1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
|
/* Swing Modulo Scheduling implementation.
Copyright (C) 2004-2015 Free Software Foundation, Inc.
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "diagnostic-core.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "profile.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "recog.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "predict.h"
#include "basic-block.h"
#include "sched-int.h"
#include "target.h"
#include "cfgloop.h"
#include "alias.h"
#include "symtab.h"
#include "tree.h"
#include "insn-codes.h"
#include "optabs.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "emit-rtl.h"
#include "varasm.h"
#include "stmt.h"
#include "expr.h"
#include "params.h"
#include "gcov-io.h"
#include "sbitmap.h"
#include "df.h"
#include "ddg.h"
#include "tree-pass.h"
#include "dbgcnt.h"
#include "loop-unroll.h"
#ifdef INSN_SCHEDULING
/* This file contains the implementation of the Swing Modulo Scheduler,
described in the following references:
[1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
Lifetime--sensitive modulo scheduling in a production environment.
IEEE Trans. on Comps., 50(3), March 2001
[2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
Swing Modulo Scheduling: A Lifetime Sensitive Approach.
PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
The basic structure is:
1. Build a data-dependence graph (DDG) for each loop.
2. Use the DDG to order the insns of a loop (not in topological order
necessarily, but rather) trying to place each insn after all its
predecessors _or_ after all its successors.
3. Compute MII: a lower bound on the number of cycles to schedule the loop.
4. Use the ordering to perform list-scheduling of the loop:
1. Set II = MII. We will try to schedule the loop within II cycles.
2. Try to schedule the insns one by one according to the ordering.
For each insn compute an interval of cycles by considering already-
scheduled preds and succs (and associated latencies); try to place
the insn in the cycles of this window checking for potential
resource conflicts (using the DFA interface).
Note: this is different from the cycle-scheduling of schedule_insns;
here the insns are not scheduled monotonically top-down (nor bottom-
up).
3. If failed in scheduling all insns - bump II++ and try again, unless
II reaches an upper bound MaxII, in which case report failure.
5. If we succeeded in scheduling the loop within II cycles, we now
generate prolog and epilog, decrease the counter of the loop, and
perform modulo variable expansion for live ranges that span more than
II cycles (i.e. use register copies to prevent a def from overwriting
itself before reaching the use).
SMS works with countable loops (1) whose control part can be easily
decoupled from the rest of the loop and (2) whose loop count can
be easily adjusted. This is because we peel a constant number of
iterations into a prologue and epilogue for which we want to avoid
emitting the control part, and a kernel which is to iterate that
constant number of iterations less than the original loop. So the
control part should be a set of insns clearly identified and having
its own iv, not otherwise used in the loop (at-least for now), which
initializes a register before the loop to the number of iterations.
Currently SMS relies on the do-loop pattern to recognize such loops,
where (1) the control part comprises of all insns defining and/or
using a certain 'count' register and (2) the loop count can be
adjusted by modifying this register prior to the loop.
TODO: Rely on cfgloop analysis instead. */
/* This page defines partial-schedule structures and functions for
modulo scheduling. */
typedef struct partial_schedule *partial_schedule_ptr;
typedef struct ps_insn *ps_insn_ptr;
/* The minimum (absolute) cycle that a node of ps was scheduled in. */
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
/* The maximum (absolute) cycle that a node of ps was scheduled in. */
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
/* Perform signed modulo, always returning a non-negative value. */
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
/* The number of different iterations the nodes in ps span, assuming
the stage boundaries are placed efficiently. */
#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
+ 1 + ii - 1) / ii)
/* The stage count of ps. */
#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
/* A single instruction in the partial schedule. */
struct ps_insn
{
/* Identifies the instruction to be scheduled. Values smaller than
the ddg's num_nodes refer directly to ddg nodes. A value of
X - num_nodes refers to register move X. */
int id;
/* The (absolute) cycle in which the PS instruction is scheduled.
Same as SCHED_TIME (node). */
int cycle;
/* The next/prev PS_INSN in the same row. */
ps_insn_ptr next_in_row,
prev_in_row;
};
/* Information about a register move that has been added to a partial
schedule. */
struct ps_reg_move_info
{
/* The source of the move is defined by the ps_insn with id DEF.
The destination is used by the ps_insns with the ids in USES. */
int def;
sbitmap uses;
/* The original form of USES' instructions used OLD_REG, but they
should now use NEW_REG. */
rtx old_reg;
rtx new_reg;
/* The number of consecutive stages that the move occupies. */
int num_consecutive_stages;
/* An instruction that sets NEW_REG to the correct value. The first
move associated with DEF will have an rhs of OLD_REG; later moves
use the result of the previous move. */
rtx_insn *insn;
};
typedef struct ps_reg_move_info ps_reg_move_info;
/* Holds the partial schedule as an array of II rows. Each entry of the
array points to a linked list of PS_INSNs, which represents the
instructions that are scheduled for that row. */
struct partial_schedule
{
int ii; /* Number of rows in the partial schedule. */
int history; /* Threshold for conflict checking using DFA. */
/* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
ps_insn_ptr *rows;
/* All the moves added for this partial schedule. Index X has
a ps_insn id of X + g->num_nodes. */
vec<ps_reg_move_info> reg_moves;
/* rows_length[i] holds the number of instructions in the row.
It is used only (as an optimization) to back off quickly from
trying to schedule a node in a full row; that is, to avoid running
through futile DFA state transitions. */
int *rows_length;
/* The earliest absolute cycle of an insn in the partial schedule. */
int min_cycle;
/* The latest absolute cycle of an insn in the partial schedule. */
int max_cycle;
ddg_ptr g; /* The DDG of the insns in the partial schedule. */
int stage_count; /* The stage count of the partial schedule. */
};
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
static void free_partial_schedule (partial_schedule_ptr);
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
void print_partial_schedule (partial_schedule_ptr, FILE *);
static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
int, int, sbitmap, sbitmap);
static void rotate_partial_schedule (partial_schedule_ptr, int);
void set_row_column_for_ps (partial_schedule_ptr);
static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
/* This page defines constants and structures for the modulo scheduling
driver. */
static int sms_order_nodes (ddg_ptr, int, int *, int *);
static void set_node_sched_params (ddg_ptr);
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
rtx, rtx);
static int calculate_stage_count (partial_schedule_ptr, int);
static void calculate_must_precede_follow (ddg_node_ptr, int, int,
int, int, sbitmap, sbitmap, sbitmap);
static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
sbitmap, int, int *, int *, int *);
static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
sbitmap, int *, sbitmap, sbitmap);
static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
#define NODE_ASAP(node) ((node)->aux.count)
#define SCHED_PARAMS(x) (&node_sched_param_vec[x])
#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
/* The scheduling parameters held for each node. */
typedef struct node_sched_params
{
int time; /* The absolute scheduling cycle. */
int row; /* Holds time % ii. */
int stage; /* Holds time / ii. */
/* The column of a node inside the ps. If nodes u, v are on the same row,
u will precede v if column (u) < column (v). */
int column;
} *node_sched_params_ptr;
typedef struct node_sched_params node_sched_params;
/* The following three functions are copied from the current scheduler
code in order to use sched_analyze() for computing the dependencies.
They are used when initializing the sched_info structure. */
static const char *
sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
{
static char tmp[80];
sprintf (tmp, "i%4d", INSN_UID (insn));
return tmp;
}
static void
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
regset used ATTRIBUTE_UNUSED)
{
}
static struct common_sched_info_def sms_common_sched_info;
static struct sched_deps_info_def sms_sched_deps_info =
{
compute_jump_reg_dependencies,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL,
0, 0, 0
};
static struct haifa_sched_info sms_sched_info =
{
NULL,
NULL,
NULL,
NULL,
NULL,
sms_print_insn,
NULL,
NULL, /* insn_finishes_block_p */
NULL, NULL,
NULL, NULL,
0, 0,
NULL, NULL, NULL, NULL,
NULL, NULL,
0
};
/* Partial schedule instruction ID in PS is a register move. Return
information about it. */
static struct ps_reg_move_info *
ps_reg_move (partial_schedule_ptr ps, int id)
{
gcc_checking_assert (id >= ps->g->num_nodes);
return &ps->reg_moves[id - ps->g->num_nodes];
}
/* Return the rtl instruction that is being scheduled by partial schedule
instruction ID, which belongs to schedule PS. */
static rtx_insn *
ps_rtl_insn (partial_schedule_ptr ps, int id)
{
if (id < ps->g->num_nodes)
return ps->g->nodes[id].insn;
else
return ps_reg_move (ps, id)->insn;
}
/* Partial schedule instruction ID, which belongs to PS, occurred in
the original (unscheduled) loop. Return the first instruction
in the loop that was associated with ps_rtl_insn (PS, ID).
If the instruction had some notes before it, this is the first
of those notes. */
static rtx_insn *
ps_first_note (partial_schedule_ptr ps, int id)
{
gcc_assert (id < ps->g->num_nodes);
return ps->g->nodes[id].first_note;
}
/* Return the number of consecutive stages that are occupied by
partial schedule instruction ID in PS. */
static int
ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
{
if (id < ps->g->num_nodes)
return 1;
else
return ps_reg_move (ps, id)->num_consecutive_stages;
}
/* Given HEAD and TAIL which are the first and last insns in a loop;
return the register which controls the loop. Return zero if it has
more than one occurrence in the loop besides the control part or the
do-loop pattern is not of the form we expect. */
static rtx
doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
{
#ifdef HAVE_doloop_end
rtx reg, condition;
rtx_insn *insn, *first_insn_not_to_check;
if (!JUMP_P (tail))
return NULL_RTX;
/* TODO: Free SMS's dependence on doloop_condition_get. */
condition = doloop_condition_get (tail);
if (! condition)
return NULL_RTX;
if (REG_P (XEXP (condition, 0)))
reg = XEXP (condition, 0);
else if (GET_CODE (XEXP (condition, 0)) == PLUS
&& REG_P (XEXP (XEXP (condition, 0), 0)))
reg = XEXP (XEXP (condition, 0), 0);
else
gcc_unreachable ();
/* Check that the COUNT_REG has no other occurrences in the loop
until the decrement. We assume the control part consists of
either a single (parallel) branch-on-count or a (non-parallel)
branch immediately preceded by a single (decrement) insn. */
first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
: prev_nondebug_insn (tail));
for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
{
if (dump_file)
{
fprintf (dump_file, "SMS count_reg found ");
print_rtl_single (dump_file, reg);
fprintf (dump_file, " outside control in insn:\n");
print_rtl_single (dump_file, insn);
}
return NULL_RTX;
}
return reg;
#else
return NULL_RTX;
#endif
}
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
that the number of iterations is a compile-time constant. If so,
return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
this constant. Otherwise return 0. */
static rtx_insn *
const_iteration_count (rtx count_reg, basic_block pre_header,
int64_t * count)
{
rtx_insn *insn;
rtx_insn *head, *tail;
if (! pre_header)
return NULL;
get_ebb_head_tail (pre_header, pre_header, &head, &tail);
for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
{
rtx pat = single_set (insn);
if (CONST_INT_P (SET_SRC (pat)))
{
*count = INTVAL (SET_SRC (pat));
return insn;
}
return NULL;
}
return NULL;
}
/* A very simple resource-based lower bound on the initiation interval.
