summaryrefslogtreecommitdiff
path: root/gcc/recog.c
blob: 831023dae9765cab691e0d04bac0f28abb4b78eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
/* Subroutines used by or related to instruction recognition.
   Copyright (C) 1987-2014 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl-error.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "regs.h"
#include "addresses.h"
#include "expr.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "flags.h"
#include "predict.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "basic-block.h"
#include "reload.h"
#include "target.h"
#include "tree-pass.h"
#include "df.h"
#include "insn-codes.h"

#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif

#ifndef STACK_POP_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_POP_CODE POST_INC
#else
#define STACK_POP_CODE POST_DEC
#endif
#endif

static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
static void validate_replace_src_1 (rtx *, void *);
static rtx split_insn (rtx_insn *);

struct target_recog default_target_recog;
#if SWITCHABLE_TARGET
struct target_recog *this_target_recog = &default_target_recog;
#endif

/* Nonzero means allow operands to be volatile.
   This should be 0 if you are generating rtl, such as if you are calling
   the functions in optabs.c and expmed.c (most of the time).
   This should be 1 if all valid insns need to be recognized,
   such as in reginfo.c and final.c and reload.c.

   init_recog and init_recog_no_volatile are responsible for setting this.  */

int volatile_ok;

struct recog_data_d recog_data;

/* Contains a vector of operand_alternative structures, such that
   operand OP of alternative A is at index A * n_operands + OP.
   Set up by preprocess_constraints.  */
const operand_alternative *recog_op_alt;

/* Used to provide recog_op_alt for asms.  */
static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
				      * MAX_RECOG_ALTERNATIVES];

/* On return from `constrain_operands', indicate which alternative
   was satisfied.  */

int which_alternative;

/* Nonzero after end of reload pass.
   Set to 1 or 0 by toplev.c.
   Controls the significance of (SUBREG (MEM)).  */

int reload_completed;

/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
int epilogue_completed;

/* Initialize data used by the function `recog'.
   This must be called once in the compilation of a function
   before any insn recognition may be done in the function.  */

void
init_recog_no_volatile (void)
{
  volatile_ok = 0;
}

void
init_recog (void)
{
  volatile_ok = 1;
}


/* Return true if labels in asm operands BODY are LABEL_REFs.  */

static bool
asm_labels_ok (rtx body)
{
  rtx asmop;
  int i;

  asmop = extract_asm_operands (body);
  if (asmop == NULL_RTX)
    return true;

  for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
    if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
      return false;

  return true;
}

/* Check that X is an insn-body for an `asm' with operands
   and that the operands mentioned in it are legitimate.  */

int
check_asm_operands (rtx x)
{
  int noperands;
  rtx *operands;
  const char **constraints;
  int i;

  if (!asm_labels_ok (x))
    return 0;

  /* Post-reload, be more strict with things.  */
  if (reload_completed)
    {
      /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
      rtx_insn *insn = make_insn_raw (x);
      extract_insn (insn);
      constrain_operands (1, get_enabled_alternatives (insn));
      return which_alternative >= 0;
    }

  noperands = asm_noperands (x);
  if (noperands < 0)
    return 0;
  if (noperands == 0)
    return 1;

  operands = XALLOCAVEC (rtx, noperands);
  constraints = XALLOCAVEC (const char *, noperands);

  decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);

  for (i = 0; i < noperands; i++)
    {
      const char *c = constraints[i];
      if (c[0] == '%')
	c++;
      if (! asm_operand_ok (operands[i], c, constraints))
	return 0;
    }

  return 1;
}

/* Static data for the next two routines.  */

typedef struct change_t
{
  rtx object;
  int old_code;
  rtx *loc;
  rtx old;
  bool unshare;
} change_t;

static change_t *changes;
static int changes_allocated;

static int num_changes = 0;

/* Validate a proposed change to OBJECT.  LOC is the location in the rtl
   at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
   the change is simply made.

   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
   will be called with the address and mode as parameters.  If OBJECT is
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
   the change in place.

   IN_GROUP is nonzero if this is part of a group of changes that must be
   performed as a group.  In that case, the changes will be stored.  The
   function `apply_change_group' will validate and apply the changes.

   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
   or validate the memory reference with the change applied.  If the result
   is not valid for the machine, suppress the change and return zero.
   Otherwise, perform the change and return 1.  */

static bool
validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
{
  rtx old = *loc;

  if (old == new_rtx || rtx_equal_p (old, new_rtx))
    return 1;

  gcc_assert (in_group != 0 || num_changes == 0);

  *loc = new_rtx;

  /* Save the information describing this change.  */
  if (num_changes >= changes_allocated)
    {
      if (changes_allocated == 0)
	/* This value allows for repeated substitutions inside complex
	   indexed addresses, or changes in up to 5 insns.  */
	changes_allocated = MAX_RECOG_OPERANDS * 5;
      else
	changes_allocated *= 2;

      changes = XRESIZEVEC (change_t, changes, changes_allocated);
    }

  changes[num_changes].object = object;
  changes[num_changes].loc = loc;
  changes[num_changes].old = old;
  changes[num_changes].unshare = unshare;

  if (object && !MEM_P (object))
    {
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
	 case invalid.  */
      changes[num_changes].old_code = INSN_CODE (object);
      INSN_CODE (object) = -1;
    }

  num_changes++;

  /* If we are making a group of changes, return 1.  Otherwise, validate the
     change group we made.  */

  if (in_group)
    return 1;
  else
    return apply_change_group ();
}

/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
   UNSHARE to false.  */

bool
validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
{
  return validate_change_1 (object, loc, new_rtx, in_group, false);
}

/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
   UNSHARE to true.  */

bool
validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
{
  return validate_change_1 (object, loc, new_rtx, in_group, true);
}


/* Keep X canonicalized if some changes have made it non-canonical; only
   modifies the operands of X, not (for example) its code.  Simplifications
   are not the job of this routine.

   Return true if anything was changed.  */
bool
canonicalize_change_group (rtx insn, rtx x)
{
  if (COMMUTATIVE_P (x)
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
    {
      /* Oops, the caller has made X no longer canonical.
	 Let's redo the changes in the correct order.  */
      rtx tem = XEXP (x, 0);
      validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
      validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
      return true;
    }
  else
    return false;
}


/* This subroutine of apply_change_group verifies whether the changes to INSN
   were valid; i.e. whether INSN can still be recognized.

   If IN_GROUP is true clobbers which have to be added in order to
   match the instructions will be added to the current change group.
   Otherwise the changes will take effect immediately.  */

int
insn_invalid_p (rtx_insn *insn, bool in_group)
{
  rtx pat = PATTERN (insn);
  int num_clobbers = 0;
  /* If we are before reload and the pattern is a SET, see if we can add
     clobbers.  */
  int icode = recog (pat, insn,
		     (GET_CODE (pat) == SET
		      && ! reload_completed 
                      && ! reload_in_progress)
		     ? &num_clobbers : 0);
  int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;


  /* If this is an asm and the operand aren't legal, then fail.  Likewise if
     this is not an asm and the insn wasn't recognized.  */
  if ((is_asm && ! check_asm_operands (PATTERN (insn)))
      || (!is_asm && icode < 0))
    return 1;

  /* If we have to add CLOBBERs, fail if we have to add ones that reference
     hard registers since our callers can't know if they are live or not.
     Otherwise, add them.  */
  if (num_clobbers > 0)
    {
      rtx newpat;

      if (added_clobbers_hard_reg_p (icode))
	return 1;

      newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
      XVECEXP (newpat, 0, 0) = pat;
      add_clobbers (newpat, icode);
      if (in_group)
	validate_change (insn, &PATTERN (insn), newpat, 1);
      else
	PATTERN (insn) = pat = newpat;
    }

  /* After reload, verify that all constraints are satisfied.  */
  if (reload_completed)
    {
      extract_insn (insn);

      if (! constrain_operands (1, get_preferred_alternatives (insn)))
	return 1;
    }

  INSN_CODE (insn) = icode;
  return 0;
}

/* Return number of changes made and not validated yet.  */
int
num_changes_pending (void)
{
  return num_changes;
}

/* Tentatively apply the changes numbered NUM and up.
   Return 1 if all changes are valid, zero otherwise.  */

int
verify_changes (int num)
{
  int i;
  rtx last_validated = NULL_RTX;

  /* The changes have been applied and all INSN_CODEs have been reset to force
     rerecognition.

     The changes are valid if we aren't given an object, or if we are
     given a MEM and it still is a valid address, or if this is in insn
     and it is recognized.  In the latter case, if reload has completed,
     we also require that the operands meet the constraints for
     the insn.  */

  for (i = num; i < num_changes; i++)
    {
      rtx object = changes[i].object;

      /* If there is no object to test or if it is the same as the one we
         already tested, ignore it.  */
      if (object == 0 || object == last_validated)
	continue;

      if (MEM_P (object))
	{
	  if (! memory_address_addr_space_p (GET_MODE (object),
					     XEXP (object, 0),
					     MEM_ADDR_SPACE (object)))
	    break;
	}
      else if (/* changes[i].old might be zero, e.g. when putting a
	       REG_FRAME_RELATED_EXPR into a previously empty list.  */
	       changes[i].old
	       && REG_P (changes[i].old)
	       && asm_noperands (PATTERN (object)) > 0
	       && REG_EXPR (changes[i].old) != NULL_TREE
	       && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
	       && DECL_REGISTER (REG_EXPR (changes[i].old)))
	{
	  /* Don't allow changes of hard register operands to inline
	     assemblies if they have been defined as register asm ("x").  */
	  break;
	}
      else if (DEBUG_INSN_P (object))
	continue;
      else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
	{
	  rtx pat = PATTERN (object);

	  /* Perhaps we couldn't recognize the insn because there were
	     extra CLOBBERs at the end.  If so, try to re-recognize
	     without the last CLOBBER (later iterations will cause each of
	     them to be eliminated, in turn).  But don't do this if we
	     have an ASM_OPERAND.  */
	  if (GET_CODE (pat) == PARALLEL
	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
	      && asm_noperands (PATTERN (object)) < 0)
	    {
	      rtx newpat;

	      if (XVECLEN (pat, 0) == 2)
		newpat = XVECEXP (pat, 0, 0);
	      else
		{
		  int j;

		  newpat
		    = gen_rtx_PARALLEL (VOIDmode,
					rtvec_alloc (XVECLEN (pat, 0) - 1));
		  for (j = 0; j < XVECLEN (newpat, 0); j++)
		    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
		}

	      /* Add a new change to this group to replace the pattern
		 with this new pattern.  Then consider this change
		 as having succeeded.  The change we added will
		 cause the entire call to fail if things remain invalid.

		 Note that this can lose if a later change than the one
		 we are processing specified &XVECEXP (PATTERN (object), 0, X)
		 but this shouldn't occur.  */

	      validate_change (object, &PATTERN (object), newpat, 1);
	      continue;
	    }
	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
		   || GET_CODE (pat) == VAR_LOCATION)
	    /* If this insn is a CLOBBER or USE, it is always valid, but is
	       never recognized.  */
	    continue;
	  else
	    break;
	}
      last_validated = object;
    }

  return (i == num_changes);
}

/* A group of changes has previously been issued with validate_change
   and verified with verify_changes.  Call df_insn_rescan for each of
   the insn changed and clear num_changes.  */

void
confirm_change_group (void)
{
  int i;
  rtx last_object = NULL;

  for (i = 0; i < num_changes; i++)
    {
      rtx object = changes[i].object;

      if (changes[i].unshare)
	*changes[i].loc = copy_rtx (*changes[i].loc);

      /* Avoid unnecessary rescanning when multiple changes to same instruction
         are made.  */
      if (object)
	{
	  if (object != last_object && last_object && INSN_P (last_object))
	    df_insn_rescan (as_a <rtx_insn *> (last_object));
	  last_object = object;
	}
    }

  if (last_object && INSN_P (last_object))
    df_insn_rescan (as_a <rtx_insn *> (last_object));
  num_changes = 0;
}

/* Apply a group of changes previously issued with `validate_change'.
   If all changes are valid, call confirm_change_group and return 1,
   otherwise, call cancel_changes and return 0.  */

int
apply_change_group (void)
{
  if (verify_changes (0))
    {
      confirm_change_group ();
      return 1;
    }
  else
    {
      cancel_changes (0);
      return 0;
    }
}


/* Return the number of changes so far in the current group.  */

int
num_validated_changes (void)
{
  return num_changes;
}

/* Retract the changes numbered NUM and up.  */

void
cancel_changes (int num)
{
  int i;

