1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
|
/* Register to Stack convert for GNU compiler.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This pass converts stack-like registers from the "flat register
file" model that gcc uses, to a stack convention that the 387 uses.
* The form of the input:
On input, the function consists of insn that have had their
registers fully allocated to a set of "virtual" registers. Note that
the word "virtual" is used differently here than elsewhere in gcc: for
each virtual stack reg, there is a hard reg, but the mapping between
them is not known until this pass is run. On output, hard register
numbers have been substituted, and various pop and exchange insns have
been emitted. The hard register numbers and the virtual register
numbers completely overlap - before this pass, all stack register
numbers are virtual, and afterward they are all hard.
The virtual registers can be manipulated normally by gcc, and their
semantics are the same as for normal registers. After the hard
register numbers are substituted, the semantics of an insn containing
stack-like regs are not the same as for an insn with normal regs: for
instance, it is not safe to delete an insn that appears to be a no-op
move. In general, no insn containing hard regs should be changed
after this pass is done.
* The form of the output:
After this pass, hard register numbers represent the distance from
the current top of stack to the desired register. A reference to
FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
represents the register just below that, and so forth. Also, REG_DEAD
notes indicate whether or not a stack register should be popped.
A "swap" insn looks like a parallel of two patterns, where each
pattern is a SET: one sets A to B, the other B to A.
A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
will replace the existing stack top, not push a new value.
A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
SET_SRC is REG or MEM.
The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
appears ambiguous. As a special case, the presence of a REG_DEAD note
for FIRST_STACK_REG differentiates between a load insn and a pop.
If a REG_DEAD is present, the insn represents a "pop" that discards
the top of the register stack. If there is no REG_DEAD note, then the
insn represents a "dup" or a push of the current top of stack onto the
stack.
* Methodology:
Existing REG_DEAD and REG_UNUSED notes for stack registers are
deleted and recreated from scratch. REG_DEAD is never created for a
SET_DEST, only REG_UNUSED.
* asm_operands:
There are several rules on the usage of stack-like regs in
asm_operands insns. These rules apply only to the operands that are
stack-like regs:
1. Given a set of input regs that die in an asm_operands, it is
necessary to know which are implicitly popped by the asm, and
which must be explicitly popped by gcc.
An input reg that is implicitly popped by the asm must be
explicitly clobbered, unless it is constrained to match an
output operand.
2. For any input reg that is implicitly popped by an asm, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped reg, it would not be possible to know what the
stack looked like - it's not clear how the rest of the stack "slides
up".
All implicitly popped input regs must be closer to the top of
the reg-stack than any input that is not implicitly popped.
3. It is possible that if an input dies in an insn, reload might
use the input reg for an output reload. Consider this example:
asm ("foo" : "=t" (a) : "f" (b));
This asm says that input B is not popped by the asm, and that
the asm pushes a result onto the reg-stack, ie, the stack is one
deeper after the asm than it was before. But, it is possible that
reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.
If any input operand uses the "f" constraint, all output reg
constraints must use the "&" earlyclobber.
The asm above would be written as
asm ("foo" : "=&t" (a) : "f" (b));
4. Some operands need to be in particular places on the stack. All
output operands fall in this category - there is no other way to
know which regs the outputs appear in unless the user indicates
this in the constraints.
Output operands must specifically indicate which reg an output
appears in after an asm. "=f" is not allowed: the operand
constraints must select a class with a single reg.
5. Output operands may not be "inserted" between existing stack regs.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the asm_operands, and are pushed by the asm_operands.
It makes no sense to push anywhere but the top of the reg-stack.
Output operands must start at the top of the reg-stack: output
operands may not "skip" a reg.
6. Some asm statements may need extra stack space for internal
calculations. This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.
Here are a couple of reasonable asms to want to write. This asm
takes one input, which is internally popped, and produces two outputs.
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
This asm takes two inputs, which are popped by the fyl2xp1 opcode,
and replaces them with one output. The user must code the "st(1)"
clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "function.h"
#include "insn-config.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "toplev.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "varray.h"
#include "reload.h"
#include "ggc.h"
/* We use this array to cache info about insns, because otherwise we
spend too much time in stack_regs_mentioned_p.
Indexed by insn UIDs. A value of zero is uninitialized, one indicates
the insn uses stack registers, two indicates the insn does not use
stack registers. */
static GTY(()) varray_type stack_regs_mentioned_data;
#ifdef STACK_REGS
#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
/* This is the basic stack record. TOP is an index into REG[] such
that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
If TOP is -2, REG[] is not yet initialized. Stack initialization
consists of placing each live reg in array `reg' and setting `top'
appropriately.
REG_SET indicates which registers are live. */
typedef struct stack_def
{
int top; /* index to top stack element */
HARD_REG_SET reg_set; /* set of live registers */
unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
} *stack;
/* This is used to carry information about basic blocks. It is
attached to the AUX field of the standard CFG block. */
typedef struct block_info_def
{
struct stack_def stack_in; /* Input stack configuration. */
struct stack_def stack_out; /* Output stack configuration. */
HARD_REG_SET out_reg_set; /* Stack regs live on output. */
int done; /* True if block already converted. */
int predecessors; /* Number of predecessors that needs
to be visited. */
} *block_info;
#define BLOCK_INFO(B) ((block_info) (B)->aux)
/* Passed to change_stack to indicate where to emit insns. */
enum emit_where
{
EMIT_AFTER,
EMIT_BEFORE
};
/* The block we're currently working on. */
static basic_block current_block;
/* This is the register file for all register after conversion. */
static rtx
FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
#define FP_MODE_REG(regno,mode) \
(FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
/* Used to initialize uninitialized registers. */
static rtx nan;
/* Forward declarations */
static int stack_regs_mentioned_p PARAMS ((rtx pat));
static void straighten_stack PARAMS ((rtx, stack));
static void pop_stack PARAMS ((stack, int));
static rtx *get_true_reg PARAMS ((rtx *));
static int check_asm_stack_operands PARAMS ((rtx));
static int get_asm_operand_n_inputs PARAMS ((rtx));
static rtx stack_result PARAMS ((tree));
static void replace_reg PARAMS ((rtx *, int));
static void remove_regno_note PARAMS ((rtx, enum reg_note,
unsigned int));
static int get_hard_regnum PARAMS ((stack, rtx));
static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
enum emit_where));
static void emit_swap_insn PARAMS ((rtx, stack, rtx));
static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
static int swap_rtx_condition_1 PARAMS ((rtx));
static int swap_rtx_condition PARAMS ((rtx));
static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
static void subst_asm_stack_regs PARAMS ((rtx, stack));
static void subst_stack_regs PARAMS ((rtx, stack));
static void change_stack PARAMS ((rtx, stack, stack,
enum emit_where));
static int convert_regs_entry PARAMS ((void));
static void convert_regs_exit PARAMS ((void));
static int convert_regs_1 PARAMS ((FILE *, basic_block));
static int convert_regs_2 PARAMS ((FILE *, basic_block));
static int convert_regs PARAMS ((FILE *));
static void print_stack PARAMS ((FILE *, stack));
static rtx next_flags_user PARAMS ((rtx));
static void record_label_references PARAMS ((rtx, rtx));
static bool compensate_edge PARAMS ((edge, FILE *));
/* Return nonzero if any stack register is mentioned somewhere within PAT. */
static int
stack_regs_mentioned_p (pat)
rtx pat;
{
const char *fmt;
int i;
if (STACK_REG_P (pat))
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (pat));
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
return 1;
}
else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
return 1;
}
return 0;
}
/* Return nonzero if INSN mentions stacked registers, else return zero. */
int
stack_regs_mentioned (insn)
rtx insn;
{
unsigned int uid, max;
int test;
if (! INSN_P (insn) || !stack_regs_mentioned_data)
return 0;
uid = INSN_UID (insn);
max = VARRAY_SIZE (stack_regs_mentioned_data);
if (uid >= max)
{
/* Allocate some extra size to avoid too many reallocs, but
do not grow too quickly. */
max = uid + uid / 20;
VARRAY_GROW (stack_regs_mentioned_data, max);
}
test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
if (test == 0)
{
/* This insn has yet to be examined. Do so now. */
test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
}
return test == 1;
}
static rtx ix86_flags_rtx;
static rtx
next_flags_user (insn)
rtx insn;
{
/* Search forward looking for the first use of this value.