??? Improve the accuracy of this bound by considering the
utilization of various units. */
static int
res_MII (ddg_ptr g)
{
if (targetm.sched.sms_res_mii)
return targetm.sched.sms_res_mii (g);
return ((g->num_nodes - g->num_debug) / issue_rate);
}
/* A vector that contains the sched data for each ps_insn. */
static vec<node_sched_params> node_sched_param_vec;
/* Allocate sched_params for each node and initialize it. */
static void
set_node_sched_params (ddg_ptr g)
{
node_sched_param_vec.truncate (0);
node_sched_param_vec.safe_grow_cleared (g->num_nodes);
}
/* Make sure that node_sched_param_vec has an entry for every move in PS. */
static void
extend_node_sched_params (partial_schedule_ptr ps)
{
node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
+ ps->reg_moves.length ());
}
/* Update the sched_params (time, row and stage) for node U using the II,
the CYCLE of U and MIN_CYCLE.
We're not simply taking the following
SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
because the stages may not be aligned on cycle 0. */
static void
update_node_sched_params (int u, int ii, int cycle, int min_cycle)
{
int sc_until_cycle_zero;
int stage;
SCHED_TIME (u) = cycle;
SCHED_ROW (u) = SMODULO (cycle, ii);
/* The calculation of stage count is done adding the number
of stages before cycle zero and after cycle zero. */
sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
if (SCHED_TIME (u) < 0)
{
stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
SCHED_STAGE (u) = sc_until_cycle_zero - stage;
}
else
{
stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
}
}
static void
print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
{
int i;
if (! file)
return;
for (i = 0; i < num_nodes; i++)
{
node_sched_params_ptr nsp = SCHED_PARAMS (i);
fprintf (file, "Node = %d; INSN = %d\n", i,
INSN_UID (ps_rtl_insn (ps, i)));
fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
fprintf (file, " time = %d:\n", nsp->time);
fprintf (file, " stage = %d:\n", nsp->stage);
}
}
/* Set SCHED_COLUMN for each instruction in row ROW of PS. */
static void
set_columns_for_row (partial_schedule_ptr ps, int row)
{
ps_insn_ptr cur_insn;
int column;
column = 0;
for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
SCHED_COLUMN (cur_insn->id) = column++;
}
/* Set SCHED_COLUMN for each instruction in PS. */
static void
set_columns_for_ps (partial_schedule_ptr ps)
{
int row;
for (row = 0; row < ps->ii; row++)
set_columns_for_row (ps, row);
}
/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
Its single predecessor has already been scheduled, as has its
ddg node successors. (The move may have also another move as its
successor, in which case that successor will be scheduled later.)
The move is part of a chain that satisfies register dependencies
between a producing ddg node and various consuming ddg nodes.
If some of these dependencies have a distance of 1 (meaning that
the use is upward-exposed) then DISTANCE1_USES is nonnull and
contains the set of uses with distance-1 dependencies.
DISTANCE1_USES is null otherwise.
MUST_FOLLOW is a scratch bitmap that is big enough to hold
all current ps_insn ids.
Return true on success. */
static bool
schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
sbitmap distance1_uses, sbitmap must_follow)
{
unsigned int u;
int this_time, this_distance, this_start, this_end, this_latency;
int start, end, c, ii;
sbitmap_iterator sbi;
ps_reg_move_info *move;
rtx_insn *this_insn;
ps_insn_ptr psi;
move = ps_reg_move (ps, i_reg_move);
ii = ps->ii;
if (dump_file)
{
fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
", min cycle = %d\n\n", INSN_UID (move->insn), ii,
PS_MIN_CYCLE (ps));
print_rtl_single (dump_file, move->insn);
fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
fprintf (dump_file, "=========== =========== =====\n");
}
start = INT_MIN;
end = INT_MAX;
/* For dependencies of distance 1 between a producer ddg node A
and consumer ddg node B, we have a chain of dependencies:
A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
where Mi is the ith move. For dependencies of distance 0 between
a producer ddg node A and consumer ddg node C, we have a chain of
dependencies:
A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
where Mi' occupies the same position as Mi but occurs a stage later.
We can only schedule each move once, so if we have both types of
chain, we model the second as:
A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
First handle the dependencies between the previously-scheduled
predecessor and the move. */
this_insn = ps_rtl_insn (ps, move->def);
this_latency = insn_latency (this_insn, move->insn);
this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
this_time = SCHED_TIME (move->def) - this_distance * ii;
this_start = this_time + this_latency;
this_end = this_time + ii;
if (dump_file)
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
this_start, this_end, SCHED_TIME (move->def),
INSN_UID (this_insn), this_latency, this_distance,
INSN_UID (move->insn));
if (start < this_start)
start = this_start;
if (end > this_end)
end = this_end;
/* Handle the dependencies between the move and previously-scheduled
successors. */
EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
{
this_insn = ps_rtl_insn (ps, u);
this_latency = insn_latency (move->insn, this_insn);
if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
this_distance = -1;
else
this_distance = 0;
this_time = SCHED_TIME (u) + this_distance * ii;
this_start = this_time - ii;
this_end = this_time - this_latency;
if (dump_file)
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
this_latency, this_distance, INSN_UID (this_insn));
if (start < this_start)
start = this_start;
if (end > this_end)
end = this_end;
}
if (dump_file)
{
fprintf (dump_file, "----------- ----------- -----\n");
fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
}
bitmap_clear (must_follow);
bitmap_set_bit (must_follow, move->def);
start = MAX (start, end - (ii - 1));
for (c = end; c >= start; c--)
{
psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
move->uses, must_follow);
if (psi)
{
update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
if (dump_file)
fprintf (dump_file, "\nScheduled register move INSN %d at"
" time %d, row %d\n\n", INSN_UID (move->insn), c,
SCHED_ROW (i_reg_move));
return true;
}
}
if (dump_file)
fprintf (dump_file, "\nNo available slot\n\n");
return false;
}
/*
Breaking intra-loop register anti-dependences:
Each intra-loop register anti-dependence implies a cross-iteration true
dependence of distance 1. Therefore, we can remove such false dependencies
and figure out if the partial schedule broke them by checking if (for a
true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
if so generate a register move. The number of such moves is equal to:
SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
nreg_moves = ----------------------------------- + 1 - { dependence.
ii { 1 if not.
*/
static bool
schedule_reg_moves (partial_schedule_ptr ps)
{
ddg_ptr g = ps->g;
int ii = ps->ii;
int i;
for (i = 0; i < g->num_nodes; i++)
{
ddg_node_ptr u = &g->nodes[i];
ddg_edge_ptr e;
int nreg_moves = 0, i_reg_move;
rtx prev_reg, old_reg;
int first_move;
int distances[2];
sbitmap must_follow;
sbitmap distance1_uses;
rtx set = single_set (u->insn);
/* Skip instructions that do not set a register. */
if ((set && !REG_P (SET_DEST (set))))
continue;
/* Compute the number of reg_moves needed for u, by looking at life
ranges started at u (excluding self-loops). */
distances[0] = distances[1] = false;
for (e = u->out; e; e = e->next_out)
if (e->type == TRUE_DEP && e->dest != e->src)
{
int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
- SCHED_TIME (e->src->cuid)) / ii;
if (e->distance == 1)
nreg_moves4e = (SCHED_TIME (e->dest->cuid)
- SCHED_TIME (e->src->cuid) + ii) / ii;
/* If dest precedes src in the schedule of the kernel, then dest
will read before src writes and we can save one reg_copy. */
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
nreg_moves4e--;
if (nreg_moves4e >= 1)
{
/* !single_set instructions are not supported yet and
thus we do not except to encounter them in the loop
except from the doloop part. For the latter case
we assume no regmoves are generated as the doloop
instructions are tied to the branch with an edge. */
gcc_assert (set);
/* If the instruction contains auto-inc register then
validate that the regmov is being generated for the
target regsiter rather then the inc'ed register. */
gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
}
if (nreg_moves4e)
{
gcc_assert (e->distance < 2);
distances[e->distance] = true;
}
nreg_moves = MAX (nreg_moves, nreg_moves4e);
}
if (nreg_moves == 0)
continue;
/* Create NREG_MOVES register moves. */
first_move = ps->reg_moves.length ();
ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
extend_node_sched_params (ps);
/* Record the moves associated with this node. */
first_move += ps->g->num_nodes;
/* Generate each move. */
old_reg = prev_reg = SET_DEST (single_set (u->insn));
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
{
ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
move->uses = sbitmap_alloc (first_move + nreg_moves);
move->old_reg = old_reg;
move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
bitmap_clear (move->uses);
prev_reg = move->new_reg;
}
distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
if (distance1_uses)
bitmap_clear (distance1_uses);
/* Every use of the register defined by node may require a different
copy of this register, depending on the time the use is scheduled.