  /* Back out all the changes.  Do this in the opposite order in which
     they were made.  */
  for (i = num_changes - 1; i >= num; i--)
    {
      *changes[i].loc = changes[i].old;
      if (changes[i].object && !MEM_P (changes[i].object))
	INSN_CODE (changes[i].object) = changes[i].old_code;
    }
  num_changes = num;
}

/* Reduce conditional compilation elsewhere.  */
#ifndef HAVE_extv
#define HAVE_extv	0
#define CODE_FOR_extv	CODE_FOR_nothing
#endif
#ifndef HAVE_extzv
#define HAVE_extzv	0
#define CODE_FOR_extzv	CODE_FOR_nothing
#endif

/* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
   rtx.  */

static void
simplify_while_replacing (rtx *loc, rtx to, rtx object,
                          enum machine_mode op0_mode)
{
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  rtx new_rtx = NULL_RTX;

  if (SWAPPABLE_OPERANDS_P (x)
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
    {
      validate_unshare_change (object, loc,
			       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
					       : swap_condition (code),
					       GET_MODE (x), XEXP (x, 1),
					       XEXP (x, 0)), 1);
      x = *loc;
      code = GET_CODE (x);
    }

  /* Canonicalize arithmetics with all constant operands.  */
  switch (GET_RTX_CLASS (code))
    {
    case RTX_UNARY:
      if (CONSTANT_P (XEXP (x, 0)))
	new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
					    op0_mode);
      break;
    case RTX_COMM_ARITH:
    case RTX_BIN_ARITH:
      if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
	new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
					     XEXP (x, 1));
      break;
    case RTX_COMPARE:
    case RTX_COMM_COMPARE:
      if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
	new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
						 XEXP (x, 0), XEXP (x, 1));
      break;
    default:
      break;
    }
  if (new_rtx)
    {
      validate_change (object, loc, new_rtx, 1);
      return;
    }

  switch (code)
    {
    case PLUS:
      /* If we have a PLUS whose second operand is now a CONST_INT, use
         simplify_gen_binary to try to simplify it.
         ??? We may want later to remove this, once simplification is
         separated from this function.  */
      if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
	validate_change (object, loc,
			 simplify_gen_binary
			 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
      break;
    case MINUS:
      if (CONST_SCALAR_INT_P (XEXP (x, 1)))
	validate_change (object, loc,
			 simplify_gen_binary
			 (PLUS, GET_MODE (x), XEXP (x, 0),
			  simplify_gen_unary (NEG,
					      GET_MODE (x), XEXP (x, 1),
					      GET_MODE (x))), 1);
      break;
    case ZERO_EXTEND:
    case SIGN_EXTEND:
      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
	{
	  new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
				    op0_mode);
	  /* If any of the above failed, substitute in something that
	     we know won't be recognized.  */
	  if (!new_rtx)
	    new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
	  validate_change (object, loc, new_rtx, 1);
	}
      break;
    case SUBREG:
      /* All subregs possible to simplify should be simplified.  */
      new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
			     SUBREG_BYTE (x));

      /* Subregs of VOIDmode operands are incorrect.  */
      if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
	new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
      if (new_rtx)
	validate_change (object, loc, new_rtx, 1);
      break;
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* If we are replacing a register with memory, try to change the memory
         to be the mode required for memory in extract operations (this isn't
         likely to be an insertion operation; if it was, nothing bad will
         happen, we might just fail in some cases).  */

      if (MEM_P (XEXP (x, 0))
	  && CONST_INT_P (XEXP (x, 1))
	  && CONST_INT_P (XEXP (x, 2))
	  && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
					MEM_ADDR_SPACE (XEXP (x, 0)))
	  && !MEM_VOLATILE_P (XEXP (x, 0)))
	{
	  enum machine_mode wanted_mode = VOIDmode;
	  enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
	  int pos = INTVAL (XEXP (x, 2));

	  if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
	    {
	      wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
	      if (wanted_mode == VOIDmode)
		wanted_mode = word_mode;
	    }
	  else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
	    {
	      wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
	      if (wanted_mode == VOIDmode)
		wanted_mode = word_mode;
	    }

	  /* If we have a narrower mode, we can do something.  */
	  if (wanted_mode != VOIDmode
	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
	    {
	      int offset = pos / BITS_PER_UNIT;
	      rtx newmem;

	      /* If the bytes and bits are counted differently, we
	         must adjust the offset.  */
	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		offset =
		  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
		   offset);

	      gcc_assert (GET_MODE_PRECISION (wanted_mode)
			  == GET_MODE_BITSIZE (wanted_mode));
	      pos %= GET_MODE_BITSIZE (wanted_mode);

	      newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);

	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
	      validate_change (object, &XEXP (x, 0), newmem, 1);
	    }
	}

      break;

    default:
      break;
    }
}

/* Replace every occurrence of FROM in X with TO.  Mark each change with
   validate_change passing OBJECT.  */

static void
validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
                        bool simplify)
{
  int i, j;
  const char *fmt;
  rtx x = *loc;
  enum rtx_code code;
  enum machine_mode op0_mode = VOIDmode;
  int prev_changes = num_changes;

  if (!x)
    return;

  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  if (fmt[0] == 'e')
    op0_mode = GET_MODE (XEXP (x, 0));

  /* X matches FROM if it is the same rtx or they are both referring to the
     same register in the same mode.  Avoid calling rtx_equal_p unless the
     operands look similar.  */

  if (x == from
      || (REG_P (x) && REG_P (from)
	  && GET_MODE (x) == GET_MODE (from)
	  && REGNO (x) == REGNO (from))
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
	  && rtx_equal_p (x, from)))
    {
      validate_unshare_change (object, loc, to, 1);
      return;
    }

  /* Call ourself recursively to perform the replacements.
     We must not replace inside already replaced expression, otherwise we
     get infinite recursion for replacements like (reg X)->(subreg (reg X))
     so we must special case shared ASM_OPERANDS.  */

  if (GET_CODE (x) == PARALLEL)
    {
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
	{
	  if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
	      && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
	    {
	      /* Verify that operands are really shared.  */
	      gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
			  == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
							      (x, 0, j))));
	      validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
				      from, to, object, simplify);
	    }
	  else
	    validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
                                    simplify);
	}
    }
  else
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
	else if (fmt[i] == 'E')
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
                                    simplify);
      }

  /* If we didn't substitute, there is nothing more to do.  */
  if (num_changes == prev_changes)
    return;

  /* ??? The regmove is no more, so is this aberration still necessary?  */
  /* Allow substituted expression to have different mode.  This is used by
     regmove to change mode of pseudo register.  */
  if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
    op0_mode = GET_MODE (XEXP (x, 0));

  /* Do changes needed to keep rtx consistent.  Don't do any other
     simplifications, as it is not our job.  */
  if (simplify)
    simplify_while_replacing (loc, to, object, op0_mode);
}

/* Try replacing every occurrence of FROM in subexpression LOC of INSN
   with TO.  After all changes have been made, validate by seeing
   if INSN is still valid.  */

int
validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
{
  validate_replace_rtx_1 (loc, from, to, insn, true);
  return apply_change_group ();
}

/* Try replacing every occurrence of FROM in INSN with TO.  After all
   changes have been made, validate by seeing if INSN is still valid.  */

int
validate_replace_rtx (rtx from, rtx to, rtx insn)
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
  return apply_change_group ();
}

/* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
   is a part of INSN.  After all changes have been made, validate by seeing if
   INSN is still valid.
   validate_replace_rtx (from, to, insn) is equivalent to
   validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */

int
validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
{
  validate_replace_rtx_1 (where, from, to, insn, true);
  return apply_change_group ();
}

/* Same as above, but do not simplify rtx afterwards.  */
int
validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
                                      rtx insn)
{
  validate_replace_rtx_1 (where, from, to, insn, false);
  return apply_change_group ();

}

/* Try replacing every occurrence of FROM in INSN with TO.  This also
   will replace in REG_EQUAL and REG_EQUIV notes.  */

void
validate_replace_rtx_group (rtx from, rtx to, rtx insn)
{
  rtx note;
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_EQUAL
	|| REG_NOTE_KIND (note) == REG_EQUIV)
      validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
}

/* Function called by note_uses to replace used subexpressions.  */
struct validate_replace_src_data
{
  rtx from;			/* Old RTX */
  rtx to;			/* New RTX */
  rtx insn;			/* Insn in which substitution is occurring.  */
};

static void
validate_replace_src_1 (rtx *x, void *data)
{
  struct validate_replace_src_data *d
    = (struct validate_replace_src_data *) data;

  validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
}

/* Try replacing every occurrence of FROM in INSN with TO, avoiding
   SET_DESTs.  */

void
validate_replace_src_group (rtx from, rtx to, rtx insn)
{
  struct validate_replace_src_data d;

  d.from = from;
  d.to = to;
  d.insn = insn;
  note_uses (&PATTERN (insn), validate_replace_src_1, &d);
}

/* Try simplify INSN.
   Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
   pattern and return true if something was simplified.  */

bool
validate_simplify_insn (rtx insn)
{
  int i;
  rtx pat = NULL;
  rtx newpat = NULL;

  pat = PATTERN (insn);

  if (GET_CODE (pat) == SET)
    {
      newpat = simplify_rtx (SET_SRC (pat));
      if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
	validate_change (insn, &SET_SRC (pat), newpat, 1);
      newpat = simplify_rtx (SET_DEST (pat));
      if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
	validate_change (insn, &SET_DEST (pat), newpat, 1);
    }
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
	rtx s = XVECEXP (pat, 0, i);

	if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
	  {
	    newpat = simplify_rtx (SET_SRC (s));
	    if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
	      validate_change (insn, &SET_SRC (s), newpat, 1);
	    newpat = simplify_rtx (SET_DEST (s));
	    if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
	      validate_change (insn, &SET_DEST (s), newpat, 1);
	  }
      }
  return ((num_changes_pending () > 0) && (apply_change_group () > 0));
}

#ifdef HAVE_cc0
/* Return 1 if the insn using CC0 set by INSN does not contain
   any ordered tests applied to the condition codes.
   EQ and NE tests do not count.  */

int
next_insn_tests_no_inequality (rtx insn)
{
  rtx next = next_cc0_user (insn);

  /* If there is no next insn, we have to take the conservative choice.  */
  if (next == 0)
    return 0;

  return (INSN_P (next)
	  && ! inequality_comparisons_p (PATTERN (next)));
}
#endif

/* Return 1 if OP is a valid general operand for machine mode MODE.
   This is either a register reference, a memory reference,
   or a constant.  In the case of a memory reference, the address
   is checked for general validity for the target machine.

   Register and memory references must have mode MODE in order to be valid,
   but some constants have no machine mode and are valid for any mode.

   If MODE is VOIDmode, OP is checked for validity for whatever mode
   it has.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
general_operand (rtx op, enum machine_mode mode)
{
  enum rtx_code code = GET_CODE (op);

  if (mode == VOIDmode)
    mode = GET_MODE (op);

  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  if (CONST_INT_P (op)
      && mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;

  if (CONSTANT_P (op))
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
	     || mode == VOIDmode)
	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
	    && targetm.legitimate_constant_p (mode == VOIDmode
					      ? GET_MODE (op)
					      : mode, op));

  /* Except for certain constants with VOIDmode, already checked for,
     OP's mode must match MODE if MODE specifies a mode.  */

  if (GET_MODE (op) != mode)
    return 0;

  if (code == SUBREG)
    {
      rtx sub = SUBREG_REG (op);

#ifdef INSN_SCHEDULING
      /* On machines that have insn scheduling, we want all memory
	 reference to be explicit, so outlaw paradoxical SUBREGs.
	 However, we must allow them after reload so that they can
	 get cleaned up by cleanup_subreg_operands.  */
      if (!reload_completed && MEM_P (sub)
	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
	return 0;
#endif
      /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
         may result in incorrect reference.  We should simplify all valid
         subregs of MEM anyway.  But allow this after reload because we
	 might be called from cleanup_subreg_operands.