Stop at block boundaries. */
while (insn != current_block->end)
{
insn = NEXT_INSN (insn);
if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
return insn;
if (GET_CODE (insn) == CALL_INSN)
return NULL_RTX;
}
return NULL_RTX;
}
/* Reorganize the stack into ascending numbers,
after this insn. */
static void
straighten_stack (insn, regstack)
rtx insn;
stack regstack;
{
struct stack_def temp_stack;
int top;
/* If there is only a single register on the stack, then the stack is
already in increasing order and no reorganization is needed.
Similarly if the stack is empty. */
if (regstack->top <= 0)
return;
COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
for (top = temp_stack.top = regstack->top; top >= 0; top--)
temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
}
/* Pop a register from the stack. */
static void
pop_stack (regstack, regno)
stack regstack;
int regno;
{
int top = regstack->top;
CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
regstack->top--;
/* If regno was not at the top of stack then adjust stack. */
if (regstack->reg [top] != regno)
{
int i;
for (i = regstack->top; i >= 0; i--)
if (regstack->reg [i] == regno)
{
int j;
for (j = i; j < top; j++)
regstack->reg [j] = regstack->reg [j + 1];
break;
}
}
}
/* Convert register usage from "flat" register file usage to a "stack
register file. FIRST is the first insn in the function, FILE is the
dump file, if used.
Construct a CFG and run life analysis. Then convert each insn one
by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
code duplication created when the converter inserts pop insns on
the edges. */
bool
reg_to_stack (first, file)
rtx first;
FILE *file;
{
basic_block bb;
int i;
int max_uid;
/* Clean up previous run. */
stack_regs_mentioned_data = 0;
/* See if there is something to do. Flow analysis is quite
expensive so we might save some compilation time. */
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
if (regs_ever_live[i])
break;
if (i > LAST_STACK_REG)
return false;
/* Ok, floating point instructions exist. If not optimizing,
build the CFG and run life analysis.
Also need to rebuild life when superblock scheduling is done
as it don't update liveness yet. */
if (!optimize
|| (flag_sched2_use_superblocks
&& flag_schedule_insns_after_reload))
{
count_or_remove_death_notes (NULL, 1);
life_analysis (first, file, PROP_DEATH_NOTES);
}
mark_dfs_back_edges ();
/* Set up block info for each basic block. */
alloc_aux_for_blocks (sizeof (struct block_info_def));
FOR_EACH_BB_REVERSE (bb)
{
edge e;
for (e = bb->pred; e; e = e->pred_next)
if (!(e->flags & EDGE_DFS_BACK)
&& e->src != ENTRY_BLOCK_PTR)
BLOCK_INFO (bb)->predecessors++;
}
/* Create the replacement registers up front. */
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
{
enum machine_mode mode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
}
ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
/* A QNaN for initializing uninitialized variables.
??? We can't load from constant memory in PIC mode, because
we're inserting these instructions before the prologue and
the PIC register hasn't been set up. In that case, fall back
on zero, which we can get from `ldz'. */
if (flag_pic)
nan = CONST0_RTX (SFmode);
else
{
nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
nan = force_const_mem (SFmode, nan);
}
/* Allocate a cache for stack_regs_mentioned. */
max_uid = get_max_uid ();
VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
"stack_regs_mentioned cache");
convert_regs (file);
free_aux_for_blocks ();
return true;
}
/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
label's chain of references, and note which insn contains each
reference. */
static void
record_label_references (insn, pat)
rtx insn, pat;
{
enum rtx_code code = GET_CODE (pat);
int i;
const char *fmt;
if (code == LABEL_REF)
{
rtx label = XEXP (pat, 0);
rtx ref;
if (GET_CODE (label) != CODE_LABEL)
abort ();
/* If this is an undefined label, LABEL_REFS (label) contains
garbage. */
if (INSN_UID (label) == 0)
return;
/* Don't make a duplicate in the code_label's chain. */
for (ref = LABEL_REFS (label);
ref && ref != label;
ref = LABEL_NEXTREF (ref))
if (CONTAINING_INSN (ref) == insn)
return;
CONTAINING_INSN (pat) = insn;
LABEL_NEXTREF (pat) = LABEL_REFS (label);
LABEL_REFS (label) = pat;
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
record_label_references (insn, XEXP (pat, i));
if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (pat, i); j++)
record_label_references (insn, XVECEXP (pat, i, j));
}
}
}
/* Return a pointer to the REG expression within PAT. If PAT is not a
REG, possible enclosed by a conversion rtx, return the inner part of
PAT that stopped the search. */
static rtx *
get_true_reg (pat)
rtx *pat;
{
for (;;)
switch (GET_CODE (*pat))
{
case SUBREG:
/* Eliminate FP subregister accesses in favor of the
actual FP register in use. */
{
rtx subreg;
if (FP_REG_P (subreg = SUBREG_REG (*pat)))
{
int regno_off = subreg_regno_offset (REGNO (subreg),
GET_MODE (subreg),
SUBREG_BYTE (*pat),
GET_MODE (*pat));
*pat = FP_MODE_REG (REGNO (subreg) + regno_off,
GET_MODE (subreg));
default:
return pat;
}
}
case FLOAT:
case FIX:
case FLOAT_EXTEND:
pat = & XEXP (*pat, 0);
}
}
/* Set if we find any malformed asms in a block. */
static bool any_malformed_asm;
/* There are many rules that an asm statement for stack-like regs must
follow. Those rules are explained at the top of this file: the rule
numbers below refer to that explanation. */
static int
check_asm_stack_operands (insn)
rtx insn;
{
int i;
int n_clobbers;
int malformed_asm = 0;
rtx body = PATTERN (insn);
char reg_used_as_output[FIRST_PSEUDO_REGISTER];
char implicitly_dies[FIRST_PSEUDO_REGISTER];
int alt;
rtx *clobber_reg = 0;
int n_inputs, n_outputs;
/* Find out what the constraints require. If no constraint
alternative matches, this asm is malformed. */
extract_insn (insn);
constrain_operands (1);
alt = which_alternative;
preprocess_constraints ();
n_inputs = get_asm_operand_n_inputs (body);
n_outputs = recog_data.n_operands - n_inputs;
if (alt < 0)
{
malformed_asm = 1;
/* Avoid further trouble with this insn. */
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
return 0;
}
/* Strip SUBREGs here to make the following code simpler. */
for (i = 0; i < recog_data.n_operands; i++)
if (GET_CODE (recog_data.operand[i]) == SUBREG
&& GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
/* Set up CLOBBER_REG. */
n_clobbers = 0;
if (GET_CODE (body) == PARALLEL)
{
clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
for (i = 0; i < XVECLEN (body, 0); i++)
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
{
rtx clobber = XVECEXP (body, 0, i);
rtx reg = XEXP (clobber, 0);
if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
reg = SUBREG_REG (reg);
if (STACK_REG_P (reg))
{
clobber_reg[n_clobbers] = reg;
n_clobbers++;
}
}
}
/* Enforce rule #4: Output operands must specifically indicate which
reg an output appears in after an asm. "=f" is not allowed: the
operand constraints must select a class with a single reg.
Also enforce rule #5: Output operands must start at the top of
the reg-stack: output operands may not "skip" a reg. */
memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
for (i = 0; i < n_outputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
{
error_for_asm (insn, "output constraint %d must specify a single register", i);
malformed_asm = 1;
}
else
{
int j;
for (j = 0; j < n_clobbers; j++)
if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
{
error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
i, reg_names [REGNO (clobber_reg[j])]);
malformed_asm = 1;
break;
}
if (j == n_clobbers)
reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
}
}
/* Search for first non-popped reg. */
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
if (! reg_used_as_output[i])
break;
/* If there are any other popped regs, that's an error. */
for (; i < LAST_STACK_REG + 1; i++)
if (reg_used_as_output[i])
break;
if (i != LAST_STACK_REG + 1)
{
error_for_asm (insn, "output regs must be grouped at top of stack");
malformed_asm = 1;
}
/* Enforce rule #2: All implicitly popped input regs must be closer
to the top of the reg-stack than any input that is not implicitly
popped. */
memset (implicitly_dies, 0, sizeof (implicitly_dies));
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
/* An input reg is implicitly popped if it is tied to an
output, or if there is a CLOBBER for it. */
int j;
for (j = 0; j < n_clobbers; j++)
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
break;
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
implicitly_dies[REGNO (recog_data.operand[i])] = 1;
}
/* Search for first non-popped reg. */
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
if (! implicitly_dies[i])
break;
/* If there are any other popped regs, that's an error. */
for (; i < LAST_STACK_REG + 1; i++)
if (implicitly_dies[i])
break;
if (i != LAST_STACK_REG + 1)
{
error_for_asm (insn,
"implicitly popped regs must be grouped at top of stack");
malformed_asm = 1;
}
/* Enforce rule #3: If any input operand uses the "f" constraint, all
output constraints must use the "&" earlyclobber.
