Find the correct malloc information. */
collect_data_for_malloc_call (stmt, &mcd);
/* We accept only calls to malloc function; we do not accept
calls like calloc and realloc. */
if (!mi->malloc_for_level)
{
mi->malloc_for_level = xcalloc (level + 1, sizeof (tree));
mi->max_malloced_level = level + 1;
}
else if (mi->max_malloced_level <= level)
{
mi->malloc_for_level
= xrealloc (mi->malloc_for_level, (level + 1) * sizeof (tree));
/* Zero the newly allocated items. */
memset (&(mi->malloc_for_level[mi->max_malloced_level + 1]),
0, (level - mi->max_malloced_level) * sizeof (tree));
mi->max_malloced_level = level + 1;
}
mi->malloc_for_level[level] = stmt;
}
/* Given an assignment statement STMT that we know that its
left-hand-side is the matrix MI variable, we traverse the immediate
uses backwards until we get to a malloc site. We make sure that
there is one and only one malloc site that sets this variable. When
we are performing the flattening we generate a new variable that
will hold the size for each dimension; each malloc that allocates a
dimension has the size parameter; we use that parameter to
initialize the dimension size variable so we can use it later in
the address calculations. LEVEL is the dimension we're inspecting.
Return if STMT is related to an allocation site. */
static void
analyze_matrix_allocation_site (struct matrix_info *mi, tree stmt,
int level, sbitmap visited)
{
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
{
tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
rhs = get_inner_of_cast_expr (rhs);
if (TREE_CODE (rhs) == SSA_NAME)
{
tree def = SSA_NAME_DEF_STMT (rhs);
analyze_matrix_allocation_site (mi, def, level, visited);
return;
}
/* A result of call to malloc. */
else if (TREE_CODE (rhs) == CALL_EXPR)
{
int call_flags = call_expr_flags (rhs);
if (!(call_flags & ECF_MALLOC))
{
mark_min_matrix_escape_level (mi, level, stmt);
return;
}
else
{
tree malloc_fn_decl;
const char *malloc_fname;
malloc_fn_decl = CALL_EXPR_FN (rhs);
if (TREE_CODE (malloc_fn_decl) != ADDR_EXPR
|| TREE_CODE (TREE_OPERAND (malloc_fn_decl, 0)) !=
FUNCTION_DECL)
{
mark_min_matrix_escape_level (mi, level, stmt);
return;
}
malloc_fn_decl = TREE_OPERAND (malloc_fn_decl, 0);
malloc_fname = IDENTIFIER_POINTER (DECL_NAME (malloc_fn_decl));
if (DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
{
if (dump_file)
fprintf (dump_file,
"Matrix %s is an argument to function %s\n",
get_name (mi->decl), get_name (malloc_fn_decl));
mark_min_matrix_escape_level (mi, level, stmt);
return;
}
}
/* This is a call to malloc of level 'level'.
mi->max_malloced_level-1 == level means that we've
seen a malloc statement of level 'level' before.
If the statement is not the same one that we've
seen before, then there's another malloc statement
for the same level, which means that we need to mark
it escaping. */
if (mi->malloc_for_level
&& mi->max_malloced_level-1 == level
&& mi->malloc_for_level[level] != stmt)
{
mark_min_matrix_escape_level (mi, level, stmt);
return;
}
else
add_allocation_site (mi, stmt, level);
return;
}
/* If we are back to the original matrix variable then we
are sure that this is analyzed as an access site. */
else if (rhs == mi->decl)
return;
}
/* Looks like we don't know what is happening in this
statement so be in the safe side and mark it as escaping. */
mark_min_matrix_escape_level (mi, level, stmt);
}
/* The transposing decision making.
In order to to calculate the profitability of transposing, we collect two
types of information regarding the accesses:
1. profiling information used to express the hotness of an access, that
is how often the matrix is accessed by this access site (count of the
access site).
2. which dimension in the access site is iterated by the inner
most loop containing this access.
The matrix will have a calculated value of weighted hotness for each
dimension.
Intuitively the hotness level of a dimension is a function of how
many times it was the most frequently accessed dimension in the
highly executed access sites of this matrix.
As computed by following equation:
m n
__ __
\ \ dim_hot_level[i] +=
/_ /_
j i
acc[j]->dim[i]->iter_by_inner_loop * count(j)
Where n is the number of dims and m is the number of the matrix
access sites. acc[j]->dim[i]->iter_by_inner_loop is 1 if acc[j]
iterates over dim[i] in innermost loop, and is 0 otherwise.
The organization of the new matrix should be according to the
hotness of each dimension. The hotness of the dimension implies
the locality of the elements.*/
static int
analyze_transpose (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct matrix_info *mi = *slot;
int min_escape_l = mi->min_indirect_level_escape;
struct loop *loop;
affine_iv iv;
struct access_site_info *acc_info;
int i;
if (min_escape_l < 2 || !mi->access_l)
{
if (mi->access_l)
{
for (i = 0;
VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
i++)
free (acc_info);
VEC_free (access_site_info_p, heap, mi->access_l);
}
return 1;
}
if (!mi->dim_hot_level)
mi->dim_hot_level =
(gcov_type *) xcalloc (min_escape_l, sizeof (gcov_type));
for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
i++)
{
if (TREE_CODE (GIMPLE_STMT_OPERAND (acc_info->stmt, 1)) == POINTER_PLUS_EXPR
&& acc_info->level < min_escape_l)
{
loop = loop_containing_stmt (acc_info->stmt);
if (!loop || loop->inner)
{
free (acc_info);
continue;
}
if (simple_iv (loop, acc_info->stmt, acc_info->offset, &iv, true))
{
if (iv.step != NULL)
{
HOST_WIDE_INT istep;
istep = int_cst_value (iv.step);
if (istep != 0)
{
acc_info->iterated_by_inner_most_loop_p = 1;
mi->dim_hot_level[acc_info->level] +=
bb_for_stmt (acc_info->stmt)->count;
}
}
}
}
free (acc_info);
}
VEC_free (access_site_info_p, heap, mi->access_l);
return 1;
}
/* Find the index which defines the OFFSET from base.