	 ??? This is a kludge.  */
      if (!reload_completed && SUBREG_BYTE (op) != 0
	  && MEM_P (sub))
	return 0;

#ifdef CANNOT_CHANGE_MODE_CLASS
      if (REG_P (sub)
	  && REGNO (sub) < FIRST_PSEUDO_REGISTER
	  && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
	  /* LRA can generate some invalid SUBREGS just for matched
	     operand reload presentation.  LRA needs to treat them as
	     valid.  */
	  && ! LRA_SUBREG_P (op))
	return 0;
#endif

      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
	 create such rtl, and we must reject it.  */
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
	  /* LRA can use subreg to store a floating point value in an
	     integer mode.  Although the floating point and the
	     integer modes need the same number of hard registers, the
	     size of floating point mode can be less than the integer
	     mode.  */
	  && ! lra_in_progress 
	  && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
	return 0;

      op = sub;
      code = GET_CODE (op);
    }

  if (code == REG)
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
	    || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));

  if (code == MEM)
    {
      rtx y = XEXP (op, 0);

      if (! volatile_ok && MEM_VOLATILE_P (op))
	return 0;

      /* Use the mem's mode, since it will be reloaded thus.  LRA can
	 generate move insn with invalid addresses which is made valid
	 and efficiently calculated by LRA through further numerous
	 transformations.  */
      if (lra_in_progress
	  || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
	return 1;
    }

  return 0;
}

/* Return 1 if OP is a valid memory address for a memory reference
   of mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
address_operand (rtx op, enum machine_mode mode)
{
  return memory_address_p (mode, op);
}

/* Return 1 if OP is a register reference of mode MODE.
   If MODE is VOIDmode, accept a register in any mode.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
register_operand (rtx op, enum machine_mode mode)
{
  if (GET_CODE (op) == SUBREG)
    {
      rtx sub = SUBREG_REG (op);

      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
	 because it is guaranteed to be reloaded into one.
	 Just make sure the MEM is valid in itself.
	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
	 but currently it does result from (SUBREG (REG)...) where the
	 reg went on the stack.)  */
      if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
	return 0;
    }
  else if (!REG_P (op))
    return 0;
  return general_operand (op, mode);
}

/* Return 1 for a register in Pmode; ignore the tested mode.  */

int
pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return register_operand (op, Pmode);
}

/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
   or a hard register.  */

int
scratch_operand (rtx op, enum machine_mode mode)
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  return (GET_CODE (op) == SCRATCH
	  || (REG_P (op)
	      && (lra_in_progress
		  || (REGNO (op) < FIRST_PSEUDO_REGISTER
		      && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
}

/* Return 1 if OP is a valid immediate operand for mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
immediate_operand (rtx op, enum machine_mode mode)
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  if (CONST_INT_P (op)
      && mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;

  return (CONSTANT_P (op)
	  && (GET_MODE (op) == mode || mode == VOIDmode
	      || GET_MODE (op) == VOIDmode)
	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
	  && targetm.legitimate_constant_p (mode == VOIDmode
					    ? GET_MODE (op)
					    : mode, op));
}

/* Returns 1 if OP is an operand that is a CONST_INT of mode MODE.  */

int
const_int_operand (rtx op, enum machine_mode mode)
{
  if (!CONST_INT_P (op))
    return 0;

  if (mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;

  return 1;
}

#if TARGET_SUPPORTS_WIDE_INT
/* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
   of mode MODE.  */
int
const_scalar_int_operand (rtx op, enum machine_mode mode)
{
  if (!CONST_SCALAR_INT_P (op))
    return 0;

  if (CONST_INT_P (op))
    return const_int_operand (op, mode);

  if (mode != VOIDmode)
    {
      int prec = GET_MODE_PRECISION (mode);
      int bitsize = GET_MODE_BITSIZE (mode);

      if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
	return 0;

      if (prec == bitsize)
	return 1;
      else
	{
	  /* Multiword partial int.  */
	  HOST_WIDE_INT x
	    = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
	  return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
	}
    }
  return 1;
}

/* Returns 1 if OP is an operand that is a constant integer or constant
   floating-point number of MODE.  */

int
const_double_operand (rtx op, enum machine_mode mode)
{
  return (GET_CODE (op) == CONST_DOUBLE)
	  && (GET_MODE (op) == mode || mode == VOIDmode);
}
#else
/* Returns 1 if OP is an operand that is a constant integer or constant
   floating-point number of MODE.  */

int
const_double_operand (rtx op, enum machine_mode mode)
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
	  && (mode == VOIDmode || GET_MODE (op) == mode
	      || GET_MODE (op) == VOIDmode));
}
#endif
/* Return 1 if OP is a general operand that is not an immediate
   operand of mode MODE.  */

int
nonimmediate_operand (rtx op, enum machine_mode mode)
{
  return (general_operand (op, mode) && ! CONSTANT_P (op));
}

/* Return 1 if OP is a register reference or immediate value of mode MODE.  */

int
nonmemory_operand (rtx op, enum machine_mode mode)
{
  if (CONSTANT_P (op))
    return immediate_operand (op, mode);
  return register_operand (op, mode);
}

/* Return 1 if OP is a valid operand that stands for pushing a
   value of mode MODE onto the stack.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
push_operand (rtx op, enum machine_mode mode)
{
  unsigned int rounded_size = GET_MODE_SIZE (mode);

#ifdef PUSH_ROUNDING
  rounded_size = PUSH_ROUNDING (rounded_size);
#endif

  if (!MEM_P (op))
    return 0;

  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  op = XEXP (op, 0);

  if (rounded_size == GET_MODE_SIZE (mode))
    {
      if (GET_CODE (op) != STACK_PUSH_CODE)
	return 0;
    }
  else
    {
      if (GET_CODE (op) != PRE_MODIFY
	  || GET_CODE (XEXP (op, 1)) != PLUS
	  || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
	  || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
#ifdef STACK_GROWS_DOWNWARD
	  || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
#else
	  || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
#endif
	  )
	return 0;
    }

  return XEXP (op, 0) == stack_pointer_rtx;
}

/* Return 1 if OP is a valid operand that stands for popping a
   value of mode MODE off the stack.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
pop_operand (rtx op, enum machine_mode mode)
{
  if (!MEM_P (op))
    return 0;

  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  op = XEXP (op, 0);

  if (GET_CODE (op) != STACK_POP_CODE)
    return 0;

  return XEXP (op, 0) == stack_pointer_rtx;
}

/* Return 1 if ADDR is a valid memory address
   for mode MODE in address space AS.  */

int
memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
			     rtx addr, addr_space_t as)
{
#ifdef GO_IF_LEGITIMATE_ADDRESS
  gcc_assert (ADDR_SPACE_GENERIC_P (as));
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  return 0;

 win:
  return 1;
#else
  return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
#endif
}

/* Return 1 if OP is a valid memory reference with mode MODE,
   including a valid address.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
memory_operand (rtx op, enum machine_mode mode)
{
  rtx inner;

  if (! reload_completed)
    /* Note that no SUBREG is a memory operand before end of reload pass,
       because (SUBREG (MEM...)) forces reloading into a register.  */
    return MEM_P (op) && general_operand (op, mode);

  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  inner = op;
  if (GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);

  return (MEM_P (inner) && general_operand (op, mode));
}

/* Return 1 if OP is a valid indirect memory reference with mode MODE;
   that is, a memory reference whose address is a general_operand.  */

int
indirect_operand (rtx op, enum machine_mode mode)
{
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
  if (! reload_completed
      && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
    {
      int offset = SUBREG_BYTE (op);
      rtx inner = SUBREG_REG (op);

      if (mode != VOIDmode && GET_MODE (op) != mode)
	return 0;

      /* The only way that we can have a general_operand as the resulting
	 address is if OFFSET is zero and the address already is an operand
	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
	 operand.  */

      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
	      || (GET_CODE (XEXP (inner, 0)) == PLUS
		  && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
    }

  return (MEM_P (op)
	  && memory_operand (op, mode)
	  && general_operand (XEXP (op, 0), Pmode));
}

/* Return 1 if this is an ordered comparison operator (not including
   ORDERED and UNORDERED).  */

int
ordered_comparison_operator (rtx op, enum machine_mode mode)
{
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return false;
  switch (GET_CODE (op))
    {
    case EQ:
    case NE:
    case LT:
    case LTU:
    case LE:
    case LEU:
    case GT:
    case GTU:
    case GE:
    case GEU:
      return true;
    default:
      return false;
    }
}

/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */

int
comparison_operator (rtx op, enum machine_mode mode)
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && COMPARISON_P (op));
}

/* If BODY is an insn body that uses ASM_OPERANDS, return it.  */

rtx
extract_asm_operands (rtx body)
{
  rtx tmp;
  switch (GET_CODE (body))
    {
    case ASM_OPERANDS:
      return body;

    case SET:
      /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
      tmp = SET_SRC (body);
      if (GET_CODE (tmp) == ASM_OPERANDS)
	return tmp;
      break;

    case PARALLEL:
      tmp = XVECEXP (body, 0, 0);
      if (GET_CODE (tmp) == ASM_OPERANDS)
	return tmp;
      if (GET_CODE (tmp) == SET)
	{
	  tmp = SET_SRC (tmp);
	  if (GET_CODE (tmp) == ASM_OPERANDS)
	    return tmp;
	}
      break;

    default:
      break;
    }
  return NULL;
}

/* If BODY is an insn body that uses ASM_OPERANDS,
   return the number of operands (both input and output) in the insn.
   Otherwise return -1.  */

int
asm_noperands (const_rtx body)
{
  rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
  int n_sets = 0;

  if (asm_op == NULL)
    return -1;

  if (GET_CODE (body) == SET)
    n_sets = 1;
  else if (GET_CODE (body) == PARALLEL)
    {
      int i;
      if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
	{
	  /* Multiple output operands, or 1 output plus some clobbers:
	     body is
	     [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
	  /* Count backwards through CLOBBERs to determine number of SETs.  */
	  for (i = XVECLEN (body, 0); i > 0; i--)
	    {
	      if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
		break;
	      if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
		return -1;
	    }

	  /* N_SETS is now number of output operands.  */
	  n_sets = i;

	  /* Verify that all the SETs we have
	     came from a single original asm_operands insn
	     (so that invalid combinations are blocked).  */
	  for (i = 0; i < n_sets; i++)
	    {
	      rtx elt = XVECEXP (body, 0, i);
	      if (GET_CODE (elt) != SET)
		return -1;
	      if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
		return -1;
	      /* If these ASM_OPERANDS rtx's came from different original insns
	         then they aren't allowed together.  */
	      if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
		  != ASM_OPERANDS_INPUT_VEC (asm_op))
		return -1;
	    }
	}
      else
	{
	  /* 0 outputs, but some clobbers:
	     body is [(asm_operands ...) (clobber (reg ...))...].  */
	  /* Make sure all the other parallel things really are clobbers.  */
	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
	      return -1;
	}
    }

  return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
	  + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
}

/* Assuming BODY is an insn body that uses ASM_OPERANDS,
   copy its operands (both input and output) into the vector OPERANDS,
   the locations of the operands within the insn into the vector OPERAND_LOCS,
   and the constraints for the operands into CONSTRAINTS.
   Write the modes of the operands into MODES.
   Return the assembler-template.

   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
   we don't store that info.  */

const char *
decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
		     const char **constraints, enum machine_mode *modes,
		     location_t *loc)
{
  int nbase = 0, n, i;
  rtx asmop;

  switch (GET_CODE (body))
    {
    case ASM_OPERANDS:
      /* Zero output asm: BODY is (asm_operands ...).  */
      asmop = body;
      break;

    case SET:
      /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
      asmop = SET_SRC (body);

      /* The output is in the SET.
	 Its constraint is in the ASM_OPERANDS itself.  */
      if (operands)
	operands[0] = SET_DEST (body);
      if (operand_locs)
	operand_locs[0] = &SET_DEST (body);
      if (constraints)
	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
      if (modes)
	modes[0] = GET_MODE (SET_DEST (body));
      nbase = 1;
      break;

    case PARALLEL:
      {
	int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */

	asmop = XVECEXP (body, 0, 0);
	if (GET_CODE (asmop) == SET)
	  {
	    asmop = SET_SRC (asmop);

	    /* At least one output, plus some CLOBBERs.  The outputs are in
	       the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
	    for (i = 0; i < nparallel; i++)
	      {
		if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
		  break;		/* Past last SET */
		if (operands)
		  operands[i] = SET_DEST (XVECEXP (body, 0, i));
		if (operand_locs)
		  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
		if (constraints)
		  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
		if (modes)
		  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
	      }
	    nbase = i;
	  }
	break;
      }

    default:
      gcc_unreachable ();
    }

  n = ASM_OPERANDS_INPUT_LENGTH (asmop);
  for (i = 0; i < n; i++)
    {
      if (operand_locs)
	operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
      if (operands)
	operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
      if (constraints)
	constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
      if (modes)
	modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
    }
  nbase += n;

  n = ASM_OPERANDS_LABEL_LENGTH (asmop);
  for (i = 0; i < n; i++)
    {
      if (operand_locs)
	operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
      if (operands)
	operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
      if (constraints)
	constraints[nbase + i] = "";
      if (modes)
	modes[nbase + i] = Pmode;
    }

  if (loc)
    *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);

  return ASM_OPERANDS_TEMPLATE (asmop);
}

/* Parse inline assembly string STRING and determine which operands are
   referenced by % markers.  For the first NOPERANDS operands, set USED[I]
   to true if operand I is referenced.

