summaryrefslogtreecommitdiff
path: root/gcc/ra.c
blob: c1098e4c5fcb5a6a15c951e2a385b33f9928106d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/* Graph coloring register allocator
   Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Michael Matz <matz@suse.de>
   and Daniel Berlin <dan@cgsoftware.com>.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it under the
   terms of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
   details.

   You should have received a copy of the GNU General Public License along
   with GCC; see the file COPYING.  If not, write to the Free Software
   Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include "integrate.h"
#include "function.h"
#include "regs.h"
#include "obstack.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "df.h"
#include "expr.h"
#include "output.h"
#include "toplev.h"
#include "flags.h"
#include "ra.h"

/* This is the toplevel file of a graph coloring register allocator.
   It is able to act like a George & Appel allocator, i.e. with iterative
   coalescing plus spill coalescing/propagation.
   And it can act as a traditional Briggs allocator, although with
   optimistic coalescing.  Additionally it has a custom pass, which
   tries to reduce the overall cost of the colored graph.

   We support two modes of spilling: spill-everywhere, which is extremely
   fast, and interference region spilling, which reduces spill code to a
   large extent, but is slower.

   Helpful documents:

   Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph
   coloring register allocation. ACM Trans. Program. Lang. Syst. 16, 3 (May),
   428-455.

   Bergner, P., Dahl, P., Engebretsen, D., and O'Keefe, M. 1997. Spill code
   minimization via interference region spilling. In Proc. ACM SIGPLAN '97
   Conf. on Prog. Language Design and Implementation. ACM, 287-295.

   George, L., Appel, A.W. 1996.  Iterated register coalescing.
   ACM Trans. Program. Lang. Syst. 18, 3 (May), 300-324.

*/

/* This file contains the main entry point (reg_alloc), some helper routines
   used by more than one file of the register allocator, and the toplevel
   driver procedure (one_pass).  */

/* Things, one might do somewhen:

   * Lattice based rematerialization
   * create definitions of ever-life regs at the beginning of
     the insn chain
   * insert loads as soon, stores as late as possible
   * insert spill insns as outward as possible (either looptree, or LCM)
   * reuse stack-slots
   * delete coalesced insns.  Partly done.  The rest can only go, when we get
     rid of reload.
   * don't destroy coalescing information completely when spilling
   * use the constraints from asms
  */

static int first_hard_reg (HARD_REG_SET);
static struct obstack ra_obstack;
static void create_insn_info (struct df *);
static void free_insn_info (void);
static void alloc_mem (struct df *);
static void free_mem (struct df *);
static void free_all_mem (struct df *df);
static int one_pass (struct df *, int);
static void check_df (struct df *);
static void init_ra (void);

void reg_alloc (void);

/* These global variables are "internal" to the register allocator.
   They are all documented at their declarations in ra.h.  */

/* Somewhen we want to get rid of one of those sbitmaps.
   (for now I need the sup_igraph to note if there is any conflict between
   parts of webs at all.  I can't use igraph for this, as there only the real
   conflicts are noted.)  This is only used to prevent coalescing two
   conflicting webs, were only parts of them are in conflict.  */
sbitmap igraph;
sbitmap sup_igraph;

/* Note the insns not inserted by the allocator, where we detected any
   deaths of pseudos.  It is used to detect closeness of defs and uses.
   In the first pass this is empty (we could initialize it from REG_DEAD
   notes), in the other passes it is left from the pass before.  */
sbitmap insns_with_deaths;
int death_insns_max_uid;

struct web_part *web_parts;

unsigned int num_webs;
unsigned int num_subwebs;
unsigned int num_allwebs;
struct web **id2web;
struct web *hardreg2web[FIRST_PSEUDO_REGISTER];
struct web **def2web;
struct web **use2web;
struct move_list *wl_moves;
int ra_max_regno;
short *ra_reg_renumber;
struct df *df;
bitmap *live_at_end;
int ra_pass;
unsigned int max_normal_pseudo;
int an_unusable_color;

/* The different lists on which a web can be (based on the type).  */
struct dlist *web_lists[(int) LAST_NODE_TYPE];

unsigned int last_def_id;
unsigned int last_use_id;
unsigned int last_num_webs;
int last_max_uid;
sbitmap last_check_uses;
unsigned int remember_conflicts;

int orig_max_uid;