??? Detect this more deterministically by having constrain_asm_operands
record any earlyclobber. */
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (recog_op_alt[i][alt].matches == -1)
{
int j;
for (j = 0; j < n_outputs; j++)
if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
{
error_for_asm (insn,
"output operand %d must use `&' constraint", j);
malformed_asm = 1;
}
}
if (malformed_asm)
{
/* Avoid further trouble with this insn. */
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
any_malformed_asm = true;
return 0;
}
return 1;
}
/* Calculate the number of inputs and outputs in BODY, an
asm_operands. N_OPERANDS is the total number of operands, and
N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
placed. */
static int
get_asm_operand_n_inputs (body)
rtx body;
{
if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
else if (GET_CODE (body) == ASM_OPERANDS)
return ASM_OPERANDS_INPUT_LENGTH (body);
else if (GET_CODE (body) == PARALLEL
&& GET_CODE (XVECEXP (body, 0, 0)) == SET)
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
else if (GET_CODE (body) == PARALLEL
&& GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
abort ();
}
/* If current function returns its result in an fp stack register,
return the REG. Otherwise, return 0. */
static rtx
stack_result (decl)
tree decl;
{
rtx result;
/* If the value is supposed to be returned in memory, then clearly
it is not returned in a stack register. */
if (aggregate_value_p (DECL_RESULT (decl)))
return 0;
result = DECL_RTL_IF_SET (DECL_RESULT (decl));
if (result != 0)
{
#ifdef FUNCTION_OUTGOING_VALUE
result
= FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
#else
result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
#endif
}
return result != 0 && STACK_REG_P (result) ? result : 0;
}
/*
* This section deals with stack register substitution, and forms the second
* pass over the RTL.
*/
/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
the desired hard REGNO. */
static void
replace_reg (reg, regno)
rtx *reg;
int regno;
{
if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
|| ! STACK_REG_P (*reg))
abort ();
switch (GET_MODE_CLASS (GET_MODE (*reg)))
{
default: abort ();
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:;
}
*reg = FP_MODE_REG (regno, GET_MODE (*reg));
}
/* Remove a note of type NOTE, which must be found, for register
number REGNO from INSN. Remove only one such note. */
static void
remove_regno_note (insn, note, regno)
rtx insn;
enum reg_note note;
unsigned int regno;
{
rtx *note_link, this;
note_link = ®_NOTES (insn);
for (this = *note_link; this; this = XEXP (this, 1))
if (REG_NOTE_KIND (this) == note
&& REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
{
*note_link = XEXP (this, 1);
return;
}
else
note_link = &XEXP (this, 1);
abort ();
}
/* Find the hard register number of virtual register REG in REGSTACK.
The hard register number is relative to the top of the stack. -1 is
returned if the register is not found. */
static int
get_hard_regnum (regstack, reg)
stack regstack;
rtx reg;
{
int i;
if (! STACK_REG_P (reg))
abort ();
for (i = regstack->top; i >= 0; i--)
if (regstack->reg[i] == REGNO (reg))
break;
return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
}
/* Emit an insn to pop virtual register REG before or after INSN.
REGSTACK is the stack state after INSN and is updated to reflect this
pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
is represented as a SET whose destination is the register to be popped
and source is the top of stack. A death note for the top of stack
cases the movdf pattern to pop. */
static rtx
emit_pop_insn (insn, regstack, reg, where)
rtx insn;
stack regstack;
rtx reg;
enum emit_where where;
{
rtx pop_insn, pop_rtx;
int hard_regno;
/* For complex types take care to pop both halves. These may survive in
CLOBBER and USE expressions. */
if (COMPLEX_MODE_P (GET_MODE (reg)))
{
rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
pop_insn = NULL_RTX;
if (get_hard_regnum (regstack, reg1) >= 0)
pop_insn = emit_pop_insn (insn, regstack, reg1, where);
if (get_hard_regnum (regstack, reg2) >= 0)
pop_insn = emit_pop_insn (insn, regstack, reg2, where);
if (!pop_insn)
abort ();
return pop_insn;
}
hard_regno = get_hard_regnum (regstack, reg);
if (hard_regno < FIRST_STACK_REG)
abort ();
pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
FP_MODE_REG (FIRST_STACK_REG, DFmode));
if (where == EMIT_AFTER)
pop_insn = emit_insn_after (pop_rtx, insn);
else
pop_insn = emit_insn_before (pop_rtx, insn);
REG_NOTES (pop_insn)
= gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
REG_NOTES (pop_insn));
regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
= regstack->reg[regstack->top];
regstack->top -= 1;
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
return pop_insn;
}
/* Emit an insn before or after INSN to swap virtual register REG with
the top of stack. REGSTACK is the stack state before the swap, and
is updated to reflect the swap. A swap insn is represented as a
PARALLEL of two patterns: each pattern moves one reg to the other.
If REG is already at the top of the stack, no insn is emitted. */
static void
emit_swap_insn (insn, regstack, reg)
rtx insn;
stack regstack;
rtx reg;
{
int hard_regno;
rtx swap_rtx;
int tmp, other_reg; /* swap regno temps */
rtx i1; /* the stack-reg insn prior to INSN */
rtx i1set = NULL_RTX; /* the SET rtx within I1 */
hard_regno = get_hard_regnum (regstack, reg);
if (hard_regno < FIRST_STACK_REG)
abort ();
if (hard_regno == FIRST_STACK_REG)
return;
other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
tmp = regstack->reg[other_reg];
regstack->reg[other_reg] = regstack->reg[regstack->top];
regstack->reg[regstack->top] = tmp;
/* Find the previous insn involving stack regs, but don't pass a
block boundary. */
i1 = NULL;
if (current_block && insn != current_block->head)
{
rtx tmp = PREV_INSN (insn);
rtx limit = PREV_INSN (current_block->head);
while (tmp != limit)
{
if (GET_CODE (tmp) == CODE_LABEL
|| GET_CODE (tmp) == CALL_INSN
|| NOTE_INSN_BASIC_BLOCK_P (tmp)
|| (GET_CODE (tmp) == INSN
&& stack_regs_mentioned (tmp)))
{
i1 = tmp;
break;
}
tmp = PREV_INSN (tmp);
}
}
if (i1 != NULL_RTX
&& (i1set = single_set (i1)) != NULL_RTX)
{
rtx i1src = *get_true_reg (&SET_SRC (i1set));
rtx i1dest = *get_true_reg (&SET_DEST (i1set));
/* If the previous register stack push was from the reg we are to
swap with, omit the swap. */
if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
&& GET_CODE (i1src) == REG
&& REGNO (i1src) == (unsigned) hard_regno - 1
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
return;
/* If the previous insn wrote to the reg we are to swap with,
omit the swap. */
if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
&& GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
return;
}
swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
FP_MODE_REG (FIRST_STACK_REG, XFmode));
if (i1)
emit_insn_after (swap_rtx, i1);
else if (current_block)
emit_insn_before (swap_rtx, current_block->head);
else
emit_insn_before (swap_rtx, insn);
}
/* Handle a move to or from a stack register in PAT, which is in INSN.
REGSTACK is the current stack. */
static void
move_for_stack_reg (insn, regstack, pat)
rtx insn;
stack regstack;
rtx pat;
{
rtx *psrc = get_true_reg (&SET_SRC (pat));
rtx *pdest = get_true_reg (&SET_DEST (pat));
rtx src, dest;
rtx note;
src = *psrc; dest = *pdest;
if (STACK_REG_P (src) && STACK_REG_P (dest))
{
/* Write from one stack reg to another. If SRC dies here, then
just change the register mapping and delete the insn. */
note = find_regno_note (insn, REG_DEAD, REGNO (src));
if (note)
{
int i;
/* If this is a no-op move, there must not be a REG_DEAD note. */
if (REGNO (src) == REGNO (dest))
abort ();
for (i = regstack->top; i >= 0; i--)
if (regstack->reg[i] == REGNO (src))
break;
/* The source must be live, and the dest must be dead. */
if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
abort ();
/* It is possible that the dest is unused after this insn.
