summaryrefslogtreecommitdiff
path: root/gcc/regrename.c
blob: 3c242fb6649208660a9837de84f8f9a3768a9c28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
/* Register renaming for the GNU compiler.
   Copyright (C) 2000-2013 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl-error.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "addresses.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "reload.h"
#include "output.h"
#include "function.h"
#include "recog.h"
#include "flags.h"
#include "obstack.h"
#include "tree-pass.h"
#include "df.h"
#include "target.h"
#include "emit-rtl.h"
#include "regrename.h"

/* This file implements the RTL register renaming pass of the compiler.  It is
   a semi-local pass whose goal is to maximize the usage of the register file
   of the processor by substituting registers for others in the solution given
   by the register allocator.  The algorithm is as follows:

     1. Local def/use chains are built: within each basic block, chains are
	opened and closed; if a chain isn't closed at the end of the block,
	it is dropped.  We pre-open chains if we have already examined a
	predecessor block and found chains live at the end which match
	live registers at the start of the new block.

     2. We try to combine the local chains across basic block boundaries by
        comparing chains that were open at the start or end of a block to
	those in successor/predecessor blocks.

     3. For each chain, the set of possible renaming registers is computed.
	This takes into account the renaming of previously processed chains.
	Optionally, a preferred class is computed for the renaming register.

     4. The best renaming register is computed for the chain in the above set,
	using a round-robin allocation.  If a preferred class exists, then the
	round-robin allocation is done within the class first, if possible.
	The round-robin allocation of renaming registers itself is global.

     5. If a renaming register has been found, it is substituted in the chain.

  Targets can parameterize the pass by specifying a preferred class for the
  renaming register for a given (super)class of registers to be renamed.  */

#if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
#error "Use a different bitmap implementation for untracked_operands."
#endif

enum scan_actions
{
  terminate_write,
  terminate_dead,
  mark_all_read,
  mark_read,
  mark_write,
  /* mark_access is for marking the destination regs in
     REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
     note is updated properly.  */
  mark_access
};

static const char * const scan_actions_name[] =
{
  "terminate_write",
  "terminate_dead",
  "mark_all_read",
  "mark_read",
  "mark_write",
  "mark_access"
};

/* TICK and THIS_TICK are used to record the last time we saw each
   register.  */
static int tick[FIRST_PSEUDO_REGISTER];
static int this_tick = 0;

static struct obstack rename_obstack;

/* If nonnull, the code calling into the register renamer requested
   information about insn operands, and we store it here.  */
vec<insn_rr_info> insn_rr;

static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
		      enum op_type);
static bool build_def_use (basic_block);

/* The id to be given to the next opened chain.  */
static unsigned current_id;

/* A mapping of unique id numbers to chains.  */
static vec<du_head_p> id_to_chain;

/* List of currently open chains.  */
static struct du_head *open_chains;

/* Bitmap of open chains.  The bits set always match the list found in
   open_chains.  */
static bitmap_head open_chains_set;

/* Record the registers being tracked in open_chains.  */
static HARD_REG_SET live_in_chains;

/* Record the registers that are live but not tracked.  The intersection
   between this and live_in_chains is empty.  */
static HARD_REG_SET live_hard_regs;

/* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
   is for a caller that requires operand data.  Used in
   record_operand_use.  */
static operand_rr_info *cur_operand;

/* Return the chain corresponding to id number ID.  Take into account that
   chains may have been merged.  */
du_head_p
regrename_chain_from_id (unsigned int id)
{
  du_head_p first_chain = id_to_chain[id];
  du_head_p chain = first_chain;
  while (chain->id != id)
    {
      id = chain->id;
      chain = id_to_chain[id];
    }
  first_chain->id = id;
  return chain;
}

/* Dump all def/use chains, starting at id FROM.  */

static void
dump_def_use_chain (int from)
{
  du_head_p head;
  int i;
  FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from)
    {
      struct du_chain *this_du = head->first;

      fprintf (dump_file, "Register %s (%d):",
	       reg_names[head->regno], head->nregs);
      while (this_du)
	{
	  fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
		   reg_class_names[this_du->cl]);
	  this_du = this_du->next_use;
	}
      fprintf (dump_file, "\n");
      head = head->next_chain;
    }
}

static void
free_chain_data (void)
{
  int i;
  du_head_p ptr;
  for (i = 0; id_to_chain.iterate (i, &ptr); i++)
    bitmap_clear (&ptr->conflicts);

  id_to_chain.release ();
}

/* Walk all chains starting with CHAINS and record that they conflict with
   another chain whose id is ID.  */

static void
mark_conflict (struct du_head *chains, unsigned id)
{
  while (chains)
    {
      bitmap_set_bit (&chains->conflicts, id);
      chains = chains->next_chain;
    }
}

/* Examine cur_operand, and if it is nonnull, record information about the
   use THIS_DU which is part of the chain HEAD.  */

static void
record_operand_use (struct du_head *head, struct du_chain *this_du)
{
  if (cur_operand == NULL)
    return;
  gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
  cur_operand->heads[cur_operand->n_chains] = head;
  cur_operand->chains[cur_operand->n_chains++] = this_du;
}

/* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
   and record its occurrence in *LOC, which is being written to in INSN.
   This access requires a register of class CL.  */

static du_head_p
create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
		  rtx insn, enum reg_class cl)
{
  struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
  struct du_chain *this_du;
  int nregs;

  head->next_chain = open_chains;
  head->regno = this_regno;
  head->nregs = this_nregs;
  head->need_caller_save_reg = 0;
  head->cannot_rename = 0;

  id_to_chain.safe_push (head);
  head->id = current_id++;

  bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
  bitmap_copy (&head->conflicts, &open_chains_set);
  mark_conflict (open_chains, head->id);

  /* Since we're tracking this as a chain now, remove it from the
     list of conflicting live hard registers and track it in
     live_in_chains instead.  */
  nregs = head->nregs;
  while (nregs-- > 0)
    {
      SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
      CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
    }

  COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
  bitmap_set_bit (&open_chains_set, head->id);

  open_chains = head;

  if (dump_file)
    {
      fprintf (dump_file, "Creating chain %s (%d)",
	       reg_names[head->regno], head->id);
      if (insn != NULL_RTX)
	fprintf (dump_file, " at insn %d", INSN_UID (insn));
      fprintf (dump_file, "\n");
    }

  if (insn == NULL_RTX)
    {
      head->first = head->last = NULL;
      return head;
    }

  this_du = XOBNEW (&rename_obstack, struct du_chain);
  head->first = head->last = this_du;

  this_du->next_use = 0;
  this_du->loc = loc;
  this_du->insn = insn;
  this_du->cl = cl;
  record_operand_use (head, this_du);
  return head;
}