HARD_REG_SET never_use_colors;
HARD_REG_SET usable_regs[N_REG_CLASSES];
unsigned int num_free_regs[N_REG_CLASSES];
int single_reg_in_regclass[N_REG_CLASSES];
HARD_REG_SET hardregs_for_mode[NUM_MACHINE_MODES];
HARD_REG_SET invalid_mode_change_regs;
unsigned char byte2bitcount[256];

unsigned int debug_new_regalloc = -1;
int flag_ra_biased = 0;
int flag_ra_improved_spilling = 0;
int flag_ra_ir_spilling = 0;
int flag_ra_optimistic_coalescing = 0;
int flag_ra_break_aliases = 0;
int flag_ra_merge_spill_costs = 0;
int flag_ra_spill_every_use = 0;
int flag_ra_dump_notes = 0;

/* Fast allocation of small objects, which live until the allocator
   is done.  Allocate an object of SIZE bytes.  */

void *
ra_alloc (size_t size)
{
  return obstack_alloc (&ra_obstack, size);
}

/* Like ra_alloc(), but clear the returned memory.  */

void *
ra_calloc (size_t size)
{
  void *p = obstack_alloc (&ra_obstack, size);
  memset (p, 0, size);
  return p;
}

/* Returns the number of hardregs in HARD_REG_SET RS.  */

int
hard_regs_count (HARD_REG_SET rs)
{
  int count = 0;
#ifdef HARD_REG_SET
  while (rs)
    {
      unsigned char byte = rs & 0xFF;
      rs >>= 8;
      /* Avoid memory access, if nothing is set.  */
      if (byte)
        count += byte2bitcount[byte];
    }
#else
  unsigned int ofs;
  for (ofs = 0; ofs < HARD_REG_SET_LONGS; ofs++)
    {
      HARD_REG_ELT_TYPE elt = rs[ofs];
      while (elt)
	{
	  unsigned char byte = elt & 0xFF;
	  elt >>= 8;
	  if (byte)
	    count += byte2bitcount[byte];
	}
    }
#endif
  return count;
}

/* Returns the first hardreg in HARD_REG_SET RS. Assumes there is at
   least one reg in the set.  */

static int
first_hard_reg (HARD_REG_SET rs)
{
  int c;
  for (c = 0; c < FIRST_PSEUDO_REGISTER && !TEST_HARD_REG_BIT (rs, c); c++)
  if (c == FIRST_PSEUDO_REGISTER)
    abort();
  return c;
}

/* Basically like emit_move_insn (i.e. validifies constants and such),
   but also handle MODE_CC moves (but then the operands must already
   be basically valid.  */

rtx
ra_emit_move_insn (rtx x, rtx y)
{
  enum machine_mode mode = GET_MODE (x);
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return emit_insn (gen_move_insn (x, y));
  else
    return emit_move_insn (x, y);
}

int insn_df_max_uid;
struct ra_insn_info *insn_df;
static struct ref **refs_for_insn_df;

/* Create the insn_df structure for each insn to have fast access to
   all valid defs and uses in an insn.  */

static void
create_insn_info (struct df *df)
{
  rtx insn;
  struct ref **act_refs;
  insn_df_max_uid = get_max_uid ();
  insn_df = xcalloc (insn_df_max_uid, sizeof (insn_df[0]));
  refs_for_insn_df = xcalloc (df->def_id + df->use_id, sizeof (struct ref *));
  act_refs = refs_for_insn_df;
  /* We create those things backwards to mimic the order in which
     the insns are visited in rewrite_program2() and live_in().  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      int uid = INSN_UID (insn);
      unsigned int n;
      struct df_link *link;
      if (!INSN_P (insn))
	continue;
      for (n = 0, link = DF_INSN_DEFS (df, insn); link; link = link->next)
        if (link->ref
	    && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
		|| !TEST_HARD_REG_BIT (never_use_colors,
				       DF_REF_REGNO (link->ref))))
	  {
	    if (n == 0)
	      insn_df[uid].defs = act_refs;
	    insn_df[uid].defs[n++] = link->ref;
	  }
      act_refs += n;
      insn_df[uid].num_defs = n;
      for (n = 0, link = DF_INSN_USES (df, insn); link; link = link->next)
        if (link->ref
	    && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
		|| !TEST_HARD_REG_BIT (never_use_colors,
				       DF_REF_REGNO (link->ref))))
	  {
	    if (n == 0)
	      insn_df[uid].uses = act_refs;
	    insn_df[uid].uses[n++] = link->ref;
	  }
      act_refs += n;
      insn_df[uid].num_uses = n;
    }
  if (refs_for_insn_df + (df->def_id + df->use_id) < act_refs)
    abort ();
}