   This is intended to distinguish barrier-like asms such as:

      asm ("" : "=m" (...));

   from real references such as:

      asm ("sw\t$0, %0" : "=m" (...));  */

void
get_referenced_operands (const char *string, bool *used,
			 unsigned int noperands)
{
  memset (used, 0, sizeof (bool) * noperands);
  const char *p = string;
  while (*p)
    switch (*p)
      {
      case '%':
	p += 1;
	/* A letter followed by a digit indicates an operand number.  */
	if (ISALPHA (p[0]) && ISDIGIT (p[1]))
	  p += 1;
	if (ISDIGIT (*p))
	  {
	    char *endptr;
	    unsigned long opnum = strtoul (p, &endptr, 10);
	    if (endptr != p && opnum < noperands)
	      used[opnum] = true;
	    p = endptr;
	  }
	else
	  p += 1;
	break;

      default:
	p++;
	break;
      }
}

/* Check if an asm_operand matches its constraints.
   Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */

int
asm_operand_ok (rtx op, const char *constraint, const char **constraints)
{
  int result = 0;
#ifdef AUTO_INC_DEC
  bool incdec_ok = false;
#endif

  /* Use constrain_operands after reload.  */
  gcc_assert (!reload_completed);

  /* Empty constraint string is the same as "X,...,X", i.e. X for as
     many alternatives as required to match the other operands.  */
  if (*constraint == '\0')
    result = 1;

  while (*constraint)
    {
      enum constraint_num cn;
      char c = *constraint;
      int len;
      switch (c)
	{
	case ',':
	  constraint++;
	  continue;

	case '0': case '1': case '2': case '3': case '4':
	case '5': case '6': case '7': case '8': case '9':
	  /* If caller provided constraints pointer, look up
	     the matching constraint.  Otherwise, our caller should have
	     given us the proper matching constraint, but we can't
	     actually fail the check if they didn't.  Indicate that
	     results are inconclusive.  */
	  if (constraints)
	    {
	      char *end;
	      unsigned long match;

	      match = strtoul (constraint, &end, 10);
	      if (!result)
		result = asm_operand_ok (op, constraints[match], NULL);
	      constraint = (const char *) end;
	    }
	  else
	    {
	      do
		constraint++;
	      while (ISDIGIT (*constraint));
	      if (! result)
		result = -1;
	    }
	  continue;

	  /* The rest of the compiler assumes that reloading the address
	     of a MEM into a register will make it fit an 'o' constraint.
	     That is, if it sees a MEM operand for an 'o' constraint,
	     it assumes that (mem (base-reg)) will fit.

	     That assumption fails on targets that don't have offsettable
	     addresses at all.  We therefore need to treat 'o' asm
	     constraints as a special case and only accept operands that
	     are already offsettable, thus proving that at least one
	     offsettable address exists.  */
	case 'o': /* offsettable */
	  if (offsettable_nonstrict_memref_p (op))
	    result = 1;
	  break;

	case 'g':
	  if (general_operand (op, VOIDmode))
	    result = 1;
	  break;

#ifdef AUTO_INC_DEC
	case '<':
	case '>':
	  /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
	     to exist, excepting those that expand_call created.  Further,
	     on some machines which do not have generalized auto inc/dec,
	     an inc/dec is not a memory_operand.

	     Match any memory and hope things are resolved after reload.  */
	  incdec_ok = true;
#endif
	default:
	  cn = lookup_constraint (constraint);
	  switch (get_constraint_type (cn))
	    {
	    case CT_REGISTER:
	      if (!result
		  && reg_class_for_constraint (cn) != NO_REGS
		  && GET_MODE (op) != BLKmode
		  && register_operand (op, VOIDmode))
		result = 1;
	      break;

	    case CT_CONST_INT:
	      if (!result
		  && CONST_INT_P (op)
		  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
		result = 1;
	      break;

	    case CT_MEMORY:
	      /* Every memory operand can be reloaded to fit.  */
	      result = result || memory_operand (op, VOIDmode);
	      break;

	    case CT_ADDRESS:
	      /* Every address operand can be reloaded to fit.  */
	      result = result || address_operand (op, VOIDmode);
	      break;

	    case CT_FIXED_FORM:
	      result = result || constraint_satisfied_p (op, cn);
	      break;
	    }
	  break;
	}
      len = CONSTRAINT_LEN (c, constraint);
      do
	constraint++;
      while (--len && *constraint);
      if (len)
	return 0;
    }

#ifdef AUTO_INC_DEC
  /* For operands without < or > constraints reject side-effects.  */
  if (!incdec_ok && result && MEM_P (op))
    switch (GET_CODE (XEXP (op, 0)))
      {
      case PRE_INC:
      case POST_INC:
      case PRE_DEC:
      case POST_DEC:
      case PRE_MODIFY:
      case POST_MODIFY:
	return 0;
      default:
	break;
      }
#endif

  return result;
}

/* Given an rtx *P, if it is a sum containing an integer constant term,
   return the location (type rtx *) of the pointer to that constant term.
   Otherwise, return a null pointer.  */

rtx *
find_constant_term_loc (rtx *p)
{
  rtx *tem;
  enum rtx_code code = GET_CODE (*p);

  /* If *P IS such a constant term, P is its location.  */

  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
      || code == CONST)
    return p;

  /* Otherwise, if not a sum, it has no constant term.  */

  if (GET_CODE (*p) != PLUS)
    return 0;

  /* If one of the summands is constant, return its location.  */

  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
    return p;

  /* Otherwise, check each summand for containing a constant term.  */

  if (XEXP (*p, 0) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 0));
      if (tem != 0)
	return tem;
    }

  if (XEXP (*p, 1) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 1));
      if (tem != 0)
	return tem;
    }

  return 0;
}

/* Return 1 if OP is a memory reference
   whose address contains no side effects
   and remains valid after the addition
   of a positive integer less than the
   size of the object being referenced.

   We assume that the original address is valid and do not check it.

   This uses strict_memory_address_p as a subroutine, so
   don't use it before reload.  */

int
offsettable_memref_p (rtx op)
{
  return ((MEM_P (op))
	  && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
					       MEM_ADDR_SPACE (op)));
}

/* Similar, but don't require a strictly valid mem ref:
   consider pseudo-regs valid as index or base regs.  */

int
offsettable_nonstrict_memref_p (rtx op)
{
  return ((MEM_P (op))
	  && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
					       MEM_ADDR_SPACE (op)));
}

/* Return 1 if Y is a memory address which contains no side effects
   and would remain valid for address space AS after the addition of
   a positive integer less than the size of that mode.

   We assume that the original address is valid and do not check it.
   We do check that it is valid for narrower modes.

   If STRICTP is nonzero, we require a strictly valid address,
   for the sake of use in reload.c.  */

int
offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
				  addr_space_t as)
{
  enum rtx_code ycode = GET_CODE (y);
  rtx z;
  rtx y1 = y;
  rtx *y2;
  int (*addressp) (enum machine_mode, rtx, addr_space_t) =
    (strictp ? strict_memory_address_addr_space_p
	     : memory_address_addr_space_p);
  unsigned int mode_sz = GET_MODE_SIZE (mode);

  if (CONSTANT_ADDRESS_P (y))
    return 1;

  /* Adjusting an offsettable address involves changing to a narrower mode.
     Make sure that's OK.  */

  if (mode_dependent_address_p (y, as))
    return 0;

  enum machine_mode address_mode = GET_MODE (y);
  if (address_mode == VOIDmode)
    address_mode = targetm.addr_space.address_mode (as);
#ifdef POINTERS_EXTEND_UNSIGNED
  enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
#endif

  /* ??? How much offset does an offsettable BLKmode reference need?
     Clearly that depends on the situation in which it's being used.
     However, the current situation in which we test 0xffffffff is
     less than ideal.  Caveat user.  */
  if (mode_sz == 0)
    mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;

  /* If the expression contains a constant term,
     see if it remains valid when max possible offset is added.  */

  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
    {
      int good;

      y1 = *y2;
      *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
      /* Use QImode because an odd displacement may be automatically invalid
	 for any wider mode.  But it should be valid for a single byte.  */
      good = (*addressp) (QImode, y, as);

      /* In any case, restore old contents of memory.  */
      *y2 = y1;
      return good;
    }

  if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
    return 0;

  /* The offset added here is chosen as the maximum offset that
     any instruction could need to add when operating on something
     of the specified mode.  We assume that if Y and Y+c are
     valid addresses then so is Y+d for all 0<d<c.  adjust_address will
     go inside a LO_SUM here, so we do so as well.  */
  if (GET_CODE (y) == LO_SUM
      && mode != BLKmode
      && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
    z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
			plus_constant (address_mode, XEXP (y, 1),
				       mode_sz - 1));
#ifdef POINTERS_EXTEND_UNSIGNED
  /* Likewise for a ZERO_EXTEND from pointer_mode.  */
  else if (POINTERS_EXTEND_UNSIGNED > 0
	   && GET_CODE (y) == ZERO_EXTEND
	   && GET_MODE (XEXP (y, 0)) == pointer_mode)
    z = gen_rtx_ZERO_EXTEND (address_mode,
			     plus_constant (pointer_mode, XEXP (y, 0),
					    mode_sz - 1));
#endif
  else
    z = plus_constant (address_mode, y, mode_sz - 1);

  /* Use QImode because an odd displacement may be automatically invalid
     for any wider mode.  But it should be valid for a single byte.  */
  return (*addressp) (QImode, z, as);
}

/* Return 1 if ADDR is an address-expression whose effect depends
   on the mode of the memory reference it is used in.

   ADDRSPACE is the address space associated with the address.

   Autoincrement addressing is a typical example of mode-dependence
   because the amount of the increment depends on the mode.  */

bool
mode_dependent_address_p (rtx addr, addr_space_t addrspace)
{
  /* Auto-increment addressing with anything other than post_modify
     or pre_modify always introduces a mode dependency.  Catch such
     cases now instead of deferring to the target.  */
  if (GET_CODE (addr) == PRE_INC
      || GET_CODE (addr) == POST_INC
      || GET_CODE (addr) == PRE_DEC
      || GET_CODE (addr) == POST_DEC)
    return true;

  return targetm.mode_dependent_address_p (addr, addrspace);
}

/* Return true if boolean attribute ATTR is supported.  */

static bool
have_bool_attr (bool_attr attr)
{
  switch (attr)
    {
    case BA_ENABLED:
      return HAVE_ATTR_enabled;
    case BA_PREFERRED_FOR_SIZE:
      return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
    case BA_PREFERRED_FOR_SPEED:
      return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
    }
  gcc_unreachable ();
}

/* Return the value of ATTR for instruction INSN.  */

static bool
get_bool_attr (rtx_insn *insn, bool_attr attr)
{
  switch (attr)
    {
    case BA_ENABLED:
      return get_attr_enabled (insn);
    case BA_PREFERRED_FOR_SIZE:
      return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
    case BA_PREFERRED_FOR_SPEED:
      return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
    }
  gcc_unreachable ();
}

/* Like get_bool_attr_mask, but don't use the cache.  */

static alternative_mask
get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
{
  /* Temporarily install enough information for get_attr_<foo> to assume
     that the insn operands are already cached.  As above, the attribute
     mustn't depend on the values of operands, so we don't provide their
     real values here.  */
  rtx old_insn = recog_data.insn;
  int old_alternative = which_alternative;

  recog_data.insn = insn;
  alternative_mask mask = ALL_ALTERNATIVES;
  int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
  for (int i = 0; i < n_alternatives; i++)
    {
      which_alternative = i;
      if (!get_bool_attr (insn, attr))
	mask &= ~ALTERNATIVE_BIT (i);
    }

  recog_data.insn = old_insn;
  which_alternative = old_alternative;
  return mask;
}

/* Return the mask of operand alternatives that are allowed for INSN
   by boolean attribute ATTR.  This mask depends only on INSN and on
   the current target; it does not depend on things like the values of
   operands.  */

static alternative_mask
get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
{
  /* Quick exit for asms and for targets that don't use these attributes.  */
  int code = INSN_CODE (insn);
  if (code < 0 || !have_bool_attr (attr))
    return ALL_ALTERNATIVES;