We walk from use to def until we find how the offset was defined. */
static tree
get_index_from_offset (tree offset, tree def_stmt)
{
tree op1, op2, expr, index;
if (TREE_CODE (def_stmt) == PHI_NODE)
return NULL;
expr = get_inner_of_cast_expr (GIMPLE_STMT_OPERAND (def_stmt, 1));
if (TREE_CODE (expr) == SSA_NAME)
return get_index_from_offset (offset, SSA_NAME_DEF_STMT (expr));
else if (TREE_CODE (expr) == MULT_EXPR)
{
op1 = TREE_OPERAND (expr, 0);
op2 = TREE_OPERAND (expr, 1);
if (TREE_CODE (op1) != INTEGER_CST && TREE_CODE (op2) != INTEGER_CST)
return NULL;
index = (TREE_CODE (op1) == INTEGER_CST) ? op2 : op1;
return index;
}
else
return NULL_TREE;
}
/* update MI->dimension_type_size[CURRENT_INDIRECT_LEVEL] with the size
of the type related to the SSA_VAR, or the type related to the
lhs of STMT, in the case that it is an INDIRECT_REF. */
static void
update_type_size (struct matrix_info *mi, tree stmt, tree ssa_var,
int current_indirect_level)
{
tree lhs;
HOST_WIDE_INT type_size;
/* Update type according to the type of the INDIRECT_REF expr. */
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == INDIRECT_REF)
{
lhs = GIMPLE_STMT_OPERAND (stmt, 0);
gcc_assert (POINTER_TYPE_P
(TREE_TYPE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
type_size =
int_size_in_bytes (TREE_TYPE
(TREE_TYPE
(SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
}
else
type_size = int_size_in_bytes (TREE_TYPE (ssa_var));
/* Record the size of elements accessed (as a whole)
in the current indirection level (dimension). If the size of
elements is not known at compile time, mark it as escaping. */
if (type_size <= 0)
mark_min_matrix_escape_level (mi, current_indirect_level, stmt);
else
{
int l = current_indirect_level;
if (!mi->dimension_type_size)
{
mi->dimension_type_size
= (HOST_WIDE_INT *) xcalloc (l + 1, sizeof (HOST_WIDE_INT));
mi->dimension_type_size_len = l + 1;
}
else if (mi->dimension_type_size_len < l + 1)
{
mi->dimension_type_size
= (HOST_WIDE_INT *) xrealloc (mi->dimension_type_size,
(l + 1) * sizeof (HOST_WIDE_INT));
memset (&mi->dimension_type_size[mi->dimension_type_size_len],
0, (l + 1 - mi->dimension_type_size_len)
* sizeof (HOST_WIDE_INT));
mi->dimension_type_size_len = l + 1;
}
/* Make sure all the accesses in the same level have the same size
of the type. */
if (!mi->dimension_type_size[l])
mi->dimension_type_size[l] = type_size;
else if (mi->dimension_type_size[l] != type_size)
mark_min_matrix_escape_level (mi, l, stmt);
}
}
/* USE_STMT represents a call_expr ,where one of the arguments is the
ssa var that we want to check because it came from some use of matrix
MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so
far. */
static void
analyze_accesses_for_call_expr (struct matrix_info *mi, tree use_stmt,
int current_indirect_level)
{
tree call = get_call_expr_in (use_stmt);
if (call && get_callee_fndecl (call))
{
if (DECL_FUNCTION_CODE (get_callee_fndecl (call)) != BUILT_IN_FREE)
{
if (dump_file)
fprintf (dump_file,
"Matrix %s: Function call %s, level %d escapes.\n",
get_name (mi->decl), get_name (get_callee_fndecl (call)),
current_indirect_level);
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
}
else if (mi->free_stmts[current_indirect_level].stmt != NULL
&& mi->free_stmts[current_indirect_level].stmt != use_stmt)
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
else
{
/*Record the free statements so we can delete them
later. */
int l = current_indirect_level;
mi->free_stmts[l].stmt = use_stmt;
mi->free_stmts[l].func = current_function_decl;
}
}
}
/* USE_STMT represents a phi node of the ssa var that we want to
check because it came from some use of matrix
MI.
We check all the escaping levels that get to the PHI node
and make sure they are all the same escaping;
if not (which is rare) we let the escaping level be the
minimum level that gets into that PHI because starting from
that level we cannot expect the behavior of the indirections.
CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
static void
analyze_accesses_for_phi_node (struct matrix_info *mi, tree use_stmt,
int current_indirect_level, sbitmap visited,
bool record_accesses)
{
struct matrix_access_phi_node tmp_maphi, *maphi, **pmaphi;
tmp_maphi.phi = use_stmt;
if ((maphi = htab_find (htab_mat_acc_phi_nodes, &tmp_maphi)))
{
if (maphi->indirection_level == current_indirect_level)
return;
else
{
int level = MIN (maphi->indirection_level,
current_indirect_level);
int j;
tree t = NULL_TREE;
maphi->indirection_level = level;
for (j = 0; j < PHI_NUM_ARGS (use_stmt); j++)
{
tree def = PHI_ARG_DEF (use_stmt, j);
if (TREE_CODE (SSA_NAME_DEF_STMT (def)) != PHI_NODE)
t = SSA_NAME_DEF_STMT (def);
}
mark_min_matrix_escape_level (mi, level, t);
}
return;
}
maphi = (struct matrix_access_phi_node *)
xcalloc (1, sizeof (struct matrix_access_phi_node));
maphi->phi = use_stmt;
maphi->indirection_level = current_indirect_level;
/* Insert to hash table. */
pmaphi = (struct matrix_access_phi_node **)
htab_find_slot (htab_mat_acc_phi_nodes, maphi, INSERT);
gcc_assert (pmaphi);
*pmaphi = maphi;
if (!TEST_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
{
SET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
analyze_matrix_accesses (mi, PHI_RESULT (use_stmt),
current_indirect_level, false, visited,
record_accesses);
RESET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
}
}
/* USE_STMT represents a modify statement (the rhs or lhs include
the ssa var that we want to check because it came from some use of matrix
MI.
CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
static int
analyze_accesses_for_modify_stmt (struct matrix_info *mi, tree ssa_var,
tree use_stmt, int current_indirect_level,
bool last_op, sbitmap visited,
bool record_accesses)
{
tree lhs = GIMPLE_STMT_OPERAND (use_stmt, 0);
tree rhs = GIMPLE_STMT_OPERAND (use_stmt, 1);
struct ssa_acc_in_tree lhs_acc, rhs_acc;
memset (&lhs_acc, 0, sizeof (lhs_acc));
memset (&rhs_acc, 0, sizeof (rhs_acc));
lhs_acc.ssa_var = ssa_var;
lhs_acc.t_code = ERROR_MARK;
ssa_accessed_in_tree (lhs, &lhs_acc);
rhs_acc.ssa_var = ssa_var;
rhs_acc.t_code = ERROR_MARK;
ssa_accessed_in_tree (get_inner_of_cast_expr (rhs), &rhs_acc);
/* The SSA must be either in the left side or in the right side,
to understand what is happening.
In case the SSA_NAME is found in both sides we should be escaping
at this level because in this case we cannot calculate the
address correctly. */
if ((lhs_acc.var_found && rhs_acc.var_found
&& lhs_acc.t_code == INDIRECT_REF)
|| (!rhs_acc.var_found && !lhs_acc.var_found))
{
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
return current_indirect_level;
}
gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
/* If we are storing to the matrix at some level, then mark it as
escaping at that level. */
if (lhs_acc.var_found)
{
tree def;
int l = current_indirect_level + 1;
gcc_assert (lhs_acc.t_code == INDIRECT_REF);
def = get_inner_of_cast_expr (rhs);
if (TREE_CODE (def) != SSA_NAME)
mark_min_matrix_escape_level (mi, l, use_stmt);
else
{
def = SSA_NAME_DEF_STMT (def);
analyze_matrix_allocation_site (mi, def, l, visited);
if (record_accesses)
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
NULL_TREE, l, true);
update_type_size (mi, use_stmt, NULL, l);
}
return current_indirect_level;
}
/* Now, check the right-hand-side, to see how the SSA variable
is used. */
if (rhs_acc.var_found)
{
/* If we are passing the ssa name to a function call and
the pointer escapes when passed to the function
(not the case of free), then we mark the matrix as
escaping at this level. */
if (rhs_acc.t_code == CALL_EXPR)
{
analyze_accesses_for_call_expr (mi, use_stmt,
current_indirect_level);
return current_indirect_level;
}
if (rhs_acc.t_code != INDIRECT_REF
&& rhs_acc.t_code != POINTER_PLUS_EXPR && rhs_acc.t_code != SSA_NAME)
{
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
return current_indirect_level;
}
/* If the access in the RHS has an indirection increase the
indirection level. */
if (rhs_acc.t_code == INDIRECT_REF)
{
if (record_accesses)
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
NULL_TREE,
current_indirect_level, true);
current_indirect_level += 1;
}
else if (rhs_acc.t_code == POINTER_PLUS_EXPR)
{
gcc_assert (rhs_acc.second_op);
if (last_op)
/* Currently we support only one PLUS expression on the
SSA_NAME that holds the base address of the current
indirection level; to support more general case there
is a need to hold a stack of expressions and regenerate
the calculation later. */
mark_min_matrix_escape_level (mi, current_indirect_level,
use_stmt);
else
{
tree index;
tree op1, op2;
op1 = TREE_OPERAND (rhs, 0);
op2 = TREE_OPERAND (rhs, 1);
op2 = (op1 == ssa_var) ? op2 : op1;
if (TREE_CODE (op2) == INTEGER_CST)
index =
build_int_cst (TREE_TYPE (op1),
TREE_INT_CST_LOW (op2) /
int_size_in_bytes (TREE_TYPE (op1)));
else
{
index =
get_index_from_offset (op2, SSA_NAME_DEF_STMT (op2));
if (index == NULL_TREE)
{
mark_min_matrix_escape_level (mi,
current_indirect_level,
use_stmt);
return current_indirect_level;
}
}
if (record_accesses)
record_access_alloc_site_info (mi, use_stmt, op2,
index,
current_indirect_level, false);
}
}
/* If we are storing this level of indirection mark it as
escaping. */
if (lhs_acc.t_code == INDIRECT_REF || TREE_CODE (lhs) != SSA_NAME)
{
int l = current_indirect_level;
/* One exception is when we are storing to the matrix
variable itself; this is the case of malloc, we must make
sure that it's the one and only one call to malloc so
we call analyze_matrix_allocation_site to check
this out. */
if (TREE_CODE (lhs) != VAR_DECL || lhs != mi->decl)
mark_min_matrix_escape_level (mi, current_indirect_level,
use_stmt);
else
{
/* Also update the escaping level. */
analyze_matrix_allocation_site (mi, use_stmt, l, visited);
if (record_accesses)
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
NULL_TREE, l, true);
}
}
else
{
/* We are placing it in an SSA, follow that SSA. */
analyze_matrix_accesses (mi, lhs,
current_indirect_level,
rhs_acc.t_code == POINTER_PLUS_EXPR,
visited, record_accesses);
}
}
return current_indirect_level;
}
/* Given a SSA_VAR (coming from a use statement of the matrix MI),
follow its uses and level of indirection and find out the minimum
indirection level it escapes in (the highest dimension) and the maximum
level it is accessed in (this will be the actual dimension of the
matrix). The information is accumulated in MI.