Record which uses require which move results. */
for (e = u->out; e; e = e->next_out)
if (e->type == TRUE_DEP && e->dest != e->src)
{
int dest_copy = (SCHED_TIME (e->dest->cuid)
- SCHED_TIME (e->src->cuid)) / ii;
if (e->distance == 1)
dest_copy = (SCHED_TIME (e->dest->cuid)
- SCHED_TIME (e->src->cuid) + ii) / ii;
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
dest_copy--;
if (dest_copy)
{
ps_reg_move_info *move;
move = ps_reg_move (ps, first_move + dest_copy - 1);
bitmap_set_bit (move->uses, e->dest->cuid);
if (e->distance == 1)
bitmap_set_bit (distance1_uses, e->dest->cuid);
}
}
must_follow = sbitmap_alloc (first_move + nreg_moves);
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
if (!schedule_reg_move (ps, first_move + i_reg_move,
distance1_uses, must_follow))
break;
sbitmap_free (must_follow);
if (distance1_uses)
sbitmap_free (distance1_uses);
if (i_reg_move < nreg_moves)
return false;
}
return true;
}
/* Emit the moves associatied with PS. Apply the substitutions
associated with them. */
static void
apply_reg_moves (partial_schedule_ptr ps)
{
ps_reg_move_info *move;
int i;
FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
{
unsigned int i_use;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
{
replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
df_insn_rescan (ps->g->nodes[i_use].insn);
}
}
}
/* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
will move to cycle zero. */
static void
reset_sched_times (partial_schedule_ptr ps, int amount)
{
int row;
int ii = ps->ii;
ps_insn_ptr crr_insn;
for (row = 0; row < ii; row++)
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
{
int u = crr_insn->id;
int normalized_time = SCHED_TIME (u) - amount;
int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
if (dump_file)
{
/* Print the scheduling times after the rotation. */
rtx_insn *insn = ps_rtl_insn (ps, u);
fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
"crr_insn->cycle=%d, min_cycle=%d", u,
INSN_UID (insn), normalized_time, new_min_cycle);
if (JUMP_P (insn))
fprintf (dump_file, " (branch)");
fprintf (dump_file, "\n");
}
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
crr_insn->cycle = normalized_time;
update_node_sched_params (u, ii, normalized_time, new_min_cycle);
}
}
/* Permute the insns according to their order in PS, from row 0 to
row ii-1, and position them right before LAST. This schedules
the insns of the loop kernel. */
static void
permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
{
int ii = ps->ii;
int row;
ps_insn_ptr ps_ij;
for (row = 0; row < ii ; row++)
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
{
rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
if (PREV_INSN (last) != insn)
{
if (ps_ij->id < ps->g->num_nodes)
reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
PREV_INSN (last));
else
add_insn_before (insn, last, NULL);
}
}
}
/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
respectively only if cycle C falls on the border of the scheduling
window boundaries marked by START and END cycles. STEP is the
direction of the window. */
static inline void
set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
sbitmap *tmp_precede, sbitmap must_precede, int c,
int start, int end, int step)
{
*tmp_precede = NULL;
*tmp_follow = NULL;
if (c == start)
{
if (step == 1)
*tmp_precede = must_precede;
else /* step == -1. */
*tmp_follow = must_follow;
}
if (c == end - step)
{
if (step == 1)
*tmp_follow = must_follow;
else /* step == -1. */
*tmp_precede = must_precede;
}
}
/* Return True if the branch can be moved to row ii-1 while
normalizing the partial schedule PS to start from cycle zero and thus
optimize the SC. Otherwise return False. */
static bool
optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
{
int amount = PS_MIN_CYCLE (ps);
sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
int start, end, step;
int ii = ps->ii;
bool ok = false;
int stage_count, stage_count_curr;
/* Compare the SC after normalization and SC after bringing the branch
to row ii-1. If they are equal just bail out. */
stage_count = calculate_stage_count (ps, amount);
stage_count_curr =
calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
if (stage_count == stage_count_curr)
{
if (dump_file)
fprintf (dump_file, "SMS SC already optimized.\n");
ok = false;
goto clear;
}
if (dump_file)
{
fprintf (dump_file, "SMS Trying to optimize branch location\n");
fprintf (dump_file, "SMS partial schedule before trial:\n");
print_partial_schedule (ps, dump_file);
}
/* First, normalize the partial scheduling. */
reset_sched_times (ps, amount);
rotate_partial_schedule (ps, amount);
if (dump_file)
{
fprintf (dump_file,
"SMS partial schedule after normalization (ii, %d, SC %d):\n",
ii, stage_count);
print_partial_schedule (ps, dump_file);
}
if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
{
ok = true;
goto clear;
}
bitmap_ones (sched_nodes);
/* Calculate the new placement of the branch. It should be in row
ii-1 and fall into it's scheduling window. */
if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
&step, &end) == 0)
{
bool success;
ps_insn_ptr next_ps_i;
int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
int row = SMODULO (branch_cycle, ps->ii);
int num_splits = 0;
sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
int c;
if (dump_file)
fprintf (dump_file, "\nTrying to schedule node %d "
"INSN = %d in (%d .. %d) step %d\n",
g->closing_branch->cuid,
(INSN_UID (g->closing_branch->insn)), start, end, step);
gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
if (step == 1)
{
c = start + ii - SMODULO (start, ii) - 1;
gcc_assert (c >= start);
if (c >= end)
{
ok = false;
if (dump_file)
fprintf (dump_file,
"SMS failed to schedule branch at cycle: %d\n", c);
goto clear;
}
}
else
{
c = start - SMODULO (start, ii) - 1;
gcc_assert (c <= start);
if (c <= end)
{
if (dump_file)
fprintf (dump_file,
"SMS failed to schedule branch at cycle: %d\n", c);
ok = false;
goto clear;
}
}
must_precede = sbitmap_alloc (g->num_nodes);
must_follow = sbitmap_alloc (g->num_nodes);
/* Try to schedule the branch is it's new cycle. */
calculate_must_precede_follow (g->closing_branch, start, end,
step, ii, sched_nodes,
must_precede, must_follow);
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
must_precede, c, start, end, step);
/* Find the element in the partial schedule related to the closing
branch so we can remove it from it's current cycle. */
for (next_ps_i = ps->rows[row];
next_ps_i; next_ps_i = next_ps_i->next_in_row)
if (next_ps_i->id == g->closing_branch->cuid)
break;
remove_node_from_ps (ps, next_ps_i);
success =
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
sched_nodes, &num_splits,
tmp_precede, tmp_follow);
gcc_assert (num_splits == 0);
if (!success)
{
if (dump_file)
fprintf (dump_file,
"SMS failed to schedule branch at cycle: %d, "
"bringing it back to cycle %d\n", c, branch_cycle);
/* The branch was failed to be placed in row ii - 1.
Put it back in it's original place in the partial
schedualing. */
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
must_precede, branch_cycle, start, end,
step);
success =
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
branch_cycle, sched_nodes,
&num_splits, tmp_precede,
tmp_follow);
gcc_assert (success && (num_splits == 0));
ok = false;
}
else
{
/* The branch is placed in row ii - 1. */
if (dump_file)
fprintf (dump_file,
"SMS success in moving branch to cycle %d\n", c);
update_node_sched_params (g->closing_branch->cuid, ii, c,
PS_MIN_CYCLE (ps));
ok = true;
}
free (must_precede);
free (must_follow);
}
clear:
free (sched_nodes);
return ok;
}
static void
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
int to_stage, rtx count_reg)
{
int row;
ps_insn_ptr ps_ij;
for (row = 0; row < ps->ii; row++)
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
{
int u = ps_ij->id;
int first_u, last_u;
rtx_insn *u_insn;
/* Do not duplicate any insn which refers to count_reg as it
belongs to the control part.
The closing branch is scheduled as well and thus should
be ignored.
TODO: This should be done by analyzing the control part of
the loop. */
u_insn = ps_rtl_insn (ps, u);
if (reg_mentioned_p (count_reg, u_insn)
|| JUMP_P (u_insn))
continue;
first_u = SCHED_STAGE (u);
last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
if (from_stage <= last_u && to_stage >= first_u)
{
if (u < ps->g->num_nodes)
duplicate_insn_chain (ps_first_note (ps, u), u_insn);
else
emit_insn (copy_rtx (PATTERN (u_insn)));
}
}
}
/* Generate the instructions (including reg_moves) for prolog & epilog. */
static void
generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
rtx count_reg, rtx count_init)
{
int i;
int last_stage = PS_STAGE_COUNT (ps) - 1;
edge e;
/* Generate the prolog, inserting its insns on the loop-entry edge. */
start_sequence ();
if (!count_init)
{
/* Generate instructions at the beginning of the prolog to
adjust the loop count by STAGE_COUNT. If loop count is constant
(count_init), this constant is adjusted by STAGE_COUNT in
generate_prolog_epilog function. */
rtx sub_reg = NULL_RTX;
sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
gen_int_mode (last_stage,
GET_MODE (count_reg)),
count_reg, 1, OPTAB_DIRECT);
gcc_assert (REG_P (sub_reg));
if (REGNO (sub_reg) != REGNO (count_reg))
emit_move_insn (count_reg, sub_reg);
}
for (i = 0; i < last_stage; i++)
duplicate_insns_of_cycles (ps, 0, i, count_reg);
/* Put the prolog on the entry edge. */
e = loop_preheader_edge (loop);
split_edge_and_insert (e, get_insns ());
if (!flag_resched_modulo_sched)
e->dest->flags |= BB_DISABLE_SCHEDULE;
end_sequence ();
/* Generate the epilog, inserting its insns on the loop-exit edge. */
start_sequence ();
for (i = 0; i < last_stage; i++)
duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
/* Put the epilogue on the exit edge. */
gcc_assert (single_exit (loop));
e = single_exit (loop);
split_edge_and_insert (e, get_insns ());
if (!flag_resched_modulo_sched)
e->dest->flags |= BB_DISABLE_SCHEDULE;
end_sequence ();
}
/* Mark LOOP as software pipelined so the later
scheduling passes don't touch it. */
static void
mark_loop_unsched (struct loop *loop)
{
unsigned i;
basic_block *bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
bbs[i]->flags |= BB_DISABLE_SCHEDULE;
free (bbs);
}
/* Return true if all the BBs of the loop are empty except the
loop header. */
static bool
loop_single_full_bb_p (struct loop *loop)
{
unsigned i;
basic_block *bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes ; i++)
{
rtx_insn *head, *tail;
bool empty_bb = true;
if (bbs[i] == loop->header)
continue;
/* Make sure that basic blocks other than the header
have only notes labels or jumps. */
get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
{
if (NOTE_P (head) || LABEL_P (head)
|| (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
continue;
empty_bb = false;
break;
}
if (! empty_bb)
{
free (bbs);
return false;
}
}
free (bbs);
return true;
}
/* Dump file:line from INSN's location info to dump_file. */
static void
dump_insn_location (rtx_insn *insn)
{
if (dump_file && INSN_HAS_LOCATION (insn))
{
expanded_location xloc = insn_location (insn);
fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
}
}
/* A simple loop from SMS point of view; it is a loop that is composed of
either a single basic block or two BBs - a header and a latch. */
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
&& (EDGE_COUNT (loop->latch->preds) == 1) \
&& (EDGE_COUNT (loop->latch->succs) == 1))
/* Return true if the loop is in its canonical form and false if not.