If so, just pop the src. */
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
{
emit_pop_insn (insn, regstack, src, EMIT_AFTER);
delete_insn (insn);
return;
}
regstack->reg[i] = REGNO (dest);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
delete_insn (insn);
return;
}
/* The source reg does not die. */
/* If this appears to be a no-op move, delete it, or else it
will confuse the machine description output patterns. But if
it is REG_UNUSED, we must pop the reg now, as per-insn processing
for REG_UNUSED will not work for deleted insns. */
if (REGNO (src) == REGNO (dest))
{
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
delete_insn (insn);
return;
}
/* The destination ought to be dead. */
if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
abort ();
replace_reg (psrc, get_hard_regnum (regstack, src));
regstack->reg[++regstack->top] = REGNO (dest);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
replace_reg (pdest, FIRST_STACK_REG);
}
else if (STACK_REG_P (src))
{
/* Save from a stack reg to MEM, or possibly integer reg. Since
only top of stack may be saved, emit an exchange first if
needs be. */
emit_swap_insn (insn, regstack, src);
note = find_regno_note (insn, REG_DEAD, REGNO (src));
if (note)
{
replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
regstack->top--;
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
}
else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
&& regstack->top < REG_STACK_SIZE - 1)
{
/* A 387 cannot write an XFmode value to a MEM without
clobbering the source reg. The output code can handle
this by reading back the value from the MEM.
But it is more efficient to use a temp register if one is
available. Push the source value here if the register
stack is not full, and then write the value to memory via
a pop. */
rtx push_rtx, push_insn;
rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
if (GET_MODE (src) == TFmode)
push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
else
push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
push_insn = emit_insn_before (push_rtx, insn);
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
REG_NOTES (insn));
}
replace_reg (psrc, FIRST_STACK_REG);
}
else if (STACK_REG_P (dest))
{
/* Load from MEM, or possibly integer REG or constant, into the
stack regs. The actual target is always the top of the
stack. The stack mapping is changed to reflect that DEST is
now at top of stack. */
/* The destination ought to be dead. */
if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
abort ();
if (regstack->top >= REG_STACK_SIZE)
abort ();
regstack->reg[++regstack->top] = REGNO (dest);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
replace_reg (pdest, FIRST_STACK_REG);
}
else
abort ();
}
/* Swap the condition on a branch, if there is one. Return true if we
found a condition to swap. False if the condition was not used as
such. */
static int
swap_rtx_condition_1 (pat)
rtx pat;
{
const char *fmt;
int i, r = 0;
if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
{
PUT_CODE (pat, swap_condition (GET_CODE (pat)));
r = 1;
}
else
{
fmt = GET_RTX_FORMAT (GET_CODE (pat));
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
}
else if (fmt[i] == 'e')
r |= swap_rtx_condition_1 (XEXP (pat, i));
}
}
return r;
}
static int
swap_rtx_condition (insn)
rtx insn;
{
rtx pat = PATTERN (insn);
/* We're looking for a single set to cc0 or an HImode temporary. */
if (GET_CODE (pat) == SET
&& GET_CODE (SET_DEST (pat)) == REG
&& REGNO (SET_DEST (pat)) == FLAGS_REG)
{
insn = next_flags_user (insn);
if (insn == NULL_RTX)
return 0;
pat = PATTERN (insn);
}
/* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
not doing anything with the cc value right now. We may be able to
search for one though. */
if (GET_CODE (pat) == SET
&& GET_CODE (SET_SRC (pat)) == UNSPEC
&& XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
{
rtx dest = SET_DEST (pat);
/* Search forward looking for the first use of this value.
Stop at block boundaries. */
while (insn != current_block->end)
{
insn = NEXT_INSN (insn);
if (INSN_P (insn) && reg_mentioned_p (dest, insn))
break;
if (GET_CODE (insn) == CALL_INSN)
return 0;
}
/* So we've found the insn using this value. If it is anything
other than sahf, aka unspec 10, or the value does not die
(meaning we'd have to search further), then we must give up. */
pat = PATTERN (insn);
if (GET_CODE (pat) != SET
|| GET_CODE (SET_SRC (pat)) != UNSPEC
|| XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
|| ! dead_or_set_p (insn, dest))
return 0;
/* Now we are prepared to handle this as a normal cc0 setter. */
insn = next_flags_user (insn);
if (insn == NULL_RTX)
return 0;
pat = PATTERN (insn);
}
if (swap_rtx_condition_1 (pat))
{
int fail = 0;
INSN_CODE (insn) = -1;
if (recog_memoized (insn) == -1)
fail = 1;
/* In case the flags don't die here, recurse to try fix
following user too. */
else if (! dead_or_set_p (insn, ix86_flags_rtx))
{
insn = next_flags_user (insn);
if (!insn || !swap_rtx_condition (insn))
fail = 1;
}
if (fail)
{
swap_rtx_condition_1 (pat);
return 0;
}
return 1;
}
return 0;
}
/* Handle a comparison. Special care needs to be taken to avoid
causing comparisons that a 387 cannot do correctly, such as EQ.
Also, a pop insn may need to be emitted. The 387 does have an
`fcompp' insn that can pop two regs, but it is sometimes too expensive
to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
set up. */
static void
compare_for_stack_reg (insn, regstack, pat_src)
rtx insn;
stack regstack;
rtx pat_src;
{
rtx *src1, *src2;
rtx src1_note, src2_note;
rtx flags_user;
src1 = get_true_reg (&XEXP (pat_src, 0));
src2 = get_true_reg (&XEXP (pat_src, 1));
flags_user = next_flags_user (insn);
/* ??? If fxch turns out to be cheaper than fstp, give priority to
registers that die in this insn - move those to stack top first. */
if ((! STACK_REG_P (*src1)
|| (STACK_REG_P (*src2)
&& get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
&& swap_rtx_condition (insn))
{
rtx temp;
temp = XEXP (pat_src, 0);
XEXP (pat_src, 0) = XEXP (pat_src, 1);
XEXP (pat_src, 1) = temp;
src1 = get_true_reg (&XEXP (pat_src, 0));
src2 = get_true_reg (&XEXP (pat_src, 1));
INSN_CODE (insn) = -1;
}
/* We will fix any death note later. */
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
if (STACK_REG_P (*src2))
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
else
src2_note = NULL_RTX;
emit_swap_insn (insn, regstack, *src1);
replace_reg (src1, FIRST_STACK_REG);
if (STACK_REG_P (*src2))
replace_reg (src2, get_hard_regnum (regstack, *src2));
if (src1_note)
{
pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
}
/* If the second operand dies, handle that. But if the operands are
the same stack register, don't bother, because only one death is
needed, and it was just handled. */
if (src2_note
&& ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
&& REGNO (*src1) == REGNO (*src2)))
{
/* As a special case, two regs may die in this insn if src2 is
next to top of stack and the top of stack also dies. Since
we have already popped src1, "next to top of stack" is really
at top (FIRST_STACK_REG) now. */
if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
&& src1_note)
{
pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
}
else
{
/* The 386 can only represent death of the first operand in
the case handled above. In all other cases, emit a separate
pop and remove the death note from here. */
/* link_cc0_insns (insn); */
remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
EMIT_AFTER);
}
}
}
/* Substitute new registers in PAT, which is part of INSN. REGSTACK
is the current register layout. */
static void
subst_stack_regs_pat (insn, regstack, pat)
rtx insn;
stack regstack;
rtx pat;
{
rtx *dest, *src;
switch (GET_CODE (pat))
{
case USE:
/* Deaths in USE insns can happen in non optimizing compilation.
Handle them by popping the dying register. */
src = get_true_reg (&XEXP (pat, 0));
if (STACK_REG_P (*src)
&& find_regno_note (insn, REG_DEAD, REGNO (*src)))
{
emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
return;
}
/* ??? Uninitialized USE should not happen. */
else if (get_hard_regnum (regstack, *src) == -1)
abort ();
break;
case CLOBBER:
{
rtx note;
dest = get_true_reg (&XEXP (pat, 0));
if (STACK_REG_P (*dest))
{
note = find_reg_note (insn, REG_DEAD, *dest);
if (pat != PATTERN (insn))
{
/* The fix_truncdi_1 pattern wants to be able to allocate
it's own scratch register. It does this by clobbering
an fp reg so that it is assured of an empty reg-stack
register. If the register is live, kill it now.