  /* Calling get_attr_<foo> can be expensive, so cache the mask
     for speed.  */
  if (!this_target_recog->x_bool_attr_masks[code][attr])
    this_target_recog->x_bool_attr_masks[code][attr]
      = get_bool_attr_mask_uncached (insn, attr);
  return this_target_recog->x_bool_attr_masks[code][attr];
}

/* Return the set of alternatives of INSN that are allowed by the current
   target.  */

alternative_mask
get_enabled_alternatives (rtx_insn *insn)
{
  return get_bool_attr_mask (insn, BA_ENABLED);
}

/* Return the set of alternatives of INSN that are allowed by the current
   target and are preferred for the current size/speed optimization
   choice.  */

alternative_mask
get_preferred_alternatives (rtx_insn *insn)
{
  if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
    return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
  else
    return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
}

/* Return the set of alternatives of INSN that are allowed by the current
   target and are preferred for the size/speed optimization choice
   associated with BB.  Passing a separate BB is useful if INSN has not
   been emitted yet or if we are considering moving it to a different
   block.  */

alternative_mask
get_preferred_alternatives (rtx_insn *insn, basic_block bb)
{
  if (optimize_bb_for_speed_p (bb))
    return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
  else
    return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
}

/* Assert that the cached boolean attributes for INSN are still accurate.
   The backend is required to define these attributes in a way that only
   depends on the current target (rather than operands, compiler phase,
   etc.).  */

bool
check_bool_attrs (rtx_insn *insn)
{
  int code = INSN_CODE (insn);
  if (code >= 0)
    for (int i = 0; i <= BA_LAST; ++i)
      {
	enum bool_attr attr = (enum bool_attr) i;
	if (this_target_recog->x_bool_attr_masks[code][attr])
	  gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
		      == get_bool_attr_mask_uncached (insn, attr));
      }
  return true;
}

/* Like extract_insn, but save insn extracted and don't extract again, when
   called again for the same insn expecting that recog_data still contain the
   valid information.  This is used primary by gen_attr infrastructure that
   often does extract insn again and again.  */
void
extract_insn_cached (rtx_insn *insn)
{
  if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
    return;
  extract_insn (insn);
  recog_data.insn = insn;
}

/* Do uncached extract_insn, constrain_operands and complain about failures.
   This should be used when extracting a pre-existing constrained instruction
   if the caller wants to know which alternative was chosen.  */
void
extract_constrain_insn (rtx_insn *insn)
{
  extract_insn (insn);
  if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
    fatal_insn_not_found (insn);
}

/* Do cached extract_insn, constrain_operands and complain about failures.
   Used by insn_attrtab.  */
void
extract_constrain_insn_cached (rtx_insn *insn)
{
  extract_insn_cached (insn);
  if (which_alternative == -1
      && !constrain_operands (reload_completed,
			      get_enabled_alternatives (insn)))
    fatal_insn_not_found (insn);
}

/* Do cached constrain_operands on INSN and complain about failures.  */
int
constrain_operands_cached (rtx_insn *insn, int strict)
{
  if (which_alternative == -1)
    return constrain_operands (strict, get_enabled_alternatives (insn));
  else
    return 1;
}

/* Analyze INSN and fill in recog_data.  */

void
extract_insn (rtx_insn *insn)
{
  int i;
  int icode;
  int noperands;
  rtx body = PATTERN (insn);

  recog_data.n_operands = 0;
  recog_data.n_alternatives = 0;
  recog_data.n_dups = 0;
  recog_data.is_asm = false;

  switch (GET_CODE (body))
    {
    case USE:
    case CLOBBER:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case VAR_LOCATION:
      return;

    case SET:
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
	goto asm_insn;
      else
	goto normal_insn;
    case PARALLEL:
      if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
	goto asm_insn;
      else
	goto normal_insn;
    case ASM_OPERANDS:
    asm_insn:
      recog_data.n_operands = noperands = asm_noperands (body);
      if (noperands >= 0)
	{
	  /* This insn is an `asm' with operands.  */

	  /* expand_asm_operands makes sure there aren't too many operands.  */
	  gcc_assert (noperands <= MAX_RECOG_OPERANDS);

	  /* Now get the operand values and constraints out of the insn.  */
	  decode_asm_operands (body, recog_data.operand,
			       recog_data.operand_loc,
			       recog_data.constraints,
			       recog_data.operand_mode, NULL);
	  memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
	  if (noperands > 0)
	    {
	      const char *p =  recog_data.constraints[0];
	      recog_data.n_alternatives = 1;
	      while (*p)
		recog_data.n_alternatives += (*p++ == ',');
	    }
	  recog_data.is_asm = true;
	  break;
	}
      fatal_insn_not_found (insn);

    default:
    normal_insn:
      /* Ordinary insn: recognize it, get the operands via insn_extract
	 and get the constraints.  */

      icode = recog_memoized (insn);
      if (icode < 0)
	fatal_insn_not_found (insn);

      recog_data.n_operands = noperands = insn_data[icode].n_operands;
      recog_data.n_alternatives = insn_data[icode].n_alternatives;
      recog_data.n_dups = insn_data[icode].n_dups;

      insn_extract (insn);

      for (i = 0; i < noperands; i++)
	{
	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
	  recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
	  /* VOIDmode match_operands gets mode from their real operand.  */
	  if (recog_data.operand_mode[i] == VOIDmode)
	    recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
	}
    }
  for (i = 0; i < noperands; i++)
    recog_data.operand_type[i]
      = (recog_data.constraints[i][0] == '=' ? OP_OUT
	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
	 : OP_IN);

  gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);

  recog_data.insn = NULL;
  which_alternative = -1;
}

/* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
   N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
   OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
   has N_OPERANDS entries.  */

void
preprocess_constraints (int n_operands, int n_alternatives,
			const char **constraints,
			operand_alternative *op_alt_base)
{
  for (int i = 0; i < n_operands; i++)
    {
      int j;
      struct operand_alternative *op_alt;
      const char *p = constraints[i];

      op_alt = op_alt_base;

      for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
	{
	  op_alt[i].cl = NO_REGS;
	  op_alt[i].constraint = p;
	  op_alt[i].matches = -1;
	  op_alt[i].matched = -1;

	  if (*p == '\0' || *p == ',')
	    {
	      op_alt[i].anything_ok = 1;
	      continue;
	    }

	  for (;;)
	    {
	      char c = *p;
	      if (c == '#')
		do
		  c = *++p;
		while (c != ',' && c != '\0');
	      if (c == ',' || c == '\0')
		{
		  p++;
		  break;
		}

	      switch (c)
		{
		case '?':
		  op_alt[i].reject += 6;
		  break;
		case '!':
		  op_alt[i].reject += 600;
		  break;
		case '&':
		  op_alt[i].earlyclobber = 1;
		  break;

		case '0': case '1': case '2': case '3': case '4':
		case '5': case '6': case '7': case '8': case '9':
		  {
		    char *end;
		    op_alt[i].matches = strtoul (p, &end, 10);
		    op_alt[op_alt[i].matches].matched = i;
		    p = end;
		  }
		  continue;

		case 'X':
		  op_alt[i].anything_ok = 1;
		  break;

		case 'g':
		  op_alt[i].cl =
		   reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
		  break;

		default:
		  enum constraint_num cn = lookup_constraint (p);
		  enum reg_class cl;
		  switch (get_constraint_type (cn))
		    {
		    case CT_REGISTER:
		      cl = reg_class_for_constraint (cn);
		      if (cl != NO_REGS)
			op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
		      break;

		    case CT_CONST_INT:
		      break;

		    case CT_MEMORY:
		      op_alt[i].memory_ok = 1;
		      break;

		    case CT_ADDRESS:
		      op_alt[i].is_address = 1;
		      op_alt[i].cl
			= (reg_class_subunion
			   [(int) op_alt[i].cl]
			   [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
						  ADDRESS, SCRATCH)]);
		      break;

		    case CT_FIXED_FORM:
		      break;
		    }
		  break;
		}
	      p += CONSTRAINT_LEN (c, p);
	    }
	}
    }
}

/* Return an array of operand_alternative instructions for
   instruction ICODE.  */

const operand_alternative *
preprocess_insn_constraints (int icode)
{
  gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
  if (this_target_recog->x_op_alt[icode])
    return this_target_recog->x_op_alt[icode];

  int n_operands = insn_data[icode].n_operands;
  if (n_operands == 0)
    return 0;
  /* Always provide at least one alternative so that which_op_alt ()
     works correctly.  If the instruction has 0 alternatives (i.e. all
     constraint strings are empty) then each operand in this alternative
     will have anything_ok set.  */
  int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
  int n_entries = n_operands * n_alternatives;

  operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
  const char **constraints = XALLOCAVEC (const char *, n_operands);

  for (int i = 0; i < n_operands; ++i)
    constraints[i] = insn_data[icode].operand[i].constraint;
  preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);

  this_target_recog->x_op_alt[icode] = op_alt;
  return op_alt;
}

/* After calling extract_insn, you can use this function to extract some
   information from the constraint strings into a more usable form.
   The collected data is stored in recog_op_alt.  */

void
preprocess_constraints (rtx insn)
{
  int icode = INSN_CODE (insn);
  if (icode >= 0)
    recog_op_alt = preprocess_insn_constraints (icode);
  else
    {
      int n_operands = recog_data.n_operands;
      int n_alternatives = recog_data.n_alternatives;
      int n_entries = n_operands * n_alternatives;
      memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
      preprocess_constraints (n_operands, n_alternatives,
			      recog_data.constraints, asm_op_alt);
      recog_op_alt = asm_op_alt;
    }
}

/* Check the operands of an insn against the insn's operand constraints
   and return 1 if they match any of the alternatives in ALTERNATIVES.

   The information about the insn's operands, constraints, operand modes
   etc. is obtained from the global variables set up by extract_insn.

   WHICH_ALTERNATIVE is set to a number which indicates which
   alternative of constraints was matched: 0 for the first alternative,
   1 for the next, etc.

   In addition, when two operands are required to match
   and it happens that the output operand is (reg) while the
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
   make the output operand look like the input.
   This is because the output operand is the one the template will print.

   This is used in final, just before printing the assembler code and by
   the routines that determine an insn's attribute.

   If STRICT is a positive nonzero value, it means that we have been
   called after reload has been completed.  In that case, we must
   do all checks strictly.  If it is zero, it means that we have been called
   before reload has completed.  In that case, we first try to see if we can
   find an alternative that matches strictly.  If not, we try again, this
   time assuming that reload will fix up the insn.  This provides a "best
   guess" for the alternative and is used to compute attributes of insns prior
   to reload.  A negative value of STRICT is used for this internal call.  */

struct funny_match
{
  int this_op, other;
};

int
constrain_operands (int strict, alternative_mask alternatives)
{
  const char *constraints[MAX_RECOG_OPERANDS];
  int matching_operands[MAX_RECOG_OPERANDS];
  int earlyclobber[MAX_RECOG_OPERANDS];
  int c;

  struct funny_match funny_match[MAX_RECOG_OPERANDS];
  int funny_match_index;

  which_alternative = 0;
  if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
    return 1;

  for (c = 0; c < recog_data.n_operands; c++)
    {
      constraints[c] = recog_data.constraints[c];
      matching_operands[c] = -1;
    }

  do
    {
      int seen_earlyclobber_at = -1;
      int opno;
      int lose = 0;
      funny_match_index = 0;

      if (!TEST_BIT (alternatives, which_alternative))
	{
	  int i;

	  for (i = 0; i < recog_data.n_operands; i++)
	    constraints[i] = skip_alternative (constraints[i]);

	  which_alternative++;
	  continue;
	}

      for (opno = 0; opno < recog_data.n_operands; opno++)
	{
	  rtx op = recog_data.operand[opno];
	  enum machine_mode mode = GET_MODE (op);
	  const char *p = constraints[opno];
	  int offset = 0;
	  int win = 0;
	  int val;
	  int len;

	  earlyclobber[opno] = 0;

	  /* A unary operator may be accepted by the predicate, but it
	     is irrelevant for matching constraints.  */
	  if (UNARY_P (op))
	    op = XEXP (op, 0);

	  if (GET_CODE (op) == SUBREG)
	    {
	      if (REG_P (SUBREG_REG (op))
		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
		offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
					      GET_MODE (SUBREG_REG (op)),
					      SUBREG_BYTE (op),
					      GET_MODE (op));
	      op = SUBREG_REG (op);
	    }

	  /* An empty constraint or empty alternative
	     allows anything which matched the pattern.  */
	  if (*p == 0 || *p == ',')
	    win = 1;

	  do
	    switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
	      {
	      case '\0':
		len = 0;
		break;
	      case ',':
		c = '\0';
		break;

	      case '#':
		/* Ignore rest of this alternative as far as
		   constraint checking is concerned.  */
		do
		  p++;
		while (*p && *p != ',');
		len = 0;
		break;

	      case '&':
		earlyclobber[opno] = 1;
		if (seen_earlyclobber_at < 0)
		  seen_earlyclobber_at = opno;
		break;

	      case '0':  case '1':  case '2':  case '3':  case '4':
	      case '5':  case '6':  case '7':  case '8':  case '9':
		{
		  /* This operand must be the same as a previous one.
		     This kind of constraint is used for instructions such
		     as add when they take only two operands.