i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
static bool
loop_canon_p (struct loop *loop)
{
if (loop->inner || !loop_outer (loop))
{
if (dump_file)
fprintf (dump_file, "SMS loop inner or !loop_outer\n");
return false;
}
if (!single_exit (loop))
{
if (dump_file)
{
rtx_insn *insn = BB_END (loop->header);
fprintf (dump_file, "SMS loop many exits");
dump_insn_location (insn);
fprintf (dump_file, "\n");
}
return false;
}
if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
{
if (dump_file)
{
rtx_insn *insn = BB_END (loop->header);
fprintf (dump_file, "SMS loop many BBs.");
dump_insn_location (insn);
fprintf (dump_file, "\n");
}
return false;
}
return true;
}
/* If there are more than one entry for the loop,
make it one by splitting the first entry edge and
redirecting the others to the new BB. */
static void
canon_loop (struct loop *loop)
{
edge e;
edge_iterator i;
/* Avoid annoying special cases of edges going to exit
block. */
FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
split_edge (e);
if (loop->latch == loop->header
|| EDGE_COUNT (loop->latch->succs) > 1)
{
FOR_EACH_EDGE (e, i, loop->header->preds)
if (e->src == loop->latch)
break;
split_edge (e);
}
}
/* Setup infos. */
static void
setup_sched_infos (void)
{
memcpy (&sms_common_sched_info, &haifa_common_sched_info,
sizeof (sms_common_sched_info));
sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
common_sched_info = &sms_common_sched_info;
sched_deps_info = &sms_sched_deps_info;
current_sched_info = &sms_sched_info;
}
/* Probability in % that the sms-ed loop rolls enough so that optimized
version may be entered. Just a guess. */
#define PROB_SMS_ENOUGH_ITERATIONS 80
/* Used to calculate the upper bound of ii. */
#define MAXII_FACTOR 2
/* Main entry point, perform SMS scheduling on the loops of the function
that consist of single basic blocks. */
static void
sms_schedule (void)
{
rtx_insn *insn;
ddg_ptr *g_arr, g;
int * node_order;
int maxii, max_asap;
partial_schedule_ptr ps;
basic_block bb = NULL;
struct loop *loop;
basic_block condition_bb = NULL;
edge latch_edge;
gcov_type trip_count = 0;
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
| LOOPS_HAVE_RECORDED_EXITS);
if (number_of_loops (cfun) <= 1)
{
loop_optimizer_finalize ();
return; /* There are no loops to schedule. */
}
/* Initialize issue_rate. */
if (targetm.sched.issue_rate)
{
int temp = reload_completed;
reload_completed = 1;
issue_rate = targetm.sched.issue_rate ();
reload_completed = temp;
}
else
issue_rate = 1;
/* Initialize the scheduler. */
setup_sched_infos ();
haifa_sched_init ();
/* Allocate memory to hold the DDG array one entry for each loop.
We use loop->num as index into this array. */
g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
if (dump_file)
{
fprintf (dump_file, "\n\nSMS analysis phase\n");
fprintf (dump_file, "===================\n\n");
}
/* Build DDGs for all the relevant loops and hold them in G_ARR
indexed by the loop index. */
FOR_EACH_LOOP (loop, 0)
{
rtx_insn *head, *tail;
rtx count_reg;
/* For debugging. */
if (dbg_cnt (sms_sched_loop) == false)
{
if (dump_file)
fprintf (dump_file, "SMS reached max limit... \n");
break;
}
if (dump_file)
{
rtx_insn *insn = BB_END (loop->header);
fprintf (dump_file, "SMS loop num: %d", loop->num);
dump_insn_location (insn);
fprintf (dump_file, "\n");
}
if (! loop_canon_p (loop))
continue;
if (! loop_single_full_bb_p (loop))
{
if (dump_file)
fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
continue;
}
bb = loop->header;
get_ebb_head_tail (bb, bb, &head, &tail);
latch_edge = loop_latch_edge (loop);
gcc_assert (single_exit (loop));
if (single_exit (loop)->count)
trip_count = latch_edge->count / single_exit (loop)->count;
/* Perform SMS only on loops that their average count is above threshold. */
if ( latch_edge->count
&& (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
{
if (dump_file)
{
dump_insn_location (tail);
fprintf (dump_file, "\nSMS single-bb-loop\n");
if (profile_info && flag_branch_probabilities)
{
fprintf (dump_file, "SMS loop-count ");
fprintf (dump_file, "%" PRId64,
(int64_t) bb->count);
fprintf (dump_file, "\n");
fprintf (dump_file, "SMS trip-count ");
fprintf (dump_file, "%" PRId64,
(int64_t) trip_count);
fprintf (dump_file, "\n");
fprintf (dump_file, "SMS profile-sum-max ");
fprintf (dump_file, "%" PRId64,
(int64_t) profile_info->sum_max);
fprintf (dump_file, "\n");
}
}
continue;
}
/* Make sure this is a doloop. */
if ( !(count_reg = doloop_register_get (head, tail)))
{
if (dump_file)
fprintf (dump_file, "SMS doloop_register_get failed\n");
continue;
}
/* Don't handle BBs with calls or barriers
or !single_set with the exception of instructions that include
count_reg---these instructions are part of the control part
that do-loop recognizes.
??? Should handle insns defining subregs. */
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
{
rtx set;
if (CALL_P (insn)
|| BARRIER_P (insn)
|| (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
&& !reg_mentioned_p (count_reg, insn))
|| (INSN_P (insn) && (set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == SUBREG))
break;
}
if (insn != NEXT_INSN (tail))
{
if (dump_file)
{
if (CALL_P (insn))
fprintf (dump_file, "SMS loop-with-call\n");
else if (BARRIER_P (insn))
fprintf (dump_file, "SMS loop-with-barrier\n");
else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
fprintf (dump_file, "SMS loop-with-not-single-set\n");
else
fprintf (dump_file, "SMS loop with subreg in lhs\n");
print_rtl_single (dump_file, insn);
}
continue;
}
/* Always schedule the closing branch with the rest of the
instructions. The branch is rotated to be in row ii-1 at the
end of the scheduling procedure to make sure it's the last
instruction in the iteration. */
if (! (g = create_ddg (bb, 1)))
{
if (dump_file)
fprintf (dump_file, "SMS create_ddg failed\n");
continue;
}
g_arr[loop->num] = g;
if (dump_file)
fprintf (dump_file, "...OK\n");
}
if (dump_file)
{
fprintf (dump_file, "\nSMS transformation phase\n");
fprintf (dump_file, "=========================\n\n");
}
/* We don't want to perform SMS on new loops - created by versioning. */
FOR_EACH_LOOP (loop, 0)
{
rtx_insn *head, *tail;
rtx count_reg;
rtx_insn *count_init;
int mii, rec_mii, stage_count, min_cycle;
int64_t loop_count = 0;
bool opt_sc_p;
if (! (g = g_arr[loop->num]))
continue;
if (dump_file)
{
rtx_insn *insn = BB_END (loop->header);
fprintf (dump_file, "SMS loop num: %d", loop->num);
dump_insn_location (insn);
fprintf (dump_file, "\n");
print_ddg (dump_file, g);
}
get_ebb_head_tail (loop->header, loop->header, &head, &tail);
latch_edge = loop_latch_edge (loop);
gcc_assert (single_exit (loop));
if (single_exit (loop)->count)
trip_count = latch_edge->count / single_exit (loop)->count;
if (dump_file)
{
dump_insn_location (tail);
fprintf (dump_file, "\nSMS single-bb-loop\n");
if (profile_info && flag_branch_probabilities)
{
fprintf (dump_file, "SMS loop-count ");
fprintf (dump_file, "%" PRId64,
(int64_t) bb->count);
fprintf (dump_file, "\n");
fprintf (dump_file, "SMS profile-sum-max ");
fprintf (dump_file, "%" PRId64,
(int64_t) profile_info->sum_max);
fprintf (dump_file, "\n");
}
fprintf (dump_file, "SMS doloop\n");
fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
}
/* In case of th loop have doloop register it gets special
handling. */
count_init = NULL;
if ((count_reg = doloop_register_get (head, tail)))
{
basic_block pre_header;
pre_header = loop_preheader_edge (loop)->src;
count_init = const_iteration_count (count_reg, pre_header,
&loop_count);
}
gcc_assert (count_reg);
if (dump_file && count_init)
{
fprintf (dump_file, "SMS const-doloop ");
fprintf (dump_file, "%" PRId64,
loop_count);
fprintf (dump_file, "\n");
}
node_order = XNEWVEC (int, g->num_nodes);
mii = 1; /* Need to pass some estimate of mii. */
rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
mii = MAX (res_MII (g), rec_mii);
maxii = MAX (max_asap, MAXII_FACTOR * mii);
if (dump_file)
fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
rec_mii, mii, maxii);
for (;;)
{
set_node_sched_params (g);
stage_count = 0;
opt_sc_p = false;
ps = sms_schedule_by_order (g, mii, maxii, node_order);
if (ps)
{
/* Try to achieve optimized SC by normalizing the partial
schedule (having the cycles start from cycle zero).
The branch location must be placed in row ii-1 in the
final scheduling. If failed, shift all instructions to
position the branch in row ii-1. */
opt_sc_p = optimize_sc (ps, g);
if (opt_sc_p)
stage_count = calculate_stage_count (ps, 0);
else
{
/* Bring the branch to cycle ii-1. */
int amount = (SCHED_TIME (g->closing_branch->cuid)
- (ps->ii - 1));
if (dump_file)
fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
stage_count = calculate_stage_count (ps, amount);
}
gcc_assert (stage_count >= 1);
}
/* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1 means that there is no interleaving between iterations thus
we let the scheduling passes do the job in this case. */
if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
|| (count_init && (loop_count <= stage_count))
|| (flag_branch_probabilities && (trip_count <= stage_count)))
{
if (dump_file)
{
fprintf (dump_file, "SMS failed... \n");
fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
" loop-count=", stage_count);
fprintf (dump_file, "%" PRId64, loop_count);
fprintf (dump_file, ", trip-count=");
fprintf (dump_file, "%" PRId64, trip_count);
fprintf (dump_file, ")\n");
}
break;
}
if (!opt_sc_p)
{
/* Rotate the partial schedule to have the branch in row ii-1. */
int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
reset_sched_times (ps, amount);
rotate_partial_schedule (ps, amount);
}
set_columns_for_ps (ps);
min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
if (!schedule_reg_moves (ps))
{
mii = ps->ii + 1;
free_partial_schedule (ps);
continue;
}
/* Moves that handle incoming values might have been added
to a new first stage. Bump the stage count if so.