Remove the DEAD/UNUSED note so we don't try to kill it
later too. */
if (note)
emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
else
{
note = find_reg_note (insn, REG_UNUSED, *dest);
if (!note)
abort ();
}
remove_note (insn, note);
replace_reg (dest, LAST_STACK_REG);
}
else
{
/* A top-level clobber with no REG_DEAD, and no hard-regnum
indicates an uninitialized value. Because reload removed
all other clobbers, this must be due to a function
returning without a value. Load up a NaN. */
if (! note
&& get_hard_regnum (regstack, *dest) == -1)
{
pat = gen_rtx_SET (VOIDmode,
FP_MODE_REG (REGNO (*dest), SFmode),
nan);
PATTERN (insn) = pat;
move_for_stack_reg (insn, regstack, pat);
}
if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
&& get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
{
pat = gen_rtx_SET (VOIDmode,
FP_MODE_REG (REGNO (*dest) + 1, SFmode),
nan);
PATTERN (insn) = pat;
move_for_stack_reg (insn, regstack, pat);
}
}
}
break;
}
case SET:
{
rtx *src1 = (rtx *) 0, *src2;
rtx src1_note, src2_note;
rtx pat_src;
dest = get_true_reg (&SET_DEST (pat));
src = get_true_reg (&SET_SRC (pat));
pat_src = SET_SRC (pat);
/* See if this is a `movM' pattern, and handle elsewhere if so. */
if (STACK_REG_P (*src)
|| (STACK_REG_P (*dest)
&& (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
|| GET_CODE (*src) == CONST_DOUBLE)))
{
move_for_stack_reg (insn, regstack, pat);
break;
}
switch (GET_CODE (pat_src))
{
case COMPARE:
compare_for_stack_reg (insn, regstack, pat_src);
break;
case CALL:
{
int count;
for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
--count >= 0;)
{
regstack->reg[++regstack->top] = REGNO (*dest) + count;
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
}
}
replace_reg (dest, FIRST_STACK_REG);
break;
case REG:
/* This is a `tstM2' case. */
if (*dest != cc0_rtx)
abort ();
src1 = src;
/* Fall through. */
case FLOAT_TRUNCATE:
case SQRT:
case ABS:
case NEG:
/* These insns only operate on the top of the stack. DEST might
be cc0_rtx if we're processing a tstM pattern. Also, it's
possible that the tstM case results in a REG_DEAD note on the
source. */
if (src1 == 0)
src1 = get_true_reg (&XEXP (pat_src, 0));
emit_swap_insn (insn, regstack, *src1);
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
if (STACK_REG_P (*dest))
replace_reg (dest, FIRST_STACK_REG);
if (src1_note)
{
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
regstack->top--;
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
}
replace_reg (src1, FIRST_STACK_REG);
break;
case MINUS:
case DIV:
/* On i386, reversed forms of subM3 and divM3 exist for
MODE_FLOAT, so the same code that works for addM3 and mulM3
can be used. */
case MULT:
case PLUS:
/* These insns can accept the top of stack as a destination
from a stack reg or mem, or can use the top of stack as a
source and some other stack register (possibly top of stack)
as a destination. */
src1 = get_true_reg (&XEXP (pat_src, 0));
src2 = get_true_reg (&XEXP (pat_src, 1));
/* We will fix any death note later. */
if (STACK_REG_P (*src1))
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
else
src1_note = NULL_RTX;
if (STACK_REG_P (*src2))
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
else
src2_note = NULL_RTX;
/* If either operand is not a stack register, then the dest
must be top of stack. */
if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
emit_swap_insn (insn, regstack, *dest);
else
{
/* Both operands are REG. If neither operand is already
at the top of stack, choose to make the one that is the dest
the new top of stack. */
int src1_hard_regnum, src2_hard_regnum;
src1_hard_regnum = get_hard_regnum (regstack, *src1);
src2_hard_regnum = get_hard_regnum (regstack, *src2);
if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
abort ();
if (src1_hard_regnum != FIRST_STACK_REG
&& src2_hard_regnum != FIRST_STACK_REG)
emit_swap_insn (insn, regstack, *dest);
}
if (STACK_REG_P (*src1))
replace_reg (src1, get_hard_regnum (regstack, *src1));
if (STACK_REG_P (*src2))
replace_reg (src2, get_hard_regnum (regstack, *src2));
if (src1_note)
{
rtx src1_reg = XEXP (src1_note, 0);
/* If the register that dies is at the top of stack, then
the destination is somewhere else - merely substitute it.
But if the reg that dies is not at top of stack, then
move the top of stack to the dead reg, as though we had
done the insn and then a store-with-pop. */
if (REGNO (src1_reg) == regstack->reg[regstack->top])
{
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, get_hard_regnum (regstack, *dest));
}
else
{
int regno = get_hard_regnum (regstack, src1_reg);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, regno);
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
= regstack->reg[regstack->top];
}
CLEAR_HARD_REG_BIT (regstack->reg_set,
REGNO (XEXP (src1_note, 0)));
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
regstack->top--;
}
else if (src2_note)
{
rtx src2_reg = XEXP (src2_note, 0);
if (REGNO (src2_reg) == regstack->reg[regstack->top])
{
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, get_hard_regnum (regstack, *dest));
}
else
{
int regno = get_hard_regnum (regstack, src2_reg);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, regno);
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
= regstack->reg[regstack->top];
}
CLEAR_HARD_REG_BIT (regstack->reg_set,
REGNO (XEXP (src2_note, 0)));
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
regstack->top--;
}
else
{
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, get_hard_regnum (regstack, *dest));
}
/* Keep operand 1 matching with destination. */
if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
&& REG_P (*src1) && REG_P (*src2)
&& REGNO (*src1) != REGNO (*dest))
{
int tmp = REGNO (*src1);
replace_reg (src1, REGNO (*src2));
replace_reg (src2, tmp);
}
break;
case UNSPEC:
switch (XINT (pat_src, 1))
{
case UNSPEC_SIN:
case UNSPEC_COS:
/* These insns only operate on the top of the stack. */
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
emit_swap_insn (insn, regstack, *src1);
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
if (STACK_REG_P (*dest))
replace_reg (dest, FIRST_STACK_REG);
if (src1_note)
{
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
regstack->top--;
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
}
replace_reg (src1, FIRST_STACK_REG);
break;
case UNSPEC_FPATAN:
case UNSPEC_FYL2X:
/* These insns operate on the top two stack slots. */
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
{
struct stack_def temp_stack;
int regno, j, k, temp;
temp_stack = *regstack;
/* Place operand 1 at the top of stack. */
regno = get_hard_regnum (&temp_stack, *src1);
if (regno < 0)
abort ();
if (regno != FIRST_STACK_REG)
{
k = temp_stack.top - (regno - FIRST_STACK_REG);
j = temp_stack.top;
temp = temp_stack.reg[k];
temp_stack.reg[k] = temp_stack.reg[j];
temp_stack.reg[j] = temp;
}
/* Place operand 2 next on the stack. */
regno = get_hard_regnum (&temp_stack, *src2);
if (regno < 0)
abort ();
if (regno != FIRST_STACK_REG + 1)
{
k = temp_stack.top - (regno - FIRST_STACK_REG);
j = temp_stack.top - 1;
temp = temp_stack.reg[k];
temp_stack.reg[k] = temp_stack.reg[j];
temp_stack.reg[j] = temp;
}
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
}
replace_reg (src1, FIRST_STACK_REG);
replace_reg (src2, FIRST_STACK_REG + 1);
if (src1_note)
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
if (src2_note)
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
/* Pop both input operands from the stack. */
CLEAR_HARD_REG_BIT (regstack->reg_set,
regstack->reg[regstack->top]);
CLEAR_HARD_REG_BIT (regstack->reg_set,
regstack->reg[regstack->top - 1]);
regstack->top -= 2;
/* Push the result back onto the stack. */
regstack->reg[++regstack->top] = REGNO (*dest);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, FIRST_STACK_REG);
break;
case UNSPEC_SAHF:
/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
The combination matches the PPRO fcomi instruction. */
pat_src = XVECEXP (pat_src, 0, 0);
if (GET_CODE (pat_src) != UNSPEC
|| XINT (pat_src, 1) != UNSPEC_FNSTSW)
abort ();
/* FALLTHRU */
case UNSPEC_FNSTSW:
/* Combined fcomp+fnstsw generated for doing well with
CSE. When optimizing this would have been broken
up before now. */
pat_src = XVECEXP (pat_src, 0, 0);
if (GET_CODE (pat_src) != COMPARE)
abort ();
compare_for_stack_reg (insn, regstack, pat_src);
break;
default:
abort ();
}
break;
case IF_THEN_ELSE:
/* This insn requires the top of stack to be the destination. */
src1 = get_true_reg (&XEXP (pat_src, 1));
src2 = get_true_reg (&XEXP (pat_src, 2));
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
/* If the comparison operator is an FP comparison operator,
it is handled correctly by compare_for_stack_reg () who
will move the destination to the top of stack. But if the
comparison operator is not an FP comparison operator, we
have to handle it here. */
if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
&& REGNO (*dest) != regstack->reg[regstack->top])
{
/* In case one of operands is the top of stack and the operands
dies, it is safe to make it the destination operand by
reversing the direction of cmove and avoid fxch. */
if ((REGNO (*src1) == regstack->reg[regstack->top]
&& src1_note)
|| (REGNO (*src2) == regstack->reg[regstack->top]
&& src2_note))
{
int idx1 = (get_hard_regnum (regstack, *src1)
- FIRST_STACK_REG);
int idx2 = (get_hard_regnum (regstack, *src2)
- FIRST_STACK_REG);
/* Make reg-stack believe that the operands are already
swapped on the stack */
regstack->reg[regstack->top - idx1] = REGNO (*src2);
regstack->reg[regstack->top - idx2] = REGNO (*src1);
/* Reverse condition to compensate the operand swap.
