1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
|
/* Instruction scheduling pass.
Copyright (C) 1992 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Instruction scheduling pass.
This pass implements list scheduling within basic blocks. It is
run after flow analysis, but before register allocation. The
scheduler works as follows:
We compute insn priorities based on data dependencies. Flow
analysis only creates a fraction of the data-dependencies we must
observe: namely, only those dependencies which the combiner can be
expected to use. For this pass, we must therefore create the
remaining dependencies we need to observe: register dependencies,
memory dependencies, dependencies to keep function calls in order,
and the dependence between a conditional branch and the setting of
condition codes are all dealt with here.
The scheduler first traverses the data flow graph, starting with
the last instruction, and proceeding to the first, assigning
values to insn_priority as it goes. This sorts the instructions
topologically by data dependence.
Once priorities have been established, we order the insns using
list scheduling. This works as follows: starting with a list of
all the ready insns, and sorted according to priority number, we
schedule the insn from the end of the list by placing its
predecessors in the list according to their priority order. We
consider this insn scheduled by setting the pointer to the "end" of
the list to point to the previous insn. When an insn has no
predecessors, we also add it to the ready list. When all insns down
to the lowest priority have been scheduled, the critical path of the
basic block has been made as short as possible. The remaining insns
are then scheduled in remaining slots.
The following list shows the order in which we want to break ties:
1. choose insn with lowest conflict cost, ties broken by
2. choose insn with the longest path to end of bb, ties broken by
3. choose insn that kills the most registers, ties broken by
4. choose insn that conflicts with the most ready insns, or finally
5. choose insn with lowest UID.
Memory references complicate matters. Only if we can be certain
that memory references are not part of the data dependency graph
(via true, anti, or output dependence), can we move operations past
memory references. To first approximation, reads can be done
independently, while writes introduce dependencies. Better
approximations will yield fewer dependencies.
Dependencies set up by memory references are treated in exactly the
same way as other dependencies, by using LOG_LINKS.
Having optimized the critical path, we may have also unduly
extended the lifetimes of some registers. If an operation requires
that constants be loaded into registers, it is certainly desirable
to load those constants as early as necessary, but no earlier.
I.e., it will not do to load up a bunch of registers at the
beginning of a basic block only to use them at the end, if they
could be loaded later, since this may result in excessive register
utilization.
Note that since branches are never in basic blocks, but only end
basic blocks, this pass will not do any branch scheduling. But
that is ok, since we can use GNU's delayed branch scheduling
pass to take care of this case.
Also note that no further optimizations based on algebraic identities
are performed, so this pass would be a good one to perform instruction
splitting, such as breaking up a multiply instruction into shifts
and adds where that is profitable.
Given the memory aliasing analysis that this pass should perform,
it should be possible to remove redundant stores to memory, and to
load values from registers instead of hitting memory.
This pass must update information that subsequent passes expect to be
correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
basic_block_end.
The information in the line number notes is carefully retained by this
pass. All other NOTE insns are grouped in their same relative order at
the beginning of basic blocks that have been scheduled. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "basic-block.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
/* Arrays set up by scheduling for the same respective purposes as
similar-named arrays set up by flow analysis. We work with these
arrays during the scheduling pass so we can compare values against
unscheduled code.
Values of these arrays are copied at the end of this pass into the
arrays set up by flow analysis. */
static short *sched_reg_n_deaths;
static int *sched_reg_n_calls_crossed;
static int *sched_reg_live_length;
/* Element N is the next insn that sets (hard or pseudo) register
N within the current basic block; or zero, if there is no
such insn. Needed for new registers which may be introduced
by splitting insns. */
static rtx *reg_last_uses;
static rtx *reg_last_sets;
/* Vector indexed by INSN_UID giving the original ordering of the insns. */
static int *insn_luid;
#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
/* Vector indexed by INSN_UID giving each instruction a priority. */
static int *insn_priority;
#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
static short *insn_costs;
#define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
#define DONE_PRIORITY -1
#define MAX_PRIORITY 0x7fffffff
#define TAIL_PRIORITY 0x7ffffffe
#define LAUNCH_PRIORITY 0x7f000001
#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
/* Vector indexed by INSN_UID giving number of insns referring to this insn. */
static int *insn_ref_count;
#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
/* Vector indexed by INSN_UID giving line-number note in effect for each
insn. For line-number notes, this indicates whether the note may be
reused. */
static rtx *line_note;
#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
/* Vector indexed by basic block number giving the starting line-number
for each basic block. */
static rtx *line_note_head;
/* List of important notes we must keep around. This is a pointer to the
last element in the list. */
static rtx note_list;
/* Regsets telling whether a given register is live or dead before the last
scheduled insn. Must scan the instructions once before scheduling to
determine what registers are live or dead at the end of the block. */
static regset bb_dead_regs;
static regset bb_live_regs;
/* Regset telling whether a given register is live after the insn currently
being scheduled. Before processing an insn, this is equal to bb_live_regs
above. This is used so that we can find registers that are newly born/dead
after processing an insn. */
static regset old_live_regs;
/* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
during the initial scan and reused later. If there are not exactly as
many REG_DEAD notes in the post scheduled code as there were in the
prescheduled code then we trigger an abort because this indicates a bug. */
static rtx dead_notes;
/* Queues, etc. */
/* An instruction is ready to be scheduled when all insns following it
have already been scheduled. It is important to ensure that all
insns which use its result will not be executed until its result
has been computed. We maintain three lists (conceptually):
(1) a "Ready" list of unscheduled, uncommitted insns
(2) a "Scheduled" list of scheduled insns
(3) a "Pending" list of insns which can be scheduled, but
for stalls.
Insns move from the "Ready" list to the "Pending" list when
all insns following them have been scheduled.
Insns move from the "Pending" list to the "Scheduled" list
when there is sufficient space in the pipeline to prevent
stalls between the insn and scheduled insns which use it.
The "Pending" list acts as a buffer to prevent insns
from avalanching.
The "Ready" list is implemented by the variable `ready'.
The "Pending" list are the insns in the LOG_LINKS of ready insns.
The "Scheduled" list is the new insn chain built by this pass. */
/* Implement a circular buffer from which instructions are issued. */
#define Q_SIZE 128
static rtx insn_queue[Q_SIZE];
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & (Q_SIZE-1))
#define NEXT_Q_AFTER(X,C) (((X)+C) & (Q_SIZE-1))
/* Forward declarations. */
static void sched_analyze_2 ();
static void schedule_block ();
/* Main entry point of this file. */
void schedule_insns ();
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
/* Vector indexed by N giving the initial (unchanging) value known
for pseudo-register N. */
static rtx *reg_known_value;
/* Indicates number of valid entries in reg_known_value. */
static int reg_known_value_size;
static rtx
canon_rtx (x)
rtx x;
{
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
&& REGNO (x) <= reg_known_value_size)
return reg_known_value[REGNO (x)];
else if (GET_CODE (x) == PLUS)
{
rtx x0 = canon_rtx (XEXP (x, 0));
rtx x1 = canon_rtx (XEXP (x, 1));
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
{
/* We can tolerate LO_SUMs being offset here; these
rtl are used for nothing other than comparisons. */
if (GET_CODE (x0) == CONST_INT)
return plus_constant_for_output (x1, INTVAL (x0));
else if (GET_CODE (x1) == CONST_INT)
return plus_constant_for_output (x0, INTVAL (x1));
return gen_rtx (PLUS, GET_MODE (x), x0, x1);
}
}
return x;
}
/* Set up all info needed to perform alias analysis on memory references. */
void
init_alias_analysis ()
{
int maxreg = max_reg_num ();
rtx insn;
rtx note;
rtx set;
reg_known_value_size = maxreg;
reg_known_value
= (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
- FIRST_PSEUDO_REGISTER;
bzero (reg_known_value+FIRST_PSEUDO_REGISTER,
(maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
/* Fill in the entries with known constant values. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if ((set = single_set (insn)) != 0
&& GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
&& reg_n_sets[REGNO (SET_DEST (set))] == 1)
|| (note = find_reg_note (insn, REG_EQUIV, 0)) != 0)
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST)
reg_known_value[REGNO (SET_DEST (set))] = XEXP (note, 0);
/* Fill in the remaining entries. */
while (--maxreg >= FIRST_PSEUDO_REGISTER)
if (reg_known_value[maxreg] == 0)
reg_known_value[maxreg] = regno_reg_rtx[maxreg];
}
/* Return 1 if X and Y are identical-looking rtx's.
We use the data in reg_known_value above to see if two registers with
different numbers are, in fact, equivalent. */
static int
rtx_equal_for_memref_p (x, y)
rtx x, y;
{
register int i;
register int j;
register enum rtx_code code;
register char *fmt;
if (x == 0 && y == 0)
return 1;
if (x == 0 || y == 0)
return 0;
x = canon_rtx (x);
y = canon_rtx (y);
if (x == y)
return 1;
code = GET_CODE (x);
/* Rtx's of different codes cannot be equal. */
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
(REG:SI x) and (REG:HI x) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
if (code == REG)
return REGNO (x) == REGNO (y);
if (code == LABEL_REF)
return XEXP (x, 0) == XEXP (y, 0);
if (code == SYMBOL_REF)
return XSTR (x, 0) == XSTR (y, 0);
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'n':
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'V':
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
/* And the corresponding elements must match. */
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
return 0;
break;
case 'e':
if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
return 0;
break;
case 'S':
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'u':
/* These are just backpointers, so they don't matter. */
break;
case '0':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1;
}
/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
X and return it, or return 0 if none found. */
static rtx
find_symbolic_term (x)
rtx x;
{
register int i;
register enum rtx_code code;
register char *fmt;
code = GET_CODE (x);
if (code == SYMBOL_REF || code == LABEL_REF)
return x;
if (GET_RTX_CLASS (code) == 'o')
return 0;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
rtx t;
if (fmt[i] == 'e')
{
t = find_symbolic_term (XEXP (x, i));
if (t != 0)
return t;
}
else if (fmt[i] == 'E')
break;
}
return 0;
}
/* Return nonzero if X and Y (memory addresses) could reference the
same location in memory. C is an offset accumulator. When
C is nonzero, we are testing aliases between X and Y + C.
XSIZE is the size in bytes of the X reference,
similarly YSIZE is the size in bytes for Y.
If XSIZE or YSIZE is zero, we do not know the amount of memory being
referenced (the reference was BLKmode), so make the most pessimistic
assumptions.
We recognize the following cases of non-conflicting memory:
(1) addresses involving the frame pointer cannot conflict
with addresses involving static variables.