We look at the immediate uses, if one escapes we finish; if not,
we make a recursive call for each one of the immediate uses of the
resulting SSA name. */
static void
analyze_matrix_accesses (struct matrix_info *mi, tree ssa_var,
int current_indirect_level, bool last_op,
sbitmap visited, bool record_accesses)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
update_type_size (mi, SSA_NAME_DEF_STMT (ssa_var), ssa_var,
current_indirect_level);
/* We don't go beyond the escaping level when we are performing the
flattening. NOTE: we keep the last indirection level that doesn't
escape. */
if (mi->min_indirect_level_escape > -1
&& mi->min_indirect_level_escape <= current_indirect_level)
return;
/* Now go over the uses of the SSA_NAME and check how it is used in
each one of them. We are mainly looking for the pattern INDIRECT_REF,
then a POINTER_PLUS_EXPR, then INDIRECT_REF etc. while in between there could
be any number of copies and casts. */
gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ssa_var)
{
tree use_stmt = USE_STMT (use_p);
if (TREE_CODE (use_stmt) == PHI_NODE)
/* We check all the escaping levels that get to the PHI node
and make sure they are all the same escaping;
if not (which is rare) we let the escaping level be the
minimum level that gets into that PHI because starting from
that level we cannot expect the behavior of the indirections. */
analyze_accesses_for_phi_node (mi, use_stmt, current_indirect_level,
visited, record_accesses);
else if (TREE_CODE (use_stmt) == CALL_EXPR)
analyze_accesses_for_call_expr (mi, use_stmt, current_indirect_level);
else if (TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT)
current_indirect_level =
analyze_accesses_for_modify_stmt (mi, ssa_var, use_stmt,
current_indirect_level, last_op,
visited, record_accesses);
}
}
/* A walk_tree function to go over the VAR_DECL, PARM_DECL nodes of
the malloc size expression and check that those aren't changed
over the function. */
static tree
check_var_notmodified_p (tree * tp, int *walk_subtrees, void *data)
{
basic_block bb;
tree t = *tp;
tree fn = data;
block_stmt_iterator bsi;
tree stmt;
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
return NULL_TREE;
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (fn))
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
continue;
if (GIMPLE_STMT_OPERAND (stmt, 0) == t)
return stmt;
}
}
*walk_subtrees = 1;
return NULL_TREE;
}
/* Go backwards in the use-def chains and find out the expression
represented by the possible SSA name in EXPR, until it is composed
of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
we make sure that all the arguments represent the same subexpression,
otherwise we fail. */
static tree
can_calculate_expr_before_stmt (tree expr, sbitmap visited)
{
tree def_stmt, op1, op2, res;
switch (TREE_CODE (expr))
{
case SSA_NAME:
/* Case of loop, we don't know to represent this expression. */
if (TEST_BIT (visited, SSA_NAME_VERSION (expr)))
return NULL_TREE;
SET_BIT (visited, SSA_NAME_VERSION (expr));
def_stmt = SSA_NAME_DEF_STMT (expr);
res = can_calculate_expr_before_stmt (def_stmt, visited);
RESET_BIT (visited, SSA_NAME_VERSION (expr));
return res;
case VAR_DECL:
case PARM_DECL:
case INTEGER_CST:
return expr;
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
op1 = TREE_OPERAND (expr, 0);
op2 = TREE_OPERAND (expr, 1);
op1 = can_calculate_expr_before_stmt (op1, visited);
if (!op1)
return NULL_TREE;
op2 = can_calculate_expr_before_stmt (op2, visited);
if (op2)
return fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op1, op2);
return NULL_TREE;
case GIMPLE_MODIFY_STMT:
return can_calculate_expr_before_stmt (GIMPLE_STMT_OPERAND (expr, 1),
visited);
case PHI_NODE:
{
int j;
res = NULL_TREE;
/* Make sure all the arguments represent the same value. */
for (j = 0; j < PHI_NUM_ARGS (expr); j++)
{
tree new_res;
tree def = PHI_ARG_DEF (expr, j);
new_res = can_calculate_expr_before_stmt (def, visited);
if (res == NULL_TREE)
res = new_res;
else if (!new_res || !expressions_equal_p (res, new_res))
return NULL_TREE;
}
return res;
}
case NOP_EXPR:
case CONVERT_EXPR:
res = can_calculate_expr_before_stmt (TREE_OPERAND (expr, 0), visited);
if (res != NULL_TREE)
return build1 (TREE_CODE (expr), TREE_TYPE (expr), res);
else
return NULL_TREE;
default:
return NULL_TREE;
}
}
/* There should be only one allocation function for the dimensions
that don't escape. Here we check the allocation sites in this
function. We must make sure that all the dimensions are allocated
using malloc and that the malloc size parameter expression could be
pre-calculated before the call to the malloc of dimension 0.
Given a candidate matrix for flattening -- MI -- check if it's
appropriate for flattening -- we analyze the allocation
sites that we recorded in the previous analysis. The result of the
analysis is a level of indirection (matrix dimension) in which the
flattening is safe. We check the following conditions:
1. There is only one allocation site for each dimension.
2. The allocation sites of all the dimensions are in the same
function.
(The above two are being taken care of during the analysis when
we check the allocation site).