		     Note that the lower-numbered operand is passed first.

		     If we are not testing strictly, assume that this
		     constraint will be satisfied.  */

		  char *end;
		  int match;

		  match = strtoul (p, &end, 10);
		  p = end;

		  if (strict < 0)
		    val = 1;
		  else
		    {
		      rtx op1 = recog_data.operand[match];
		      rtx op2 = recog_data.operand[opno];

		      /* A unary operator may be accepted by the predicate,
			 but it is irrelevant for matching constraints.  */
		      if (UNARY_P (op1))
			op1 = XEXP (op1, 0);
		      if (UNARY_P (op2))
			op2 = XEXP (op2, 0);

		      val = operands_match_p (op1, op2);
		    }

		  matching_operands[opno] = match;
		  matching_operands[match] = opno;

		  if (val != 0)
		    win = 1;

		  /* If output is *x and input is *--x, arrange later
		     to change the output to *--x as well, since the
		     output op is the one that will be printed.  */
		  if (val == 2 && strict > 0)
		    {
		      funny_match[funny_match_index].this_op = opno;
		      funny_match[funny_match_index++].other = match;
		    }
		}
		len = 0;
		break;

	      case 'p':
		/* p is used for address_operands.  When we are called by
		   gen_reload, no one will have checked that the address is
		   strictly valid, i.e., that all pseudos requiring hard regs
		   have gotten them.  */
		if (strict <= 0
		    || (strict_memory_address_p (recog_data.operand_mode[opno],
						 op)))
		  win = 1;
		break;

		/* No need to check general_operand again;
		   it was done in insn-recog.c.  Well, except that reload
		   doesn't check the validity of its replacements, but
		   that should only matter when there's a bug.  */
	      case 'g':
		/* Anything goes unless it is a REG and really has a hard reg
		   but the hard reg is not in the class GENERAL_REGS.  */
		if (REG_P (op))
		  {
		    if (strict < 0
			|| GENERAL_REGS == ALL_REGS
			|| (reload_in_progress
			    && REGNO (op) >= FIRST_PSEUDO_REGISTER)
			|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
		      win = 1;
		  }
		else if (strict < 0 || general_operand (op, mode))
		  win = 1;
		break;

	      default:
		{
		  enum constraint_num cn = lookup_constraint (p);
		  enum reg_class cl = reg_class_for_constraint (cn);
		  if (cl != NO_REGS)
		    {
		      if (strict < 0
			  || (strict == 0
			      && REG_P (op)
			      && REGNO (op) >= FIRST_PSEUDO_REGISTER)
			  || (strict == 0 && GET_CODE (op) == SCRATCH)
			  || (REG_P (op)
			      && reg_fits_class_p (op, cl, offset, mode)))
		        win = 1;
		    }

		  else if (constraint_satisfied_p (op, cn))
		    win = 1;

		  else if (insn_extra_memory_constraint (cn)
			   /* Every memory operand can be reloaded to fit.  */
			   && ((strict < 0 && MEM_P (op))
			       /* Before reload, accept what reload can turn
				  into mem.  */
			       || (strict < 0 && CONSTANT_P (op))
			       /* During reload, accept a pseudo  */
			       || (reload_in_progress && REG_P (op)
				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
		    win = 1;
		  else if (insn_extra_address_constraint (cn)
			   /* Every address operand can be reloaded to fit.  */
			   && strict < 0)
		    win = 1;
		  /* Cater to architectures like IA-64 that define extra memory
		     constraints without using define_memory_constraint.  */
		  else if (reload_in_progress
			   && REG_P (op)
			   && REGNO (op) >= FIRST_PSEUDO_REGISTER
			   && reg_renumber[REGNO (op)] < 0
			   && reg_equiv_mem (REGNO (op)) != 0
			   && constraint_satisfied_p
			      (reg_equiv_mem (REGNO (op)), cn))
		    win = 1;
		  break;
		}
	      }
	  while (p += len, c);

	  constraints[opno] = p;
	  /* If this operand did not win somehow,
	     this alternative loses.  */
	  if (! win)
	    lose = 1;
	}
      /* This alternative won; the operands are ok.
	 Change whichever operands this alternative says to change.  */
      if (! lose)
	{
	  int opno, eopno;

	  /* See if any earlyclobber operand conflicts with some other
	     operand.  */

	  if (strict > 0  && seen_earlyclobber_at >= 0)
	    for (eopno = seen_earlyclobber_at;
		 eopno < recog_data.n_operands;
		 eopno++)
	      /* Ignore earlyclobber operands now in memory,
		 because we would often report failure when we have
		 two memory operands, one of which was formerly a REG.  */
	      if (earlyclobber[eopno]
		  && REG_P (recog_data.operand[eopno]))
		for (opno = 0; opno < recog_data.n_operands; opno++)
		  if ((MEM_P (recog_data.operand[opno])
		       || recog_data.operand_type[opno] != OP_OUT)
		      && opno != eopno
		      /* Ignore things like match_operator operands.  */
		      && *recog_data.constraints[opno] != 0
		      && ! (matching_operands[opno] == eopno
			    && operands_match_p (recog_data.operand[opno],
						 recog_data.operand[eopno]))
		      && ! safe_from_earlyclobber (recog_data.operand[opno],
						   recog_data.operand[eopno]))
		    lose = 1;

	  if (! lose)
	    {
	      while (--funny_match_index >= 0)
		{
		  recog_data.operand[funny_match[funny_match_index].other]
		    = recog_data.operand[funny_match[funny_match_index].this_op];
		}

#ifdef AUTO_INC_DEC
	      /* For operands without < or > constraints reject side-effects.  */
	      if (recog_data.is_asm)
		{
		  for (opno = 0; opno < recog_data.n_operands; opno++)
		    if (MEM_P (recog_data.operand[opno]))
		      switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
			{
			case PRE_INC:
			case POST_INC:
			case PRE_DEC:
			case POST_DEC:
			case PRE_MODIFY:
			case POST_MODIFY:
			  if (strchr (recog_data.constraints[opno], '<') == NULL
			      && strchr (recog_data.constraints[opno], '>')
				 == NULL)
			    return 0;
			  break;
			default:
			  break;
			}
		}
#endif
	      return 1;
	    }
	}

      which_alternative++;
    }
  while (which_alternative < recog_data.n_alternatives);

  which_alternative = -1;
  /* If we are about to reject this, but we are not to test strictly,
     try a very loose test.  Only return failure if it fails also.  */
  if (strict == 0)
    return constrain_operands (-1, alternatives);
  else
    return 0;
}

/* Return true iff OPERAND (assumed to be a REG rtx)
   is a hard reg in class CLASS when its regno is offset by OFFSET
   and changed to mode MODE.
   If REG occupies multiple hard regs, all of them must be in CLASS.  */

bool
reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
		  enum machine_mode mode)
{
  unsigned int regno = REGNO (operand);

  if (cl == NO_REGS)
    return false;

  /* Regno must not be a pseudo register.  Offset may be negative.  */
  return (HARD_REGISTER_NUM_P (regno)
	  && HARD_REGISTER_NUM_P (regno + offset)
	  && in_hard_reg_set_p (reg_class_contents[(int) cl], mode, 
				regno + offset));
}

/* Split single instruction.  Helper function for split_all_insns and
   split_all_insns_noflow.  Return last insn in the sequence if successful,
   or NULL if unsuccessful.  */

static rtx
split_insn (rtx_insn *insn)
{
  /* Split insns here to get max fine-grain parallelism.  */
  rtx_insn *first = PREV_INSN (insn);
  rtx_insn *last = try_split (PATTERN (insn), insn, 1);
  rtx insn_set, last_set, note;

  if (last == insn)
    return NULL_RTX;

  /* If the original instruction was a single set that was known to be
     equivalent to a constant, see if we can say the same about the last
     instruction in the split sequence.  The two instructions must set
     the same destination.  */
  insn_set = single_set (insn);
  if (insn_set)
    {
      last_set = single_set (last);
      if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
	{
	  note = find_reg_equal_equiv_note (insn);
	  if (note && CONSTANT_P (XEXP (note, 0)))
	    set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
	  else if (CONSTANT_P (SET_SRC (insn_set)))
	    set_unique_reg_note (last, REG_EQUAL,
				 copy_rtx (SET_SRC (insn_set)));
	}
    }

  /* try_split returns the NOTE that INSN became.  */
  SET_INSN_DELETED (insn);

  /* ??? Coddle to md files that generate subregs in post-reload
     splitters instead of computing the proper hard register.  */
  if (reload_completed && first != last)
    {
      first = NEXT_INSN (first);
      for (;;)
	{
	  if (INSN_P (first))
	    cleanup_subreg_operands (first);
	  if (first == last)
	    break;
	  first = NEXT_INSN (first);
	}
    }

  return last;
}

/* Split all insns in the function.  If UPD_LIFE, update life info after.  */

void
split_all_insns (void)
{
  sbitmap blocks;
  bool changed;
  basic_block bb;

  blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
  bitmap_clear (blocks);
  changed = false;

  FOR_EACH_BB_REVERSE_FN (bb, cfun)
    {
      rtx_insn *insn, *next;
      bool finish = false;

      rtl_profile_for_bb (bb);
      for (insn = BB_HEAD (bb); !finish ; insn = next)
	{
	  /* Can't use `next_real_insn' because that might go across
	     CODE_LABELS and short-out basic blocks.  */
	  next = NEXT_INSN (insn);
	  finish = (insn == BB_END (bb));
	  if (INSN_P (insn))
	    {
	      rtx set = single_set (insn);

	      /* Don't split no-op move insns.  These should silently
		 disappear later in final.  Splitting such insns would
		 break the code that handles LIBCALL blocks.  */
	      if (set && set_noop_p (set))
		{
		  /* Nops get in the way while scheduling, so delete them
		     now if register allocation has already been done.  It
		     is too risky to try to do this before register
		     allocation, and there are unlikely to be very many
		     nops then anyways.  */
		  if (reload_completed)
		      delete_insn_and_edges (insn);
		}
	      else
		{
		  if (split_insn (insn))
		    {
		      bitmap_set_bit (blocks, bb->index);
		      changed = true;
		    }
		}
	    }
	}
    }

  default_rtl_profile ();
  if (changed)
    find_many_sub_basic_blocks (blocks);

#ifdef ENABLE_CHECKING
  verify_flow_info ();
#endif

  sbitmap_free (blocks);
}

/* Same as split_all_insns, but do not expect CFG to be available.
   Used by machine dependent reorg passes.  */

unsigned int
split_all_insns_noflow (void)
{
  rtx_insn *next, *insn;

  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (INSN_P (insn))
	{
	  /* Don't split no-op move insns.  These should silently
	     disappear later in final.  Splitting such insns would
	     break the code that handles LIBCALL blocks.  */
	  rtx set = single_set (insn);
	  if (set && set_noop_p (set))
	    {
	      /* Nops get in the way while scheduling, so delete them
		 now if register allocation has already been done.  It
		 is too risky to try to do this before register
		 allocation, and there are unlikely to be very many
		 nops then anyways.