/* For a def-use chain HEAD, find which registers overlap its lifetime and
   set the corresponding bits in *PSET.  */

static void
merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
{
  bitmap_iterator bi;
  unsigned i;
  IOR_HARD_REG_SET (*pset, head->hard_conflicts);
  EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
    {
      du_head_p other = regrename_chain_from_id (i);
      unsigned j = other->nregs;
      gcc_assert (other != head);
      while (j-- > 0)
	SET_HARD_REG_BIT (*pset, other->regno + j);
    }
}

/* Check if NEW_REG can be the candidate register to rename for
   REG in THIS_HEAD chain.  THIS_UNAVAILABLE is a set of unavailable hard
   registers.  */

static bool
check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
		 struct du_head *this_head, HARD_REG_SET this_unavailable)
{
  enum machine_mode mode = GET_MODE (*this_head->first->loc);
  int nregs = hard_regno_nregs[new_reg][mode];
  int i;
  struct du_chain *tmp;

  for (i = nregs - 1; i >= 0; --i)
    if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
	|| fixed_regs[new_reg + i]
	|| global_regs[new_reg + i]
	/* Can't use regs which aren't saved by the prologue.  */
	|| (! df_regs_ever_live_p (new_reg + i)
	    && ! call_used_regs[new_reg + i])
#ifdef LEAF_REGISTERS
	/* We can't use a non-leaf register if we're in a
	   leaf function.  */
	|| (crtl->is_leaf
	    && !LEAF_REGISTERS[new_reg + i])
#endif
#ifdef HARD_REGNO_RENAME_OK
	|| ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
#endif
	)
      return false;

  /* See whether it accepts all modes that occur in
     definition and uses.  */
  for (tmp = this_head->first; tmp; tmp = tmp->next_use)
    if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
	 && ! DEBUG_INSN_P (tmp->insn))
	|| (this_head->need_caller_save_reg
	    && ! (HARD_REGNO_CALL_PART_CLOBBERED
		  (reg, GET_MODE (*tmp->loc)))
	    && (HARD_REGNO_CALL_PART_CLOBBERED
		(new_reg, GET_MODE (*tmp->loc)))))
      return false;

  return true;
}

/* For the chain THIS_HEAD, compute and return the best register to
   rename to.  SUPER_CLASS is the superunion of register classes in
   the chain.  UNAVAILABLE is a set of registers that cannot be used.
   OLD_REG is the register currently used for the chain.  */

int
find_best_rename_reg (du_head_p this_head, enum reg_class super_class,
		      HARD_REG_SET *unavailable, int old_reg)
{
  bool has_preferred_class;
  enum reg_class preferred_class;
  int pass;
  int best_new_reg = old_reg;

  /* Further narrow the set of registers we can use for renaming.
     If the chain needs a call-saved register, mark the call-used
     registers as unavailable.  */
  if (this_head->need_caller_save_reg)
    IOR_HARD_REG_SET (*unavailable, call_used_reg_set);

  /* Mark registers that overlap this chain's lifetime as unavailable.  */
  merge_overlapping_regs (unavailable, this_head);

  /* Compute preferred rename class of super union of all the classes
     in the chain.  */
  preferred_class
    = (enum reg_class) targetm.preferred_rename_class (super_class);

  /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
     over registers that belong to PREFERRED_CLASS and try to find the
     best register within the class.  If that failed, we iterate in
     the second pass over registers that don't belong to the class.
     If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
     ascending order without any preference.  */
  has_preferred_class = (preferred_class != NO_REGS);
  for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
    {
      int new_reg;
      for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
	{
	  if (has_preferred_class
	      && (pass == 0)
	      != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
				    new_reg))
	    continue;

	  /* In the first pass, we force the renaming of registers that
	     don't belong to PREFERRED_CLASS to registers that do, even
	     though the latters were used not very long ago.  */
	  if (check_new_reg_p (old_reg, new_reg, this_head,
			       *unavailable)
	      && ((pass == 0
		   && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
					  best_new_reg))
		  || tick[best_new_reg] > tick[new_reg]))
	    best_new_reg = new_reg;
	}
      if (pass == 0 && best_new_reg != old_reg)
	break;
    }
  return best_new_reg;
}

/* Perform register renaming on the current function.  */
static void
rename_chains (void)
{
  HARD_REG_SET unavailable;
  du_head_p this_head;
  int i;

  memset (tick, 0, sizeof tick);

  CLEAR_HARD_REG_SET (unavailable);
  /* Don't clobber traceback for noreturn functions.  */
  if (frame_pointer_needed)
    {
      add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
      add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
#endif
    }

  FOR_EACH_VEC_ELT (id_to_chain, i, this_head)
    {
      int best_new_reg;
      int n_uses;
      struct du_chain *tmp;
      HARD_REG_SET this_unavailable;
      int reg = this_head->regno;
      enum reg_class super_class = NO_REGS;

      if (this_head->cannot_rename)
	continue;

      if (fixed_regs[reg] || global_regs[reg]
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
	  || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
#else
	  || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
#endif
	  )
	continue;

      COPY_HARD_REG_SET (this_unavailable, unavailable);

      /* Iterate over elements in the chain in order to:
	 1. Count number of uses, and narrow the set of registers we can
	    use for renaming.
	 2. Compute the superunion of register classes in this chain.  */
      n_uses = 0;
      super_class = NO_REGS;
      for (tmp = this_head->first; tmp; tmp = tmp->next_use)
	{
	  if (DEBUG_INSN_P (tmp->insn))
	    continue;
	  n_uses++;
	  IOR_COMPL_HARD_REG_SET (this_unavailable,
				  reg_class_contents[tmp->cl]);
	  super_class
	    = reg_class_superunion[(int) super_class][(int) tmp->cl];
	}

      if (n_uses < 2)
	continue;

      best_new_reg = find_best_rename_reg (this_head, super_class,
					   &this_unavailable, reg);

      if (dump_file)
	{
	  fprintf (dump_file, "Register %s in insn %d",
		   reg_names[reg], INSN_UID (this_head->first->insn));
	  if (this_head->need_caller_save_reg)
	    fprintf (dump_file, " crosses a call");
	}

      if (best_new_reg == reg)
	{
	  tick[reg] = ++this_tick;
	  if (dump_file)
	    fprintf (dump_file, "; no available better choice\n");
	  continue;
	}

      if (dump_file)
	fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);

      regrename_do_replace (this_head, best_new_reg);
      tick[best_new_reg] = ++this_tick;
      df_set_regs_ever_live (best_new_reg, true);
    }
}