/* Free the insn_df structures.  */

static void
free_insn_info (void)
{
  free (refs_for_insn_df);
  refs_for_insn_df = NULL;
  free (insn_df);
  insn_df = NULL;
  insn_df_max_uid = 0;
}

/* Search WEB for a subweb, which represents REG.  REG needs to
   be a SUBREG, and the inner reg of it needs to be the one which is
   represented by WEB.  Returns the matching subweb or NULL.  */

struct web *
find_subweb (struct web *web, rtx reg)
{
  struct web *w;
  if (GET_CODE (reg) != SUBREG)
    abort ();
  for (w = web->subreg_next; w; w = w->subreg_next)
    if (GET_MODE (w->orig_x) == GET_MODE (reg)
	&& SUBREG_BYTE (w->orig_x) == SUBREG_BYTE (reg))
      return w;
  return NULL;
}

/* Similar to find_subweb(), but matches according to SIZE_WORD,
   a collection of the needed size and offset (in bytes).  */

struct web *
find_subweb_2 (struct web *web, unsigned int size_word)
{
  struct web *w = web;
  if (size_word == GET_MODE_SIZE (GET_MODE (web->orig_x)))
    /* size_word == size means BYTE_BEGIN(size_word) == 0.  */
    return web;
  for (w = web->subreg_next; w; w = w->subreg_next)
    {
      unsigned int bl = rtx_to_bits (w->orig_x);
      if (size_word == bl)
        return w;
    }
  return NULL;
}

/* Returns the superweb for SUBWEB.  */

struct web *
find_web_for_subweb_1 (struct web *subweb)
{
  while (subweb->parent_web)
    subweb = subweb->parent_web;
  return subweb;
}

/* Determine if two hard register sets intersect.
   Return 1 if they do.  */

int
hard_regs_intersect_p (HARD_REG_SET *a, HARD_REG_SET *b)
{
  HARD_REG_SET c;
  COPY_HARD_REG_SET (c, *a);
  AND_HARD_REG_SET (c, *b);
  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
  return 1;
lose:
  return 0;
}

/* Allocate and initialize the memory necessary for one pass of the
   register allocator.  */

static void
alloc_mem (struct df *df)
{
  int i;
  ra_build_realloc (df);
  if (!live_at_end)
    {
      live_at_end = xmalloc ((last_basic_block + 2) * sizeof (bitmap));
      for (i = 0; i < last_basic_block + 2; i++)
	live_at_end[i] = BITMAP_XMALLOC ();
      live_at_end += 2;
    }
  create_insn_info (df);
}

/* Free the memory which isn't necessary for the next pass.  */

static void
free_mem (struct df *df ATTRIBUTE_UNUSED)
{
  free_insn_info ();
  ra_build_free ();
}

/* Free all memory allocated for the register allocator.  Used, when
   it's done.  */

static void
free_all_mem (struct df *df)
{
  unsigned int i;
  live_at_end -= 2;
  for (i = 0; i < (unsigned)last_basic_block + 2; i++)
    BITMAP_XFREE (live_at_end[i]);
  free (live_at_end);

  ra_colorize_free_all ();
  ra_build_free_all (df);
  obstack_free (&ra_obstack, NULL);
}

static long ticks_build;
static long ticks_rebuild;

/* Perform one pass of allocation.  Returns nonzero, if some spill code
   was added, i.e. if the allocator needs to rerun.  */

static int
one_pass (struct df *df, int rebuild)
{
  long ticks = clock ();
  int something_spilled;
  remember_conflicts = 0;

  /* Build the complete interference graph, or if this is not the first
     pass, rebuild it incrementally.  */
  build_i_graph (df);

  /* From now on, if we create new conflicts, we need to remember the
     initial list of conflicts per web.  */
  remember_conflicts = 1;
  if (!rebuild)
    dump_igraph_machine ();