		 ??? Should we use delete_insn when the CFG isn't valid?  */
	      if (reload_completed)
		delete_insn_and_edges (insn);
	    }
	  else
	    split_insn (insn);
	}
    }
  return 0;
}

#ifdef HAVE_peephole2
struct peep2_insn_data
{
  rtx insn;
  regset live_before;
};

static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
static int peep2_current;

static bool peep2_do_rebuild_jump_labels;
static bool peep2_do_cleanup_cfg;

/* The number of instructions available to match a peep2.  */
int peep2_current_count;

/* A non-insn marker indicating the last insn of the block.
   The live_before regset for this element is correct, indicating
   DF_LIVE_OUT for the block.  */
#define PEEP2_EOB	pc_rtx

/* Wrap N to fit into the peep2_insn_data buffer.  */

static int
peep2_buf_position (int n)
{
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
    n -= MAX_INSNS_PER_PEEP2 + 1;
  return n;
}

/* Return the Nth non-note insn after `current', or return NULL_RTX if it
   does not exist.  Used by the recognizer to find the next insn to match
   in a multi-insn pattern.  */

rtx
peep2_next_insn (int n)
{
  gcc_assert (n <= peep2_current_count);

  n = peep2_buf_position (peep2_current + n);

  return peep2_insn_data[n].insn;
}

/* Return true if REGNO is dead before the Nth non-note insn
   after `current'.  */

int
peep2_regno_dead_p (int ofs, int regno)
{
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);

  ofs = peep2_buf_position (peep2_current + ofs);

  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);

  return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
}

/* Similarly for a REG.  */

int
peep2_reg_dead_p (int ofs, rtx reg)
{
  int regno, n;

  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);

  ofs = peep2_buf_position (peep2_current + ofs);

  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);

  regno = REGNO (reg);
  n = hard_regno_nregs[regno][GET_MODE (reg)];
  while (--n >= 0)
    if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
      return 0;
  return 1;
}

/* Regno offset to be used in the register search.  */
static int search_ofs;

/* Try to find a hard register of mode MODE, matching the register class in
   CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
   remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
   in which case the only condition is that the register must be available
   before CURRENT_INSN.
   Registers that already have bits set in REG_SET will not be considered.

   If an appropriate register is available, it will be returned and the
   corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
   returned.  */

rtx
peep2_find_free_register (int from, int to, const char *class_str,
			  enum machine_mode mode, HARD_REG_SET *reg_set)
{
  enum reg_class cl;
  HARD_REG_SET live;
  df_ref def;
  int i;

  gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);

  from = peep2_buf_position (peep2_current + from);
  to = peep2_buf_position (peep2_current + to);

  gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
  REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);

  while (from != to)
    {
      gcc_assert (peep2_insn_data[from].insn != NULL_RTX);

      /* Don't use registers set or clobbered by the insn.  */
      FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
	SET_HARD_REG_BIT (live, DF_REF_REGNO (def));

      from = peep2_buf_position (from + 1);
    }

  cl = reg_class_for_constraint (lookup_constraint (class_str));

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      int raw_regno, regno, success, j;

      /* Distribute the free registers as much as possible.  */
      raw_regno = search_ofs + i;
      if (raw_regno >= FIRST_PSEUDO_REGISTER)
	raw_regno -= FIRST_PSEUDO_REGISTER;
#ifdef REG_ALLOC_ORDER
      regno = reg_alloc_order[raw_regno];
#else
      regno = raw_regno;
#endif

      /* Can it support the mode we need?  */
      if (! HARD_REGNO_MODE_OK (regno, mode))
	continue;

      success = 1;
      for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
	{
	  /* Don't allocate fixed registers.  */
	  if (fixed_regs[regno + j])
	    {
	      success = 0;
	      break;
	    }
	  /* Don't allocate global registers.  */
	  if (global_regs[regno + j])
	    {
	      success = 0;
	      break;
	    }
	  /* Make sure the register is of the right class.  */
	  if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
	    {
	      success = 0;
	      break;
	    }
	  /* And that we don't create an extra save/restore.  */
	  if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
	    {
	      success = 0;
	      break;
	    }

	  if (! targetm.hard_regno_scratch_ok (regno + j))
	    {
	      success = 0;
	      break;
	    }

	  /* And we don't clobber traceback for noreturn functions.  */
	  if ((regno + j == FRAME_POINTER_REGNUM
	       || regno + j == HARD_FRAME_POINTER_REGNUM)
	      && (! reload_completed || frame_pointer_needed))
	    {
	      success = 0;
	      break;
	    }

	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
	      || TEST_HARD_REG_BIT (live, regno + j))
	    {
	      success = 0;
	      break;
	    }
	}

      if (success)
	{
	  add_to_hard_reg_set (reg_set, mode, regno);

	  /* Start the next search with the next register.  */
	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
	    raw_regno = 0;
	  search_ofs = raw_regno;

	  return gen_rtx_REG (mode, regno);
	}
    }

  search_ofs = 0;
  return NULL_RTX;
}

/* Forget all currently tracked instructions, only remember current
   LIVE regset.  */

static void
peep2_reinit_state (regset live)
{
  int i;

  /* Indicate that all slots except the last holds invalid data.  */
  for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
    peep2_insn_data[i].insn = NULL_RTX;
  peep2_current_count = 0;

  /* Indicate that the last slot contains live_after data.  */
  peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
  peep2_current = MAX_INSNS_PER_PEEP2;

  COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
}

/* While scanning basic block BB, we found a match of length MATCH_LEN,
   starting at INSN.  Perform the replacement, removing the old insns and
   replacing them with ATTEMPT.  Returns the last insn emitted, or NULL
   if the replacement is rejected.  */

static rtx_insn *
peep2_attempt (basic_block bb, rtx uncast_insn, int match_len, rtx_insn *attempt)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
  int i;
  rtx_insn *last, *before_try, *x;
  rtx eh_note, as_note;
  rtx_insn *old_insn;
  rtx_insn *new_insn;
  bool was_call = false;

  /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
     match more than one insn, or to be split into more than one insn.  */
  old_insn = as_a <rtx_insn *> (peep2_insn_data[peep2_current].insn);
  if (RTX_FRAME_RELATED_P (old_insn))
    {
      bool any_note = false;
      rtx note;

      if (match_len != 0)
	return NULL;

      /* Look for one "active" insn.  I.e. ignore any "clobber" insns that
	 may be in the stream for the purpose of register allocation.  */
      if (active_insn_p (attempt))
	new_insn = attempt;
      else
	new_insn = next_active_insn (attempt);
      if (next_active_insn (new_insn))
	return NULL;

      /* We have a 1-1 replacement.  Copy over any frame-related info.  */
      RTX_FRAME_RELATED_P (new_insn) = 1;

      /* Allow the backend to fill in a note during the split.  */
      for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
	switch (REG_NOTE_KIND (note))
	  {
	  case REG_FRAME_RELATED_EXPR:
	  case REG_CFA_DEF_CFA:
	  case REG_CFA_ADJUST_CFA:
	  case REG_CFA_OFFSET:
	  case REG_CFA_REGISTER:
	  case REG_CFA_EXPRESSION:
	  case REG_CFA_RESTORE:
	  case REG_CFA_SET_VDRAP:
	    any_note = true;
	    break;
	  default:
	    break;
	  }

      /* If the backend didn't supply a note, copy one over.  */
      if (!any_note)
        for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
	  switch (REG_NOTE_KIND (note))
	    {
	    case REG_FRAME_RELATED_EXPR:
	    case REG_CFA_DEF_CFA:
	    case REG_CFA_ADJUST_CFA:
	    case REG_CFA_OFFSET:
	    case REG_CFA_REGISTER:
	    case REG_CFA_EXPRESSION:
	    case REG_CFA_RESTORE:
	    case REG_CFA_SET_VDRAP:
	      add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
	      any_note = true;
	      break;
	    default:
	      break;
	    }

      /* If there still isn't a note, make sure the unwind info sees the
	 same expression as before the split.  */
      if (!any_note)
	{
	  rtx old_set, new_set;

	  /* The old insn had better have been simple, or annotated.  */
	  old_set = single_set (old_insn);
	  gcc_assert (old_set != NULL);

	  new_set = single_set (new_insn);
	  if (!new_set || !rtx_equal_p (new_set, old_set))
	    add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
	}

      /* Copy prologue/epilogue status.  This is required in order to keep
	 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state.  */
      maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
    }

  /* If we are splitting a CALL_INSN, look for the CALL_INSN
     in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
     cfg-related call notes.  */
  for (i = 0; i <= match_len; ++i)
    {
      int j;
      rtx note;

      j = peep2_buf_position (peep2_current + i);
      old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
      if (!CALL_P (old_insn))
	continue;
      was_call = true;

      new_insn = attempt;
      while (new_insn != NULL_RTX)
	{
	  if (CALL_P (new_insn))
	    break;
	  new_insn = NEXT_INSN (new_insn);
	}

      gcc_assert (new_insn != NULL_RTX);

      CALL_INSN_FUNCTION_USAGE (new_insn)
	= CALL_INSN_FUNCTION_USAGE (old_insn);
      SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);

      for (note = REG_NOTES (old_insn);
	   note;
	   note = XEXP (note, 1))
	switch (REG_NOTE_KIND (note))
	  {
	  case REG_NORETURN:
	  case REG_SETJMP:
	  case REG_TM:
	    add_reg_note (new_insn, REG_NOTE_KIND (note),
			  XEXP (note, 0));
	    break;
	  default:
	    /* Discard all other reg notes.  */
	    break;
	  }

      /* Croak if there is another call in the sequence.  */
      while (++i <= match_len)
	{
	  j = peep2_buf_position (peep2_current + i);
	  old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
	  gcc_assert (!CALL_P (old_insn));
	}
      break;
    }

  /* If we matched any instruction that had a REG_ARGS_SIZE, then
     move those notes over to the new sequence.  */
  as_note = NULL;
  for (i = match_len; i >= 0; --i)
    {
      int j = peep2_buf_position (peep2_current + i);
      old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);

      as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
      if (as_note)
	break;
    }

  i = peep2_buf_position (peep2_current + match_len);
  eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);

  /* Replace the old sequence with the new.  */
  rtx_insn *peepinsn = as_a <rtx_insn *> (peep2_insn_data[i].insn);
  last = emit_insn_after_setloc (attempt,
				 peep2_insn_data[i].insn,
				 INSN_LOCATION (peepinsn));
  before_try = PREV_INSN (insn);
  delete_insn_chain (insn, peep2_insn_data[i].insn, false);

  /* Re-insert the EH_REGION notes.  */
  if (eh_note || (was_call && nonlocal_goto_handler_labels))
    {
      edge eh_edge;
      edge_iterator ei;

      FOR_EACH_EDGE (eh_edge, ei, bb->succs)
	if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
	  break;

      if (eh_note)
	copy_reg_eh_region_note_backward (eh_note, last, before_try);

      if (eh_edge)
	for (x = last; x != before_try; x = PREV_INSN (x))
	  if (x != BB_END (bb)
	      && (can_throw_internal (x)
		  || can_nonlocal_goto (x)))
	    {
	      edge nfte, nehe;
	      int flags;

	      nfte = split_block (bb, x);
	      flags = (eh_edge->flags
		       & (EDGE_EH | EDGE_ABNORMAL));
	      if (CALL_P (x))
		flags |= EDGE_ABNORMAL_CALL;
	      nehe = make_edge (nfte->src, eh_edge->dest,
				flags);

	      nehe->probability = eh_edge->probability;
	      nfte->probability
		= REG_BR_PROB_BASE - nehe->probability;

	      peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
	      bb = nfte->src;
	      eh_edge = nehe;
	    }

      /* Converting possibly trapping insn to non-trapping is
	 possible.  Zap dummy outgoing edges.  */
      peep2_do_cleanup_cfg |= purge_dead_edges (bb);
    }

  /* Re-insert the ARGS_SIZE notes.  */
  if (as_note)
    fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));

  /* If we generated a jump instruction, it won't have
     JUMP_LABEL set.  Recompute after we're done.  */
  for (x = last; x != before_try; x = PREV_INSN (x))
    if (JUMP_P (x))
      {
	peep2_do_rebuild_jump_labels = true;
	break;
      }

  return last;
}

/* After performing a replacement in basic block BB, fix up the life
   information in our buffer.  LAST is the last of the insns that we
   emitted as a replacement.  PREV is the insn before the start of
   the replacement.  MATCH_LEN is the number of instructions that were
   matched, and which now need to be replaced in the buffer.  */

static void
peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
		   rtx_insn *prev)
{
  int i = peep2_buf_position (peep2_current + match_len + 1);
  rtx_insn *x;
  regset_head live;