/* A structure to record information for each hard register at the start of
   a basic block.  */
struct incoming_reg_info {
  /* Holds the number of registers used in the chain that gave us information
     about this register.  Zero means no information known yet, while a
     negative value is used for something that is part of, but not the first
     register in a multi-register value.  */
  int nregs;
  /* Set to true if we have accesses that conflict in the number of registers
     used.  */
  bool unusable;
};

/* A structure recording information about each basic block.  It is saved
   and restored around basic block boundaries.
   A pointer to such a structure is stored in each basic block's aux field
   during regrename_analyze, except for blocks we know can't be optimized
   (such as entry and exit blocks).  */
struct bb_rename_info
{
  /* The basic block corresponding to this structure.  */
  basic_block bb;
  /* Copies of the global information.  */
  bitmap_head open_chains_set;
  bitmap_head incoming_open_chains_set;
  struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
};

/* Initialize a rename_info structure P for basic block BB, which starts a new
   scan.  */
static void
init_rename_info (struct bb_rename_info *p, basic_block bb)
{
  int i;
  df_ref *def_rec;
  HARD_REG_SET start_chains_set;

  p->bb = bb;
  bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
  bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);

  open_chains = NULL;
  bitmap_clear (&open_chains_set);

  CLEAR_HARD_REG_SET (live_in_chains);
  REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
    {
      df_ref def = *def_rec;
      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
	SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
    }

  /* Open chains based on information from (at least one) predecessor
     block.  This gives us a chance later on to combine chains across
     basic block boundaries.  Inconsistencies (in access sizes) will
     be caught normally and dealt with conservatively by disabling the
     chain for renaming, and there is no risk of losing optimization
     opportunities by opening chains either: if we did not open the
     chains, we'd have to track the live register as a hard reg, and
     we'd be unable to rename it in any case.  */
  CLEAR_HARD_REG_SET (start_chains_set);
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      struct incoming_reg_info *iri = p->incoming + i;
      if (iri->nregs > 0 && !iri->unusable
	  && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
	{
	  SET_HARD_REG_BIT (start_chains_set, i);
	  remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
	}
    }
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      struct incoming_reg_info *iri = p->incoming + i;
      if (TEST_HARD_REG_BIT (start_chains_set, i))
	{
	  du_head_p chain;
	  if (dump_file)
	    fprintf (dump_file, "opening incoming chain\n");
	  chain = create_new_chain (i, iri->nregs, NULL, NULL_RTX, NO_REGS);
	  bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
	}
    }
}

/* Record in RI that the block corresponding to it has an incoming
   live value, described by CHAIN.  */
static void
set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain)
{
  int i;
  int incoming_nregs = ri->incoming[chain->regno].nregs;
  int nregs;

  /* If we've recorded the same information before, everything is fine.  */
  if (incoming_nregs == chain->nregs)
    {
      if (dump_file)
	fprintf (dump_file, "reg %d/%d already recorded\n",
		 chain->regno, chain->nregs);
      return;
    }

  /* If we have no information for any of the involved registers, update
     the incoming array.  */
  nregs = chain->nregs;
  while (nregs-- > 0)
    if (ri->incoming[chain->regno + nregs].nregs != 0
	|| ri->incoming[chain->regno + nregs].unusable)
      break;
  if (nregs < 0)
    {
      nregs = chain->nregs;
      ri->incoming[chain->regno].nregs = nregs;
      while (nregs-- > 1)
	ri->incoming[chain->regno + nregs].nregs = -nregs;
      if (dump_file)
	fprintf (dump_file, "recorded reg %d/%d\n",
		 chain->regno, chain->nregs);
      return;
    }

  /* There must be some kind of conflict.  Prevent both the old and
     new ranges from being used.  */
  if (incoming_nregs < 0)
    ri->incoming[chain->regno + incoming_nregs].unusable = true;
  for (i = 0; i < chain->nregs; i++)
    ri->incoming[chain->regno + i].unusable = true;
}

/* Merge the two chains C1 and C2 so that all conflict information is
   recorded and C1, and the id of C2 is changed to that of C1.  */
static void
merge_chains (du_head_p c1, du_head_p c2)
{
  if (c1 == c2)
    return;

  if (c2->first != NULL)
    {
      if (c1->first == NULL)
	c1->first = c2->first;
      else
	c1->last->next_use = c2->first;
      c1->last = c2->last;
    }

  c2->first = c2->last = NULL;
  c2->id = c1->id;

  IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts);
  bitmap_ior_into (&c1->conflicts, &c2->conflicts);

  c1->need_caller_save_reg |= c2->need_caller_save_reg;
  c1->cannot_rename |= c2->cannot_rename;
}

/* Analyze the current function and build chains for renaming.  */

void
regrename_analyze (bitmap bb_mask)
{
  struct bb_rename_info *rename_info;
  int i;
  basic_block bb;
  int n_bbs;
  int *inverse_postorder;

  inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
  n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);

  /* Gather some information about the blocks in this function.  */
  rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks_for_fn (cfun));
  i = 0;
  FOR_EACH_BB (bb)
    {
      struct bb_rename_info *ri = rename_info + i;
      ri->bb = bb;
      if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
	bb->aux = NULL;
      else
	bb->aux = ri;
      i++;
    }

  current_id = 0;
  id_to_chain.create (0);
  bitmap_initialize (&open_chains_set, &bitmap_default_obstack);