??? Perhaps we could consider rotating the schedule here
instead? */
if (PS_MIN_CYCLE (ps) < min_cycle)
{
reset_sched_times (ps, 0);
stage_count++;
}
/* The stage count should now be correct without rotation. */
gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
PS_STAGE_COUNT (ps) = stage_count;
canon_loop (loop);
if (dump_file)
{
dump_insn_location (tail);
fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
ps->ii, stage_count);
print_partial_schedule (ps, dump_file);
}
/* case the BCT count is not known , Do loop-versioning */
if (count_reg && ! count_init)
{
rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
gen_int_mode (stage_count,
GET_MODE (count_reg)));
unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
* REG_BR_PROB_BASE) / 100;
loop_version (loop, comp_rtx, &condition_bb,
prob, prob, REG_BR_PROB_BASE - prob,
true);
}
/* Set new iteration count of loop kernel. */
if (count_reg && count_init)
SET_SRC (single_set (count_init)) = GEN_INT (loop_count
- stage_count + 1);
/* Now apply the scheduled kernel to the RTL of the loop. */
permute_partial_schedule (ps, g->closing_branch->first_note);
/* Mark this loop as software pipelined so the later
scheduling passes don't touch it. */
if (! flag_resched_modulo_sched)
mark_loop_unsched (loop);
/* The life-info is not valid any more. */
df_set_bb_dirty (g->bb);
apply_reg_moves (ps);
if (dump_file)
print_node_sched_params (dump_file, g->num_nodes, ps);
/* Generate prolog and epilog. */
generate_prolog_epilog (ps, loop, count_reg, count_init);
break;
}
free_partial_schedule (ps);
node_sched_param_vec.release ();
free (node_order);
free_ddg (g);
}
free (g_arr);
/* Release scheduler data, needed until now because of DFA. */
haifa_sched_finish ();
loop_optimizer_finalize ();
}
/* The SMS scheduling algorithm itself
-----------------------------------
Input: 'O' an ordered list of insns of a loop.
Output: A scheduling of the loop - kernel, prolog, and epilogue.
'Q' is the empty Set
'PS' is the partial schedule; it holds the currently scheduled nodes with
their cycle/slot.
'PSP' previously scheduled predecessors.
'PSS' previously scheduled successors.
't(u)' the cycle where u is scheduled.
'l(u)' is the latency of u.
'd(v,u)' is the dependence distance from v to u.
'ASAP(u)' the earliest time at which u could be scheduled as computed in
the node ordering phase.
'check_hardware_resources_conflicts(u, PS, c)'
run a trace around cycle/slot through DFA model
to check resource conflicts involving instruction u
at cycle c given the partial schedule PS.
'add_to_partial_schedule_at_time(u, PS, c)'
Add the node/instruction u to the partial schedule
PS at time c.
'calculate_register_pressure(PS)'
Given a schedule of instructions, calculate the register
pressure it implies. One implementation could be the
maximum number of overlapping live ranges.
'maxRP' The maximum allowed register pressure, it is usually derived from the number
registers available in the hardware.
1. II = MII.
2. PS = empty list
3. for each node u in O in pre-computed order
4. if (PSP(u) != Q && PSS(u) == Q) then
5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
6. start = Early_start; end = Early_start + II - 1; step = 1
11. else if (PSP(u) == Q && PSS(u) != Q) then
12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
13. start = Late_start; end = Late_start - II + 1; step = -1
14. else if (PSP(u) != Q && PSS(u) != Q) then
15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
17. start = Early_start;
18. end = min(Early_start + II - 1 , Late_start);
19. step = 1
20. else "if (PSP(u) == Q && PSS(u) == Q)"
21. start = ASAP(u); end = start + II - 1; step = 1
22. endif
23. success = false
24. for (c = start ; c != end ; c += step)
25. if check_hardware_resources_conflicts(u, PS, c) then
26. add_to_partial_schedule_at_time(u, PS, c)
27. success = true
28. break
29. endif
30. endfor
31. if (success == false) then
32. II = II + 1
33. if (II > maxII) then
34. finish - failed to schedule
35. endif
36. goto 2.
37. endif
38. endfor
39. if (calculate_register_pressure(PS) > maxRP) then
40. goto 32.
41. endif
42. compute epilogue & prologue
43. finish - succeeded to schedule
??? The algorithm restricts the scheduling window to II cycles.
In rare cases, it may be better to allow windows of II+1 cycles.
The window would then start and end on the same row, but with
different "must precede" and "must follow" requirements. */
/* A limit on the number of cycles that resource conflicts can span. ??? Should
be provided by DFA, and be dependent on the type of insn scheduled. Currently
set to 0 to save compile time. */
#define DFA_HISTORY SMS_DFA_HISTORY
/* A threshold for the number of repeated unsuccessful attempts to insert
an empty row, before we flush the partial schedule and start over. */
#define MAX_SPLIT_NUM 10
/* Given the partial schedule PS, this function calculates and returns the
cycles in which we can schedule the node with the given index I.
NOTE: Here we do the backtracking in SMS, in some special cases. We have
noticed that there are several cases in which we fail to SMS the loop
because the sched window of a node is empty due to tight data-deps. In
such cases we want to unschedule some of the predecessors/successors
until we get non-empty scheduling window. It returns -1 if the
scheduling window is empty and zero otherwise. */
static int
get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
sbitmap sched_nodes, int ii, int *start_p, int *step_p,
int *end_p)
{
int start, step, end;
int early_start, late_start;
ddg_edge_ptr e;
sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
int psp_not_empty;
int pss_not_empty;
int count_preds;
int count_succs;
/* 1. compute sched window for u (start, end, step). */
bitmap_clear (psp);
bitmap_clear (pss);
psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
/* We first compute a forward range (start <= end), then decide whether
to reverse it. */
early_start = INT_MIN;
late_start = INT_MAX;
start = INT_MIN;
end = INT_MAX;
step = 1;
count_preds = 0;
count_succs = 0;
if (dump_file && (psp_not_empty || pss_not_empty))
{
fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
"; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
"start", "early start", "late start", "end", "time");
fprintf (dump_file, "=========== =========== =========== ==========="
" =====\n");
}
/* Calculate early_start and limit end. Both bounds are inclusive. */
if (psp_not_empty)
for (e = u_node->in; e != 0; e = e->next_in)
{
int v = e->src->cuid;
if (bitmap_bit_p (sched_nodes, v))
{
int p_st = SCHED_TIME (v);
int earliest = p_st + e->latency - (e->distance * ii);
int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
if (dump_file)
{
fprintf (dump_file, "%11s %11d %11s %11d %5d",
"", earliest, "", latest, p_st);
print_ddg_edge (dump_file, e);
fprintf (dump_file, "\n");
}
early_start = MAX (early_start, earliest);
end = MIN (end, latest);
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
count_preds++;
}
}
/* Calculate late_start and limit start. Both bounds are inclusive. */
if (pss_not_empty)
for (e = u_node->out; e != 0; e = e->next_out)
{
int v = e->dest->cuid;
if (bitmap_bit_p (sched_nodes, v))
{
int s_st = SCHED_TIME (v);
int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
int latest = s_st - e->latency + (e->distance * ii);
if (dump_file)
{
fprintf (dump_file, "%11d %11s %11d %11s %5d",
earliest, "", latest, "", s_st);
print_ddg_edge (dump_file, e);
fprintf (dump_file, "\n");
}
start = MAX (start, earliest);
late_start = MIN (late_start, latest);
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
count_succs++;
}
}
if (dump_file && (psp_not_empty || pss_not_empty))
{
fprintf (dump_file, "----------- ----------- ----------- -----------"
" -----\n");
fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
start, early_start, late_start, end, "",
"(max, max, min, min)");
}
/* Get a target scheduling window no bigger than ii. */
if (early_start == INT_MIN && late_start == INT_MAX)
early_start = NODE_ASAP (u_node);
else if (early_start == INT_MIN)
early_start = late_start - (ii - 1);
late_start = MIN (late_start, early_start + (ii - 1));
/* Apply memory dependence limits. */
start = MAX (start, early_start);
end = MIN (end, late_start);
if (dump_file && (psp_not_empty || pss_not_empty))
fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
"", start, end, "", "");
/* If there are at least as many successors as predecessors, schedule the
node close to its successors. */
if (pss_not_empty && count_succs >= count_preds)
{
std::swap (start, end);
step = -1;
}
/* Now that we've finalized the window, make END an exclusive rather
than an inclusive bound. */
end += step;
*start_p = start;
*step_p = step;
*end_p = end;
sbitmap_free (psp);
sbitmap_free (pss);
if ((start >= end && step == 1) || (start <= end && step == -1))
{
if (dump_file)
fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
start, end, step);
return -1;
}
return 0;
}
/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
node currently been scheduled. At the end of the calculation
MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
U_NODE which are (1) already scheduled in the first/last row of
U_NODE's scheduling window, (2) whose dependence inequality with U
becomes an equality when U is scheduled in this same row, and (3)
whose dependence latency is zero.
The first and last rows are calculated using the following parameters:
START/END rows - The cycles that begins/ends the traversal on the window;
searching for an empty cycle to schedule U_NODE.
STEP - The direction in which we traverse the window.
II - The initiation interval. */
static void
calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
int step, int ii, sbitmap sched_nodes,
sbitmap must_precede, sbitmap must_follow)
{
ddg_edge_ptr e;
int first_cycle_in_window, last_cycle_in_window;
gcc_assert (must_precede && must_follow);
/* Consider the following scheduling window:
{first_cycle_in_window, first_cycle_in_window+1, ...,
last_cycle_in_window}. If step is 1 then the following will be
the order we traverse the window: {start=first_cycle_in_window,
first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
end=first_cycle_in_window-1} if step is -1. */
first_cycle_in_window = (step == 1) ? start : end - step;
last_cycle_in_window = (step == 1) ? end - step : start;
bitmap_clear (must_precede);
bitmap_clear (must_follow);
if (dump_file)
fprintf (dump_file, "\nmust_precede: ");
/* Instead of checking if:
(SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
&& ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
first_cycle_in_window)
&& e->latency == 0
we use the fact that latency is non-negative:
SCHED_TIME (e->src) - (e->distance * ii) <=
SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
first_cycle_in_window
and check only if
SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
for (e = u_node->in; e != 0; e = e->next_in)
if (bitmap_bit_p (sched_nodes, e->src->cuid)
&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
first_cycle_in_window))
{
if (dump_file)
fprintf (dump_file, "%d ", e->src->cuid);
bitmap_set_bit (must_precede, e->src->cuid);
}
if (dump_file)
fprintf (dump_file, "\nmust_follow: ");
/* Instead of checking if:
(SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
&& ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
last_cycle_in_window)
&& e->latency == 0
we use the fact that latency is non-negative:
SCHED_TIME (e->dest) + (e->distance * ii) >=
SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
last_cycle_in_window
and check only if
SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
for (e = u_node->out; e != 0; e = e->next_out)
if (bitmap_bit_p (sched_nodes, e->dest->cuid)
&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
last_cycle_in_window))
{
if (dump_file)
fprintf (dump_file, "%d ", e->dest->cuid);
bitmap_set_bit (must_follow, e->dest->cuid);
}
if (dump_file)
fprintf (dump_file, "\n");
}
/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
parameters to decide if that's possible:
PS - The partial schedule.