  /* Colorize the I-graph.  This results in either a list of
     spilled_webs, in which case we need to run the spill phase, and
     rerun the allocator, or that list is empty, meaning we are done.  */
  ra_colorize_graph (df);

  last_max_uid = get_max_uid ();
  /* actual_spill() might change WEBS(SPILLED) and even empty it,
     so we need to remember it's state.  */
  something_spilled = !!WEBS(SPILLED);

  /* Add spill code if necessary.  */
  if (something_spilled)
    actual_spill ();

  ticks = clock () - ticks;
  if (rebuild)
    ticks_rebuild += ticks;
  else
    ticks_build += ticks;
  return something_spilled;
}

/* Initialize various arrays for the register allocator.  */

static void
init_ra (void)
{
  int i;
  HARD_REG_SET rs;
#ifdef ELIMINABLE_REGS
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
  unsigned int j;
#endif
  int need_fp
    = (! flag_omit_frame_pointer
       || (current_function_calls_alloca && EXIT_IGNORE_STACK)
       || FRAME_POINTER_REQUIRED);

  ra_colorize_init ();

  /* We can't ever use any of the fixed regs.  */
  COPY_HARD_REG_SET (never_use_colors, fixed_reg_set);

  /* Additionally don't even try to use hardregs, which we already
     know are not eliminable.  This includes also either the
     hard framepointer or all regs which are eliminable into the
     stack pointer, if need_fp is set.  */
#ifdef ELIMINABLE_REGS
  for (j = 0; j < ARRAY_SIZE (eliminables); j++)
    {
      if (! CAN_ELIMINATE (eliminables[j].from, eliminables[j].to)
	  || (eliminables[j].to == STACK_POINTER_REGNUM && need_fp))
	for (i = hard_regno_nregs[eliminables[j].from][Pmode]; i--;)
	  SET_HARD_REG_BIT (never_use_colors, eliminables[j].from + i);
    }
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  if (need_fp)
    for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
      SET_HARD_REG_BIT (never_use_colors, HARD_FRAME_POINTER_REGNUM + i);
#endif

#else
  if (need_fp)
    for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
      SET_HARD_REG_BIT (never_use_colors, FRAME_POINTER_REGNUM + i);
#endif

  /* Stack and argument pointer are also rather useless to us.  */
  for (i = hard_regno_nregs[STACK_POINTER_REGNUM][Pmode]; i--;)
    SET_HARD_REG_BIT (never_use_colors, STACK_POINTER_REGNUM + i);

  for (i = hard_regno_nregs[ARG_POINTER_REGNUM][Pmode]; i--;)
    SET_HARD_REG_BIT (never_use_colors, ARG_POINTER_REGNUM + i);

  for (i = 0; i < 256; i++)
    {
      unsigned char byte = ((unsigned) i) & 0xFF;
      unsigned char count = 0;
      while (byte)
	{
	  if (byte & 1)
	    count++;
	  byte >>= 1;
	}
      byte2bitcount[i] = count;
    }

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      int size;
      COPY_HARD_REG_SET (rs, reg_class_contents[i]);
      AND_COMPL_HARD_REG_SET (rs, never_use_colors);
      size = hard_regs_count (rs);
      num_free_regs[i] = size;
      COPY_HARD_REG_SET (usable_regs[i], rs);
      if (size == 1)
	single_reg_in_regclass[i] = first_hard_reg (rs);
      else
	single_reg_in_regclass[i] = -1;
    }

  /* Setup hardregs_for_mode[].
     We are not interested only in the beginning of a multi-reg, but in
     all the hardregs involved.  Maybe HARD_REGNO_MODE_OK() only ok's
     for beginnings.  */
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      int reg, size;
      CLEAR_HARD_REG_SET (rs);
      for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
	if (HARD_REGNO_MODE_OK (reg, i)
	    /* Ignore VOIDmode and similar things.  */
	    && (size = hard_regno_nregs[reg][i]) != 0
	    && (reg + size) <= FIRST_PSEUDO_REGISTER)
	  {
	    while (size--)
	      SET_HARD_REG_BIT (rs, reg + size);
	  }
      COPY_HARD_REG_SET (hardregs_for_mode[i], rs);
    }