  /* The order in which we visit blocks ensures that whenever
     possible, we only process a block after at least one of its
     predecessors, which provides a "seeding" effect to make the logic
     in set_incoming_from_chain and init_rename_info useful.  */

  for (i = 0; i < n_bbs; i++)
    {
      basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]);
      struct bb_rename_info *this_info;
      bool success;
      edge e;
      edge_iterator ei;
      int old_length = id_to_chain.length ();

      this_info = (struct bb_rename_info *) bb1->aux;
      if (this_info == NULL)
	continue;

      if (dump_file)
	fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);

      init_rename_info (this_info, bb1);

      success = build_def_use (bb1);
      if (!success)
	{
	  if (dump_file)
	    fprintf (dump_file, "failed\n");
	  bb1->aux = NULL;
	  id_to_chain.truncate (old_length);
	  current_id = old_length;
	  bitmap_clear (&this_info->incoming_open_chains_set);
	  open_chains = NULL;
	  if (insn_rr.exists ())
	    {
	      rtx insn;
	      FOR_BB_INSNS (bb1, insn)
		{
		  insn_rr_info *p = &insn_rr[INSN_UID (insn)];
		  p->op_info = NULL;
		}
	    }
	  continue;
	}

      if (dump_file)
	dump_def_use_chain (old_length);
      bitmap_copy (&this_info->open_chains_set, &open_chains_set);

      /* Add successor blocks to the worklist if necessary, and record
	 data about our own open chains at the end of this block, which
	 will be used to pre-open chains when processing the successors.  */
      FOR_EACH_EDGE (e, ei, bb1->succs)
	{
	  struct bb_rename_info *dest_ri;
	  struct du_head *chain;

	  if (dump_file)
	    fprintf (dump_file, "successor block %d\n", e->dest->index);

	  if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
	    continue;
	  dest_ri = (struct bb_rename_info *)e->dest->aux;
	  if (dest_ri == NULL)
	    continue;
	  for (chain = open_chains; chain; chain = chain->next_chain)
	    set_incoming_from_chain (dest_ri, chain);
	}
    }

  free (inverse_postorder);

  /* Now, combine the chains data we have gathered across basic block
     boundaries.

     For every basic block, there may be chains open at the start, or at the
     end.  Rather than exclude them from renaming, we look for open chains
     with matching registers at the other side of the CFG edge.

     For a given chain using register R, open at the start of block B, we
     must find an open chain using R on the other side of every edge leading
     to B, if the register is live across this edge.  In the code below,
     N_PREDS_USED counts the number of edges where the register is live, and
     N_PREDS_JOINED counts those where we found an appropriate chain for
     joining.

     We perform the analysis for both incoming and outgoing edges, but we
     only need to merge once (in the second part, after verifying outgoing
     edges).  */
  FOR_EACH_BB (bb)
    {
      struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
      unsigned j;
      bitmap_iterator bi;

      if (bb_ri == NULL)
	continue;

      if (dump_file)
	fprintf (dump_file, "processing bb %d in edges\n", bb->index);

      EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
	{
	  edge e;
	  edge_iterator ei;
	  struct du_head *chain = regrename_chain_from_id (j);
	  int n_preds_used = 0, n_preds_joined = 0;

	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      struct bb_rename_info *src_ri;
	      unsigned k;
	      bitmap_iterator bi2;
	      HARD_REG_SET live;
	      bool success = false;

	      REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
	      if (!range_overlaps_hard_reg_set_p (live, chain->regno,
						  chain->nregs))
		continue;
	      n_preds_used++;

	      if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
		continue;

	      src_ri = (struct bb_rename_info *)e->src->aux;
	      if (src_ri == NULL)
		continue;

	      EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
					0, k, bi2)
		{
		  struct du_head *outgoing_chain = regrename_chain_from_id (k);

		  if (outgoing_chain->regno == chain->regno
		      && outgoing_chain->nregs == chain->nregs)
		    {
		      n_preds_joined++;
		      success = true;
		      break;
		    }
		}
	      if (!success && dump_file)
		fprintf (dump_file, "failure to match with pred block %d\n",
			 e->src->index);
	    }
	  if (n_preds_joined < n_preds_used)
	    {
	      if (dump_file)
		fprintf (dump_file, "cannot rename chain %d\n", j);
	      chain->cannot_rename = 1;
	    }
	}
    }
  FOR_EACH_BB (bb)
    {
      struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
      unsigned j;
      bitmap_iterator bi;

      if (bb_ri == NULL)
	continue;

      if (dump_file)
	fprintf (dump_file, "processing bb %d out edges\n", bb->index);

      EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
	{
	  edge e;
	  edge_iterator ei;
	  struct du_head *chain = regrename_chain_from_id (j);
	  int n_succs_used = 0, n_succs_joined = 0;

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      bool printed = false;
	      struct bb_rename_info *dest_ri;
	      unsigned k;
	      bitmap_iterator bi2;
	      HARD_REG_SET live;

	      REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
	      if (!range_overlaps_hard_reg_set_p (live, chain->regno,
						  chain->nregs))
		continue;
	      
	      n_succs_used++;

	      dest_ri = (struct bb_rename_info *)e->dest->aux;
	      if (dest_ri == NULL)
		continue;

	      EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
					0, k, bi2)
		{
		  struct du_head *incoming_chain = regrename_chain_from_id (k);

		  if (incoming_chain->regno == chain->regno
		      && incoming_chain->nregs == chain->nregs)
		    {
		      if (dump_file)
			{
			  if (!printed)
			    fprintf (dump_file,
				     "merging blocks for edge %d -> %d\n",
				     e->src->index, e->dest->index);
			  printed = true;
			  fprintf (dump_file,
				   "  merging chains %d (->%d) and %d (->%d) [%s]\n",
				   k, incoming_chain->id, j, chain->id, 
				   reg_names[incoming_chain->regno]);
			}

		      merge_chains (chain, incoming_chain);
		      n_succs_joined++;
		      break;
		    }
		}
	    }
	  if (n_succs_joined < n_succs_used)
	    {
	      if (dump_file)
		fprintf (dump_file, "cannot rename chain %d\n",
			 j);
	      chain->cannot_rename = 1;
	    }
	}
    }

  free (rename_info);

  FOR_EACH_BB (bb)
    bb->aux = NULL;
}

void
regrename_do_replace (struct du_head *head, int reg)
{
  struct du_chain *chain;
  unsigned int base_regno = head->regno;
  enum machine_mode mode;

  for (chain = head->first; chain; chain = chain->next_use)
    {
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      struct reg_attrs *attr = REG_ATTRS (*chain->loc);
      int reg_ptr = REG_POINTER (*chain->loc);

      if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
	INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
      else
	{
	  *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
	  if (regno >= FIRST_PSEUDO_REGISTER)
	    ORIGINAL_REGNO (*chain->loc) = regno;
	  REG_ATTRS (*chain->loc) = attr;
	  REG_POINTER (*chain->loc) = reg_ptr;
	}

      df_insn_rescan (chain->insn);
    }

  mode = GET_MODE (*head->first->loc);
  head->regno = reg;
  head->nregs = hard_regno_nregs[reg][mode];
}