U - The serial number of U_NODE.
NUM_SPLITS - The number of row splits made so far.
MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
the first row of the scheduling window)
MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
last row of the scheduling window) */
static bool
try_scheduling_node_in_cycle (partial_schedule_ptr ps,
int u, int cycle, sbitmap sched_nodes,
int *num_splits, sbitmap must_precede,
sbitmap must_follow)
{
ps_insn_ptr psi;
bool success = 0;
verify_partial_schedule (ps, sched_nodes);
psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
if (psi)
{
SCHED_TIME (u) = cycle;
bitmap_set_bit (sched_nodes, u);
success = 1;
*num_splits = 0;
if (dump_file)
fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
}
return success;
}
/* This function implements the scheduling algorithm for SMS according to the
above algorithm. */
static partial_schedule_ptr
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
{
int ii = mii;
int i, c, success, num_splits = 0;
int flush_and_start_over = true;
int num_nodes = g->num_nodes;
int start, end, step; /* Place together into one struct? */
sbitmap sched_nodes = sbitmap_alloc (num_nodes);
sbitmap must_precede = sbitmap_alloc (num_nodes);
sbitmap must_follow = sbitmap_alloc (num_nodes);
sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
bitmap_ones (tobe_scheduled);
bitmap_clear (sched_nodes);
while (flush_and_start_over && (ii < maxii))
{
if (dump_file)
fprintf (dump_file, "Starting with ii=%d\n", ii);
flush_and_start_over = false;
bitmap_clear (sched_nodes);
for (i = 0; i < num_nodes; i++)
{
int u = nodes_order[i];
ddg_node_ptr u_node = &ps->g->nodes[u];
rtx_insn *insn = u_node->insn;
if (!NONDEBUG_INSN_P (insn))
{
bitmap_clear_bit (tobe_scheduled, u);
continue;
}
if (bitmap_bit_p (sched_nodes, u))
continue;
/* Try to get non-empty scheduling window. */
success = 0;
if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
&step, &end) == 0)
{
if (dump_file)
fprintf (dump_file, "\nTrying to schedule node %d "
"INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
(g->nodes[u].insn)), start, end, step);
gcc_assert ((step > 0 && start < end)
|| (step < 0 && start > end));
calculate_must_precede_follow (u_node, start, end, step, ii,
sched_nodes, must_precede,
must_follow);
for (c = start; c != end; c += step)
{
sbitmap tmp_precede, tmp_follow;
set_must_precede_follow (&tmp_follow, must_follow,
&tmp_precede, must_precede,
c, start, end, step);
success =
try_scheduling_node_in_cycle (ps, u, c,
sched_nodes,
&num_splits, tmp_precede,
tmp_follow);
if (success)
break;
}
verify_partial_schedule (ps, sched_nodes);
}
if (!success)
{
int split_row;
if (ii++ == maxii)
break;
if (num_splits >= MAX_SPLIT_NUM)
{
num_splits = 0;
flush_and_start_over = true;
verify_partial_schedule (ps, sched_nodes);
reset_partial_schedule (ps, ii);
verify_partial_schedule (ps, sched_nodes);
break;
}
num_splits++;
/* The scheduling window is exclusive of 'end'
whereas compute_split_window() expects an inclusive,
ordered range. */
if (step == 1)
split_row = compute_split_row (sched_nodes, start, end - 1,
ps->ii, u_node);
else
split_row = compute_split_row (sched_nodes, end + 1, start,
ps->ii, u_node);
ps_insert_empty_row (ps, split_row, sched_nodes);
i--; /* Go back and retry node i. */
if (dump_file)
fprintf (dump_file, "num_splits=%d\n", num_splits);
}
/* ??? If (success), check register pressure estimates. */
} /* Continue with next node. */
} /* While flush_and_start_over. */
if (ii >= maxii)
{
free_partial_schedule (ps);
ps = NULL;
}
else
gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
sbitmap_free (sched_nodes);
sbitmap_free (must_precede);
sbitmap_free (must_follow);
sbitmap_free (tobe_scheduled);
return ps;
}
/* This function inserts a new empty row into PS at the position
according to SPLITROW, keeping all already scheduled instructions
intact and updating their SCHED_TIME and cycle accordingly. */
static void
ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
sbitmap sched_nodes)
{
ps_insn_ptr crr_insn;
ps_insn_ptr *rows_new;
int ii = ps->ii;
int new_ii = ii + 1;
int row;
int *rows_length_new;
verify_partial_schedule (ps, sched_nodes);
/* We normalize sched_time and rotate ps to have only non-negative sched
times, for simplicity of updating cycles after inserting new row. */
split_row -= ps->min_cycle;
split_row = SMODULO (split_row, ii);
if (dump_file)
fprintf (dump_file, "split_row=%d\n", split_row);
reset_sched_times (ps, PS_MIN_CYCLE (ps));
rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
for (row = 0; row < split_row; row++)
{
rows_new[row] = ps->rows[row];
rows_length_new[row] = ps->rows_length[row];
ps->rows[row] = NULL;
for (crr_insn = rows_new[row];
crr_insn; crr_insn = crr_insn->next_in_row)
{
int u = crr_insn->id;
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
SCHED_TIME (u) = new_time;
crr_insn->cycle = new_time;
SCHED_ROW (u) = new_time % new_ii;
SCHED_STAGE (u) = new_time / new_ii;
}
}
rows_new[split_row] = NULL;
for (row = split_row; row < ii; row++)
{
rows_new[row + 1] = ps->rows[row];
rows_length_new[row + 1] = ps->rows_length[row];
ps->rows[row] = NULL;
for (crr_insn = rows_new[row + 1];
crr_insn; crr_insn = crr_insn->next_in_row)
{
int u = crr_insn->id;
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
SCHED_TIME (u) = new_time;
crr_insn->cycle = new_time;
SCHED_ROW (u) = new_time % new_ii;
SCHED_STAGE (u) = new_time / new_ii;
}
}
/* Updating ps. */
ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
+ (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
+ (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
free (ps->rows);
ps->rows = rows_new;
free (ps->rows_length);
ps->rows_length = rows_length_new;
ps->ii = new_ii;
gcc_assert (ps->min_cycle >= 0);
verify_partial_schedule (ps, sched_nodes);
if (dump_file)
fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
ps->max_cycle);
}
/* Given U_NODE which is the node that failed to be scheduled; LOW and
UP which are the boundaries of it's scheduling window; compute using
SCHED_NODES and II a row in the partial schedule that can be split
which will separate a critical predecessor from a critical successor
thereby expanding the window, and return it. */
static int
compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
ddg_node_ptr u_node)
{
ddg_edge_ptr e;
int lower = INT_MIN, upper = INT_MAX;
int crit_pred = -1;
int crit_succ = -1;
int crit_cycle;
for (e = u_node->in; e != 0; e = e->next_in)
{
int v = e->src->cuid;
if (bitmap_bit_p (sched_nodes, v)
&& (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
if (SCHED_TIME (v) > lower)
{
crit_pred = v;
lower = SCHED_TIME (v);
}
}
if (crit_pred >= 0)
{
crit_cycle = SCHED_TIME (crit_pred) + 1;
return SMODULO (crit_cycle, ii);
}
for (e = u_node->out; e != 0; e = e->next_out)
{
int v = e->dest->cuid;
if (bitmap_bit_p (sched_nodes, v)
&& (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
if (SCHED_TIME (v) < upper)
{
crit_succ = v;
upper = SCHED_TIME (v);
}
}
if (crit_succ >= 0)
{
crit_cycle = SCHED_TIME (crit_succ);
return SMODULO (crit_cycle, ii);
}
if (dump_file)
fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
return SMODULO ((low + up + 1) / 2, ii);
}
static void
verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
{
int row;
ps_insn_ptr crr_insn;
for (row = 0; row < ps->ii; row++)
{
int length = 0;
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
{
int u = crr_insn->id;
length++;
gcc_assert (bitmap_bit_p (sched_nodes, u));
/* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
popcount (sched_nodes) == number of insns in ps. */
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
}
gcc_assert (ps->rows_length[row] == length);
}
}
/* This page implements the algorithm for ordering the nodes of a DDG
for modulo scheduling, activated through the
"int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
#define DEPTH(x) (ASAP ((x)))
typedef struct node_order_params * nopa;
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
static nopa calculate_order_params (ddg_ptr, int, int *);
static int find_max_asap (ddg_ptr, sbitmap);
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
enum sms_direction {BOTTOMUP, TOPDOWN};
struct node_order_params
{
int asap;
int alap;
int height;
};
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
static void
check_nodes_order (int *node_order, int num_nodes)
{
int i;
sbitmap tmp = sbitmap_alloc (num_nodes);
bitmap_clear (tmp);
if (dump_file)
fprintf (dump_file, "SMS final nodes order: \n");
for (i = 0; i < num_nodes; i++)
{
int u = node_order[i];
if (dump_file)
fprintf (dump_file, "%d ", u);
gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
bitmap_set_bit (tmp, u);
}
if (dump_file)
fprintf (dump_file, "\n");
sbitmap_free (tmp);
}
/* Order the nodes of G for scheduling and pass the result in
NODE_ORDER. Also set aux.count of each node to ASAP.
Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
static int
sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
{
int i;
int rec_mii = 0;
ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
nopa nops = calculate_order_params (g, mii, pmax_asap);
if (dump_file)
print_sccs (dump_file, sccs, g);
order_nodes_of_sccs (sccs, node_order);
if (sccs->num_sccs > 0)
/* First SCC has the largest recurrence_length. */
rec_mii = sccs->sccs[0]->recurrence_length;
/* Save ASAP before destroying node_order_params. */
for (i = 0; i < g->num_nodes; i++)
{
ddg_node_ptr v = &g->nodes[i];
v->aux.count = ASAP (v);
}
free (nops);
free_ddg_all_sccs (sccs);
check_nodes_order (node_order, g->num_nodes);
return rec_mii;
}
static void
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
{
int i, pos = 0;
ddg_ptr g = all_sccs->ddg;
int num_nodes = g->num_nodes;
sbitmap prev_sccs = sbitmap_alloc (num_nodes);
sbitmap on_path = sbitmap_alloc (num_nodes);
sbitmap tmp = sbitmap_alloc (num_nodes);
sbitmap ones = sbitmap_alloc (num_nodes);
bitmap_clear (prev_sccs);
bitmap_ones (ones);
/* Perform the node ordering starting from the SCC with the highest recMII.
For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
for (i = 0; i < all_sccs->num_sccs; i++)
{
ddg_scc_ptr scc = all_sccs->sccs[i];
/* Add nodes on paths from previous SCCs to the current SCC. */
find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
bitmap_ior (tmp, scc->nodes, on_path);
/* Add nodes on paths from the current SCC to previous SCCs. */
find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
bitmap_ior (tmp, tmp, on_path);
/* Remove nodes of previous SCCs from current extended SCC. */
bitmap_and_compl (tmp, tmp, prev_sccs);
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
/* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
}
/* Handle the remaining nodes that do not belong to any scc. Each call
to order_nodes_in_scc handles a single connected component. */
while (pos < g->num_nodes)
{
bitmap_and_compl (tmp, ones, prev_sccs);
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
}
sbitmap_free (prev_sccs);
sbitmap_free (on_path);
sbitmap_free (tmp);
sbitmap_free (ones);
}
/* MII is needed if we consider backarcs (that do not close recursive cycles). */
static struct node_order_params *
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
{
int u;
int max_asap;
int num_nodes = g->num_nodes;
ddg_edge_ptr e;
/* Allocate a place to hold ordering params for each node in the DDG. */
nopa node_order_params_arr;
/* Initialize of ASAP/ALAP/HEIGHT to zero. */
node_order_params_arr = (nopa) xcalloc (num_nodes,
sizeof (struct node_order_params));
/* Set the aux pointer of each node to point to its order_params structure. */
for (u = 0; u < num_nodes; u++)
g->nodes[u].aux.info = &node_order_params_arr[u];
/* Disregarding a backarc from each recursive cycle to obtain a DAG,
calculate ASAP, ALAP, mobility, distance, and height for each node
in the dependence (direct acyclic) graph. */
/* We assume that the nodes in the array are in topological order. */
max_asap = 0;
for (u = 0; u < num_nodes; u++)
{
ddg_node_ptr u_node = &g->nodes[u];
ASAP (u_node) = 0;
for (e = u_node->in; e; e = e->next_in)
if (e->distance == 0)
ASAP (u_node) = MAX (ASAP (u_node),
ASAP (e->src) + e->latency);
max_asap = MAX (max_asap, ASAP (u_node));
}
for (u = num_nodes - 1; u > -1; u--)
{
ddg_node_ptr u_node = &g->nodes[u];
ALAP (u_node) = max_asap;
HEIGHT (u_node) = 0;
for (e = u_node->out; e; e = e->next_out)
if (e->distance == 0)
{
ALAP (u_node) = MIN (ALAP (u_node),
ALAP (e->dest) - e->latency);
HEIGHT (u_node) = MAX (HEIGHT (u_node),
HEIGHT (e->dest) + e->latency);
}
}
if (dump_file)
{
fprintf (dump_file, "\nOrder params\n");
for (u = 0; u < num_nodes; u++)
{
ddg_node_ptr u_node = &g->nodes[u];
fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
}
}
*pmax_asap = max_asap;
return node_order_params_arr;
}
static int
find_max_asap (ddg_ptr g, sbitmap nodes)
{
unsigned int u = 0;
int max_asap = -1;
int result = -1;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
{
ddg_node_ptr u_node = &g->nodes[u];
if (max_asap < ASAP (u_node))
{
max_asap = ASAP (u_node);
result = u;
}
}
return result;
}
static int
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
{
unsigned int u = 0;
int max_hv = -1;
int min_mob = INT_MAX;
int result = -1;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
{
ddg_node_ptr u_node = &g->nodes[u];
if (max_hv < HEIGHT (u_node))
{
max_hv = HEIGHT (u_node);
min_mob = MOB (u_node);
result = u;
}
else if ((max_hv == HEIGHT (u_node))
&& (min_mob > MOB (u_node)))
{
min_mob = MOB (u_node);
result = u;
}
}
return result;
}
static int
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
{
unsigned int u = 0;
int max_dv = -1;
int min_mob = INT_MAX;
int result = -1;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
{
ddg_node_ptr u_node = &g->nodes[u];
if (max_dv < DEPTH (u_node))
{
max_dv = DEPTH (u_node);
min_mob = MOB (u_node);
result = u;
}
else if ((max_dv == DEPTH (u_node))
&& (min_mob > MOB (u_node)))
{
min_mob = MOB (u_node);
result = u;
}
}
return result;
}
/* Places the nodes of SCC into the NODE_ORDER array starting
at position POS, according to the SMS ordering algorithm.
NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
the NODE_ORDER array, starting from position zero. */
static int
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
int * node_order, int pos)
{
enum sms_direction dir;
int num_nodes = g->num_nodes;
sbitmap workset = sbitmap_alloc (num_nodes);
sbitmap tmp = sbitmap_alloc (num_nodes);
sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
sbitmap predecessors = sbitmap_alloc (num_nodes);
sbitmap successors = sbitmap_alloc (num_nodes);
bitmap_clear (predecessors);
find_predecessors (predecessors, g, nodes_ordered);
bitmap_clear (successors);
find_successors (successors, g, nodes_ordered);
bitmap_clear (tmp);
if (bitmap_and (tmp, predecessors, scc))
{
bitmap_copy (workset, tmp);
dir = BOTTOMUP;
}
else if (bitmap_and (tmp, successors, scc))
{
bitmap_copy (workset, tmp);
dir = TOPDOWN;
}
else
{
int u;
bitmap_clear (workset);
if ((u = find_max_asap (g, scc)) >= 0)
bitmap_set_bit (workset, u);
dir = BOTTOMUP;
}
bitmap_clear (zero_bitmap);
while (!bitmap_equal_p (workset, zero_bitmap))
{
int v;
ddg_node_ptr v_node;
sbitmap v_node_preds;
sbitmap v_node_succs;
if (dir == TOPDOWN)
{
while (!bitmap_equal_p (workset, zero_bitmap))
{
v = find_max_hv_min_mob (g, workset);
v_node = &g->nodes[v];
node_order[pos++] = v;
v_node_succs = NODE_SUCCESSORS (v_node);
bitmap_and (tmp, v_node_succs, scc);
/* Don't consider the already ordered successors again. */
bitmap_and_compl (tmp, tmp, nodes_ordered);
bitmap_ior (workset, workset, tmp);
bitmap_clear_bit (workset, v);
bitmap_set_bit (nodes_ordered, v);
}
dir = BOTTOMUP;
bitmap_clear (predecessors);
find_predecessors (predecessors, g, nodes_ordered);
bitmap_and (workset, predecessors, scc);
}
else
{
while (!bitmap_equal_p (workset, zero_bitmap))
{
v = find_max_dv_min_mob (g, workset);
v_node = &g->nodes[v];
node_order[pos++] = v;
v_node_preds = NODE_PREDECESSORS (v_node);
bitmap_and (tmp, v_node_preds, scc);
/* Don't consider the already ordered predecessors again. */
bitmap_and_compl (tmp, tmp, nodes_ordered);
bitmap_ior (workset, workset, tmp);
bitmap_clear_bit (workset, v);
bitmap_set_bit (nodes_ordered, v);
}
dir = TOPDOWN;
bitmap_clear (successors);
find_successors (successors, g, nodes_ordered);
bitmap_and (workset, successors, scc);
}
}
sbitmap_free (tmp);
sbitmap_free (workset);
sbitmap_free (zero_bitmap);
sbitmap_free (predecessors);
sbitmap_free (successors);
return pos;
}
/* This page contains functions for manipulating partial-schedules during
modulo scheduling. */
/* Create a partial schedule and allocate a memory to hold II rows. */
static partial_schedule_ptr
create_partial_schedule (int ii, ddg_ptr g, int history)
{
partial_schedule_ptr ps = XNEW (struct partial_schedule);
ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
ps->rows_length = (int *) xcalloc (ii, sizeof (int));
ps->reg_moves.create (0);
ps->ii = ii;
ps->history = history;
ps->min_cycle = INT_MAX;
ps->max_cycle = INT_MIN;
ps->g = g;
return ps;
}
/* Free the PS_INSNs in rows array of the given partial schedule.