3. All the dimensions that we flatten are allocated at once; thus
the total size must be known before the allocation of the
dimension 0 (top level) -- we must make sure we represent the
size of the allocation as an expression of global parameters or
constants and that those doesn't change over the function. */
static int
check_allocation_function (void **slot, void *data ATTRIBUTE_UNUSED)
{
int level;
block_stmt_iterator bsi;
basic_block bb_level_0;
struct matrix_info *mi = *slot;
sbitmap visited;
if (!mi->malloc_for_level)
return 1;
visited = sbitmap_alloc (num_ssa_names);
/* Do nothing if the current function is not the allocation
function of MI. */
if (mi->allocation_function_decl != current_function_decl
/* We aren't in the main allocation function yet. */
|| !mi->malloc_for_level[0])
return 1;
for (level = 1; level < mi->max_malloced_level; level++)
if (!mi->malloc_for_level[level])
break;
mark_min_matrix_escape_level (mi, level, NULL_TREE);
bsi = bsi_for_stmt (mi->malloc_for_level[0]);
bb_level_0 = bsi.bb;
/* Check if the expression of the size passed to malloc could be
pre-calculated before the malloc of level 0. */
for (level = 1; level < mi->min_indirect_level_escape; level++)
{
tree call_stmt, size;
struct malloc_call_data mcd;
call_stmt = mi->malloc_for_level[level];
/* Find the correct malloc information. */
collect_data_for_malloc_call (call_stmt, &mcd);
/* No need to check anticipation for constants. */
if (TREE_CODE (mcd.size_var) == INTEGER_CST)
{
if (!mi->dimension_size)
{
mi->dimension_size =
(tree *) xcalloc (mi->min_indirect_level_escape,
sizeof (tree));
mi->dimension_size_orig =
(tree *) xcalloc (mi->min_indirect_level_escape,
sizeof (tree));
}
mi->dimension_size[level] = mcd.size_var;
mi->dimension_size_orig[level] = mcd.size_var;
continue;
}
/* ??? Here we should also add the way to calculate the size
expression not only know that it is anticipated. */
sbitmap_zero (visited);
size = can_calculate_expr_before_stmt (mcd.size_var, visited);
if (size == NULL_TREE)
{
mark_min_matrix_escape_level (mi, level, call_stmt);
if (dump_file)
fprintf (dump_file,
"Matrix %s: Cannot calculate the size of allocation. escaping at level %d\n",
get_name (mi->decl), level);
break;
}
if (!mi->dimension_size)
{
mi->dimension_size =
(tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
mi->dimension_size_orig =
(tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
}
mi->dimension_size[level] = size;
mi->dimension_size_orig[level] = size;
}
/* We don't need those anymore. */
for (level = mi->min_indirect_level_escape;
level < mi->max_malloced_level; level++)
mi->malloc_for_level[level] = NULL;
return 1;
}
/* Track all access and allocation sites. */
static void
find_sites_in_func (bool record)
{
sbitmap visited_stmts_1;
block_stmt_iterator bsi;
tree stmt;
basic_block bb;
struct matrix_info tmpmi, *mi;
visited_stmts_1 = sbitmap_alloc (num_ssa_names);
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == VAR_DECL)
{
tmpmi.decl = GIMPLE_STMT_OPERAND (stmt, 0);
if ((mi = htab_find (matrices_to_reorg, &tmpmi)))
{
sbitmap_zero (visited_stmts_1);
analyze_matrix_allocation_site (mi, stmt, 0, visited_stmts_1);
}
}
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
&& TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == VAR_DECL)
{
tmpmi.decl = GIMPLE_STMT_OPERAND (stmt, 1);
if ((mi = htab_find (matrices_to_reorg, &tmpmi)))
{
sbitmap_zero (visited_stmts_1);
analyze_matrix_accesses (mi,
GIMPLE_STMT_OPERAND (stmt, 0), 0,
false, visited_stmts_1, record);
}
}
}
}
sbitmap_free (visited_stmts_1);
}
/* Traverse the use-def chains to see if there are matrices that
are passed through pointers and we cannot know how they are accessed.
For each SSA-name defined by a global variable of our interest,
we traverse the use-def chains of the SSA and follow the indirections,
and record in what level of indirection the use of the variable
escapes. A use of a pointer escapes when it is passed to a function,
stored into memory or assigned (except in malloc and free calls). */
static void
record_all_accesses_in_func (void)
{
unsigned i;
sbitmap visited_stmts_1;
visited_stmts_1 = sbitmap_alloc (num_ssa_names);
for (i = 0; i < num_ssa_names; i++)
{
struct matrix_info tmpmi, *mi;
tree ssa_var = ssa_name (i);
tree rhs, lhs;
if (!ssa_var
|| TREE_CODE (SSA_NAME_DEF_STMT (ssa_var)) != GIMPLE_MODIFY_STMT)
continue;
rhs = GIMPLE_STMT_OPERAND (SSA_NAME_DEF_STMT (ssa_var), 1);
lhs = GIMPLE_STMT_OPERAND (SSA_NAME_DEF_STMT (ssa_var), 0);
if (TREE_CODE (rhs) != VAR_DECL && TREE_CODE (lhs) != VAR_DECL)
continue;
/* If the RHS is a matrix that we want to analyze, follow the def-use
chain for this SSA_VAR and check for escapes or apply the
flattening. */
tmpmi.decl = rhs;
if ((mi = htab_find (matrices_to_reorg, &tmpmi)))
{
/* This variable will track the visited PHI nodes, so we can limit
its size to the maximum number of SSA names. */
sbitmap_zero (visited_stmts_1);
analyze_matrix_accesses (mi, ssa_var,
0, false, visited_stmts_1, true);
}
}
sbitmap_free (visited_stmts_1);
}
/* Used when we want to convert the expression: RESULT = something * ORIG to RESULT = something * NEW. If ORIG and NEW are power of 2, shift operations can be done, else division and multiplication. */
static tree
compute_offset (HOST_WIDE_INT orig, HOST_WIDE_INT new, tree result)
{
int x, y;
tree result1, ratio, log, orig_tree, new_tree;
x = exact_log2 (orig);
y = exact_log2 (new);
if (x != -1 && y != -1)
{
if (x == y)
return result;
else if (x > y)
{
log = build_int_cst (TREE_TYPE (result), x - y);
result1 =
fold_build2 (LSHIFT_EXPR, TREE_TYPE (result), result, log);
return result1;
}
log = build_int_cst (TREE_TYPE (result), y - x);
result1 = fold_build2 (RSHIFT_EXPR, TREE_TYPE (result), result, log);
return result1;
}
orig_tree = build_int_cst (TREE_TYPE (result), orig);
new_tree = build_int_cst (TREE_TYPE (result), new);
ratio = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (result), result, orig_tree);
result1 = fold_build2 (MULT_EXPR, TREE_TYPE (result), ratio, new_tree);
return result1;
}
/* We know that we are allowed to perform matrix flattening (according to the
escape analysis), so we traverse the use-def chains of the SSA vars
defined by the global variables pointing to the matrices of our interest.