/* True if we found a register with a size mismatch, which means that we
   can't track its lifetime accurately.  If so, we abort the current block
   without renaming.  */
static bool fail_current_block;

/* Return true if OP is a reg for which all bits are set in PSET, false
   if all bits are clear.
   In other cases, set fail_current_block and return false.  */

static bool
verify_reg_in_set (rtx op, HARD_REG_SET *pset)
{
  unsigned regno, nregs;
  bool all_live, all_dead;
  if (!REG_P (op))
    return false;

  regno = REGNO (op);
  nregs = hard_regno_nregs[regno][GET_MODE (op)];
  all_live = all_dead = true;
  while (nregs-- > 0)
    if (TEST_HARD_REG_BIT (*pset, regno + nregs))
      all_dead = false;
    else
      all_live = false;
  if (!all_dead && !all_live)
    {
      fail_current_block = true;
      return false;
    }
  return all_live;
}

/* Return true if OP is a reg that is being tracked already in some form.
   May set fail_current_block if it sees an unhandled case of overlap.  */

static bool
verify_reg_tracked (rtx op)
{
  return (verify_reg_in_set (op, &live_hard_regs)
	  || verify_reg_in_set (op, &live_in_chains));
}

/* Called through note_stores.  DATA points to a rtx_code, either SET or
   CLOBBER, which tells us which kind of rtx to look at.  If we have a
   match, record the set register in live_hard_regs and in the hard_conflicts
   bitmap of open chains.  */

static void
note_sets_clobbers (rtx x, const_rtx set, void *data)
{
  enum rtx_code code = *(enum rtx_code *)data;
  struct du_head *chain;

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);
  if (!REG_P (x) || GET_CODE (set) != code)
    return;
  /* There must not be pseudos at this point.  */
  gcc_assert (HARD_REGISTER_P (x));
  add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
  for (chain = open_chains; chain; chain = chain->next_chain)
    add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
}

static void
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
	      enum op_type type)
{
  struct du_head **p;
  rtx x = *loc;
  enum machine_mode mode = GET_MODE (x);
  unsigned this_regno = REGNO (x);
  int this_nregs = hard_regno_nregs[this_regno][mode];

  if (action == mark_write)
    {
      if (type == OP_OUT)
	create_new_chain (this_regno, this_nregs, loc, insn, cl);
      return;
    }

  if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
    return;

  for (p = &open_chains; *p;)
    {
      struct du_head *head = *p;
      struct du_head *next = head->next_chain;
      int exact_match = (head->regno == this_regno
			 && head->nregs == this_nregs);
      int superset = (this_regno <= head->regno
		      && this_regno + this_nregs >= head->regno + head->nregs);
      int subset = (this_regno >= head->regno
		      && this_regno + this_nregs <= head->regno + head->nregs);

      if (!bitmap_bit_p (&open_chains_set, head->id)
	  || head->regno + head->nregs <= this_regno
	  || this_regno + this_nregs <= head->regno)
	{
	  p = &head->next_chain;
	  continue;
	}

      if (action == mark_read || action == mark_access)
	{
	  /* ??? Class NO_REGS can happen if the md file makes use of
	     EXTRA_CONSTRAINTS to match registers.  Which is arguably
	     wrong, but there we are.  */

	  if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Cannot rename chain %s (%d) at insn %d (%s)\n",
			 reg_names[head->regno], head->id, INSN_UID (insn),
			 scan_actions_name[(int) action]);
	      head->cannot_rename = 1;
	      if (superset)
		{
		  unsigned nregs = this_nregs;
		  head->regno = this_regno;
		  head->nregs = this_nregs;
		  while (nregs-- > 0)
		    SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
		  if (dump_file)
		    fprintf (dump_file,
			     "Widening register in chain %s (%d) at insn %d\n",
			     reg_names[head->regno], head->id, INSN_UID (insn));
		}
	      else if (!subset)
		{
		  fail_current_block = true;
		  if (dump_file)
		    fprintf (dump_file,
			     "Failing basic block due to unhandled overlap\n");
		}
	    }
	  else
	    {
	      struct du_chain *this_du;
	      this_du = XOBNEW (&rename_obstack, struct du_chain);
	      this_du->next_use = 0;
	      this_du->loc = loc;
	      this_du->insn = insn;
	      this_du->cl = cl;
	      if (head->first == NULL)
		head->first = this_du;
	      else
		head->last->next_use = this_du;
	      record_operand_use (head, this_du);
	      head->last = this_du;
	    }
	  /* Avoid adding the same location in a DEBUG_INSN multiple times,
	     which could happen with non-exact overlap.  */
	  if (DEBUG_INSN_P (insn))
	    return;
	  /* Otherwise, find any other chains that do not match exactly;
	     ensure they all get marked unrenamable.  */
	  p = &head->next_chain;
	  continue;
	}

      /* Whether the terminated chain can be used for renaming
	 depends on the action and this being an exact match.
	 In either case, we remove this element from open_chains.  */

      if ((action == terminate_dead || action == terminate_write)
	  && (superset || subset))
	{
	  unsigned nregs;

	  if (subset && !superset)
	    head->cannot_rename = 1;
	  bitmap_clear_bit (&open_chains_set, head->id);

	  nregs = head->nregs;
	  while (nregs-- > 0)
	    {
	      CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
	      if (subset && !superset
		  && (head->regno + nregs < this_regno
		      || head->regno + nregs >= this_regno + this_nregs))
		SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
	    }

	  *p = next;
	  if (dump_file)
	    fprintf (dump_file,
		     "Closing chain %s (%d) at insn %d (%s%s)\n",
		     reg_names[head->regno], head->id, INSN_UID (insn),
		     scan_actions_name[(int) action],
		     superset ? ", superset" : subset ? ", subset" : "");
	}
      else if (action == terminate_dead || action == terminate_write)
	{
	  /* In this case, tracking liveness gets too hard.  Fail the
	     entire basic block.  */
	  if (dump_file)
	    fprintf (dump_file,
		     "Failing basic block due to unhandled overlap\n");
	  fail_current_block = true;
	  return;
	}
      else
	{
	  head->cannot_rename = 1;
	  if (dump_file)
	    fprintf (dump_file,
		     "Cannot rename chain %s (%d) at insn %d (%s)\n",
		     reg_names[head->regno], head->id, INSN_UID (insn),
		     scan_actions_name[(int) action]);
	  p = &head->next_chain;
	}
    }
}

/* Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */

static void
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
		  enum scan_actions action, enum machine_mode mode,
		  addr_space_t as)
{
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  int i, j;

  if (action == mark_write || action == mark_access)
    return;

  switch (code)
    {
    case PLUS:
      {
	rtx orig_op0 = XEXP (x, 0);
	rtx orig_op1 = XEXP (x, 1);
	RTX_CODE code0 = GET_CODE (orig_op0);
	RTX_CODE code1 = GET_CODE (orig_op1);
	rtx op0 = orig_op0;
	rtx op1 = orig_op1;
	rtx *locI = NULL;
	rtx *locB = NULL;
	enum rtx_code index_code = SCRATCH;

	if (GET_CODE (op0) == SUBREG)
	  {
	    op0 = SUBREG_REG (op0);
	    code0 = GET_CODE (op0);
	  }

	if (GET_CODE (op1) == SUBREG)
	  {
	    op1 = SUBREG_REG (op1);
	    code1 = GET_CODE (op1);
	  }

	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
	    || code0 == ZERO_EXTEND || code1 == MEM)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	    index_code = GET_CODE (*locI);
	  }
	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
		 || code1 == ZERO_EXTEND || code0 == MEM)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	    index_code = GET_CODE (*locI);
	  }
	else if (code0 == CONST_INT || code0 == CONST
		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
	  {
	    locB = &XEXP (x, 1);
	    index_code = GET_CODE (XEXP (x, 0));
	  }
	else if (code1 == CONST_INT || code1 == CONST
		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
	  {
	    locB = &XEXP (x, 0);
	    index_code = GET_CODE (XEXP (x, 1));
	  }
	else if (code0 == REG && code1 == REG)
	  {
	    int index_op;
	    unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);

	    if (REGNO_OK_FOR_INDEX_P (regno1)
		&& regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
	      index_op = 1;
	    else if (REGNO_OK_FOR_INDEX_P (regno0)
		     && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
	      index_op = 0;
	    else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
		     || REGNO_OK_FOR_INDEX_P (regno1))
	      index_op = 1;
	    else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
	      index_op = 0;
	    else
	      index_op = 1;

	    locI = &XEXP (x, index_op);
	    locB = &XEXP (x, !index_op);
	    index_code = GET_CODE (*locI);
	  }
	else if (code0 == REG)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	    index_code = GET_CODE (*locI);
	  }
	else if (code1 == REG)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	    index_code = GET_CODE (*locI);
	  }

	if (locI)
	  scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as);
	if (locB)
	  scan_rtx_address (insn, locB,
			    base_reg_class (mode, as, PLUS, index_code),
			    action, mode, as);

	return;
      }

    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
#ifndef AUTO_INC_DEC
      /* If the target doesn't claim to handle autoinc, this must be
	 something special, like a stack push.  Kill this chain.  */
      action = mark_all_read;
#endif
      break;

    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
			base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
					MEM, SCRATCH),
			action, GET_MODE (x), MEM_ADDR_SPACE (x));
      return;

    case REG:
      scan_rtx_reg (insn, loc, cl, action, OP_IN);
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
    }
}

static void
scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
	  enum op_type type)
{
  const char *fmt;
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  int i, j;

  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    CASE_CONST_ANY:
    case SYMBOL_REF:
    case LABEL_REF:
    case CC0:
    case PC:
      return;

    case REG:
      scan_rtx_reg (insn, loc, cl, action, type);
      return;

    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
			base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
					MEM, SCRATCH),
			action, GET_MODE (x), MEM_ADDR_SPACE (x));
      return;

    case SET:
      scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
      scan_rtx (insn, &SET_DEST (x), cl, action,
		(GET_CODE (PATTERN (insn)) == COND_EXEC
		 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
      return;

    case STRICT_LOW_PART:
      scan_rtx (insn, &XEXP (x, 0), cl, action,
		verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
      return;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      scan_rtx (insn, &XEXP (x, 0), cl, action,
		(type == OP_IN ? OP_IN :
		 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
      scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
      scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
      return;

    case POST_INC:
    case PRE_INC:
    case POST_DEC:
    case PRE_DEC:
    case POST_MODIFY:
    case PRE_MODIFY:
      /* Should only happen inside MEM.  */
      gcc_unreachable ();

    case CLOBBER:
      scan_rtx (insn, &SET_DEST (x), cl, action,
		(GET_CODE (PATTERN (insn)) == COND_EXEC
		 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
      return;

    case EXPR_LIST:
      scan_rtx (insn, &XEXP (x, 0), cl, action, type);
      if (XEXP (x, 1))
	scan_rtx (insn, &XEXP (x, 1), cl, action, type);
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	scan_rtx (insn, &XEXP (x, i), cl, action, type);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
    }
}

/* Hide operands of the current insn (of which there are N_OPS) by
   substituting cc0 for them.
   Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
   For every bit set in DO_NOT_HIDE, we leave the operand alone.
   If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
   and earlyclobbers.  */

static void
hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
	       unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
{
  int i;
  int alt = which_alternative;
  for (i = 0; i < n_ops; i++)
    {
      old_operands[i] = recog_data.operand[i];
      /* Don't squash match_operator or match_parallel here, since
	 we don't know that all of the contained registers are
	 reachable by proper operands.  */
      if (recog_data.constraints[i][0] == '\0')
	continue;
      if (do_not_hide & (1 << i))
	continue;
      if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
	  || recog_op_alt[i][alt].earlyclobber)
	*recog_data.operand_loc[i] = cc0_rtx;
    }
  for (i = 0; i < recog_data.n_dups; i++)
    {
      int opn = recog_data.dup_num[i];
      old_dups[i] = *recog_data.dup_loc[i];
      if (do_not_hide & (1 << opn))
	continue;
      if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
	  || recog_op_alt[opn][alt].earlyclobber)
	*recog_data.dup_loc[i] = cc0_rtx;
    }
}