(2) static variables with different addresses cannot conflict.
Nice to notice that varying addresses cannot conflict with fp if no
local variables had their addresses taken, but that's too hard now. */
static int
memrefs_conflict_p (xsize, x, ysize, y, c)
rtx x, y;
int xsize, ysize;
int c;
{
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
else if (GET_CODE (x) == LO_SUM)
x = XEXP (x, 1);
else
x = canon_rtx (x);
if (GET_CODE (y) == HIGH)
y = XEXP (y, 0);
else if (GET_CODE (y) == LO_SUM)
y = XEXP (y, 1);
else
y = canon_rtx (y);
if (rtx_equal_for_memref_p (x, y))
return (xsize == 0 || ysize == 0 ||
(c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
if (y == frame_pointer_rtx || y == stack_pointer_rtx)
{
rtx t = y;
int tsize = ysize;
y = x; ysize = xsize;
x = t; xsize = tsize;
}
if (x == frame_pointer_rtx || x == stack_pointer_rtx)
{
rtx y1;
if (CONSTANT_P (y))
return 0;
if (GET_CODE (y) == PLUS
&& canon_rtx (XEXP (y, 0)) == x
&& (y1 = canon_rtx (XEXP (y, 1)))
&& GET_CODE (y1) == CONST_INT)
{
c += INTVAL (y1);
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
}
if (GET_CODE (y) == PLUS
&& (y1 = canon_rtx (XEXP (y, 0)))
&& CONSTANT_P (y1))
return 0;
return 1;
}
if (GET_CODE (x) == PLUS)
{
/* The fact that X is canonicalized means that this
PLUS rtx is canonicalized. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (rtx_equal_for_memref_p (x1, y1))
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
if (rtx_equal_for_memref_p (x0, y0))
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
if (GET_CODE (x1) == CONST_INT)
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y0,
c - INTVAL (x1) + INTVAL (y1));
else
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
else if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
/* Handle case where we cannot understand iteration operators,
but we notice that the base addresses are distinct objects. */
x = find_symbolic_term (x);
if (x == 0)
return 1;
y = find_symbolic_term (y);
if (y == 0)
return 1;
return rtx_equal_for_memref_p (x, y);
}
else if (GET_CODE (x1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
}
else if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
else
return 1;
}
if (GET_CODE (x) == GET_CODE (y))
switch (GET_CODE (x))
{
case MULT:
{
/* Handle cases where we expect the second operands to be the
same, and check only whether the first operand would conflict
or not. */
rtx x0, y0;
rtx x1 = canon_rtx (XEXP (x, 1));
rtx y1 = canon_rtx (XEXP (y, 1));
if (! rtx_equal_for_memref_p (x1, y1))
return 1;
x0 = canon_rtx (XEXP (x, 0));
y0 = canon_rtx (XEXP (y, 0));
if (rtx_equal_for_memref_p (x0, y0))
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
/* Can't properly adjust our sizes. */
if (GET_CODE (x1) != CONST_INT)
return 1;
xsize /= INTVAL (x1);
ysize /= INTVAL (x1);
c /= INTVAL (x1);
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
}
}
if (CONSTANT_P (x))
{
if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
{
c += (INTVAL (y) - INTVAL (x));
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
}
if (GET_CODE (x) == CONST)
{
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, canon_rtx (XEXP (y, 0)), c);
else
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, y, c);
}
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, x, ysize,
canon_rtx (XEXP (y, 0)), c);
if (CONSTANT_P (y))
return (rtx_equal_for_memref_p (x, y)
&& (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));
return 1;
}
return 1;
}
/* Functions to compute memory dependencies.
Since we process the insns in execution order, we can build tables
to keep track of what registers are fixed (and not aliased), what registers
are varying in known ways, and what registers are varying in unknown
ways.
If both memory references are volatile, then there must always be a
dependence between the two references, since their order can not be
changed. A volatile and non-volatile reference can be interchanged
though.
A MEM_IN_STRUCT reference at a varying address can never conflict with a
non-MEM_IN_STRUCT reference at a fixed address. */
/* Read dependence: X is read after read in MEM takes place. There can
only be a dependence here if both reads are volatile. */
int
read_dependence (mem, x)
rtx mem;
rtx x;
{
return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
}
/* True dependence: X is read after store in MEM takes place. */
int
true_dependence (mem, x)
rtx mem;
rtx x;
{
if (RTX_UNCHANGING_P (x))
return 0;
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Anti dependence: X is written after read in MEM takes place. */
int
anti_dependence (mem, x)
rtx mem;
rtx x;
{
if (RTX_UNCHANGING_P (mem))
return 0;
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Output dependence: X is written after store in MEM takes place. */
int
output_dependence (mem, x)
rtx mem;
rtx x;
{
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Helper functions for instruction scheduling. */
/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
of dependence that this link represents. */
void
add_dependence (insn, elem, dep_type)
rtx insn;
rtx elem;
enum reg_note dep_type;
{
rtx link, next;
/* Don't depend an insn on itself. */
if (insn == elem)
return;
/* If elem is part of a sequence that must be scheduled together, then
make the dependence point to the last insn of the sequence.
When HAVE_cc0, it is possible for NOTEs to exist between users and
setters of the condition codes, so we must skip past notes here.
Otherwise, NOTEs are impossible here. */
next = NEXT_INSN (elem);
#ifdef HAVE_cc0
while (next && GET_CODE (next) == NOTE)
next = NEXT_INSN (next);
#endif
if (next && SCHED_GROUP_P (next))
{
/* Notes will never intervene here though, so don't bother checking
for them. */
while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next)))
next = NEXT_INSN (next);
/* Again, don't depend an insn on itself. */
if (insn == next)
return;
/* Make the dependence to NEXT, the last insn of the group, instead
of the original ELEM. */
elem = next;
}
/* Check that we don't already have this dependence. */
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (XEXP (link, 0) == elem)
{
/* If this is a more restrictive type of dependence than the existing
one, then change the existing dependence to this type. */
if ((int) dep_type < (int) REG_NOTE_KIND (link))
PUT_REG_NOTE_KIND (link, dep_type);
return;
}
/* Might want to check one level of transitivity to save conses. */
link = rtx_alloc (INSN_LIST);
/* Insn dependency, not data dependency. */
PUT_REG_NOTE_KIND (link, dep_type);
XEXP (link, 0) = elem;
XEXP (link, 1) = LOG_LINKS (insn);
LOG_LINKS (insn) = link;
}
/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
of INSN. Abort if not found. */
void
remove_dependence (insn, elem)
rtx insn;
rtx elem;
{
rtx prev, link;
int found = 0;
for (prev = 0, link = LOG_LINKS (insn); link;
prev = link, link = XEXP (link, 1))
{
if (XEXP (link, 0) == elem)
{
if (prev)
XEXP (prev, 1) = XEXP (link, 1);
else
LOG_LINKS (insn) = XEXP (link, 1);
found = 1;
}
}
if (! found)
abort ();
return;
}
#ifndef INSN_SCHEDULING
void schedule_insns () {}
#else
#ifndef __GNUC__
#define __inline
#endif
/* Computation of memory dependencies. */
/* The *_insns and *_mems are paired lists. Each pending memory operation
will have a pointer to the MEM rtx on one list and a pointer to the
containing insn on the other list in the same place in the list. */
/* We can't use add_dependence like the old code did, because a single insn
may have multiple memory accesses, and hence needs to be on the list
once for each memory access. Add_dependence won't let you add an insn
to a list more than once. */
/* An INSN_LIST containing all insns with pending read operations. */
static rtx pending_read_insns;
/* An EXPR_LIST containing all MEM rtx's which are pending reads. */
static rtx pending_read_mems;
/* An INSN_LIST containing all insns with pending write operations. */
static rtx pending_write_insns;
/* An EXPR_LIST containing all MEM rtx's which are pending writes. */
static rtx pending_write_mems;
/* Indicates the combined length of the two pending lists. We must prevent
these lists from ever growing too large since the number of dependencies
produced is at least O(N*N), and execution time is at least O(4*N*N), as
a function of the length of these pending lists. */
static int pending_lists_length;
/* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
static rtx unused_insn_list;
/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
static rtx unused_expr_list;
/* The last insn upon which all memory references must depend.
This is an insn which flushed the pending lists, creating a dependency
between it and all previously pending memory references. This creates
a barrier (or a checkpoint) which no memory reference is allowed to cross.
This includes all non constant CALL_INSNs. When we do interprocedural
alias analysis, this restriction can be relaxed.
This may also be an INSN that writes memory if the pending lists grow
too large. */
static rtx last_pending_memory_flush;
/* The last function call we have seen. All hard regs, and, of course,
the last function call, must depend on this. */
static rtx last_function_call;
/* The LOG_LINKS field of this is a list of insns which use a pseudo register
that does not already cross a call. We create dependencies between each
of those insn and the next call insn, to ensure that they won't cross a call
after scheduling is done. */
static rtx sched_before_next_call;
/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
so that insns independent of the last scheduled insn will be preferred
over dependent instructions. */
static rtx last_scheduled_insn;
/* Process an insn's memory dependencies. There are four kinds of
dependencies:
(0) read dependence: read follows read
(1) true dependence: read follows write
(2) anti dependence: write follows read
(3) output dependence: write follows write
We are careful to build only dependencies which actually exist, and
use transitivity to avoid building too many links. */
/* Return the INSN_LIST containing INSN in LIST, or NULL
if LIST does not contain INSN. */
__inline static rtx
find_insn_list (insn, list)
rtx insn;
rtx list;
{
while (list)
{
if (XEXP (list, 0) == insn)
return list;
list = XEXP (list, 1);
}
return 0;
}
/* Compute cost of executing INSN. This is the number of virtual
cycles taken between instruction issue and instruction results. */
__inline static int
insn_cost (insn)
rtx insn;
{
register int cost;
if (INSN_COST (insn))
return INSN_COST (insn);
recog_memoized (insn);
/* A USE insn, or something else we don't need to understand.