in each use of the SSA we calculate the offset from the base address
according to the following equation:
a[I1][I2]...[Ik] , where D1..Dk is the length of each dimension and the
escaping level is m <= k, and a' is the new allocated matrix,
will be translated to :
b[I(m+1)]...[Ik]
where
b = a' + I1*D2...*Dm + I2*D3...Dm + ... + Im
*/
static int
transform_access_sites (void **slot, void *data ATTRIBUTE_UNUSED)
{
block_stmt_iterator bsi;
struct matrix_info *mi = *slot;
int min_escape_l = mi->min_indirect_level_escape;
struct access_site_info *acc_info;
int i;
if (min_escape_l < 2 || !mi->access_l)
return 1;
for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
i++)
{
tree orig, type;
/* This is possible because we collect the access sites before
we determine the final minimum indirection level. */
if (acc_info->level >= min_escape_l)
{
free (acc_info);
continue;
}
if (acc_info->is_alloc)
{
if (acc_info->level >= 0 && bb_for_stmt (acc_info->stmt))
{
ssa_op_iter iter;
tree def;
tree stmt = acc_info->stmt;
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
mark_sym_for_renaming (SSA_NAME_VAR (def));
bsi = bsi_for_stmt (stmt);
gcc_assert (TREE_CODE (acc_info->stmt) == GIMPLE_MODIFY_STMT);
if (TREE_CODE (GIMPLE_STMT_OPERAND (acc_info->stmt, 0)) ==
SSA_NAME && acc_info->level < min_escape_l - 1)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
tree use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
GIMPLE_STMT_OPERAND (acc_info->stmt,
0))
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
{
tree conv, tmp, stmts;
/* Emit convert statement to convert to type of use. */
conv =
fold_build1 (CONVERT_EXPR,
TREE_TYPE (GIMPLE_STMT_OPERAND
(acc_info->stmt, 0)),
TREE_OPERAND (GIMPLE_STMT_OPERAND
(acc_info->stmt, 1), 0));
tmp =
create_tmp_var (TREE_TYPE
(GIMPLE_STMT_OPERAND
(acc_info->stmt, 0)), "new");
add_referenced_var (tmp);
stmts =
fold_build2 (GIMPLE_MODIFY_STMT,
TREE_TYPE (GIMPLE_STMT_OPERAND
(acc_info->stmt, 0)), tmp,
conv);
tmp = make_ssa_name (tmp, stmts);
GIMPLE_STMT_OPERAND (stmts, 0) = tmp;
bsi = bsi_for_stmt (acc_info->stmt);
bsi_insert_after (&bsi, stmts, BSI_SAME_STMT);
SET_USE (use_p, tmp);
}
}
if (acc_info->level < min_escape_l - 1)
bsi_remove (&bsi, true);
}
free (acc_info);
continue;
}
orig = GIMPLE_STMT_OPERAND (acc_info->stmt, 1);
type = TREE_TYPE (orig);
if (TREE_CODE (orig) == INDIRECT_REF
&& acc_info->level < min_escape_l - 1)
{
/* Replace the INDIRECT_REF with NOP (cast) usually we are casting
from "pointer to type" to "type". */
orig =
build1 (NOP_EXPR, TREE_TYPE (orig),
GIMPLE_STMT_OPERAND (orig, 0));
GIMPLE_STMT_OPERAND (acc_info->stmt, 1) = orig;
}
else if (TREE_CODE (orig) == POINTER_PLUS_EXPR
&& acc_info->level < (min_escape_l))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
tree offset;
int k = acc_info->level;
tree num_elements, total_elements;
tree tmp1;
tree d_size = mi->dimension_size[k];
/* We already make sure in the analysis that the first operand
is the base and the second is the offset. */
offset = acc_info->offset;
if (mi->dim_map[k] == min_escape_l - 1)
{
if (!check_transpose_p || mi->is_transposed_p == false)
tmp1 = offset;
else
{
tree new_offset;
tree d_type_size, d_type_size_k;
d_type_size = size_int (mi->dimension_type_size[min_escape_l]);
d_type_size_k = size_int (mi->dimension_type_size[k + 1]);
new_offset =
compute_offset (mi->dimension_type_size[min_escape_l],
mi->dimension_type_size[k + 1], offset);
total_elements = new_offset;
if (new_offset != offset)
{
bsi = bsi_for_stmt (acc_info->stmt);
tmp1 = force_gimple_operand_bsi (&bsi, total_elements,
true, NULL,
true, BSI_SAME_STMT);
}
else
tmp1 = offset;
}
}
else
{
d_size = mi->dimension_size[mi->dim_map[k] + 1];
num_elements =
fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, acc_info->index),
fold_convert (sizetype, d_size));
add_referenced_var (d_size);
bsi = bsi_for_stmt (acc_info->stmt);
tmp1 = force_gimple_operand_bsi (&bsi, num_elements, true,
NULL, true, BSI_SAME_STMT);
}
/* Replace the offset if needed. */
if (tmp1 != offset)
{
if (TREE_CODE (offset) == SSA_NAME)
{
tree use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, offset)
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
if (use_stmt == acc_info->stmt)
SET_USE (use_p, tmp1);
}
else
{
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
TREE_OPERAND (orig, 1) = tmp1;
}
}
}
/* ??? meanwhile this happens because we record the same access
site more than once; we should be using a hash table to
avoid this and insert the STMT of the access site only
once.