i386 do have comparison always reversible. */
PUT_CODE (XEXP (pat_src, 0),
reversed_comparison_code (XEXP (pat_src, 0), insn));
}
else
emit_swap_insn (insn, regstack, *dest);
}
{
rtx src_note [3];
int i;
src_note[0] = 0;
src_note[1] = src1_note;
src_note[2] = src2_note;
if (STACK_REG_P (*src1))
replace_reg (src1, get_hard_regnum (regstack, *src1));
if (STACK_REG_P (*src2))
replace_reg (src2, get_hard_regnum (regstack, *src2));
for (i = 1; i <= 2; i++)
if (src_note [i])
{
int regno = REGNO (XEXP (src_note[i], 0));
/* If the register that dies is not at the top of
stack, then move the top of stack to the dead reg */
if (regno != regstack->reg[regstack->top])
{
remove_regno_note (insn, REG_DEAD, regno);
emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
EMIT_AFTER);
}
else
/* Top of stack never dies, as it is the
destination. */
abort ();
}
}
/* Make dest the top of stack. Add dest to regstack if
not present. */
if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
regstack->reg[++regstack->top] = REGNO (*dest);
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
replace_reg (dest, FIRST_STACK_REG);
break;
default:
abort ();
}
break;
}
default:
break;
}
}
/* Substitute hard regnums for any stack regs in INSN, which has
N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
before the insn, and is updated with changes made here.
There are several requirements and assumptions about the use of
stack-like regs in asm statements. These rules are enforced by
record_asm_stack_regs; see comments there for details. Any
asm_operands left in the RTL at this point may be assume to meet the
requirements, since record_asm_stack_regs removes any problem asm. */
static void
subst_asm_stack_regs (insn, regstack)
rtx insn;
stack regstack;
{
rtx body = PATTERN (insn);
int alt;
rtx *note_reg; /* Array of note contents */
rtx **note_loc; /* Address of REG field of each note */
enum reg_note *note_kind; /* The type of each note */
rtx *clobber_reg = 0;
rtx **clobber_loc = 0;
struct stack_def temp_stack;
int n_notes;
int n_clobbers;
rtx note;
int i;
int n_inputs, n_outputs;
if (! check_asm_stack_operands (insn))
return;
/* Find out what the constraints required. If no constraint
alternative matches, that is a compiler bug: we should have caught
such an insn in check_asm_stack_operands. */
extract_insn (insn);
constrain_operands (1);
alt = which_alternative;
preprocess_constraints ();
n_inputs = get_asm_operand_n_inputs (body);
n_outputs = recog_data.n_operands - n_inputs;
if (alt < 0)
abort ();
/* Strip SUBREGs here to make the following code simpler. */
for (i = 0; i < recog_data.n_operands; i++)
if (GET_CODE (recog_data.operand[i]) == SUBREG
&& GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
{
recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
}
/* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
i++;
note_reg = (rtx *) alloca (i * sizeof (rtx));
note_loc = (rtx **) alloca (i * sizeof (rtx *));
note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
n_notes = 0;
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
rtx reg = XEXP (note, 0);
rtx *loc = & XEXP (note, 0);
if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
{
loc = & SUBREG_REG (reg);
reg = SUBREG_REG (reg);
}
if (STACK_REG_P (reg)
&& (REG_NOTE_KIND (note) == REG_DEAD
|| REG_NOTE_KIND (note) == REG_UNUSED))
{
note_reg[n_notes] = reg;
note_loc[n_notes] = loc;
note_kind[n_notes] = REG_NOTE_KIND (note);
n_notes++;
}
}
/* Set up CLOBBER_REG and CLOBBER_LOC. */
n_clobbers = 0;
if (GET_CODE (body) == PARALLEL)
{
clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
for (i = 0; i < XVECLEN (body, 0); i++)
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
{
rtx clobber = XVECEXP (body, 0, i);
rtx reg = XEXP (clobber, 0);
rtx *loc = & XEXP (clobber, 0);
if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
{
loc = & SUBREG_REG (reg);
reg = SUBREG_REG (reg);
}
if (STACK_REG_P (reg))
{
clobber_reg[n_clobbers] = reg;
clobber_loc[n_clobbers] = loc;
n_clobbers++;
}
}
}
temp_stack = *regstack;
/* Put the input regs into the desired place in TEMP_STACK. */
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (STACK_REG_P (recog_data.operand[i])
&& reg_class_subset_p (recog_op_alt[i][alt].class,
FLOAT_REGS)
&& recog_op_alt[i][alt].class != FLOAT_REGS)
{
/* If an operand needs to be in a particular reg in
FLOAT_REGS, the constraint was either 't' or 'u'. Since
these constraints are for single register classes, and
reload guaranteed that operand[i] is already in that class,
we can just use REGNO (recog_data.operand[i]) to know which
actual reg this operand needs to be in. */
int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
if (regno < 0)
abort ();
if ((unsigned int) regno != REGNO (recog_data.operand[i]))
{
/* recog_data.operand[i] is not in the right place. Find
it and swap it with whatever is already in I's place.
K is where recog_data.operand[i] is now. J is where it
should be. */
int j, k, temp;
k = temp_stack.top - (regno - FIRST_STACK_REG);
j = (temp_stack.top
- (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
temp = temp_stack.reg[k];
temp_stack.reg[k] = temp_stack.reg[j];
temp_stack.reg[j] = temp;
}
}
/* Emit insns before INSN to make sure the reg-stack is in the right
order. */
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
/* Make the needed input register substitutions. Do death notes and
clobbers too, because these are for inputs, not outputs. */
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
if (regnum < 0)
abort ();
replace_reg (recog_data.operand_loc[i], regnum);
}
for (i = 0; i < n_notes; i++)
if (note_kind[i] == REG_DEAD)
{
int regnum = get_hard_regnum (regstack, note_reg[i]);
if (regnum < 0)
abort ();
replace_reg (note_loc[i], regnum);
}
for (i = 0; i < n_clobbers; i++)
{
/* It's OK for a CLOBBER to reference a reg that is not live.
Don't try to replace it in that case. */
int regnum = get_hard_regnum (regstack, clobber_reg[i]);
if (regnum >= 0)
{
/* Sigh - clobbers always have QImode. But replace_reg knows
that these regs can't be MODE_INT and will abort. Just put
the right reg there without calling replace_reg. */
*clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
}
}
/* Now remove from REGSTACK any inputs that the asm implicitly popped. */
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
/* An input reg is implicitly popped if it is tied to an
output, or if there is a CLOBBER for it. */
int j;
for (j = 0; j < n_clobbers; j++)
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
break;
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
{
/* recog_data.operand[i] might not be at the top of stack.
But that's OK, because all we need to do is pop the
right number of regs off of the top of the reg-stack.
record_asm_stack_regs guaranteed that all implicitly
popped regs were grouped at the top of the reg-stack. */
CLEAR_HARD_REG_BIT (regstack->reg_set,
regstack->reg[regstack->top]);
regstack->top--;
}
}
/* Now add to REGSTACK any outputs that the asm implicitly pushed.
Note that there isn't any need to substitute register numbers.
??? Explain why this is true. */
for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
{
/* See if there is an output for this hard reg. */
int j;
for (j = 0; j < n_outputs; j++)
if (STACK_REG_P (recog_data.operand[j])
&& REGNO (recog_data.operand[j]) == (unsigned) i)
{
regstack->reg[++regstack->top] = i;
SET_HARD_REG_BIT (regstack->reg_set, i);
break;
}
}
/* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
input that the asm didn't implicitly pop. If the asm didn't
implicitly pop an input reg, that reg will still be live.