We can't pass these directly to result_ready_cost because it will trigger
a fatal error for unrecognizable insns. */
if (INSN_CODE (insn) < 0)
{
INSN_COST (insn) = 1;
return 1;
}
else
{
cost = result_ready_cost (insn);
if (cost < 1)
cost = 1;
INSN_COST (insn) = cost;
return cost;
}
}
/* Compute the priority number for INSN. */
static int
priority (insn)
rtx insn;
{
if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
int prev_priority;
int max_priority;
int this_priority = INSN_PRIORITY (insn);
rtx prev;
if (this_priority > 0)
return this_priority;
max_priority = 1;
/* Nonzero if these insns must be scheduled together. */
if (SCHED_GROUP_P (insn))
{
prev = insn;
while (SCHED_GROUP_P (prev))
{
prev = PREV_INSN (prev);
INSN_REF_COUNT (prev) += 1;
}
}
for (prev = LOG_LINKS (insn); prev; prev = XEXP (prev, 1))
{
rtx x = XEXP (prev, 0);
/* A dependence pointing to a note is always obsolete, because
sched_analyze_insn will have created any necessary new dependences
which replace it. Notes can be created when instructions are
deleted by insn splitting, or by register allocation. */
if (GET_CODE (x) == NOTE)
{
remove_dependence (insn, x);
continue;
}
/* This priority calculation was chosen because it results in the
least instruction movement, and does not hurt the performance
of the resulting code compared to the old algorithm.
This makes the sched algorithm more stable, which results
in better code, because there is less register pressure,
cross jumping is more likely to work, and debugging is easier.
When all instructions have a latency of 1, there is no need to
move any instructions. Subtracting one here ensures that in such
cases all instructions will end up with a priority of one, and
hence no scheduling will be done.
The original code did not subtract the one, and added the
insn_cost of the current instruction to its priority (e.g.
move the insn_cost call down to the end). */
if (REG_NOTE_KIND (prev) == 0)
/* Data dependence. */
prev_priority = priority (x) + insn_cost (x) - 1;
else
/* Anti or output dependence. Don't add the latency of this
insn's result, because it isn't being used. */
prev_priority = priority (x);
if (prev_priority > max_priority)
max_priority = prev_priority;
INSN_REF_COUNT (x) += 1;
}
INSN_PRIORITY (insn) = max_priority;
return INSN_PRIORITY (insn);
}
return 0;
}
/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
them to the unused_*_list variables, so that they can be reused. */
static void
free_pending_lists ()
{
register rtx link, prev_link;
if (pending_read_insns)
{
prev_link = pending_read_insns;
link = XEXP (prev_link, 1);
while (link)
{
prev_link = link;
link = XEXP (link, 1);
}
XEXP (prev_link, 1) = unused_insn_list;
unused_insn_list = pending_read_insns;
pending_read_insns = 0;
}
if (pending_write_insns)
{
prev_link = pending_write_insns;
link = XEXP (prev_link, 1);
while (link)
{
prev_link = link;
link = XEXP (link, 1);
}
XEXP (prev_link, 1) = unused_insn_list;
unused_insn_list = pending_write_insns;
pending_write_insns = 0;
}
if (pending_read_mems)
{
prev_link = pending_read_mems;
link = XEXP (prev_link, 1);
while (link)
{
prev_link = link;
link = XEXP (link, 1);
}
XEXP (prev_link, 1) = unused_expr_list;
unused_expr_list = pending_read_mems;
pending_read_mems = 0;
}
if (pending_write_mems)
{
prev_link = pending_write_mems;
link = XEXP (prev_link, 1);
while (link)
{
prev_link = link;
link = XEXP (link, 1);
}
XEXP (prev_link, 1) = unused_expr_list;
unused_expr_list = pending_write_mems;
pending_write_mems = 0;
}
}
/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
The MEM is a memory reference contained within INSN, which we are saving
so that we can do memory aliasing on it. */
static void
add_insn_mem_dependence (insn_list, mem_list, insn, mem)
rtx *insn_list, *mem_list, insn, mem;
{
register rtx link;
if (unused_insn_list)
{
link = unused_insn_list;
unused_insn_list = XEXP (link, 1);
}
else
link = rtx_alloc (INSN_LIST);
XEXP (link, 0) = insn;
XEXP (link, 1) = *insn_list;
*insn_list = link;
if (unused_expr_list)
{
link = unused_expr_list;
unused_expr_list = XEXP (link, 1);
}
else
link = rtx_alloc (EXPR_LIST);
XEXP (link, 0) = mem;
XEXP (link, 1) = *mem_list;
*mem_list = link;
pending_lists_length++;
}
/* Make a dependency between every memory reference on the pending lists
and INSN, thus flushing the pending lists. */
static void
flush_pending_lists (insn)
rtx insn;
{
rtx link;
while (pending_read_insns)
{
add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
link = pending_read_insns;
pending_read_insns = XEXP (pending_read_insns, 1);
XEXP (link, 1) = unused_insn_list;
unused_insn_list = link;
link = pending_read_mems;
pending_read_mems = XEXP (pending_read_mems, 1);
XEXP (link, 1) = unused_expr_list;
unused_expr_list = link;
}
while (pending_write_insns)
{
add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
link = pending_write_insns;
pending_write_insns = XEXP (pending_write_insns, 1);
XEXP (link, 1) = unused_insn_list;
unused_insn_list = link;
link = pending_write_mems;
pending_write_mems = XEXP (pending_write_mems, 1);
XEXP (link, 1) = unused_expr_list;
unused_expr_list = link;
}
pending_lists_length = 0;
if (last_pending_memory_flush)
add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
last_pending_memory_flush = insn;
}
/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
by the write to the destination of X, and reads of everything mentioned. */
static void
sched_analyze_1 (x, insn)
rtx x;
rtx insn;
{
register int regno;
register rtx dest = SET_DEST (x);
if (dest == 0)
return;
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
{
if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
{
/* The second and third arguments are values read by this insn. */
sched_analyze_2 (XEXP (dest, 1), insn);
sched_analyze_2 (XEXP (dest, 2), insn);
}
dest = SUBREG_REG (dest);
}
if (GET_CODE (dest) == REG)
{
register int offset, bit, i;
regno = REGNO (dest);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
while (--i >= 0)
{
rtx u;
for (u = reg_last_uses[regno+i]; u; u = XEXP (u, 1))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
reg_last_uses[regno + i] = 0;
if (reg_last_sets[regno + i])
add_dependence (insn, reg_last_sets[regno + i],
REG_DEP_OUTPUT);
reg_last_sets[regno + i] = insn;
if ((call_used_regs[i] || global_regs[i])
&& last_function_call)
/* Function calls clobber all call_used regs. */
add_dependence (insn, last_function_call, REG_DEP_ANTI);
}
}
else
{
rtx u;
for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
reg_last_uses[regno] = 0;
if (reg_last_sets[regno])
add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
reg_last_sets[regno] = insn;
/* Don't let it cross a call after scheduling if it doesn't
already cross one. */
if (reg_n_calls_crossed[regno] == 0 && last_function_call)
add_dependence (insn, last_function_call, REG_DEP_ANTI);
}
}
else if (GET_CODE (dest) == MEM)
{
/* Writing memory. */
if (pending_lists_length > 32)
{
/* Flush all pending reads and writes to prevent the pending lists
from getting any larger. Insn scheduling runs too slowly when
these lists get long. The number 32 was chosen because it
seems like a reasonable number. When compiling GCC with itself,
this flush occurs 8 times for sparc, and 10 times for m88k using
the number 32. */
flush_pending_lists (insn);
}
else
{
rtx pending, pending_mem;
pending = pending_read_insns;
pending_mem = pending_read_mems;
while (pending)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
if (anti_dependence (XEXP (pending_mem, 0), dest, insn))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = pending_write_insns;
pending_mem = pending_write_mems;
while (pending)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
if (output_dependence (XEXP (pending_mem, 0), dest))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
if (last_pending_memory_flush)
add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
insn, dest);
}
sched_analyze_2 (XEXP (dest, 0), insn);
}
/* Analyze reads. */
if (GET_CODE (x) == SET)
sched_analyze_2 (SET_SRC (x), insn);
}
/* Analyze the uses of memory and registers in rtx X in INSN. */
static void
sched_analyze_2 (x, insn)
rtx x;
rtx insn;
{
register int i;
register int j;
register enum rtx_code code;
register char *fmt;
if (x == 0)
return;
code = GET_CODE (x);
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
/* Ignore constants. Note that we must handle CONST_DOUBLE here
because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
this does not mean that this insn is using cc0. */
return;
#ifdef HAVE_cc0
case CC0:
{
rtx link, prev;
/* There may be a note before this insn now, but all notes will
be removed before we actually try to schedule the insns, so
it won't cause a problem later. We must avoid it here though. */
/* User of CC0 depends on immediately preceding insn. */
SCHED_GROUP_P (insn) = 1;
/* Make a copy of all dependencies on the immediately previous insn,
and add to this insn. This is so that all the dependencies will
apply to the group. */
prev = PREV_INSN (insn);
while (GET_CODE (prev) == NOTE)
prev = PREV_INSN (prev);
for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
add_dependence (insn, XEXP (link, 0), GET_MODE (link));
return;
}
#endif
case REG:
{
int regno = REGNO (x);
if (regno < FIRST_PSEUDO_REGISTER)
{
int i;
i = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--i >= 0)
{
reg_last_uses[regno + i]
= gen_rtx (INSN_LIST, VOIDmode,
insn, reg_last_uses[regno + i]);
if (reg_last_sets[regno + i])
add_dependence (insn, reg_last_sets[regno + i], 0);
if ((call_used_regs[regno + i] || global_regs[regno + i])
&& last_function_call)
/* Function calls clobber all call_used regs. */
add_dependence (insn, last_function_call, REG_DEP_ANTI);
}
}
else
{
reg_last_uses[regno]
= gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
if (reg_last_sets[regno])
add_dependence (insn, reg_last_sets[regno], 0);
/* If the register does not already cross any calls, then add this
insn to the sched_before_next_call list so that it will still
not cross calls after scheduling. */
if (reg_n_calls_crossed[regno] == 0)
add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
}
return;
}
case MEM:
{
/* Reading memory. */
/* Don't create a dependence for memory references which are known to
be unchanging, such as constant pool accesses. These will never
conflict with any other memory access. */
if (RTX_UNCHANGING_P (x) == 0)
{
rtx pending, pending_mem;
pending = pending_read_insns;
pending_mem = pending_read_mems;
while (pending)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
if (read_dependence (XEXP (pending_mem, 0), x))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = pending_write_insns;
pending_mem = pending_write_mems;
while (pending)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
if (true_dependence (XEXP (pending_mem, 0), x))
add_dependence (insn, XEXP (pending, 0), 0);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
if (last_pending_memory_flush)
add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
/* Always add these dependencies to pending_reads, since
this insn may be followed by a write. */
add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
insn, x);
}
/* Take advantage of tail recursion here. */
sched_analyze_2 (XEXP (x, 0), insn);
return;
}
case ASM_OPERANDS:
case ASM_INPUT:
case UNSPEC_VOLATILE:
case TRAP_IF:
{
rtx u;
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers and all of memory. So must
TRAP_IF and UNSPEC_VOLATILE operations. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
reg_last_uses[i] = 0;
if (reg_last_sets[i]
&& GET_CODE (PATTERN (reg_last_sets[i])) != USE)
add_dependence (insn, reg_last_sets[i], 0);
reg_last_sets[i] = insn;
}
flush_pending_lists (insn);
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
return;
}
break;
}
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
/* These read and modify the result; just consider them writes. */
sched_analyze_1 (x, insn);
return;
}
/* Other cases: walk the insn. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
sched_analyze_2 (XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
sched_analyze_2 (XVECEXP (x, i, j), insn);
}
}
/* Analyze an INSN with pattern X to find all dependencies. */
static void
sched_analyze_insn (x, insn)
rtx x, insn;
{
register RTX_CODE code = GET_CODE (x);
rtx link;
if (code == SET || code == CLOBBER)
sched_analyze_1 (x, insn);
else if (code == PARALLEL)
{
register int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
code = GET_CODE (XVECEXP (x, 0, i));
if (code == SET || code == CLOBBER)
sched_analyze_1 (XVECEXP (x, 0, i), insn);
else
sched_analyze_2 (XVECEXP (x, 0, i), insn);
}
}
else
sched_analyze_2 (x, insn);
/* Handle function calls. */
if (GET_CODE (insn) == CALL_INSN)
{
rtx dep_insn;
rtx prev_dep_insn;
/* When scheduling instructions, we make sure calls don't lose their
accompanying USE insns by depending them one on another in order. */
prev_dep_insn = insn;
dep_insn = PREV_INSN (insn);
while (GET_CODE (dep_insn) == INSN
&& GET_CODE (PATTERN (dep_insn)) == USE)
{
SCHED_GROUP_P (prev_dep_insn) = 1;
/* Make a copy of all dependencies on dep_insn, and add to insn.