  CLEAR_HARD_REG_SET (invalid_mode_change_regs);
#ifdef CANNOT_CHANGE_MODE_CLASS
  if (0)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      enum machine_mode from = (enum machine_mode) i;
      enum machine_mode to;
      for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
	{
	  int r;
	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
	    if (REG_CANNOT_CHANGE_MODE_P (from, to, r))
	      SET_HARD_REG_BIT (invalid_mode_change_regs, r);
	}
    }
#endif

  for (an_unusable_color = 0; an_unusable_color < FIRST_PSEUDO_REGISTER;
       an_unusable_color++)
    if (TEST_HARD_REG_BIT (never_use_colors, an_unusable_color))
      break;
  if (an_unusable_color == FIRST_PSEUDO_REGISTER)
    abort ();

  orig_max_uid = get_max_uid ();
  compute_bb_for_insn ();
  ra_reg_renumber = NULL;
  insns_with_deaths = sbitmap_alloc (orig_max_uid);
  death_insns_max_uid = orig_max_uid;
  sbitmap_ones (insns_with_deaths);
  gcc_obstack_init (&ra_obstack);
}

/* Check the consistency of DF.  This aborts if it violates some
   invariances we expect.  */

static void
check_df (struct df *df)
{
  struct df_link *link;
  rtx insn;
  int regno;
  unsigned int ui;
  bitmap b = BITMAP_XMALLOC ();
  bitmap empty_defs = BITMAP_XMALLOC ();
  bitmap empty_uses = BITMAP_XMALLOC ();

  /* Collect all the IDs of NULL references in the ID->REF arrays,
     as df.c leaves them when updating the df structure.  */
  for (ui = 0; ui < df->def_id; ui++)
    if (!df->defs[ui])
      bitmap_set_bit (empty_defs, ui);
  for (ui = 0; ui < df->use_id; ui++)
    if (!df->uses[ui])
      bitmap_set_bit (empty_uses, ui);

  /* For each insn we check if the chain of references contain each
     ref only once, doesn't contain NULL refs, or refs whose ID is invalid
     (it df->refs[id] element is NULL).  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	bitmap_clear (b);
	for (link = DF_INSN_DEFS (df, insn); link; link = link->next)
	  if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
	      || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	    abort ();
	  else
	    bitmap_set_bit (b, DF_REF_ID (link->ref));

	bitmap_clear (b);
	for (link = DF_INSN_USES (df, insn); link; link = link->next)
	  if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
	      || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	    abort ();
	  else
	    bitmap_set_bit (b, DF_REF_ID (link->ref));
      }

  /* Now the same for the chains per register number.  */
  for (regno = 0; regno < max_reg_num (); regno++)
    {
      bitmap_clear (b);
      for (link = df->regs[regno].defs; link; link = link->next)
	if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
	    || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	  abort ();
	else
	  bitmap_set_bit (b, DF_REF_ID (link->ref));

      bitmap_clear (b);
      for (link = df->regs[regno].uses; link; link = link->next)
	if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
	    || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	  abort ();
	else
	  bitmap_set_bit (b, DF_REF_ID (link->ref));
    }

  BITMAP_XFREE (empty_uses);
  BITMAP_XFREE (empty_defs);
  BITMAP_XFREE (b);
}

/* Main register allocator entry point.  */

void
reg_alloc (void)
{
  int changed;
  FILE *ra_dump_file = dump_file;
  rtx last = get_last_insn ();

  if (! INSN_P (last))
    last = prev_real_insn (last);
  /* If this is an empty function we shouldn't do all the following,
     but instead just setup what's necessary, and return.  */

  /* We currently rely on the existence of the return value USE as
     one of the last insns.  Add it if it's not there anymore.  */
  if (last)
    {
      edge e;
      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
	{
	  basic_block bb = e->src;
	  last = BB_END (bb);
	  if (!INSN_P (last) || GET_CODE (PATTERN (last)) != USE)
	    {
	      rtx insns;
	      start_sequence ();
	      use_return_register ();
	      insns = get_insns ();
	      end_sequence ();
	      emit_insn_after (insns, last);
	    }
	}
    }