else
gcc_unreachable (); */
free (acc_info);
}
VEC_free (access_site_info_p, heap, mi->access_l);
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_ssa (true);
#endif
return 1;
}
/* Sort A array of counts. Arrange DIM_MAP to reflect the new order. */
static void
sort_dim_hot_level (gcov_type * a, int *dim_map, int n)
{
int i, j, tmp1;
gcov_type tmp;
for (i = 0; i < n - 1; i++)
{
for (j = 0; j < n - 1 - i; j++)
{
if (a[j + 1] < a[j])
{
tmp = a[j]; /* swap a[j] and a[j+1] */
a[j] = a[j + 1];
a[j + 1] = tmp;
tmp1 = dim_map[j];
dim_map[j] = dim_map[j + 1];
dim_map[j + 1] = tmp1;
}
}
}
}
/* Replace multiple mallocs (one for each dimension) to one malloc
with the size of DIM1*DIM2*...*DIMN*size_of_element
Make sure that we hold the size in the malloc site inside a
new global variable; this way we ensure that the size doesn't
change and it is accessible from all the other functions that
uses the matrix. Also, the original calls to free are deleted,
and replaced by a new call to free the flattened matrix. */
static int
transform_allocation_sites (void **slot, void *data ATTRIBUTE_UNUSED)
{
int i;
struct matrix_info *mi;
tree type, call_stmt_0, malloc_stmt, oldfn, prev_dim_size, use_stmt;
struct cgraph_node *c_node;
struct cgraph_edge *e;
block_stmt_iterator bsi;
struct malloc_call_data mcd;
HOST_WIDE_INT element_size;
imm_use_iterator imm_iter;
use_operand_p use_p;
tree old_size_0, tmp;
int min_escape_l;
int id;
mi = *slot;
min_escape_l = mi->min_indirect_level_escape;
if (!mi->malloc_for_level)
mi->min_indirect_level_escape = 0;
if (mi->min_indirect_level_escape < 2)
return 1;
mi->dim_map = (int *) xcalloc (mi->min_indirect_level_escape, sizeof (int));
for (i = 0; i < mi->min_indirect_level_escape; i++)
mi->dim_map[i] = i;
if (check_transpose_p)
{
int i;
if (dump_file)
{
fprintf (dump_file, "Matrix %s:\n", get_name (mi->decl));
for (i = 0; i < min_escape_l; i++)
{
fprintf (dump_file, "dim %d before sort ", i);
if (mi->dim_hot_level)
fprintf (dump_file,
"count is " HOST_WIDEST_INT_PRINT_DEC " \n",
mi->dim_hot_level[i]);
}
}
sort_dim_hot_level (mi->dim_hot_level, mi->dim_map,
mi->min_indirect_level_escape);
if (dump_file)
for (i = 0; i < min_escape_l; i++)
{
fprintf (dump_file, "dim %d after sort\n", i);
if (mi->dim_hot_level)
fprintf (dump_file, "count is " HOST_WIDE_INT_PRINT_DEC
" \n", (HOST_WIDE_INT) mi->dim_hot_level[i]);
}
for (i = 0; i < mi->min_indirect_level_escape; i++)
{
if (dump_file)
fprintf (dump_file, "dim_map[%d] after sort %d\n", i,
mi->dim_map[i]);
if (mi->dim_map[i] != i)
{
if (dump_file)
fprintf (dump_file,
"Transposed dimensions: dim %d is now dim %d\n",
mi->dim_map[i], i);
mi->is_transposed_p = true;
}
}
}
else
{
for (i = 0; i < mi->min_indirect_level_escape; i++)
mi->dim_map[i] = i;
}
/* Call statement of allocation site of level 0. */
call_stmt_0 = mi->malloc_for_level[0];
/* Finds the correct malloc information. */
collect_data_for_malloc_call (call_stmt_0, &mcd);
mi->dimension_size[0] = mcd.size_var;
mi->dimension_size_orig[0] = mcd.size_var;
/* Make sure that the variables in the size expression for
all the dimensions (above level 0) aren't modified in
the allocation function. */
for (i = 1; i < mi->min_indirect_level_escape; i++)
{
tree t;
/* mi->dimension_size must contain the expression of the size calculated
in check_allocation_function. */
gcc_assert (mi->dimension_size[i]);
t = walk_tree_without_duplicates (&(mi->dimension_size[i]),
check_var_notmodified_p,
mi->allocation_function_decl);
if (t != NULL_TREE)
{
mark_min_matrix_escape_level (mi, i, t);
break;
}
}
if (mi->min_indirect_level_escape < 2)
return 1;
/* Since we should make sure that the size expression is available
before the call to malloc of level 0. */
bsi = bsi_for_stmt (call_stmt_0);
/* Find out the size of each dimension by looking at the malloc
sites and create a global variable to hold it.
We add the assignment to the global before the malloc of level 0. */
/* To be able to produce gimple temporaries. */
oldfn = current_function_decl;
current_function_decl = mi->allocation_function_decl;
push_cfun (DECL_STRUCT_FUNCTION (mi->allocation_function_decl));
/* Set the dimension sizes as follows:
DIM_SIZE[i] = DIM_SIZE[n] * ... * DIM_SIZE[i]
where n is the maximum non escaping level. */
element_size = mi->dimension_type_size[mi->min_indirect_level_escape];
prev_dim_size = NULL_TREE;
for (i = mi->min_indirect_level_escape - 1; i >= 0; i--)
{
tree dim_size, dim_var, tmp;
tree d_type_size;
/* Now put the size expression in a global variable and initialize it to
the size expression before the malloc of level 0. */
dim_var =
add_new_static_var (TREE_TYPE
(mi->dimension_size_orig[mi->dim_map[i]]));
type = TREE_TYPE (mi->dimension_size_orig[mi->dim_map[i]]);
/* DIM_SIZE = MALLOC_SIZE_PARAM / TYPE_SIZE. */
/* Find which dim ID becomes dim I. */
for (id = 0; id < mi->min_indirect_level_escape; id++)
if (mi->dim_map[id] == i)
break;
d_type_size =
build_int_cst (type, mi->dimension_type_size[id + 1]);
if (!prev_dim_size)
prev_dim_size = build_int_cst (type, element_size);
if (!check_transpose_p && i == mi->min_indirect_level_escape - 1)
{
dim_size = mi->dimension_size_orig[id];
}
else
{
dim_size =
fold_build2 (TRUNC_DIV_EXPR, type, mi->dimension_size_orig[id],
d_type_size);
dim_size = fold_build2 (MULT_EXPR, type, dim_size, prev_dim_size);
}
dim_size = force_gimple_operand_bsi (&bsi, dim_size, true, NULL,
true, BSI_SAME_STMT);
/* GLOBAL_HOLDING_THE_SIZE = DIM_SIZE. */
tmp = fold_build2 (GIMPLE_MODIFY_STMT, type, dim_var, dim_size);
GIMPLE_STMT_OPERAND (tmp, 0) = dim_var;
mark_symbols_for_renaming (tmp);
bsi_insert_before (&bsi, tmp, BSI_SAME_STMT);
prev_dim_size = mi->dimension_size[i] = dim_var;
}
update_ssa (TODO_update_ssa);
/* Replace the malloc size argument in the malloc of level 0 to be
the size of all the dimensions. */
malloc_stmt = GIMPLE_STMT_OPERAND (call_stmt_0, 1);
c_node = cgraph_node (mi->allocation_function_decl);