This is so that all of the dependencies will apply to the
group. */
for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
add_dependence (insn, XEXP (link, 0), GET_MODE (link));
prev_dep_insn = dep_insn;
dep_insn = PREV_INSN (dep_insn);
}
}
}
/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
for every dependency. */
static int
sched_analyze (head, tail)
rtx head, tail;
{
register rtx insn;
register int n_insns = 0;
register rtx u;
register int luid = 0;
for (insn = head; ; insn = NEXT_INSN (insn))
{
INSN_LUID (insn) = luid++;
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
{
sched_analyze_insn (PATTERN (insn), insn);
n_insns += 1;
}
else if (GET_CODE (insn) == CALL_INSN)
{
rtx dest = 0;
rtx x;
register int i;
/* Any instruction using a hard register which may get clobbered
by a call needs to be marked as dependent on this call.
This prevents a use of a hard return reg from being moved
past a void call (i.e. it does not explicitly set the hard
return reg). */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i] || global_regs[i])
{
for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
reg_last_uses[i] = 0;
if (reg_last_sets[i]
&& GET_CODE (PATTERN (reg_last_sets[i])) != USE)
add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
reg_last_sets[i] = insn;
/* Insn, being a CALL_INSN, magically depends on
`last_function_call' already. */
}
/* For each insn which shouldn't cross a call, add a dependence
between that insn and this call insn. */
x = LOG_LINKS (sched_before_next_call);
while (x)
{
add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
x = XEXP (x, 1);
}
LOG_LINKS (sched_before_next_call) = 0;
sched_analyze_insn (PATTERN (insn), insn);
/* We don't need to flush memory for a function call which does
not involve memory. */
if (! CONST_CALL_P (insn))
{
/* In the absence of interprocedural alias analysis,
we must flush all pending reads and writes, and
start new dependencies starting from here. */
flush_pending_lists (insn);
}
/* Depend this function call (actually, the user of this
function call) on all hard register clobberage. */
last_function_call = insn;
n_insns += 1;
}
if (insn == tail)
return n_insns;
}
}
/* Called when we see a set of a register. If death is true, then we are
scanning backwards. Mark that register as unborn. If nobody says
otherwise, that is how things will remain. If death is false, then we
are scanning forwards. Mark that register as being born. */
static void
sched_note_set (b, x, death)
int b;
rtx x;
int death;
{
register int regno, j;
register rtx reg = SET_DEST (x);
int subreg_p = 0;
if (reg == 0)
return;
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
|| GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
{
/* Must treat modification of just one hardware register of a multi-reg
value or just a byte field of a register exactly the same way that
mark_set_1 in flow.c does. */
if (GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| (GET_CODE (reg) == SUBREG
&& REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg)))
subreg_p = 1;
reg = SUBREG_REG (reg);
}
if (GET_CODE (reg) != REG)
return;
/* Global registers are always live, so the code below does not apply
to them. */
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
{
register int offset = regno / REGSET_ELT_BITS;
register int bit = 1 << (regno % REGSET_ELT_BITS);
if (death)
{
/* If we only set part of the register, then this set does not
kill it. */
if (subreg_p)
return;
/* Try killing this register. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
else
{
/* Make the register live again. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
}
}
else
{
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
}
}
}
}
/* Macros and functions for keeping the priority queue sorted, and
dealing with queueing and unqueueing of instructions. */
#define SCHED_SORT(READY, NEW_READY, OLD_READY) \
do { if ((NEW_READY) - (OLD_READY) == 1) \
swap_sort (READY, NEW_READY); \
else if ((NEW_READY) - (OLD_READY) > 1) \
qsort (READY, NEW_READY, sizeof (rtx), rank_for_schedule); } \
while (0)
/* Returns a positive value if y is preferred; returns a negative value if
x is preferred. Should never return 0, since that will make the sort
unstable. */
static int
rank_for_schedule (x, y)
rtx *x, *y;
{
rtx tmp = *y;
rtx tmp2 = *x;
rtx tmp_dep, tmp2_dep;
int tmp_class, tmp2_class;
int value;
/* Choose the instruction with the highest priority, if different. */
if (value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2))
return value;
if (last_scheduled_insn)
{
/* Classify the instructions into three classes:
1) Data dependent on last schedule insn.
2) Anti/Output dependent on last scheduled insn.
3) Independent of last scheduled insn, or has latency of one.
Choose the insn from the highest numbered class if different. */
tmp_dep = find_insn_list (tmp, LOG_LINKS (last_scheduled_insn));
if (tmp_dep == 0 || insn_cost (tmp) == 1)
tmp_class = 3;
else if (REG_NOTE_KIND (tmp_dep) == 0)
tmp_class = 1;
else
tmp_class = 2;
tmp2_dep = find_insn_list (tmp2, LOG_LINKS (last_scheduled_insn));
if (tmp2_dep == 0 || insn_cost (tmp2) == 1)
tmp2_class = 3;
else if (REG_NOTE_KIND (tmp2_dep) == 0)
tmp2_class = 1;
else
tmp2_class = 2;
if (value = tmp_class - tmp2_class)
return value;
}
/* If insns are equally good, sort by INSN_LUID (original insn order),
so that we make the sort stable. This minimizes instruction movement,
thus minimizing sched's effect on debugging and cross-jumping. */
return INSN_LUID (tmp) - INSN_LUID (tmp2);
}
/* Resort the array A in which only element at index N may be out of order. */
__inline static void
swap_sort (a, n)
rtx *a;
int n;
{
rtx insn = a[n-1];
int i = n-2;
while (i >= 0 && rank_for_schedule (a+i, &insn) >= 0)
{
a[i+1] = a[i];
i -= 1;
}
a[i+1] = insn;
}
static int max_priority;
/* Add INSN to the insn queue so that it fires at least N_CYCLES
before the currently executing insn. */
__inline static void
queue_insn (insn, n_cycles)
rtx insn;
int n_cycles;
{
int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
NEXT_INSN (insn) = insn_queue[next_q];
insn_queue[next_q] = insn;
q_size += 1;
}
/* Return nonzero if PAT is the pattern of an insn which makes a
register live. */
__inline static int
birthing_insn_p (pat)
rtx pat;
{
int j;
if (reload_completed == 1)
return 0;
if (GET_CODE (pat) == SET
&& GET_CODE (SET_DEST (pat)) == REG)
{
rtx dest = SET_DEST (pat);
int i = REGNO (dest);
int offset = i / REGSET_ELT_BITS;
int bit = 1 << (i % REGSET_ELT_BITS);
/* It would be more accurate to use refers_to_regno_p or
reg_mentioned_p to determine when the dest is not live before this
insn. */
if (bb_live_regs[offset] & bit)
return (reg_n_sets[i] == 1);
return 0;
}
if (GET_CODE (pat) == PARALLEL)
{
for (j = 0; j < XVECLEN (pat, 0); j++)
if (birthing_insn_p (XVECEXP (pat, 0, j)))
return 1;
}
return 0;
}
/* If PREV is an insn which is immediately ready to execute, return 1,
otherwise return 0. We may adjust its priority if that will help shorten
register lifetimes. */
static int
launch_link (prev)
rtx prev;
{
rtx pat = PATTERN (prev);
rtx note;
/* MAX of (a) number of cycles needed by prev
(b) number of cycles before needed resources are free. */
int n_cycles = insn_cost (prev);
int n_deaths = 0;
/* Trying to shorten register lives after reload has completed
is useless and wrong. It gives inaccurate schedules. */
if (reload_completed == 0)
{
for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD)
n_deaths += 1;
/* Defer scheduling insns which kill registers, since that
shortens register lives. Prefer scheduling insns which
make registers live for the same reason. */
switch (n_deaths)
{
default:
INSN_PRIORITY (prev) >>= 3;
break;
case 3:
INSN_PRIORITY (prev) >>= 2;
break;
case 2:
case 1:
INSN_PRIORITY (prev) >>= 1;
break;
case 0:
if (birthing_insn_p (pat))
{
int max = max_priority;
if (max > INSN_PRIORITY (prev))
INSN_PRIORITY (prev) = max;
}
break;
}
}
if (n_cycles <= 1)
return 1;
queue_insn (prev, n_cycles);
return 0;
}
/* INSN is the "currently executing insn". Launch each insn which was
waiting on INSN (in the backwards dataflow sense). READY is a
vector of insns which are ready to fire. N_READY is the number of
elements in READY. */
static int
launch_links (insn, ready, n_ready)
rtx insn;
rtx *ready;
int n_ready;
{
rtx link;
int new_ready = n_ready;
if (LOG_LINKS (insn) == 0)
return n_ready;
/* This is used by the function launch_link above. */
if (n_ready > 0)
max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
else
max_priority = INSN_PRIORITY (insn);
for (link = LOG_LINKS (insn); link != 0; link = XEXP (link, 1))
{
rtx prev = XEXP (link, 0);
if ((INSN_REF_COUNT (prev) -= 1) == 0 && launch_link (prev))
ready[new_ready++] = prev;
}
return new_ready;
}
/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
dead_notes list. */
static void
create_reg_dead_note (reg, insn)
rtx reg, insn;
{
rtx link = dead_notes;
if (link == 0)
/* In theory, we should not end up with more REG_DEAD reg notes than we
started with. In practice, this can occur as the result of bugs in
flow, combine and/or sched. */
{
#if 1
abort ();
#else
link = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (link, REG_DEAD);
#endif
}
else
dead_notes = XEXP (dead_notes, 1);
XEXP (link, 0) = reg;
XEXP (link, 1) = REG_NOTES (insn);
REG_NOTES (insn) = link;
}
/* Subroutine on attach_deaths_insn--handles the recursive search
through INSN. If SET_P is true, then x is being modified by the insn. */
static void
attach_deaths (x, insn, set_p)
rtx x;
rtx insn;
int set_p;
{
register int i;
register int j;
register enum rtx_code code;
register char *fmt;
if (x == 0)
return;
code = GET_CODE (x);
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case LABEL_REF:
case SYMBOL_REF:
case CONST:
case CODE_LABEL:
case PC:
case CC0:
/* Get rid of the easy cases first. */
return;
case REG:
{
/* If the register dies in this insn, queue that note, and mark
this register as needing to die. */
/* This code is very similar to mark_used_1 (if set_p is false)
and mark_set_1 (if set_p is true) in flow.c. */
register int regno = REGNO (x);
register int offset = regno / REGSET_ELT_BITS;
register int bit = 1 << (regno % REGSET_ELT_BITS);
int all_needed = (old_live_regs[offset] & bit);
int some_needed = (old_live_regs[offset] & bit);
if (set_p)
return;
if (regno < FIRST_PSEUDO_REGISTER)
{
int n;
n = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--n > 0)
{
some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
& 1 << ((regno + n) % REGSET_ELT_BITS));
all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
& 1 << ((regno + n) % REGSET_ELT_BITS));
}
}
/* If it wasn't live before we started, then add a REG_DEAD note.