  /* Setup debugging levels.  */
  switch (0)
    {
      /* Some useful presets of the debug level, I often use.  */
      case 0: debug_new_regalloc = DUMP_EVER; break;
      case 1: debug_new_regalloc = DUMP_COSTS; break;
      case 2: debug_new_regalloc = DUMP_IGRAPH_M; break;
      case 3: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS; break;
      case 4: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS + DUMP_WEBS;
	      break;
      case 5: debug_new_regalloc = DUMP_FINAL_RTL + DUMP_COSTS +
	      DUMP_CONSTRAINTS;
	      break;
      case 6: debug_new_regalloc = DUMP_VALIDIFY; break;
    }
  if (!dump_file)
    debug_new_regalloc = 0;

  /* Run regclass first, so we know the preferred and alternate classes
     for each pseudo.  Deactivate emitting of debug info, if it's not
     explicitly requested.  */
  if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
    dump_file = NULL;
  regclass (get_insns (), max_reg_num (), dump_file);
  dump_file = ra_dump_file;

  /* We don't use those NOTEs, and as we anyway change all registers,
     they only make problems later.  */
  count_or_remove_death_notes (NULL, 1);

  /* Initialize the different global arrays and regsets.  */
  init_ra ();

  /* And some global variables.  */
  ra_pass = 0;
  no_new_pseudos = 0;
  max_normal_pseudo = (unsigned) max_reg_num ();
  ra_rewrite_init ();
  last_def_id = 0;
  last_use_id = 0;
  last_num_webs = 0;
  last_max_uid = 0;
  last_check_uses = NULL;
  live_at_end = NULL;
  WEBS(INITIAL) = NULL;
  WEBS(FREE) = NULL;
  memset (hardreg2web, 0, sizeof (hardreg2web));
  ticks_build = ticks_rebuild = 0;

  /* The default is to use optimistic coalescing with interference
     region spilling, without biased coloring.  */
  flag_ra_biased = 0;
  flag_ra_spill_every_use = 0;
  flag_ra_improved_spilling = 1;
  flag_ra_ir_spilling = 1;
  flag_ra_break_aliases = 0;
  flag_ra_optimistic_coalescing = 1;
  flag_ra_merge_spill_costs = 1;
  if (flag_ra_optimistic_coalescing)
    flag_ra_break_aliases = 1;
  flag_ra_dump_notes = 0;

  /* Allocate the global df structure.  */
  df = df_init ();

  /* This is the main loop, calling one_pass as long as there are still
     some spilled webs.  */
  do
    {
      ra_debug_msg (DUMP_NEARLY_EVER, "RegAlloc Pass %d\n\n", ra_pass);
      if (ra_pass++ > 40)
	internal_error ("Didn't find a coloring.\n");

      /* First collect all the register refs and put them into
	 chains per insn, and per regno.  In later passes only update
         that info from the new and modified insns.  */
      df_analyze (df, (ra_pass == 1) ? 0 : (bitmap) -1,
		  DF_HARD_REGS | DF_RD_CHAIN | DF_RU_CHAIN | DF_FOR_REGALLOC);

      if ((debug_new_regalloc & DUMP_DF) != 0)
	{
	  rtx insn;
	  df_dump (df, DF_HARD_REGS, dump_file);
	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
            if (INSN_P (insn))
	      df_insn_debug_regno (df, insn, dump_file);
	}
      check_df (df);

      /* Now allocate the memory needed for this pass, or (if it's not the
	 first pass), reallocate only additional memory.  */
      alloc_mem (df);

      /* Build and colorize the interference graph, and possibly emit
	 spill insns.  This also might delete certain move insns.  */
      changed = one_pass (df, ra_pass > 1);

      /* If that produced no changes, the graph was colorizable.  */
      if (!changed)
	{
	  /* Change the insns to refer to the new pseudos (one per web).  */
          emit_colors (df);
	  /* Already setup a preliminary reg_renumber[] array, but don't
	     free our own version.  reg_renumber[] will again be destroyed
	     later.  We right now need it in dump_constraints() for
	     constrain_operands(1) whose subproc sometimes reference
	     it (because we are checking strictly, i.e. as if
	     after reload).  */
	  setup_renumber (0);
	  /* Delete some more of the coalesced moves.  */
	  delete_moves ();
	  dump_constraints ();
	}
      else
	{
	  /* If there were changes, this means spill code was added,
	     therefore repeat some things, including some initialization
	     of global data structures.  */
	  if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
	    dump_file = NULL;
	  /* We have new pseudos (the stackwebs).  */
	  allocate_reg_info (max_reg_num (), FALSE, FALSE);
	  /* And new insns.  */
	  compute_bb_for_insn ();
	  /* Some of them might be dead.  */
	  delete_trivially_dead_insns (get_insns (), max_reg_num ());
	  /* Those new pseudos need to have their REFS count set.  */
	  reg_scan_update (get_insns (), NULL, max_regno);
	  max_regno = max_reg_num ();
	  /* And they need useful classes too.  */
	  regclass (get_insns (), max_reg_num (), dump_file);
	  dump_file = ra_dump_file;