Note that we can't use find_regno_note here: the register numbers
in the death notes have already been substituted. */
for (i = 0; i < n_outputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
int j;
for (j = 0; j < n_notes; j++)
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
&& note_kind[j] == REG_UNUSED)
{
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
EMIT_AFTER);
break;
}
}
for (i = n_outputs; i < n_outputs + n_inputs; i++)
if (STACK_REG_P (recog_data.operand[i]))
{
int j;
for (j = 0; j < n_notes; j++)
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
&& note_kind[j] == REG_DEAD
&& TEST_HARD_REG_BIT (regstack->reg_set,
REGNO (recog_data.operand[i])))
{
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
EMIT_AFTER);
break;
}
}
}
/* Substitute stack hard reg numbers for stack virtual registers in
INSN. Non-stack register numbers are not changed. REGSTACK is the
current stack content. Insns may be emitted as needed to arrange the
stack for the 387 based on the contents of the insn. */
static void
subst_stack_regs (insn, regstack)
rtx insn;
stack regstack;
{
rtx *note_link, note;
int i;
if (GET_CODE (insn) == CALL_INSN)
{
int top = regstack->top;
/* If there are any floating point parameters to be passed in
registers for this call, make sure they are in the right
order. */
if (top >= 0)
{
straighten_stack (PREV_INSN (insn), regstack);
/* Now mark the arguments as dead after the call. */
while (regstack->top >= 0)
{
CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
regstack->top--;
}
}
}
/* Do the actual substitution if any stack regs are mentioned.
Since we only record whether entire insn mentions stack regs, and
subst_stack_regs_pat only works for patterns that contain stack regs,
we must check each pattern in a parallel here. A call_value_pop could
fail otherwise. */
if (stack_regs_mentioned (insn))
{
int n_operands = asm_noperands (PATTERN (insn));
if (n_operands >= 0)
{
/* This insn is an `asm' with operands. Decode the operands,
decide how many are inputs, and do register substitution.
Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
subst_asm_stack_regs (insn, regstack);
return;
}
if (GET_CODE (PATTERN (insn)) == PARALLEL)
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
subst_stack_regs_pat (insn, regstack,
XVECEXP (PATTERN (insn), 0, i));
}
else
subst_stack_regs_pat (insn, regstack, PATTERN (insn));
}
/* subst_stack_regs_pat may have deleted a no-op insn. If so, any
REG_UNUSED will already have been dealt with, so just return. */
if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
return;
/* If there is a REG_UNUSED note on a stack register on this insn,
the indicated reg must be popped. The REG_UNUSED note is removed,
since the form of the newly emitted pop insn references the reg,
making it no longer `unset'. */
note_link = ®_NOTES (insn);
for (note = *note_link; note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
{
*note_link = XEXP (note, 1);
insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
}
else
note_link = &XEXP (note, 1);
}
/* Change the organization of the stack so that it fits a new basic
block. Some registers might have to be popped, but there can never be
a register live in the new block that is not now live.
Insert any needed insns before or after INSN, as indicated by
WHERE. OLD is the original stack layout, and NEW is the desired
form. OLD is updated to reflect the code emitted, ie, it will be
the same as NEW upon return.
This function will not preserve block_end[]. But that information
is no longer needed once this has executed. */
static void
change_stack (insn, old, new, where)
rtx insn;
stack old;
stack new;
enum emit_where where;
{
int reg;
int update_end = 0;
/* We will be inserting new insns "backwards". If we are to insert
after INSN, find the next insn, and insert before it. */
if (where == EMIT_AFTER)
{
if (current_block && current_block->end == insn)
update_end = 1;
insn = NEXT_INSN (insn);
}
/* Pop any registers that are not needed in the new block. */
for (reg = old->top; reg >= 0; reg--)
if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
EMIT_BEFORE);
if (new->top == -2)
{
/* If the new block has never been processed, then it can inherit
the old stack order. */
new->top = old->top;
memcpy (new->reg, old->reg, sizeof (new->reg));
}
else
{
/* This block has been entered before, and we must match the
previously selected stack order. */
/* By now, the only difference should be the order of the stack,
not their depth or liveliness. */
GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
abort ();
win:
if (old->top != new->top)
abort ();
/* If the stack is not empty (new->top != -1), loop here emitting
swaps until the stack is correct.
The worst case number of swaps emitted is N + 2, where N is the
depth of the stack. In some cases, the reg at the top of
stack may be correct, but swapped anyway in order to fix
other regs. But since we never swap any other reg away from
its correct slot, this algorithm will converge. */
if (new->top != -1)
do
{
/* Swap the reg at top of stack into the position it is
supposed to be in, until the correct top of stack appears. */
while (old->reg[old->top] != new->reg[new->top])
{
for (reg = new->top; reg >= 0; reg--)
if (new->reg[reg] == old->reg[old->top])
break;
if (reg == -1)
abort ();
emit_swap_insn (insn, old,
FP_MODE_REG (old->reg[reg], DFmode));
}
/* See if any regs remain incorrect. If so, bring an
incorrect reg to the top of stack, and let the while loop
above fix it. */
for (reg = new->top; reg >= 0; reg--)
if (new->reg[reg] != old->reg[reg])
{
emit_swap_insn (insn, old,
FP_MODE_REG (old->reg[reg], DFmode));
break;
}
} while (reg >= 0);
/* At this point there must be no differences. */
for (reg = old->top; reg >= 0; reg--)
if (old->reg[reg] != new->reg[reg])
abort ();
}
if (update_end)
current_block->end = PREV_INSN (insn);
}
/* Print stack configuration. */
static void
print_stack (file, s)
FILE *file;
stack s;
{
if (! file)
return;
if (s->top == -2)
fprintf (file, "uninitialized\n");
else if (s->top == -1)
fprintf (file, "empty\n");
else
{
int i;
fputs ("[ ", file);
for (i = 0; i <= s->top; ++i)
fprintf (file, "%d ", s->reg[i]);
fputs ("]\n", file);
}
}
/* This function was doing life analysis. We now let the regular live
code do it's job, so we only need to check some extra invariants
that reg-stack expects. Primary among these being that all registers
are initialized before use.
The function returns true when code was emitted to CFG edges and
commit_edge_insertions needs to be called. */
static int
convert_regs_entry ()
{
int inserted = 0;
edge e;
basic_block block;
FOR_EACH_BB_REVERSE (block)
{
block_info bi = BLOCK_INFO (block);
int reg;
/* Set current register status at last instruction `uninitialized'. */
bi->stack_in.top = -2;
/* Copy live_at_end and live_at_start into temporaries. */
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
{
if (REGNO_REG_SET_P (block->global_live_at_end, reg))
SET_HARD_REG_BIT (bi->out_reg_set, reg);
if (REGNO_REG_SET_P (block->global_live_at_start, reg))
SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
}
}
/* Load something into each stack register live at function entry.
Such live registers can be caused by uninitialized variables or
functions not returning values on all paths. In order to keep
the push/pop code happy, and to not scrog the register stack, we
must put something in these registers. Use a QNaN.
Note that we are inserting converted code here. This code is
never seen by the convert_regs pass. */
for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
{
basic_block block = e->dest;
block_info bi = BLOCK_INFO (block);
int reg, top = -1;
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
{
rtx init;
bi->stack_in.reg[++top] = reg;
init = gen_rtx_SET (VOIDmode,
FP_MODE_REG (FIRST_STACK_REG, SFmode),
nan);
insert_insn_on_edge (init, e);
inserted = 1;
}
bi->stack_in.top = top;
}
return inserted;
}
/* Construct the desired stack for function exit. This will either
be `empty', or the function return value at top-of-stack. */
static void
convert_regs_exit ()
{
int value_reg_low, value_reg_high;
stack output_stack;
rtx retvalue;
retvalue = stack_result (current_function_decl);
value_reg_low = value_reg_high = -1;
if (retvalue)
{
value_reg_low = REGNO (retvalue);
value_reg_high = value_reg_low
+ HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
}
output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
if (value_reg_low == -1)
output_stack->top = -1;
else
{
int reg;
output_stack->top = value_reg_high - value_reg_low;
for (reg = value_reg_low; reg <= value_reg_high; ++reg)
{
output_stack->reg[value_reg_high - reg] = reg;
SET_HARD_REG_BIT (output_stack->reg_set, reg);
}
}
}
/* Adjust the stack of this block on exit to match the stack of the
target block, or copy stack info into the stack of the successor
of the successor hasn't been processed yet. */
static bool
compensate_edge (e, file)
edge e;
FILE *file;
{
basic_block block = e->src, target = e->dest;
block_info bi = BLOCK_INFO (block);
struct stack_def regstack, tmpstack;
stack target_stack = &BLOCK_INFO (target)->stack_in;
int reg;
current_block = block;
regstack = bi->stack_out;
if (file)
fprintf (file, "Edge %d->%d: ", block->index, target->index);
if (target_stack->top == -2)
{
/* The target block hasn't had a stack order selected.