We must check the previous lifetime info not the current info,
because we may have to execute this code several times, e.g.
once for a clobber (which doesn't add a note) and later
for a use (which does add a note).
Always make the register live. We must do this even if it was
live before, because this may be an insn which sets and uses
the same register, in which case the register has already been
killed, so we must make it live again.
Global registers are always live, and should never have a REG_DEAD
note added for them, so none of the code below applies to them. */
if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
{
/* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
STACK_POINTER_REGNUM, since these are always considered to be
live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
if (regno != FRAME_POINTER_REGNUM
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
&& regno != STACK_POINTER_REGNUM)
{
if (! all_needed && ! dead_or_set_p (insn, x))
{
/* If none of the words in X is needed, make a REG_DEAD
note. Otherwise, we must make partial REG_DEAD
notes. */
if (! some_needed)
create_reg_dead_note (x, insn);
else
{
int i;
/* Don't make a REG_DEAD note for a part of a
register that is set in the insn. */
for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
i >= 0; i--)
if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
& 1 << ((regno +i) % REGSET_ELT_BITS)) == 0
&& ! dead_or_set_regno_p (insn, regno + i))
create_reg_dead_note (gen_rtx (REG, word_mode,
regno + i),
insn);
}
}
}
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = 1 << ((regno + j) % REGSET_ELT_BITS);
bb_dead_regs[offset] &= ~bit;
bb_live_regs[offset] |= bit;
}
}
else
{
bb_dead_regs[offset] &= ~bit;
bb_live_regs[offset] |= bit;
}
}
return;
}
case MEM:
/* Handle tail-recursive case. */
attach_deaths (XEXP (x, 0), insn, 0);
return;
case SUBREG:
case STRICT_LOW_PART:
/* These two cases preserve the value of SET_P, so handle them
separately. */
attach_deaths (XEXP (x, 0), insn, set_p);
return;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
/* This case preserves the value of SET_P for the first operand, but
clears it for the other two. */
attach_deaths (XEXP (x, 0), insn, set_p);
attach_deaths (XEXP (x, 1), insn, 0);
attach_deaths (XEXP (x, 2), insn, 0);
return;
default:
/* Other cases: walk the insn. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
attach_deaths (XEXP (x, i), insn, 0);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
attach_deaths (XVECEXP (x, i, j), insn, 0);
}
}
}
/* After INSN has executed, add register death notes for each register
that is dead after INSN. */
static void
attach_deaths_insn (insn)
rtx insn;
{
rtx x = PATTERN (insn);
register RTX_CODE code = GET_CODE (x);
if (code == SET)
{
attach_deaths (SET_SRC (x), insn, 0);
/* A register might die here even if it is the destination, e.g.
it is the target of a volatile read and is otherwise unused.
Hence we must always call attach_deaths for the SET_DEST. */
attach_deaths (SET_DEST (x), insn, 1);
}
else if (code == PARALLEL)
{
register int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
code = GET_CODE (XVECEXP (x, 0, i));
if (code == SET)
{
attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
}
else if (code == CLOBBER)
attach_deaths (XEXP (XVECEXP (x, 0, i), 0), insn, 1);
else
attach_deaths (XVECEXP (x, 0, i), insn, 0);
}
}
else if (code == CLOBBER)
attach_deaths (XEXP (x, 0), insn, 1);
else
attach_deaths (x, insn, 0);
}
/* Delete notes beginning with INSN and maybe put them in the chain
of notes ended by NOTE_LIST.
Returns the insn following the notes. */
static rtx
unlink_notes (insn, tail)
rtx insn, tail;
{
rtx prev = PREV_INSN (insn);
while (insn != tail && GET_CODE (insn) == NOTE)
{
rtx next = NEXT_INSN (insn);
/* Delete the note from its current position. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
/* Record line-number notes so they can be reused. */
LINE_NOTE (insn) = insn;
else
{
/* Insert the note at the end of the notes list. */
PREV_INSN (insn) = note_list;
if (note_list)
NEXT_INSN (note_list) = insn;
note_list = insn;
}
insn = next;
}
return insn;
}
/* Data structure for keeping track of register information
during that register's life. */
struct sometimes
{
short offset; short bit;
short live_length; short calls_crossed;
};
/* Constructor for `sometimes' data structure. */
static int
new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
struct sometimes *regs_sometimes_live;
int offset, bit;
int sometimes_max;
{
register struct sometimes *p;
register int regno = offset * REGSET_ELT_BITS + bit;
int i;
/* There should never be a register greater than max_regno here. If there
is, it means that a define_split has created a new pseudo reg. This
is not allowed, since there will not be flow info available for any
new register, so catch the error here. */
if (regno >= max_regno)
abort ();
p = ®s_sometimes_live[sometimes_max];
p->offset = offset;
p->bit = bit;
p->live_length = 0;
p->calls_crossed = 0;
sometimes_max++;
return sometimes_max;
}
/* Count lengths of all regs we are currently tracking,
and find new registers no longer live. */
static void
finish_sometimes_live (regs_sometimes_live, sometimes_max)
struct sometimes *regs_sometimes_live;
int sometimes_max;
{
int i;
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = ®s_sometimes_live[i];
int regno;
regno = p->offset * REGSET_ELT_BITS + p->bit;
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
}
}
/* Use modified list scheduling to rearrange insns in basic block
B. FILE, if nonzero, is where we dump interesting output about
this pass. */
static void
schedule_block (b, file)
int b;
FILE *file;
{
rtx insn, last;
rtx last_note = 0;
rtx *ready, link;
int i, j, n_ready = 0, new_ready, n_insns = 0;
int sched_n_insns = 0;
#define NEED_NOTHING 0
#define NEED_HEAD 1
#define NEED_TAIL 2
int new_needs;
/* HEAD and TAIL delimit the region being scheduled. */
rtx head = basic_block_head[b];
rtx tail = basic_block_end[b];
/* PREV_HEAD and NEXT_TAIL are the boundaries of the insns
being scheduled. When the insns have been ordered,
these insns delimit where the new insns are to be
spliced back into the insn chain. */
rtx next_tail;
rtx prev_head;
/* Keep life information accurate. */
register struct sometimes *regs_sometimes_live;
int sometimes_max;
if (file)
fprintf (file, ";;\t -- basic block number %d from %d to %d --\n",
b, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
i = max_reg_num ();
reg_last_uses = (rtx *) alloca (i * sizeof (rtx));
bzero (reg_last_uses, i * sizeof (rtx));
reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
bzero (reg_last_sets, i * sizeof (rtx));
/* Remove certain insns at the beginning from scheduling,
by advancing HEAD. */
/* At the start of a function, before reload has run, don't delay getting
parameters from hard registers into pseudo registers. */
if (reload_completed == 0 && b == 0)
{
while (head != tail
&& GET_CODE (head) == NOTE
&& NOTE_LINE_NUMBER (head) != NOTE_INSN_FUNCTION_BEG)
head = NEXT_INSN (head);
while (head != tail
&& GET_CODE (head) == INSN
&& GET_CODE (PATTERN (head)) == SET)
{
rtx src = SET_SRC (PATTERN (head));
while (GET_CODE (src) == SUBREG
|| GET_CODE (src) == SIGN_EXTEND
|| GET_CODE (src) == ZERO_EXTEND
|| GET_CODE (src) == SIGN_EXTRACT
|| GET_CODE (src) == ZERO_EXTRACT)
src = XEXP (src, 0);
if (GET_CODE (src) != REG
|| REGNO (src) >= FIRST_PSEUDO_REGISTER)
break;
/* Keep this insn from ever being scheduled. */
INSN_REF_COUNT (head) = 1;
head = NEXT_INSN (head);
}
}
/* Don't include any notes or labels at the beginning of the
basic block, or notes at the ends of basic blocks. */
while (head != tail)
{
if (GET_CODE (head) == NOTE)
head = NEXT_INSN (head);
else if (GET_CODE (tail) == NOTE)
tail = PREV_INSN (tail);
else if (GET_CODE (head) == CODE_LABEL)
head = NEXT_INSN (head);
else break;
}
/* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
to schedule this block. */
if (head == tail
&& (GET_CODE (head) == NOTE || GET_CODE (head) == CODE_LABEL))
return;
#if 0
/* This short-cut doesn't work. It does not count call insns crossed by
registers in reg_sometimes_live. It does not mark these registers as
dead if they die in this block. It does not mark these registers live
(or create new reg_sometimes_live entries if necessary) if they are born
in this block.