	  /* Remember the number of defs and uses, so we can distinguish
	     new from old refs in the next pass.  */
	  last_def_id = df->def_id;
	  last_use_id = df->use_id;
	}

      /* Output the graph, and possibly the current insn sequence.  */
      dump_ra (df);
      if (changed && (debug_new_regalloc & DUMP_RTL) != 0)
	{
	  ra_print_rtl_with_bb (dump_file, get_insns ());
	  fflush (dump_file);
	}

      /* Reset the web lists.  */
      reset_lists ();
      free_mem (df);
    }
  while (changed);

  /* We are done with allocation, free all memory and output some
     debug info.  */
  free_all_mem (df);
  df_finish (df);
  if ((debug_new_regalloc & DUMP_RESULTS) == 0)
    dump_cost (DUMP_COSTS);
  ra_debug_msg (DUMP_COSTS, "ticks for build-phase: %ld\n", ticks_build);
  ra_debug_msg (DUMP_COSTS, "ticks for rebuild-phase: %ld\n", ticks_rebuild);
  if ((debug_new_regalloc & (DUMP_FINAL_RTL | DUMP_RTL)) != 0)
    ra_print_rtl_with_bb (dump_file, get_insns ());

  /* We might have new pseudos, so allocate the info arrays for them.  */
  if ((debug_new_regalloc & DUMP_SM) == 0)
    dump_file = NULL;
  no_new_pseudos = 0;
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
  no_new_pseudos = 1;
  dump_file = ra_dump_file;

  /* Some spill insns could've been inserted after trapping calls, i.e.
     at the end of a basic block, which really ends at that call.
     Fixup that breakages by adjusting basic block boundaries.  */
  fixup_abnormal_edges ();

  /* Cleanup the flow graph.  */
  if ((debug_new_regalloc & DUMP_LAST_FLOW) == 0)
    dump_file = NULL;
  life_analysis (dump_file,
		 PROP_DEATH_NOTES | PROP_LOG_LINKS  | PROP_REG_INFO);
  cleanup_cfg (CLEANUP_EXPENSIVE);
  recompute_reg_usage (get_insns (), TRUE);
  if (dump_file)
    dump_flow_info (dump_file);
  dump_file = ra_dump_file;

  /* update_equiv_regs() can't be called after register allocation.
     It might delete some pseudos, and insert other insns setting
     up those pseudos in different places.  This of course screws up
     the allocation because that may destroy a hardreg for another
     pseudo.
     XXX we probably should do something like that on our own.  I.e.
     creating REG_EQUIV notes.  */
  /*update_equiv_regs ();*/

  /* Setup the reg_renumber[] array for reload.  */
  setup_renumber (1);
  sbitmap_free (insns_with_deaths);

  /* Remove REG_DEAD notes which are incorrectly set.  See the docu
     of that function.  */
  remove_suspicious_death_notes ();

  if ((debug_new_regalloc & DUMP_LAST_RTL) != 0)
    ra_print_rtl_with_bb (dump_file, get_insns ());
  dump_static_insn_cost (dump_file,
			 "after allocation/spilling, before reload", NULL);

  /* Allocate the reg_equiv_memory_loc array for reload.  */
  VARRAY_GROW (reg_equiv_memory_loc_varray, max_regno);
  reg_equiv_memory_loc = &VARRAY_RTX (reg_equiv_memory_loc_varray, 0);
  /* And possibly initialize it.  */
  allocate_initial_values (reg_equiv_memory_loc);
  /* And one last regclass pass just before reload.  */
  regclass (get_insns (), max_reg_num (), dump_file);
}

/*
vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4:
*/