/* Undo the substitution performed by hide_operands.  INSN is the insn we
   are processing; the arguments are the same as in hide_operands.  */

static void
restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups)
{
  int i;
  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i] = old_dups[i];
  for (i = 0; i < n_ops; i++)
    *recog_data.operand_loc[i] = old_operands[i];
  if (recog_data.n_dups)
    df_insn_rescan (insn);
}

/* For each output operand of INSN, call scan_rtx to create a new
   open chain.  Do this only for normal or earlyclobber outputs,
   depending on EARLYCLOBBER.  If INSN_INFO is nonnull, use it to
   record information about the operands in the insn.  */

static void
record_out_operands (rtx insn, bool earlyclobber, insn_rr_info *insn_info)
{
  int n_ops = recog_data.n_operands;
  int alt = which_alternative;

  int i;

  for (i = 0; i < n_ops + recog_data.n_dups; i++)
    {
      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
      rtx *loc = (i < n_ops
		  ? recog_data.operand_loc[opn]
		  : recog_data.dup_loc[i - n_ops]);
      rtx op = *loc;
      enum reg_class cl = recog_op_alt[opn][alt].cl;

      struct du_head *prev_open;

      if (recog_data.operand_type[opn] != OP_OUT
	  || recog_op_alt[opn][alt].earlyclobber != earlyclobber)
	continue;

      if (insn_info)
	cur_operand = insn_info->op_info + i;

      prev_open = open_chains;
      scan_rtx (insn, loc, cl, mark_write, OP_OUT);

      /* ??? Many targets have output constraints on the SET_DEST
	 of a call insn, which is stupid, since these are certainly
	 ABI defined hard registers.  For these, and for asm operands
	 that originally referenced hard registers, we must record that
	 the chain cannot be renamed.  */
      if (CALL_P (insn)
	  || (asm_noperands (PATTERN (insn)) > 0
	      && REG_P (op)
	      && REGNO (op) == ORIGINAL_REGNO (op)))
	{
	  if (prev_open != open_chains)
	    open_chains->cannot_rename = 1;
	}
    }
  cur_operand = NULL;
}

/* Build def/use chain.  */

static bool
build_def_use (basic_block bb)
{
  rtx insn;
  unsigned HOST_WIDE_INT untracked_operands;

  fail_current_block = false;

  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
    {
      if (NONDEBUG_INSN_P (insn))
	{
	  int n_ops;
	  rtx note;
	  rtx old_operands[MAX_RECOG_OPERANDS];
	  rtx old_dups[MAX_DUP_OPERANDS];
	  int i;
	  int alt;
	  int predicated;
	  enum rtx_code set_code = SET;
	  enum rtx_code clobber_code = CLOBBER;
	  insn_rr_info *insn_info = NULL;

	  /* Process the insn, determining its effect on the def-use
	     chains and live hard registers.  We perform the following
	     steps with the register references in the insn, simulating
	     its effect:
	     (1) Deal with earlyclobber operands and CLOBBERs of non-operands
	         by creating chains and marking hard regs live.
	     (2) Any read outside an operand causes any chain it overlaps
	         with to be marked unrenamable.
	     (3) Any read inside an operand is added if there's already
	         an open chain for it.
	     (4) For any REG_DEAD note we find, close open chains that
	         overlap it.
	     (5) For any non-earlyclobber write we find, close open chains
	         that overlap it.
	     (6) For any non-earlyclobber write we find in an operand, make
	         a new chain or mark the hard register as live.
	     (7) For any REG_UNUSED, close any chains we just opened.

	     We cannot deal with situations where we track a reg in one mode
	     and see a reference in another mode; these will cause the chain
	     to be marked unrenamable or even cause us to abort the entire
	     basic block.  */

	  extract_insn (insn);
	  if (! constrain_operands (1))
	    fatal_insn_not_found (insn);
	  preprocess_constraints ();
	  alt = which_alternative;
	  n_ops = recog_data.n_operands;
	  untracked_operands = 0;

	  if (insn_rr.exists ())
	    {
	      insn_info = &insn_rr[INSN_UID (insn)];
	      insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
					      recog_data.n_operands);
	      memset (insn_info->op_info, 0,
		      sizeof (operand_rr_info) * recog_data.n_operands);
	    }

	  /* Simplify the code below by rewriting things to reflect
	     matching constraints.  Also promote OP_OUT to OP_INOUT in
	     predicated instructions, but only for register operands
	     that are already tracked, so that we can create a chain
	     when the first SET makes a register live.  */

	  predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
	  for (i = 0; i < n_ops; ++i)
	    {
	      rtx op = recog_data.operand[i];
	      int matches = recog_op_alt[i][alt].matches;
	      if (matches >= 0)
		recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
	      if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
	          || (predicated && recog_data.operand_type[i] == OP_OUT))
		{
		  recog_data.operand_type[i] = OP_INOUT;
		  /* A special case to deal with instruction patterns that
		     have matching operands with different modes.  If we're
		     not already tracking such a reg, we won't start here,
		     and we must instead make sure to make the operand visible
		     to the machinery that tracks hard registers.  */
		  if (matches >= 0
		      && (GET_MODE_SIZE (recog_data.operand_mode[i])
			  != GET_MODE_SIZE (recog_data.operand_mode[matches]))
		      && !verify_reg_in_set (op, &live_in_chains))
		    {
		      untracked_operands |= 1 << i;
		      untracked_operands |= 1 << matches;
		    }
		}
	      /* If there's an in-out operand with a register that is not
		 being tracked at all yet, open a chain.  */
	      if (recog_data.operand_type[i] == OP_INOUT
		  && !(untracked_operands & (1 << i))
		  && REG_P (op)
		  && !verify_reg_tracked (op))
		{
		  enum machine_mode mode = GET_MODE (op);
		  unsigned this_regno = REGNO (op);
		  unsigned this_nregs = hard_regno_nregs[this_regno][mode];
		  create_new_chain (this_regno, this_nregs, NULL, NULL_RTX,
				    NO_REGS);
		}
	    }

	  if (fail_current_block)
	    break;

	  /* Step 1a: Mark hard registers that are clobbered in this insn,
	     outside an operand, as live.  */
	  hide_operands (n_ops, old_operands, old_dups, untracked_operands,
			 false);
	  note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
	  restore_operands (insn, n_ops, old_operands, old_dups);

	  /* Step 1b: Begin new chains for earlyclobbered writes inside
	     operands.  */
	  record_out_operands (insn, true, insn_info);