The easy solution is to just always schedule a block. This block only
has one insn, so this won't slow down this pass by much. */
if (head == tail)
return;
#endif
/* Exclude certain insns at the end of the basic block by advancing TAIL. */
/* This isn't correct. Instead of advancing TAIL, should assign very
high priorities to these insns to guarantee that they get scheduled last.
If these insns are ignored, as is currently done, the register life info
may be incorrectly computed. */
if (GET_CODE (tail) == INSN && GET_CODE (PATTERN (tail)) == USE)
{
/* Don't try to reorder any USE insns at the end of any block.
They must be last to ensure proper register allocation.
Exclude them all from scheduling. */
do
{
/* If we are down to one USE insn, then there are no insns to
schedule. */
if (head == tail)
return;
tail = prev_nonnote_insn (tail);
}
while (GET_CODE (tail) == INSN
&& GET_CODE (PATTERN (tail)) == USE);
#if 0
/* This short-cut does not work. See comment above. */
if (head == tail)
return;
#endif
}
else if (GET_CODE (tail) == JUMP_INSN
&& SCHED_GROUP_P (tail) == 0
&& GET_CODE (PREV_INSN (tail)) == INSN
&& GET_CODE (PATTERN (PREV_INSN (tail))) == USE
&& REG_FUNCTION_VALUE_P (XEXP (PATTERN (PREV_INSN (tail)), 0)))
{
/* Don't let the setting of the function's return value register
move from this jump. For the same reason we want to get the
parameters into pseudo registers as quickly as possible, we
want to set the function's return value register as late as
possible. */
/* If this is the only insn in the block, then there is no need to
schedule the block. */
if (head == tail)
return;
tail = PREV_INSN (tail);
if (head == tail)
return;
tail = prev_nonnote_insn (tail);
#if 0
/* This shortcut does not work. See comment above. */
if (head == tail)
return;
#endif
}
#ifdef HAVE_cc0
/* This is probably wrong. Instead of doing this, should give this insn
a very high priority to guarantee that it gets scheduled last. */
/* Can not separate an insn that sets the condition code from one that
uses it. So we must leave an insn that sets cc0 where it is. */
if (sets_cc0_p (PATTERN (tail)))
tail = PREV_INSN (tail);
#endif
/* Now HEAD through TAIL are the insns actually to be rearranged;
Let PREV_HEAD and NEXT_TAIL enclose them. */
prev_head = PREV_INSN (head);
next_tail = NEXT_INSN (tail);
/* Initialize basic block data structures. */
dead_notes = 0;
pending_read_insns = 0;
pending_read_mems = 0;
pending_write_insns = 0;
pending_write_mems = 0;
pending_lists_length = 0;
last_pending_memory_flush = 0;
last_function_call = 0;
last_scheduled_insn = 0;
LOG_LINKS (sched_before_next_call) = 0;
n_insns += sched_analyze (head, tail);
if (n_insns == 0)
{
free_pending_lists ();
return;
}
/* Allocate vector to hold insns to be rearranged (except those
insns which are controlled by an insn with SCHED_GROUP_P set).
All these insns are included between ORIG_HEAD and ORIG_TAIL,
as those variables ultimately are set up. */
ready = (rtx *) alloca ((n_insns+1) * sizeof (rtx));
/* TAIL is now the last of the insns to be rearranged.
Put those insns into the READY vector. */
insn = tail;
/* If the last insn is a branch, force it to be the last insn after
scheduling. Also, don't try to reorder calls at the ends the basic
block -- this will only lead to worse register allocation. */
if (GET_CODE (tail) == CALL_INSN || GET_CODE (tail) == JUMP_INSN)
{
priority (tail);
ready[n_ready++] = tail;
INSN_PRIORITY (tail) = TAIL_PRIORITY;
INSN_REF_COUNT (tail) = 0;
insn = PREV_INSN (tail);
}
/* Assign priorities to instructions. Also check whether they
are in priority order already. If so then I will be nonnegative.
We use this shortcut only before reloading. */
#if 0
i = reload_completed ? DONE_PRIORITY : MAX_PRIORITY;
#endif
for (; insn != prev_head; insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
priority (insn);
if (INSN_REF_COUNT (insn) == 0)
ready[n_ready++] = insn;
if (SCHED_GROUP_P (insn))
{
while (SCHED_GROUP_P (insn))
{
insn = PREV_INSN (insn);
while (GET_CODE (insn) == NOTE)
insn = PREV_INSN (insn);
priority (insn);
}
continue;
}
#if 0
if (i < 0)
continue;
if (INSN_PRIORITY (insn) < i)
i = INSN_PRIORITY (insn);
else if (INSN_PRIORITY (insn) > i)
i = DONE_PRIORITY;
#endif
}
}
#if 0
/* This short-cut doesn't work. It does not count call insns crossed by
registers in reg_sometimes_live. It does not mark these registers as
dead if they die in this block. It does not mark these registers live
(or create new reg_sometimes_live entries if necessary) if they are born
in this block.
The easy solution is to just always schedule a block. These blocks tend
to be very short, so this doesn't slow down this pass by much. */
/* If existing order is good, don't bother to reorder. */
if (i != DONE_PRIORITY)
{
if (file)
fprintf (file, ";; already scheduled\n");
if (reload_completed == 0)
{
for (i = 0; i < sometimes_max; i++)
regs_sometimes_live[i].live_length += n_insns;
finish_sometimes_live (regs_sometimes_live, sometimes_max);
}
free_pending_lists ();
return;
}
#endif
/* Scan all the insns to be scheduled, removing NOTE insns
and register death notes.
Line number NOTE insns end up in NOTE_LIST.
Register death notes end up in DEAD_NOTES.
Recreate the register life information for the end of this basic
block. */
if (reload_completed == 0)
{
bcopy (basic_block_live_at_start[b], bb_live_regs, regset_bytes);
bzero (bb_dead_regs, regset_bytes);
if (b == 0)
{
/* This is the first block in the function. There may be insns
before head that we can't schedule. We still need to examine
them though for accurate register lifetime analysis. */
/* We don't want to remove any REG_DEAD notes as the code below
does. */
for (insn = basic_block_head[b]; insn != head;
insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
/* See if the register gets born here. */
/* We must check for registers being born before we check for
registers dying. It is possible for a register to be born
and die in the same insn, e.g. reading from a volatile
memory location into an otherwise unused register. Such
a register must be marked as dead after this insn. */
if (GET_CODE (PATTERN (insn)) == SET
|| GET_CODE (PATTERN (insn)) == CLOBBER)
sched_note_set (b, PATTERN (insn), 0);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int j;
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
/* ??? This code is obsolete and should be deleted. It
is harmless though, so we will leave it in for now. */
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
}
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if ((REG_NOTE_KIND (link) == REG_DEAD
|| REG_NOTE_KIND (link) == REG_UNUSED)
/* Verify that the REG_NOTE has a legal value. */
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
register int offset = regno / REGSET_ELT_BITS;
register int bit = 1 << (regno % REGSET_ELT_BITS);
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno,
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
}
}
}
}
/* If debugging information is being produced, keep track of the line
number notes for each insn. */
if (write_symbols != NO_DEBUG)
{
/* We must use the true line number for the first insn in the block
that was computed and saved at the start of this pass. We can't
use the current line number, because scheduling of the previous
block may have changed the current line number. */
rtx line = line_note_head[b];
for (insn = basic_block_head[b];
insn != next_tail;
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
else
LINE_NOTE (insn) = line;
}
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx prev, next, link;
/* Farm out notes. This is needed to keep the debugger from
getting completely deranged. */
if (GET_CODE (insn) == NOTE)
{
prev = insn;
insn = unlink_notes (insn, next_tail);
if (prev == tail)
abort ();
if (prev == head)
abort ();
if (insn == next_tail)
abort ();
}
if (reload_completed == 0
&& GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
/* See if the register gets born here. */
/* We must check for registers being born before we check for
registers dying. It is possible for a register to be born and
die in the same insn, e.g. reading from a volatile memory
location into an otherwise unused register. Such a register
must be marked as dead after this insn. */
if (GET_CODE (PATTERN (insn)) == SET
|| GET_CODE (PATTERN (insn)) == CLOBBER)
sched_note_set (b, PATTERN (insn), 0);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int j;
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
/* ??? This code is obsolete and should be deleted. It
is harmless though, so we will leave it in for now. */
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
}
/* Need to know what registers this insn kills. */
for (prev = 0, link = REG_NOTES (insn); link; link = next)
{
int regno;
next = XEXP (link, 1);
if ((REG_NOTE_KIND (link) == REG_DEAD
|| REG_NOTE_KIND (link) == REG_UNUSED)
/* Verify that the REG_NOTE has a legal value. */
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
register int offset = regno / REGSET_ELT_BITS;
register int bit = 1 << (regno % REGSET_ELT_BITS);
/* Only unlink REG_DEAD notes; leave REG_UNUSED notes
alone. */
if (REG_NOTE_KIND (link) == REG_DEAD)
{
if (prev)
XEXP (prev, 1) = next;
else
REG_NOTES (insn) = next;
XEXP (link, 1) = dead_notes;
dead_notes = link;
}
else
prev = link;
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno,
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
}
else
prev = link;
}
}
}
if (reload_completed == 0)
{
/* Keep track of register lives. */
old_live_regs = (regset) alloca (regset_bytes);
regs_sometimes_live
= (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
sometimes_max = 0;
/* Start with registers live at end. */
for (j = 0; j < regset_size; j++)
{
int live = bb_live_regs[j];
old_live_regs[j] = live;
if (live)
{
register int bit;
for (bit = 0; bit < REGSET_ELT_BITS; bit++)
if (live & (1 << bit))
sometimes_max = new_sometimes_live (regs_sometimes_live, j,
bit, sometimes_max);
}
}
}
SCHED_SORT (ready, n_ready, 1);
if (file)
{
fprintf (file, ";; ready list initially:\n;; ");
for (i = 0; i < n_ready; i++)
fprintf (file, "%d ", INSN_UID (ready[i]));
fprintf (file, "\n\n");
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_PRIORITY (insn) > 0)
fprintf (file, ";; insn[%4d]: priority = %4d, ref_count = %4d\n",
INSN_UID (insn), INSN_PRIORITY (insn),
INSN_REF_COUNT (insn));
}
/* Now HEAD and TAIL are going to become disconnected
entirely from the insn chain. */
tail = ready[0];
/* Q_SIZE will always be zero here. */
q_ptr = 0;
bzero (insn_queue, sizeof (insn_queue));
/* Now, perform list scheduling. */
/* Where we start inserting insns is after TAIL. */
last = next_tail;
new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
? NEED_HEAD : NEED_NOTHING);
if (PREV_INSN (next_tail) == basic_block_end[b])
new_needs |= NEED_TAIL;
new_ready = n_ready;
while (sched_n_insns < n_insns)
{
q_ptr = NEXT_Q (q_ptr);
/* Add all pending insns that can be scheduled without stalls to the
ready list. */
for (insn = insn_queue[q_ptr]; insn; insn = NEXT_INSN (insn))
{
if (file)
fprintf (file, ";; launching %d before %d with no stalls\n",
INSN_UID (insn), INSN_UID (last));
ready[new_ready++] = insn;
q_size -= 1;
}
insn_queue[q_ptr] = 0;
/* If there are no ready insns, stall until one is ready and add all
of the pending insns at that point to the ready list. */
if (new_ready == 0)
{
register int stalls;
for (stalls = 1; stalls < Q_SIZE; stalls++)
if (insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])
{
for (; insn; insn = NEXT_INSN (insn))
{
if (file)
fprintf (file, ";; issue insn %d before %d with %d stalls\n",
INSN_UID (insn), INSN_UID (last), stalls);
ready[new_ready++] = insn;
q_size -= 1;
}
insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
break;
}
#if 0
/* This looks logically correct, but on the SPEC benchmark set on
the SPARC, I get better code without it. */
q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
#endif
}
/* There should be some instructions waiting to fire. */
if (new_ready == 0)
abort ();
/* Sort the ready list and choose the best insn to schedule.