We need merely ensure that no pops are needed. */
for (reg = regstack.top; reg >= 0; --reg)
if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
break;
if (reg == -1)
{
if (file)
fprintf (file, "new block; copying stack position\n");
/* change_stack kills values in regstack. */
tmpstack = regstack;
change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
return false;
}
if (file)
fprintf (file, "new block; pops needed\n");
}
else
{
if (target_stack->top == regstack.top)
{
for (reg = target_stack->top; reg >= 0; --reg)
if (target_stack->reg[reg] != regstack.reg[reg])
break;
if (reg == -1)
{
if (file)
fprintf (file, "no changes needed\n");
return false;
}
}
if (file)
{
fprintf (file, "correcting stack to ");
print_stack (file, target_stack);
}
}
/* Care for non-call EH edges specially. The normal return path have
values in registers. These will be popped en masse by the unwind
library. */
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
target_stack->top = -1;
/* Other calls may appear to have values live in st(0), but the
abnormal return path will not have actually loaded the values. */
else if (e->flags & EDGE_ABNORMAL_CALL)
{
/* Assert that the lifetimes are as we expect -- one value
live at st(0) on the end of the source block, and no
values live at the beginning of the destination block. */
HARD_REG_SET tmp;
CLEAR_HARD_REG_SET (tmp);
GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
abort ();
eh1:
/* We are sure that there is st(0) live, otherwise we won't compensate.
For complex return values, we may have st(1) live as well. */
SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
abort ();
eh2:
target_stack->top = -1;
}
/* It is better to output directly to the end of the block
instead of to the edge, because emit_swap can do minimal
insn scheduling. We can do this when there is only one
edge out, and it is not abnormal. */
else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
{
/* change_stack kills values in regstack. */
tmpstack = regstack;
change_stack (block->end, &tmpstack, target_stack,
(GET_CODE (block->end) == JUMP_INSN
? EMIT_BEFORE : EMIT_AFTER));
}
else
{
rtx seq, after;
/* We don't support abnormal edges. Global takes care to
avoid any live register across them, so we should never
have to insert instructions on such edges. */
if (e->flags & EDGE_ABNORMAL)
abort ();
current_block = NULL;
start_sequence ();
/* ??? change_stack needs some point to emit insns after. */
after = emit_note (NULL, NOTE_INSN_DELETED);
tmpstack = regstack;
change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
seq = get_insns ();
end_sequence ();
insert_insn_on_edge (seq, e);
return true;
}
return false;
}
/* Convert stack register references in one block. */
static int
convert_regs_1 (file, block)
FILE *file;
basic_block block;
{
struct stack_def regstack;
block_info bi = BLOCK_INFO (block);
int inserted, reg;
rtx insn, next;
edge e, beste = NULL;
inserted = 0;
any_malformed_asm = false;
/* Find the edge we will copy stack from. It should be the most frequent
one as it will get cheapest after compensation code is generated,
if multiple such exists, take one with largest count, prefer critical
one (as splitting critical edges is more expensive), or one with lowest
index, to avoid random changes with different orders of the edges. */
for (e = block->pred; e ; e = e->pred_next)
{
if (e->flags & EDGE_DFS_BACK)
;
else if (! beste)
beste = e;
else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
beste = e;
else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
;
else if (beste->count < e->count)
beste = e;
else if (beste->count > e->count)
;
else if ((EDGE_CRITICAL_P (e) != 0)
!= (EDGE_CRITICAL_P (beste) != 0))
{
if (EDGE_CRITICAL_P (e))
beste = e;
}
else if (e->src->index < beste->src->index)
beste = e;
}
/* Entry block does have stack already initialized. */
if (bi->stack_in.top == -2)
inserted |= compensate_edge (beste, file);
else
beste = NULL;
current_block = block;
if (file)
{
fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
print_stack (file, &bi->stack_in);
}
/* Process all insns in this block. Keep track of NEXT so that we
don't process insns emitted while substituting in INSN. */
next = block->head;
regstack = bi->stack_in;
do
{
insn = next;
next = NEXT_INSN (insn);
/* Ensure we have not missed a block boundary. */
if (next == NULL)
abort ();
if (insn == block->end)
next = NULL;
/* Don't bother processing unless there is a stack reg
mentioned or if it's a CALL_INSN. */
if (stack_regs_mentioned (insn)
|| GET_CODE (insn) == CALL_INSN)
{
if (file)
{
fprintf (file, " insn %d input stack: ",
INSN_UID (insn));
print_stack (file, ®stack);
}
subst_stack_regs (insn, ®stack);
}
}
while (next);
if (file)
{
fprintf (file, "Expected live registers [");
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
fprintf (file, " %d", reg);
fprintf (file, " ]\nOutput stack: ");
print_stack (file, ®stack);
}
insn = block->end;
if (GET_CODE (insn) == JUMP_INSN)
insn = PREV_INSN (insn);
/* If the function is declared to return a value, but it returns one
in only some cases, some registers might come live here. Emit
necessary moves for them. */
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
{
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
&& ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
{
rtx set;
if (file)
{
fprintf (file, "Emitting insn initializing reg %d\n",
reg);
}
set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
nan);
insn = emit_insn_after (set, insn);
subst_stack_regs (insn, ®stack);
}
}
/* Something failed if the stack lives don't match. If we had malformed
asms, we zapped the instruction itself, but that didn't produce the
same pattern of register kills as before. */
GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
if (!any_malformed_asm)
abort ();
win:
bi->stack_out = regstack;
/* Compensate the back edges, as those wasn't visited yet. */
for (e = block->succ; e ; e = e->succ_next)
{
if (e->flags & EDGE_DFS_BACK
|| (e->dest == EXIT_BLOCK_PTR))
{
if (!BLOCK_INFO (e->dest)->done
&& e->dest != block)
abort ();
inserted |= compensate_edge (e, file);
}
}
for (e = block->pred; e ; e = e->pred_next)
{
if (e != beste && !(e->flags & EDGE_DFS_BACK)
&& e->src != ENTRY_BLOCK_PTR)
{
if (!BLOCK_INFO (e->src)->done)
abort ();
inserted |= compensate_edge (e, file);
}
}
return inserted;
}
/* Convert registers in all blocks reachable from BLOCK. */
static int
convert_regs_2 (file, block)
FILE *file;
basic_block block;
{
basic_block *stack, *sp;
int inserted;
stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
sp = stack;
*sp++ = block;
inserted = 0;
do
{
edge e;
block = *--sp;
inserted |= convert_regs_1 (file, block);
BLOCK_INFO (block)->done = 1;
for (e = block->succ; e ; e = e->succ_next)
if (! (e->flags & EDGE_DFS_BACK))
{
BLOCK_INFO (e->dest)->predecessors--;
if (!BLOCK_INFO (e->dest)->predecessors)
*sp++ = e->dest;
}
}
while (sp != stack);
return inserted;
}
/* Traverse all basic blocks in a function, converting the register
references in each insn from the "flat" register file that gcc uses,
to the stack-like registers the 387 uses. */
static int
convert_regs (file)
FILE *file;
{
int inserted;
basic_block b;
edge e;
/* Initialize uninitialized registers on function entry. */
inserted = convert_regs_entry ();
/* Construct the desired stack for function exit. */
convert_regs_exit ();
BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
/* ??? Future: process inner loops first, and give them arbitrary
initial stacks which emit_swap_insn can modify. This ought to
prevent double fxch that aften appears at the head of a loop. */
/* Process all blocks reachable from all entry points. */
for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
inserted |= convert_regs_2 (file, e->dest);
/* ??? Process all unreachable blocks. Though there's no excuse
for keeping these even when not optimizing. */
FOR_EACH_BB (b)
{
block_info bi = BLOCK_INFO (b);
if (! bi->done)
{
int reg;
/* Create an arbitrary input stack. */
bi->stack_in.top = -1;
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
bi->stack_in.reg[++bi->stack_in.top] = reg;
inserted |= convert_regs_2 (file, b);
}
}
clear_aux_for_blocks ();
fixup_abnormal_edges ();
if (inserted)
commit_edge_insertions ();
if (file)
fputc ('\n', file);
return inserted;
}
#endif /* STACK_REGS */
#include "gt-reg-stack.h"
|