??? Consider caching the PS_INSN's. */
static void
free_ps_insns (partial_schedule_ptr ps)
{
int i;
for (i = 0; i < ps->ii; i++)
{
while (ps->rows[i])
{
ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
free (ps->rows[i]);
ps->rows[i] = ps_insn;
}
ps->rows[i] = NULL;
}
}
/* Free all the memory allocated to the partial schedule. */
static void
free_partial_schedule (partial_schedule_ptr ps)
{
ps_reg_move_info *move;
unsigned int i;
if (!ps)
return;
FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
sbitmap_free (move->uses);
ps->reg_moves.release ();
free_ps_insns (ps);
free (ps->rows);
free (ps->rows_length);
free (ps);
}
/* Clear the rows array with its PS_INSNs, and create a new one with
NEW_II rows. */
static void
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
{
if (!ps)
return;
free_ps_insns (ps);
if (new_ii == ps->ii)
return;
ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
* sizeof (ps_insn_ptr));
memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
memset (ps->rows_length, 0, new_ii * sizeof (int));
ps->ii = new_ii;
ps->min_cycle = INT_MAX;
ps->max_cycle = INT_MIN;
}
/* Prints the partial schedule as an ii rows array, for each rows
print the ids of the insns in it. */
void
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
{
int i;
for (i = 0; i < ps->ii; i++)
{
ps_insn_ptr ps_i = ps->rows[i];
fprintf (dump, "\n[ROW %d ]: ", i);
while (ps_i)
{
rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
if (JUMP_P (insn))
fprintf (dump, "%d (branch), ", INSN_UID (insn));
else
fprintf (dump, "%d, ", INSN_UID (insn));
ps_i = ps_i->next_in_row;
}
}
}
/* Creates an object of PS_INSN and initializes it to the given parameters. */
static ps_insn_ptr
create_ps_insn (int id, int cycle)
{
ps_insn_ptr ps_i = XNEW (struct ps_insn);
ps_i->id = id;
ps_i->next_in_row = NULL;
ps_i->prev_in_row = NULL;
ps_i->cycle = cycle;
return ps_i;
}
/* Removes the given PS_INSN from the partial schedule. */
static void
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
{
int row;
gcc_assert (ps && ps_i);
row = SMODULO (ps_i->cycle, ps->ii);
if (! ps_i->prev_in_row)
{
gcc_assert (ps_i == ps->rows[row]);
ps->rows[row] = ps_i->next_in_row;
if (ps->rows[row])
ps->rows[row]->prev_in_row = NULL;
}
else
{
ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
if (ps_i->next_in_row)
ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
}
ps->rows_length[row] -= 1;
free (ps_i);
return;
}
/* Unlike what literature describes for modulo scheduling (which focuses
on VLIW machines) the order of the instructions inside a cycle is
important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
where the current instruction should go relative to the already
scheduled instructions in the given cycle. Go over these
instructions and find the first possible column to put it in. */
static bool
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
sbitmap must_precede, sbitmap must_follow)
{
ps_insn_ptr next_ps_i;
ps_insn_ptr first_must_follow = NULL;
ps_insn_ptr last_must_precede = NULL;
ps_insn_ptr last_in_row = NULL;
int row;
if (! ps_i)
return false;
row = SMODULO (ps_i->cycle, ps->ii);
/* Find the first must follow and the last must precede
and insert the node immediately after the must precede
but make sure that it there is no must follow after it. */
for (next_ps_i = ps->rows[row];
next_ps_i;
next_ps_i = next_ps_i->next_in_row)
{
if (must_follow
&& bitmap_bit_p (must_follow, next_ps_i->id)
&& ! first_must_follow)
first_must_follow = next_ps_i;
if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
{
/* If we have already met a node that must follow, then
there is no possible column. */
if (first_must_follow)
return false;
else
last_must_precede = next_ps_i;
}
/* The closing branch must be the last in the row. */
if (must_precede
&& bitmap_bit_p (must_precede, next_ps_i->id)
&& JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
return false;
last_in_row = next_ps_i;
}
/* The closing branch is scheduled as well. Make sure there is no
dependent instruction after it as the branch should be the last
instruction in the row. */
if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
{
if (first_must_follow)
return false;
if (last_in_row)
{
/* Make the branch the last in the row. New instructions
will be inserted at the beginning of the row or after the
last must_precede instruction thus the branch is guaranteed
to remain the last instruction in the row. */
last_in_row->next_in_row = ps_i;
ps_i->prev_in_row = last_in_row;
ps_i->next_in_row = NULL;
}
else
ps->rows[row] = ps_i;
return true;
}
/* Now insert the node after INSERT_AFTER_PSI. */
if (! last_must_precede)
{
ps_i->next_in_row = ps->rows[row];
ps_i->prev_in_row = NULL;
if (ps_i->next_in_row)
ps_i->next_in_row->prev_in_row = ps_i;
ps->rows[row] = ps_i;
}
else
{
ps_i->next_in_row = last_must_precede->next_in_row;
last_must_precede->next_in_row = ps_i;
ps_i->prev_in_row = last_must_precede;
if (ps_i->next_in_row)
ps_i->next_in_row->prev_in_row = ps_i;
}
return true;
}
/* Advances the PS_INSN one column in its current row; returns false
in failure and true in success. Bit N is set in MUST_FOLLOW if
the node with cuid N must be come after the node pointed to by
PS_I when scheduled in the same cycle. */
static int
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
sbitmap must_follow)
{
ps_insn_ptr prev, next;
int row;
if (!ps || !ps_i)
return false;
row = SMODULO (ps_i->cycle, ps->ii);
if (! ps_i->next_in_row)
return false;
/* Check if next_in_row is dependent on ps_i, both having same sched
times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
return false;
/* Advance PS_I over its next_in_row in the doubly linked list. */
prev = ps_i->prev_in_row;
next = ps_i->next_in_row;
if (ps_i == ps->rows[row])
ps->rows[row] = next;
ps_i->next_in_row = next->next_in_row;
if (next->next_in_row)
next->next_in_row->prev_in_row = ps_i;
next->next_in_row = ps_i;
ps_i->prev_in_row = next;
next->prev_in_row = prev;
if (prev)
prev->next_in_row = next;
return true;
}
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
before/after (respectively) the node pointed to by PS_I when scheduled
in the same cycle. */
static ps_insn_ptr
add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
sbitmap must_precede, sbitmap must_follow)
{
ps_insn_ptr ps_i;
int row = SMODULO (cycle, ps->ii);
if (ps->rows_length[row] >= issue_rate)
return NULL;
ps_i = create_ps_insn (id, cycle);
/* Finds and inserts PS_I according to MUST_FOLLOW and
MUST_PRECEDE. */
if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
{
free (ps_i);
return NULL;
}
ps->rows_length[row] += 1;
return ps_i;
}
/* Advance time one cycle. Assumes DFA is being used. */
static void
advance_one_cycle (void)
{
if (targetm.sched.dfa_pre_cycle_insn)
state_transition (curr_state,
targetm.sched.dfa_pre_cycle_insn ());
state_transition (curr_state, NULL);
if (targetm.sched.dfa_post_cycle_insn)
state_transition (curr_state,
targetm.sched.dfa_post_cycle_insn ());
}
/* Checks if PS has resource conflicts according to DFA, starting from
FROM cycle to TO cycle; returns true if there are conflicts and false
if there are no conflicts. Assumes DFA is being used. */
static int
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
{
int cycle;
state_reset (curr_state);
for (cycle = from; cycle <= to; cycle++)
{
ps_insn_ptr crr_insn;
/* Holds the remaining issue slots in the current row. */
int can_issue_more = issue_rate;
/* Walk through the DFA for the current row. */
for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
crr_insn;
crr_insn = crr_insn->next_in_row)
{
rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
if (!NONDEBUG_INSN_P (insn))
continue;
/* Check if there is room for the current insn. */
if (!can_issue_more || state_dead_lock_p (curr_state))
return true;
/* Update the DFA state and return with failure if the DFA found
resource conflicts. */
if (state_transition (curr_state, insn) >= 0)
return true;
if (targetm.sched.variable_issue)
can_issue_more =
targetm.sched.variable_issue (sched_dump, sched_verbose,
insn, can_issue_more);
/* A naked CLOBBER or USE generates no instruction, so don't
let them consume issue slots. */
else if (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
can_issue_more--;
}
/* Advance the DFA to the next cycle. */
advance_one_cycle ();
}
return false;
}
/* Checks if the given node causes resource conflicts when added to PS at
cycle C. If not the node is added to PS and returned; otherwise zero
is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
cuid N must be come before/after (respectively) the node pointed to by
PS_I when scheduled in the same cycle. */
ps_insn_ptr
ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
int c, sbitmap must_precede,
sbitmap must_follow)
{
int has_conflicts = 0;
ps_insn_ptr ps_i;
/* First add the node to the PS, if this succeeds check for
conflicts, trying different issue slots in the same row. */
if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
return NULL; /* Failed to insert the node at the given cycle. */
has_conflicts = ps_has_conflicts (ps, c, c)
|| (ps->history > 0
&& ps_has_conflicts (ps,
c - ps->history,
c + ps->history));
/* Try different issue slots to find one that the given node can be
scheduled in without conflicts. */
while (has_conflicts)
{
if (! ps_insn_advance_column (ps, ps_i, must_follow))
break;
has_conflicts = ps_has_conflicts (ps, c, c)
|| (ps->history > 0
&& ps_has_conflicts (ps,
c - ps->history,
c + ps->history));
}
if (has_conflicts)
{
remove_node_from_ps (ps, ps_i);
return NULL;
}
ps->min_cycle = MIN (ps->min_cycle, c);
ps->max_cycle = MAX (ps->max_cycle, c);
return ps_i;
}
/* Calculate the stage count of the partial schedule PS. The calculation
takes into account the rotation amount passed in ROTATION_AMOUNT. */
int
calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
{
int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
/* The calculation of stage count is done adding the number of stages
before cycle zero and after cycle zero. */
stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
return stage_count;
}
/* Rotate the rows of PS such that insns scheduled at time
START_CYCLE will appear in row 0. Updates max/min_cycles. */
void
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
{
int i, row, backward_rotates;
int last_row = ps->ii - 1;
if (start_cycle == 0)
return;
backward_rotates = SMODULO (start_cycle, ps->ii);
/* Revisit later and optimize this into a single loop. */
for (i = 0; i < backward_rotates; i++)
{
ps_insn_ptr first_row = ps->rows[0];
int first_row_length = ps->rows_length[0];
for (row = 0; row < last_row; row++)
{
ps->rows[row] = ps->rows[row + 1];
ps->rows_length[row] = ps->rows_length[row + 1];
}
ps->rows[last_row] = first_row;
ps->rows_length[last_row] = first_row_length;
}
ps->max_cycle -= start_cycle;
ps->min_cycle -= start_cycle;
}
#endif /* INSN_SCHEDULING */
/* Run instruction scheduler. */
/* Perform SMS module scheduling. */
namespace {
const pass_data pass_data_sms =
{
RTL_PASS, /* type */
"sms", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_SMS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish, /* todo_flags_finish */
};
class pass_sms : public rtl_opt_pass
{
public:
pass_sms (gcc::context *ctxt)
: rtl_opt_pass (pass_data_sms, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
return (optimize > 0 && flag_modulo_sched);
}
virtual unsigned int execute (function *);
}; // class pass_sms
unsigned int
pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
{
#ifdef INSN_SCHEDULING
basic_block bb;
/* Collect loop information to be used in SMS. */
cfg_layout_initialize (0);
sms_schedule ();
/* Update the life information, because we add pseudos. */
max_regno = max_reg_num ();
/* Finalize layout changes. */
FOR_EACH_BB_FN (bb, fun)
if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
bb->aux = bb->next_bb;
free_dominance_info (CDI_DOMINATORS);
cfg_layout_finalize ();
#endif /* INSN_SCHEDULING */
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_sms (gcc::context *ctxt)
{
return new pass_sms (ctxt);
}
|