N_READY holds the number of items that were scheduled the last time,
minus the one instruction scheduled on the last loop iteration; it
is not modified for any other reason in this loop. */
SCHED_SORT (ready, new_ready, n_ready);
n_ready = new_ready;
last_scheduled_insn = insn = ready[0];
if (DONE_PRIORITY_P (insn))
abort ();
if (reload_completed == 0)
{
/* Process this insn, and each insn linked to this one which must
be immediately output after this insn. */
do
{
/* First we kill registers set by this insn, and then we
make registers used by this insn live. This is the opposite
order used above because we are traversing the instructions
backwards. */
/* Strictly speaking, we should scan REG_UNUSED notes and make
every register mentioned there live, however, we will just
kill them again immediately below, so there doesn't seem to
be any reason why we bother to do this. */
/* See if this is the last notice we must take of a register. */
if (GET_CODE (PATTERN (insn)) == SET
|| GET_CODE (PATTERN (insn)) == CLOBBER)
sched_note_set (b, PATTERN (insn), 1);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int j;
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 1);
}
/* This code keeps life analysis information up to date. */
if (GET_CODE (insn) == CALL_INSN)
{
register struct sometimes *p;
/* A call kills all call used and global registers, except
for those mentioned in the call pattern which will be
made live again later. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i] || global_regs[i])
{
register int offset = i / REGSET_ELT_BITS;
register int bit = 1 << (i % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
}
/* Regs live at the time of a call instruction must not
go in a register clobbered by calls. Record this for
all regs now live. Note that insns which are born or
die in a call do not cross a call, so this must be done
after the killings (above) and before the births
(below). */
p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++, p++)
if (bb_live_regs[p->offset] & (1 << p->bit))
p->calls_crossed += 1;
}
/* Make every register used live, and add REG_DEAD notes for
registers which were not live before we started. */
attach_deaths_insn (insn);
/* Find registers now made live by that instruction. */
for (i = 0; i < regset_size; i++)
{
int diff = bb_live_regs[i] & ~old_live_regs[i];
if (diff)
{
register int bit;
old_live_regs[i] |= diff;
for (bit = 0; bit < REGSET_ELT_BITS; bit++)
if (diff & (1 << bit))
sometimes_max
= new_sometimes_live (regs_sometimes_live, i, bit,
sometimes_max);
}
}
/* Count lengths of all regs we are worrying about now,
and handle registers no longer live. */
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = ®s_sometimes_live[i];
int regno = p->offset*REGSET_ELT_BITS + p->bit;
p->live_length += 1;
if ((bb_live_regs[p->offset] & (1 << p->bit)) == 0)
{
/* This is the end of one of this register's lifetime
segments. Save the lifetime info collected so far,
and clear its bit in the old_live_regs entry. */
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
old_live_regs[p->offset] &= ~(1 << p->bit);
/* Delete the reg_sometimes_live entry for this reg by
copying the last entry over top of it. */
*p = regs_sometimes_live[--sometimes_max];
/* ...and decrement i so that this newly copied entry
will be processed. */
i--;
}
}
link = insn;
insn = PREV_INSN (insn);
}
while (SCHED_GROUP_P (link));
/* Set INSN back to the insn we are scheduling now. */
insn = ready[0];
}
/* Schedule INSN. Remove it from the ready list. */
ready += 1;
n_ready -= 1;
sched_n_insns += 1;
NEXT_INSN (insn) = last;
PREV_INSN (last) = insn;
last = insn;
/* Everything that precedes INSN now either becomes "ready", if
it can execute immediately before INSN, or "pending", if
there must be a delay. Give INSN high enough priority that
at least one (maybe more) reg-killing insns can be launched
ahead of all others. Mark INSN as scheduled by changing its
priority to -1. */
INSN_PRIORITY (insn) = LAUNCH_PRIORITY;
new_ready = launch_links (insn, ready, n_ready);
INSN_PRIORITY (insn) = DONE_PRIORITY;
/* Schedule all prior insns that must not be moved. */
if (SCHED_GROUP_P (insn))
{
/* Disable these insns from being launched. */
link = insn;
while (SCHED_GROUP_P (link))
{
/* Disable these insns from being launched by anybody. */
link = PREV_INSN (link);
INSN_REF_COUNT (link) = 0;
}
/* None of these insns can move forward into delay slots. */
while (SCHED_GROUP_P (insn))
{
insn = PREV_INSN (insn);
new_ready = launch_links (insn, ready, new_ready);
INSN_PRIORITY (insn) = DONE_PRIORITY;
sched_n_insns += 1;
NEXT_INSN (insn) = last;
PREV_INSN (last) = insn;
last = insn;
}
}
}
if (q_size != 0)
abort ();
if (reload_completed == 0)
finish_sometimes_live (regs_sometimes_live, sometimes_max);
/* HEAD is now the first insn in the chain of insns that
been scheduled by the loop above.
TAIL is the last of those insns. */
head = insn;
/* NOTE_LIST is the end of a chain of notes previously found
among the insns. Insert them at the beginning of the insns. */
if (note_list != 0)
{
rtx note_head = note_list;
while (PREV_INSN (note_head))
note_head = PREV_INSN (note_head);
PREV_INSN (head) = note_list;
NEXT_INSN (note_list) = head;
head = note_head;
}
/* In theory, there should be no REG_DEAD notes leftover at the end.
In practice, this can occur as the result of bugs in flow, combine.c,
and/or sched.c. The values of the REG_DEAD notes remaining are
meaningless, because dead_notes is just used as a free list. */
#if 1
if (dead_notes != 0)
abort ();
#endif
if (new_needs & NEED_HEAD)
basic_block_head[b] = head;
PREV_INSN (head) = prev_head;
NEXT_INSN (prev_head) = head;
if (new_needs & NEED_TAIL)
basic_block_end[b] = tail;
NEXT_INSN (tail) = next_tail;
PREV_INSN (next_tail) = tail;
/* Restore the line-number notes of each insn. */
if (write_symbols != NO_DEBUG)
{
rtx line, note, prev, new;
int notes = 0;
head = basic_block_head[b];
next_tail = NEXT_INSN (basic_block_end[b]);
/* Determine the current line-number. We want to know the current
line number of the first insn of the block here, in case it is
different from the true line number that was saved earlier. If
different, then we need a line number note before the first insn
of this block. If it happens to be the same, then we don't want to
emit another line number note here. */
for (line = head; line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
break;
/* Walk the insns keeping track of the current line-number and inserting
the line-number notes as needed. */
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
else if (! (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
&& (note = LINE_NOTE (insn)) != 0
&& note != line
&& (line == 0
|| NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
|| NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
{
line = note;
prev = PREV_INSN (insn);
if (LINE_NOTE (note))
{
/* Re-use the original line-number note. */
LINE_NOTE (note) = 0;
PREV_INSN (note) = prev;
NEXT_INSN (prev) = note;
PREV_INSN (insn) = note;
NEXT_INSN (note) = insn;
}
else
{
notes++;
new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
}
}
if (file && notes)
fprintf (file, ";; added %d line-number notes\n", notes);
}
if (file)
{
fprintf (file, ";; new basic block head = %d\n;; new basic block end = %d\n\n",
INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
}
/* Yow! We're done! */
free_pending_lists ();
return;
}
/* Subroutine of split_hard_reg_notes. Searches X for any reference to
REGNO, returning the rtx of the reference found if any. Otherwise,
returns 0. */
rtx
regno_use_in (regno, x)
int regno;
rtx x;
{
register char *fmt;
int i, j;
rtx tem;
if (GET_CODE (x) == REG && REGNO (x) == regno)
return x;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (tem = regno_use_in (regno, XEXP (x, i)))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (tem = regno_use_in (regno , XVECEXP (x, i, j)))
return tem;
}
return 0;
}
/* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
needed for the hard register mentioned in the note. This can happen
if the reference to the hard register in the original insn was split into
several smaller hard register references in the split insns. */
static void
split_hard_reg_notes (note, first, last, orig_insn)
rtx note, first, last, orig_insn;
{
rtx reg, temp, link;
int n_regs, i, new_reg;
rtx insn;
/* Assume that this is a REG_DEAD note. */
if (REG_NOTE_KIND (note) != REG_DEAD)
abort ();
reg = XEXP (note, 0);
n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
/* ??? Could add check here to see whether, the hard register is referenced
in the same mode as in the original insn. If so, then it has not been
split, and the rest of the code below is unnecessary. */
for (i = 1; i < n_regs; i++)
{
new_reg = REGNO (reg) + i;
/* Check for references to new_reg in the split insns. */
for (insn = last; ; insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& (temp = regno_use_in (new_reg, PATTERN (insn))))
{
/* Create a new reg dead note here. */
link = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (link, REG_DEAD);
XEXP (link, 0) = temp;
XEXP (link, 1) = REG_NOTES (insn);
REG_NOTES (insn) = link;
break;
}
/* It isn't mentioned anywhere, so no new reg note is needed for
this register. */
if (insn == first)
break;
}
}
}
/* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
static void
new_insn_dead_notes (pat, insn, last, orig_insn)
rtx pat, insn, last, orig_insn;
{
rtx dest, tem, set;
/* PAT is either a CLOBBER or a SET here. */
dest = XEXP (pat, 0);
while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == SIGN_EXTRACT)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
{
for (tem = last; tem != insn; tem = PREV_INSN (tem))
{
if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
&& reg_overlap_mentioned_p (dest, PATTERN (tem))
&& (set = single_set (tem)))
{
rtx tem_dest = SET_DEST (set);
while (GET_CODE (tem_dest) == ZERO_EXTRACT
|| GET_CODE (tem_dest) == SUBREG
|| GET_CODE (tem_dest) == STRICT_LOW_PART
|| GET_CODE (tem_dest) == SIGN_EXTRACT)
tem_dest = XEXP (tem_dest, 0);
if (tem_dest != dest)
{
/* Use the same scheme as combine.c, don't put both REG_DEAD
and REG_UNUSED notes on the same insn. */
if (! find_regno_note (tem, REG_UNUSED, REGNO (dest))
&& ! find_regno_note (tem, REG_DEAD, REGNO (dest)))
{
rtx note = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (note, REG_DEAD);
XEXP (note, 0) = dest;
XEXP (note, 1) = REG_NOTES (tem);
REG_NOTES (tem) = note;
}
/* The reg only dies in one insn, the last one that uses
it. */
break;
}
else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
/* We found an instruction that both uses the register,
and sets it, so no new REG_NOTE is needed for this set. */
break;
}
}
/* If this is a set, it must die somewhere, unless it is the dest of
the original insn, and hence is live after the original insn. Abort
if it isn't supposed to be live after the original insn.