old_size_0 = CALL_EXPR_ARG (malloc_stmt, 0);
tmp = force_gimple_operand_bsi (&bsi, mi->dimension_size[0], true,
NULL, true, BSI_SAME_STMT);
if (TREE_CODE (old_size_0) == SSA_NAME)
{
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, old_size_0)
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
if (use_stmt == call_stmt_0)
SET_USE (use_p, tmp);
}
/* When deleting the calls to malloc we need also to remove the edge from
the call graph to keep it consistent. Notice that cgraph_edge may
create a new node in the call graph if there is no node for the given
declaration; this shouldn't be the case but currently there is no way to
check this outside of "cgraph.c". */
for (i = 1; i < mi->min_indirect_level_escape; i++)
{
block_stmt_iterator bsi;
tree use_stmt1 = NULL;
tree call;
tree call_stmt = mi->malloc_for_level[i];
call = GIMPLE_STMT_OPERAND (call_stmt, 1);
gcc_assert (TREE_CODE (call) == CALL_EXPR);
e = cgraph_edge (c_node, call_stmt);
gcc_assert (e);
cgraph_remove_edge (e);
bsi = bsi_for_stmt (call_stmt);
/* Remove the call stmt. */
bsi_remove (&bsi, true);
/* remove the type cast stmt. */
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
GIMPLE_STMT_OPERAND (call_stmt, 0))
{
use_stmt1 = use_stmt;
bsi = bsi_for_stmt (use_stmt);
bsi_remove (&bsi, true);
}
/* Remove the assignment of the allocated area. */
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
GIMPLE_STMT_OPERAND (use_stmt1, 0))
{
bsi = bsi_for_stmt (use_stmt);
bsi_remove (&bsi, true);
}
}
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_ssa (true);
#endif
/* Delete the calls to free. */
for (i = 1; i < mi->min_indirect_level_escape; i++)
{
block_stmt_iterator bsi;
tree call;
/* ??? wonder why this case is possible but we failed on it once. */
if (!mi->free_stmts[i].stmt)
continue;
call = TREE_OPERAND (mi->free_stmts[i].stmt, 1);
c_node = cgraph_node (mi->free_stmts[i].func);
gcc_assert (TREE_CODE (mi->free_stmts[i].stmt) == CALL_EXPR);
e = cgraph_edge (c_node, mi->free_stmts[i].stmt);
gcc_assert (e);
cgraph_remove_edge (e);
current_function_decl = mi->free_stmts[i].func;
set_cfun (DECL_STRUCT_FUNCTION (mi->free_stmts[i].func));
bsi = bsi_for_stmt (mi->free_stmts[i].stmt);
bsi_remove (&bsi, true);
}
/* Return to the previous situation. */
current_function_decl = oldfn;
pop_cfun ();
return 1;
}
/* Print out the results of the escape analysis. */
static int
dump_matrix_reorg_analysis (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct matrix_info *mi = *slot;
if (!dump_file)
return 1;
fprintf (dump_file, "Matrix \"%s\"; Escaping Level: %d, Num Dims: %d,",
get_name (mi->decl), mi->min_indirect_level_escape, mi->num_dims);
fprintf (dump_file, " Malloc Dims: %d, ", mi->max_malloced_level);
fprintf (dump_file, "\n");
if (mi->min_indirect_level_escape >= 2)
fprintf (dump_file, "Flattened %d dimensions \n",
mi->min_indirect_level_escape);
return 1;
}
/* Perform matrix flattening. */
static unsigned int
matrix_reorg (void)
{
struct cgraph_node *node;
if (profile_info)
check_transpose_p = true;
else
check_transpose_p = false;
/* If there are hand written vectors, we skip this optimization. */
for (node = cgraph_nodes; node; node = node->next)
if (!may_flatten_matrices (node))
return 0;
matrices_to_reorg = htab_create (37, mtt_info_hash, mtt_info_eq, mat_free);
/* Find and record all potential matrices in the program. */
find_matrices_decl ();
/* Analyze the accesses of the matrices (escaping analysis). */
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed)
{
tree temp_fn;
temp_fn = current_function_decl;
current_function_decl = node->decl;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
bitmap_obstack_initialize (NULL);
tree_register_cfg_hooks ();
if (!gimple_in_ssa_p (cfun))
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
current_function_decl = temp_fn;
return 0;
}
#ifdef ENABLE_CHECKING
verify_flow_info ();
#endif
if (!matrices_to_reorg)
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
current_function_decl = temp_fn;
return 0;
}
/* Create htap for phi nodes. */
htab_mat_acc_phi_nodes = htab_create (37, mat_acc_phi_hash,
mat_acc_phi_eq, free);
if (!check_transpose_p)
find_sites_in_func (false);
else
{
find_sites_in_func (true);
loop_optimizer_init (LOOPS_NORMAL);
if (current_loops)
scev_initialize ();
htab_traverse (matrices_to_reorg, analyze_transpose, NULL);
if (current_loops)
{
scev_finalize ();
loop_optimizer_finalize ();
current_loops = NULL;
}
}
/* If the current function is the allocation function for any of
the matrices we check its allocation and the escaping level. */
htab_traverse (matrices_to_reorg, check_allocation_function, NULL);
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
current_function_decl = temp_fn;
}
htab_traverse (matrices_to_reorg, transform_allocation_sites, NULL);
/* Now transform the accesses. */
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed)
{
/* Remember that allocation sites have been handled. */
tree temp_fn;
temp_fn = current_function_decl;
current_function_decl = node->decl;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
bitmap_obstack_initialize (NULL);
tree_register_cfg_hooks ();
record_all_accesses_in_func ();
htab_traverse (matrices_to_reorg, transform_access_sites, NULL);
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
current_function_decl = temp_fn;
}
htab_traverse (matrices_to_reorg, dump_matrix_reorg_analysis, NULL);
current_function_decl = NULL;
set_cfun (NULL);
matrices_to_reorg = NULL;
return 0;
}
/* The condition for matrix flattening to be performed. */
static bool
gate_matrix_reorg (void)
{
return flag_ipa_matrix_reorg && flag_whole_program;
}
struct tree_opt_pass pass_ipa_matrix_reorg = {
"matrix-reorg", /* name */
gate_matrix_reorg, /* gate */
matrix_reorg, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
0, /* properties_required */
PROP_trees, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
|