1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/* Branch prediction routines for the GNU compiler.
Copyright (C) 2000 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* References:
[1] "Branch Prediction for Free"
Ball and Larus; PLDI '93.
[2] "Static Branch Frequency and Program Profile Analysis"
Wu and Larus; MICRO-27.
[3] "Corpus-based Static Branch Prediction"
Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.
*/
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "insn-flags.h"
#include "expr.h"
/* Random guesstimation given names. */
#define PROB_NEVER (0)
#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
#define PROB_UNLIKELY (REG_BR_PROB_BASE * 4 / 10 - 1)
#define PROB_EVEN (REG_BR_PROB_BASE / 2)
#define PROB_LIKELY (REG_BR_PROB_BASE - PROB_UNLIKELY)
#define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
#define PROB_ALWAYS (REG_BR_PROB_BASE)
/* Statically estimate the probability that a branch will be taken.
??? In the next revision there will be a number of other predictors added
from the above references. Further, each heuristic will be factored out
into its own function for clarity (and to facilitate the combination of
predictions). */
void
estimate_probability (loops_info)
struct loops *loops_info;
{
int i;
/* Try to predict out blocks in a loop that are not part of a
natural loop. */
for (i = 0; i < loops_info->num; i++)
{
int j;
for (j = loops_info->array[i].first->index;
j <= loops_info->array[i].last->index;
++j)
{
edge e;
if (! TEST_BIT (loops_info->array[i].nodes, j))
for (e = BASIC_BLOCK(j)->pred; e; e = e->pred_next)
if (TEST_BIT (loops_info->array[i].nodes, e->src->index))
{
rtx last_insn = BLOCK_END (e->src->index);
rtx cond, earliest;
if (GET_CODE (last_insn) != JUMP_INSN
|| ! condjump_p (last_insn) || simplejump_p (last_insn))
continue;
cond = get_condition (last_insn, &earliest);
if (! cond)
continue;
if (! find_reg_note (last_insn, REG_BR_PROB, 0))
REG_NOTES (last_insn)
= gen_rtx_EXPR_LIST (REG_BR_PROB,
GEN_INT (PROB_VERY_LIKELY),
REG_NOTES (last_insn));
}
}
}
/* Attempt to predict conditional jumps using a number of heuristics.
For each conditional jump, we try each heuristic in a fixed order.
If more than one heuristic applies to a particular branch, the first
is used as the prediction for the branch. */
for (i = 0; i < n_basic_blocks - 1; i++)
{
rtx last_insn = BLOCK_END (i);
rtx cond, earliest;
int prob;
edge e;
if (GET_CODE (last_insn) != JUMP_INSN
|| ! condjump_p (last_insn) || simplejump_p (last_insn))
continue;
if (find_reg_note (last_insn, REG_BR_PROB, 0))
continue;
cond = get_condition (last_insn, &earliest);
if (! cond)
continue;
/* If one of the successor blocks has no successors, predict
that side not taken. */
/* ??? Ought to do the same for any subgraph with no exit. */
for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
if (e->dest->succ == NULL)
{
if (e->flags & EDGE_FALLTHRU)
prob = PROB_ALWAYS;
else
prob = PROB_NEVER;
goto emitnote;
}
/* Try "pointer heuristic."
A comparison ptr == 0 is predicted as false.
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
switch (GET_CODE (cond))
{
case EQ:
if (GET_CODE (XEXP (cond, 0)) == REG
&& REGNO_POINTER_FLAG (REGNO (XEXP (cond, 0)))
&& (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == REG
&& REGNO_POINTER_FLAG (REGNO (XEXP (cond, 1))))))
{
prob = PROB_UNLIKELY;
goto emitnote;
}
break;
case NE:
if (GET_CODE (XEXP (cond, 0)) == REG
&& REGNO_POINTER_FLAG (REGNO (XEXP (cond, 0)))
&& (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == REG
&& REGNO_POINTER_FLAG (REGNO (XEXP (cond, 1))))))
{
prob = PROB_LIKELY;
goto emitnote;
}
break;
default:
break;
}
/* Try "opcode heuristic."
EQ tests are usually false and NE tests are usually true. Also,
most quantities are positive, so we can make the appropriate guesses
about signed comparisons against zero. */
switch (GET_CODE (cond))
{
case CONST_INT:
/* Unconditional branch. */
prob = (cond == const0_rtx ? PROB_NEVER : PROB_ALWAYS);
goto emitnote;
case EQ:
prob = PROB_UNLIKELY;
goto emitnote;
case NE:
prob = PROB_LIKELY;
goto emitnote;
case LE:
case LT:
if (XEXP (cond, 1) == const0_rtx)
{
prob = PROB_UNLIKELY;
goto emitnote;
}
break;
case GE:
case GT:
if (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == CONST_INT
&& INTVAL (XEXP (cond, 1)) == -1))
{
prob = PROB_LIKELY;
goto emitnote;
}
break;
default:
break;
}
/* If we havn't chosen something by now, predict 50-50. */
prob = PROB_EVEN;
emitnote:
REG_NOTES (last_insn)
= gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
REG_NOTES (last_insn));
}
}
/* __builtin_expect dropped tokens into the insn stream describing
expected values of registers. Generate branch probabilities
based off these values. */
void
expected_value_to_br_prob ()
{
rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
{
switch (GET_CODE (insn))
{
case NOTE:
/* Look for expected value notes. */
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
{
ev = NOTE_EXPECTED_VALUE (insn);
ev_reg = XEXP (ev, 0);
}
continue;
case CODE_LABEL:
/* Never propagate across labels. */
ev = NULL_RTX;
continue;
default:
/* Look for insns that clobber the EV register. */
if (ev && reg_set_p (ev_reg, insn))
ev = NULL_RTX;
continue;
case JUMP_INSN:
/* Look for simple conditional branches. If we havn't got an
expected value yet, no point going further. */
if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX)
continue;
if (! condjump_p (insn) || simplejump_p (insn))
continue;
break;
}
/* Collect the branch condition, hopefully relative to EV_REG. */
/* ??? At present we'll miss things like
(expected_value (eq r70 0))
(set r71 -1)
(set r80 (lt r70 r71))
(set pc (if_then_else (ne r80 0) ...))
as canonicalize_condition will render this to us as
(lt r70, r71)
Could use cselib to try and reduce this further. */
cond = XEXP (SET_SRC (PATTERN (insn)), 0);
cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
if (! cond
|| XEXP (cond, 0) != ev_reg
|| GET_CODE (XEXP (cond, 1)) != CONST_INT)
continue;
/* Substitute and simplify. Given that the expression we're
building involves two constants, we should wind up with either
true or false. */
cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
XEXP (ev, 1), XEXP (cond, 1));
cond = simplify_rtx (cond);
/* Turn the condition into a scaled branch probability. */
if (cond == const1_rtx)
cond = GEN_INT (PROB_VERY_LIKELY);
else if (cond == const0_rtx)
cond = GEN_INT (PROB_VERY_UNLIKELY);
else
abort ();
REG_NOTES (insn) = alloc_EXPR_LIST (REG_BR_PROB, cond, REG_NOTES (insn));
}
}
|