	  /* Step 2: Mark chains for which we have reads outside operands
	     as unrenamable.
	     We do this by munging all operands into CC0, and closing
	     everything remaining.  */

	  hide_operands (n_ops, old_operands, old_dups, untracked_operands,
			 false);
	  scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
	  restore_operands (insn, n_ops, old_operands, old_dups);

	  /* Step 2B: Can't rename function call argument registers.  */
	  if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
	    scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
		      NO_REGS, mark_all_read, OP_IN);

	  /* Step 2C: Can't rename asm operands that were originally
	     hard registers.  */
	  if (asm_noperands (PATTERN (insn)) > 0)
	    for (i = 0; i < n_ops; i++)
	      {
		rtx *loc = recog_data.operand_loc[i];
		rtx op = *loc;

		if (REG_P (op)
		    && REGNO (op) == ORIGINAL_REGNO (op)
		    && (recog_data.operand_type[i] == OP_IN
			|| recog_data.operand_type[i] == OP_INOUT))
		  scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
	      }

	  /* Step 3: Append to chains for reads inside operands.  */
	  for (i = 0; i < n_ops + recog_data.n_dups; i++)
	    {
	      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
	      rtx *loc = (i < n_ops
			  ? recog_data.operand_loc[opn]
			  : recog_data.dup_loc[i - n_ops]);
	      enum reg_class cl = recog_op_alt[opn][alt].cl;
	      enum op_type type = recog_data.operand_type[opn];

	      /* Don't scan match_operand here, since we've no reg class
		 information to pass down.  Any operands that we could
		 substitute in will be represented elsewhere.  */
	      if (recog_data.constraints[opn][0] == '\0'
		  || untracked_operands & (1 << opn))
		continue;

	      if (insn_info)
		cur_operand = i == opn ? insn_info->op_info + i : NULL;
	      if (recog_op_alt[opn][alt].is_address)
		scan_rtx_address (insn, loc, cl, mark_read,
				  VOIDmode, ADDR_SPACE_GENERIC);
	      else
		scan_rtx (insn, loc, cl, mark_read, type);
	    }
	  cur_operand = NULL;

	  /* Step 3B: Record updates for regs in REG_INC notes, and
	     source regs in REG_FRAME_RELATED_EXPR notes.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_INC
		|| REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
	      scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
			OP_INOUT);

	  /* Step 4: Close chains for registers that die here, unless
	     the register is mentioned in a REG_UNUSED note.  In that
	     case we keep the chain open until step #7 below to ensure
	     it conflicts with other output operands of this insn.
	     See PR 52573.  Arguably the insn should not have both
	     notes; it has proven difficult to fix that without
	     other undesirable side effects.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_DEAD
		&& !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0))))
	      {
		remove_from_hard_reg_set (&live_hard_regs,
					  GET_MODE (XEXP (note, 0)),
					  REGNO (XEXP (note, 0)));
		scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
			  OP_IN);
	      }

	  /* Step 4B: If this is a call, any chain live at this point
	     requires a caller-saved reg.  */
	  if (CALL_P (insn))
	    {
	      struct du_head *p;
	      for (p = open_chains; p; p = p->next_chain)
		p->need_caller_save_reg = 1;
	    }

	  /* Step 5: Close open chains that overlap writes.  Similar to
	     step 2, we hide in-out operands, since we do not want to
	     close these chains.  We also hide earlyclobber operands,
	     since we've opened chains for them in step 1, and earlier
	     chains they would overlap with must have been closed at
	     the previous insn at the latest, as such operands cannot
	     possibly overlap with any input operands.  */

	  hide_operands (n_ops, old_operands, old_dups, untracked_operands,
			 true);
	  scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
	  restore_operands (insn, n_ops, old_operands, old_dups);

	  /* Step 6a: Mark hard registers that are set in this insn,
	     outside an operand, as live.  */
	  hide_operands (n_ops, old_operands, old_dups, untracked_operands,
			 false);
	  note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
	  restore_operands (insn, n_ops, old_operands, old_dups);

	  /* Step 6b: Begin new chains for writes inside operands.  */
	  record_out_operands (insn, false, insn_info);

	  /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
	     notes for update.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
	      scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
			OP_INOUT);

	  /* Step 7: Close chains for registers that were never
	     really used here.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_UNUSED)
	      {
		remove_from_hard_reg_set (&live_hard_regs,
					  GET_MODE (XEXP (note, 0)),
					  REGNO (XEXP (note, 0)));
		scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
			  OP_IN);
	      }
	}
      else if (DEBUG_INSN_P (insn)
	       && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
	{
	  scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
		    ALL_REGS, mark_read, OP_IN);
	}
      if (insn == BB_END (bb))
	break;
    }

  if (fail_current_block)
    return false;

  return true;
}

/* Initialize the register renamer.  If INSN_INFO is true, ensure that
   insn_rr is nonnull.  */
void
regrename_init (bool insn_info)
{
  gcc_obstack_init (&rename_obstack);
  insn_rr.create (0);
  if (insn_info)
    insn_rr.safe_grow_cleared (get_max_uid ());
}

/* Free all global data used by the register renamer.  */
void
regrename_finish (void)
{
  insn_rr.release ();
  free_chain_data ();
  obstack_free (&rename_obstack, NULL);
}

/* Perform register renaming on the current function.  */

static unsigned int
regrename_optimize (void)
{
  df_set_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();
  df_analyze ();
  df_set_flags (DF_DEFER_INSN_RESCAN);

  regrename_init (false);

  regrename_analyze (NULL);

  rename_chains ();

  regrename_finish ();

  return 0;
}

static bool
gate_handle_regrename (void)
{
  return (optimize > 0 && (flag_rename_registers));
}

namespace {

const pass_data pass_data_regrename =
{
  RTL_PASS, /* type */
  "rnreg", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_RENAME_REGISTERS, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
};

class pass_regrename : public rtl_opt_pass
{
public:
  pass_regrename (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_regrename, ctxt)
  {}

  /* opt_pass methods: */
  bool gate () { return gate_handle_regrename (); }
  unsigned int execute () { return regrename_optimize (); }

}; // class pass_regrename

} // anon namespace

rtl_opt_pass *
make_pass_regrename (gcc::context *ctxt)
{
  return new pass_regrename (ctxt);
}