  INIT_REG_SET (&live);
  COPY_REG_SET (&live, peep2_insn_data[i].live_before);

  gcc_assert (peep2_current_count >= match_len + 1);
  peep2_current_count -= match_len + 1;

  x = last;
  do
    {
      if (INSN_P (x))
	{
	  df_insn_rescan (x);
	  if (peep2_current_count < MAX_INSNS_PER_PEEP2)
	    {
	      peep2_current_count++;
	      if (--i < 0)
		i = MAX_INSNS_PER_PEEP2;
	      peep2_insn_data[i].insn = x;
	      df_simulate_one_insn_backwards (bb, x, &live);
	      COPY_REG_SET (peep2_insn_data[i].live_before, &live);
	    }
	}
      x = PREV_INSN (x);
    }
  while (x != prev);
  CLEAR_REG_SET (&live);

  peep2_current = i;
}

/* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
   Return true if we added it, false otherwise.  The caller will try to match
   peepholes against the buffer if we return false; otherwise it will try to
   add more instructions to the buffer.  */

static bool
peep2_fill_buffer (basic_block bb, rtx insn, regset live)
{
  int pos;

  /* Once we have filled the maximum number of insns the buffer can hold,
     allow the caller to match the insns against peepholes.  We wait until
     the buffer is full in case the target has similar peepholes of different
     length; we always want to match the longest if possible.  */
  if (peep2_current_count == MAX_INSNS_PER_PEEP2)
    return false;

  /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
     any other pattern, lest it change the semantics of the frame info.  */
  if (RTX_FRAME_RELATED_P (insn))
    {
      /* Let the buffer drain first.  */
      if (peep2_current_count > 0)
	return false;
      /* Now the insn will be the only thing in the buffer.  */
    }

  pos = peep2_buf_position (peep2_current + peep2_current_count);
  peep2_insn_data[pos].insn = insn;
  COPY_REG_SET (peep2_insn_data[pos].live_before, live);
  peep2_current_count++;

  df_simulate_one_insn_forwards (bb, as_a <rtx_insn *> (insn), live);
  return true;
}

/* Perform the peephole2 optimization pass.  */

static void
peephole2_optimize (void)
{
  rtx_insn *insn;
  bitmap live;
  int i;
  basic_block bb;

  peep2_do_cleanup_cfg = false;
  peep2_do_rebuild_jump_labels = false;

  df_set_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();
  df_analyze ();

  /* Initialize the regsets we're going to use.  */
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
  search_ofs = 0;
  live = BITMAP_ALLOC (&reg_obstack);

  FOR_EACH_BB_REVERSE_FN (bb, cfun)
    {
      bool past_end = false;
      int pos;

      rtl_profile_for_bb (bb);

      /* Start up propagation.  */
      bitmap_copy (live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, live);
      peep2_reinit_state (live);

      insn = BB_HEAD (bb);
      for (;;)
	{
	  rtx_insn *attempt;
	  rtx head;
	  int match_len;

	  if (!past_end && !NONDEBUG_INSN_P (insn))
	    {
	    next_insn:
	      insn = NEXT_INSN (insn);
	      if (insn == NEXT_INSN (BB_END (bb)))
		past_end = true;
	      continue;
	    }
	  if (!past_end && peep2_fill_buffer (bb, insn, live))
	    goto next_insn;

	  /* If we did not fill an empty buffer, it signals the end of the
	     block.  */
	  if (peep2_current_count == 0)
	    break;

	  /* The buffer filled to the current maximum, so try to match.  */

	  pos = peep2_buf_position (peep2_current + peep2_current_count);
	  peep2_insn_data[pos].insn = PEEP2_EOB;
	  COPY_REG_SET (peep2_insn_data[pos].live_before, live);

	  /* Match the peephole.  */
	  head = peep2_insn_data[peep2_current].insn;
	  attempt = safe_as_a <rtx_insn *> (
		      peephole2_insns (PATTERN (head), head, &match_len));
	  if (attempt != NULL)
	    {
	      rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
	      if (last)
		{
		  peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
		  continue;
		}
	    }

	  /* No match: advance the buffer by one insn.  */
	  peep2_current = peep2_buf_position (peep2_current + 1);
	  peep2_current_count--;
	}
    }

  default_rtl_profile ();
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    BITMAP_FREE (peep2_insn_data[i].live_before);
  BITMAP_FREE (live);
  if (peep2_do_rebuild_jump_labels)
    rebuild_jump_labels (get_insns ());
  if (peep2_do_cleanup_cfg)
    cleanup_cfg (CLEANUP_CFG_CHANGED);
}
#endif /* HAVE_peephole2 */

/* Common predicates for use with define_bypass.  */

/* True if the dependency between OUT_INSN and IN_INSN is on the store
   data not the address operand(s) of the store.  IN_INSN and OUT_INSN
   must be either a single_set or a PARALLEL with SETs inside.  */

int
store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
  rtx out_set, in_set;
  rtx out_pat, in_pat;
  rtx out_exp, in_exp;
  int i, j;

  in_set = single_set (in_insn);
  if (in_set)
    {
      if (!MEM_P (SET_DEST (in_set)))
	return false;

      out_set = single_set (out_insn);
      if (out_set)
        {
          if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
            return false;
        }
      else
        {
          out_pat = PATTERN (out_insn);

	  if (GET_CODE (out_pat) != PARALLEL)
	    return false;

          for (i = 0; i < XVECLEN (out_pat, 0); i++)
          {
            out_exp = XVECEXP (out_pat, 0, i);

            if (GET_CODE (out_exp) == CLOBBER)
              continue;

            gcc_assert (GET_CODE (out_exp) == SET);

            if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
              return false;
          }
      }
    }
  else
    {
      in_pat = PATTERN (in_insn);
      gcc_assert (GET_CODE (in_pat) == PARALLEL);

      for (i = 0; i < XVECLEN (in_pat, 0); i++)
	{
	  in_exp = XVECEXP (in_pat, 0, i);

	  if (GET_CODE (in_exp) == CLOBBER)
	    continue;

	  gcc_assert (GET_CODE (in_exp) == SET);

	  if (!MEM_P (SET_DEST (in_exp)))
	    return false;

          out_set = single_set (out_insn);
          if (out_set)
            {
              if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
                return false;
            }
          else
            {
              out_pat = PATTERN (out_insn);
              gcc_assert (GET_CODE (out_pat) == PARALLEL);

              for (j = 0; j < XVECLEN (out_pat, 0); j++)
                {
                  out_exp = XVECEXP (out_pat, 0, j);

                  if (GET_CODE (out_exp) == CLOBBER)
                    continue;

                  gcc_assert (GET_CODE (out_exp) == SET);

                  if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
                    return false;
                }
            }
        }
    }

  return true;
}

/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
   condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
   or multiple set; IN_INSN should be single_set for truth, but for convenience
   of insn categorization may be any JUMP or CALL insn.  */

int
if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
  rtx out_set, in_set;

  in_set = single_set (in_insn);
  if (! in_set)
    {
      gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
      return false;
    }

  if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
    return false;
  in_set = SET_SRC (in_set);

  out_set = single_set (out_insn);
  if (out_set)
    {
      if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
	  || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
	return false;
    }
  else
    {
      rtx out_pat;
      int i;

      out_pat = PATTERN (out_insn);
      gcc_assert (GET_CODE (out_pat) == PARALLEL);

      for (i = 0; i < XVECLEN (out_pat, 0); i++)
	{
	  rtx exp = XVECEXP (out_pat, 0, i);

	  if (GET_CODE (exp) == CLOBBER)
	    continue;

	  gcc_assert (GET_CODE (exp) == SET);

	  if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
	      || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
	    return false;
	}
    }

  return true;
}

static unsigned int
rest_of_handle_peephole2 (void)
{
#ifdef HAVE_peephole2
  peephole2_optimize ();
#endif
  return 0;
}

namespace {

const pass_data pass_data_peephole2 =
{
  RTL_PASS, /* type */
  "peephole2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_PEEPHOLE2, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_peephole2 : public rtl_opt_pass
{
public:
  pass_peephole2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_peephole2, ctxt)
  {}

  /* opt_pass methods: */
  /* The epiphany backend creates a second instance of this pass, so we need
     a clone method.  */
  opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
  virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
  virtual unsigned int execute (function *)
    {
      return rest_of_handle_peephole2 ();
    }

}; // class pass_peephole2

} // anon namespace

rtl_opt_pass *
make_pass_peephole2 (gcc::context *ctxt)
{
  return new pass_peephole2 (ctxt);
}

namespace {

const pass_data pass_data_split_all_insns =
{
  RTL_PASS, /* type */
  "split1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_all_insns : public rtl_opt_pass
{
public:
  pass_split_all_insns (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_split_all_insns, ctxt)
  {}

  /* opt_pass methods: */
  /* The epiphany backend creates a second instance of this pass, so
     we need a clone method.  */
  opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
  virtual unsigned int execute (function *)
    {
      split_all_insns ();
      return 0;
    }

}; // class pass_split_all_insns

} // anon namespace

rtl_opt_pass *
make_pass_split_all_insns (gcc::context *ctxt)
{
  return new pass_split_all_insns (ctxt);
}

static unsigned int
rest_of_handle_split_after_reload (void)
{
  /* If optimizing, then go ahead and split insns now.  */
#ifndef STACK_REGS
  if (optimize > 0)
#endif
    split_all_insns ();
  return 0;
}

namespace {

const pass_data pass_data_split_after_reload =
{
  RTL_PASS, /* type */
  "split2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_after_reload : public rtl_opt_pass
{
public:
  pass_split_after_reload (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_split_after_reload, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *)
    {
      return rest_of_handle_split_after_reload ();
    }

}; // class pass_split_after_reload

} // anon namespace

rtl_opt_pass *
make_pass_split_after_reload (gcc::context *ctxt)
{
  return new pass_split_after_reload (ctxt);
}

namespace {

const pass_data pass_data_split_before_regstack =
{
  RTL_PASS, /* type */
  "split3", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_before_regstack : public rtl_opt_pass
{
public:
  pass_split_before_regstack (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *);
  virtual unsigned int execute (function *)
    {
      split_all_insns ();
      return 0;
    }

}; // class pass_split_before_regstack

bool
pass_split_before_regstack::gate (function *)
{
#if HAVE_ATTR_length && defined (STACK_REGS)
  /* If flow2 creates new instructions which need splitting
     and scheduling after reload is not done, they might not be
     split until final which doesn't allow splitting
     if HAVE_ATTR_length.  */
# ifdef INSN_SCHEDULING
  return (optimize && !flag_schedule_insns_after_reload);
# else
  return (optimize);
# endif
#else
  return 0;
#endif
}

} // anon namespace

rtl_opt_pass *
make_pass_split_before_regstack (gcc::context *ctxt)
{
  return new pass_split_before_regstack (ctxt);
}

static unsigned int
rest_of_handle_split_before_sched2 (void)
{
#ifdef INSN_SCHEDULING
  split_all_insns ();
#endif
  return 0;
}

namespace {

const pass_data pass_data_split_before_sched2 =
{
  RTL_PASS, /* type */
  "split4", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_before_sched2 : public rtl_opt_pass
{
public:
  pass_split_before_sched2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
#ifdef INSN_SCHEDULING
      return optimize > 0 && flag_schedule_insns_after_reload;
#else
      return false;
#endif
    }

  virtual unsigned int execute (function *)
    {
      return rest_of_handle_split_before_sched2 ();
    }

}; // class pass_split_before_sched2

} // anon namespace

rtl_opt_pass *
make_pass_split_before_sched2 (gcc::context *ctxt)
{
  return new pass_split_before_sched2 (ctxt);
}

namespace {

const pass_data pass_data_split_for_shorten_branches =
{
  RTL_PASS, /* type */
  "split5", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_for_shorten_branches : public rtl_opt_pass
{
public:
  pass_split_for_shorten_branches (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      /* The placement of the splitting that we do for shorten_branches
	 depends on whether regstack is used by the target or not.  */
#if HAVE_ATTR_length && !defined (STACK_REGS)
      return true;
#else
      return false;
#endif
    }

  virtual unsigned int execute (function *)
    {
      return split_all_insns_noflow ();
    }

}; // class pass_split_for_shorten_branches

} // anon namespace

rtl_opt_pass *
make_pass_split_for_shorten_branches (gcc::context *ctxt)
{
  return new pass_split_for_shorten_branches (ctxt);
}

/* (Re)initialize the target information after a change in target.  */

void
recog_init ()
{
  /* The information is zero-initialized, so we don't need to do anything
     first time round.  */
  if (!this_target_recog->x_initialized)
    {
      this_target_recog->x_initialized = true;
      return;
    }
  memset (this_target_recog->x_bool_attr_masks, 0,
	  sizeof (this_target_recog->x_bool_attr_masks));
  for (int i = 0; i < LAST_INSN_CODE; ++i)
    if (this_target_recog->x_op_alt[i])
      {
	free (this_target_recog->x_op_alt[i]);
	this_target_recog->x_op_alt[i] = 0;
      }
}