If this is a clobber, then just add a REG_UNUSED note. */
if (tem == insn)
{
int live_after_orig_insn = 0;
rtx pattern = PATTERN (orig_insn);
int i;
if (GET_CODE (pat) == CLOBBER)
{
rtx note = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (note, REG_UNUSED);
XEXP (note, 0) = dest;
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
return;
}
/* The original insn could have multiple sets, so search the
insn for all sets. */
if (GET_CODE (pattern) == SET)
{
if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
live_after_orig_insn = 1;
}
else if (GET_CODE (pattern) == PARALLEL)
{
for (i = 0; i < XVECLEN (pattern, 0); i++)
if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
&& reg_overlap_mentioned_p (dest,
SET_DEST (XVECEXP (pattern,
0, i))))
live_after_orig_insn = 1;
}
if (! live_after_orig_insn)
abort ();
}
}
}
/* Subroutine of update_flow_info. Update the value of reg_n_sets for all
registers modified by X. INC is -1 if the containing insn is being deleted,
and is 1 if the containing insn is a newly generated insn. */
static void
update_n_sets (x, inc)
rtx x;
int inc;
{
rtx dest = SET_DEST (x);
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
{
int regno = REGNO (dest);
if (regno < FIRST_PSEUDO_REGISTER)
{
register int i;
int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
for (i = regno; i < endregno; i++)
reg_n_sets[i] += inc;
}
else
reg_n_sets[regno] += inc;
}
}
/* Updates all flow-analysis related quantities (including REG_NOTES) for
the insns from FIRST to LAST inclusive that were created by splitting
ORIG_INSN. NOTES are the original REG_NOTES. */
static void
update_flow_info (notes, first, last, orig_insn)
rtx notes;
rtx first, last;
rtx orig_insn;
{
rtx insn, note;
rtx next;
rtx orig_dest, temp;
rtx set;
/* Get and save the destination set by the original insn. */
orig_dest = single_set (orig_insn);
if (orig_dest)
orig_dest = SET_DEST (orig_dest);
/* Move REG_NOTES from the original insn to where they now belong. */
for (note = notes; note; note = next)
{
next = XEXP (note, 1);
switch (REG_NOTE_KIND (note))
{
case REG_DEAD:
case REG_UNUSED:
/* Move these notes from the original insn to the last new insn where
the register is now set. */
for (insn = last; ; insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
{
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
/* Sometimes need to convert REG_UNUSED notes to REG_DEAD
notes. */
/* ??? This won't handle multiple word registers correctly,
but should be good enough for now. */
if (REG_NOTE_KIND (note) == REG_UNUSED
&& ! dead_or_set_p (insn, XEXP (note, 0)))
PUT_REG_NOTE_KIND (note, REG_DEAD);
/* The reg only dies in one insn, the last one that uses
it. */
break;
}
/* It must die somewhere, fail it we couldn't find where it died.
If this is a REG_UNUSED note, then it must be a temporary
register that was not needed by this instantiation of the
pattern, so we can safely ignore it. */
if (insn == first)
{
if (REG_NOTE_KIND (note) != REG_UNUSED)
abort ();
break;
}
}
/* If this note refers to a multiple word hard register, it may
have been split into several smaller hard register references.
Check to see if there are any new register references that
need REG_NOTES added for them. */
temp = XEXP (note, 0);
if (REG_NOTE_KIND (note) == REG_DEAD
&& GET_CODE (temp) == REG
&& REGNO (temp) < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)))
split_hard_reg_notes (note, first, last, orig_insn);
break;
case REG_WAS_0:
/* This note applies to the dest of the original insn. Find the
first new insn that now has the same dest, and move the note
there. */
if (! orig_dest)
abort ();
for (insn = first; ; insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& (temp = single_set (insn))
&& rtx_equal_p (SET_DEST (temp), orig_dest))
{
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
/* The reg is only zero before one insn, the first that
uses it. */
break;
}
/* It must be set somewhere, fail if we couldn't find where it
was set. */
if (insn == last)
abort ();
}
break;
case REG_EQUAL:
case REG_EQUIV:
/* A REG_EQUIV or REG_EQUAL note on an insn with more than one
set is meaningless. Just drop the note. */
if (! orig_dest)
break;
case REG_NO_CONFLICT:
/* These notes apply to the dest of the original insn. Find the last
new insn that now has the same dest, and move the note there. */
if (! orig_dest)
abort ();
for (insn = last; ; insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& (temp = single_set (insn))
&& rtx_equal_p (SET_DEST (temp), orig_dest))
{
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
/* Only put this note on one of the new insns. */
break;
}
/* The original dest must still be set someplace. Abort if we
couldn't find it. */
if (insn == first)
abort ();
}
break;
case REG_LIBCALL:
/* Move a REG_LIBCALL note to the first insn created, and update
the corresponding REG_RETVAL note. */
XEXP (note, 1) = REG_NOTES (first);
REG_NOTES (first) = note;
insn = XEXP (note, 0);
note = find_reg_note (insn, REG_RETVAL, 0);
if (note)
XEXP (note, 0) = first;
break;
case REG_RETVAL:
/* Move a REG_RETVAL note to the last insn created, and update
the corresponding REG_LIBCALL note. */
XEXP (note, 1) = REG_NOTES (last);
REG_NOTES (last) = note;
insn = XEXP (note, 0);
note = find_reg_note (insn, REG_LIBCALL, 0);
if (note)
XEXP (note, 0) = last;
break;
case REG_NONNEG:
/* This should be moved to whichever instruction is a JUMP_INSN. */
for (insn = last; ; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == JUMP_INSN)
{
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
/* Only put this note on one of the new insns. */
break;
}
/* Fail if we couldn't find a JUMP_INSN. */
if (insn == first)
abort ();
}
break;
case REG_INC:
/* This should be moved to whichever instruction now has the
increment operation. */
abort ();
case REG_LABEL:
/* Should be moved to the new insn(s) which use the label. */
for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL,
XEXP (note, 0), REG_NOTES (insn));
break;
case REG_CC_SETTER:
case REG_CC_USER:
/* These two notes will never appear until after reorg, so we don't
have to handle them here. */
default:
abort ();
}
}
/* Each new insn created, except the last, has a new set. If the destination
is a register, then this reg is now live across several insns, whereas
previously the dest reg was born and died within the same insn. To
reflect this, we now need a REG_DEAD note on the insn where this
dest reg dies.
Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
for (insn = first; insn != last; insn = NEXT_INSN (insn))
{
rtx pat;
int i;
pat = PATTERN (insn);
if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
new_insn_dead_notes (pat, insn, last, orig_insn);
else if (GET_CODE (pat) == PARALLEL)
{
for (i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET
|| GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
}
}
/* If any insn, except the last, uses the register set by the last insn,
then we need a new REG_DEAD note on that insn. In this case, there
would not have been a REG_DEAD note for this register in the original
insn because it was used and set within one insn.
There is no new REG_DEAD note needed if the last insn uses the register
that it is setting. */
set = single_set (last);
if (set)
{
rtx dest = SET_DEST (set);
while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == SIGN_EXTRACT)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG
&& ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
{
for (insn = PREV_INSN (last); ; insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (dest, PATTERN (insn))
&& (set = single_set (insn)))
{
rtx insn_dest = SET_DEST (set);
while (GET_CODE (insn_dest) == ZERO_EXTRACT
|| GET_CODE (insn_dest) == SUBREG
|| GET_CODE (insn_dest) == STRICT_LOW_PART
|| GET_CODE (insn_dest) == SIGN_EXTRACT)
insn_dest = XEXP (insn_dest, 0);
if (insn_dest != dest)
{
note = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (note, REG_DEAD);
XEXP (note, 0) = dest;
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
/* The reg only dies in one insn, the last one
that uses it. */
break;
}
}
if (insn == first)
break;
}
}
}
/* If the original dest is modifying a multiple register target, and the
original instruction was split such that the original dest is now set
by two or more SUBREG sets, then the split insns no longer kill the
destination of the original insn.
In this case, if there exists an instruction in the same basic block,
before the split insn, which uses the original dest, and this use is
killed by the original insn, then we must remove the REG_DEAD note on
this insn, because it is now superfluous.
This does not apply when a hard register gets split, because the code
knows how to handle overlapping hard registers properly. */
if (orig_dest && GET_CODE (orig_dest) == REG)
{
int found_orig_dest = 0;
int found_split_dest = 0;
for (insn = first; ; insn = NEXT_INSN (insn))
{
set = single_set (insn);
if (set)
{
if (GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) == REGNO (orig_dest))
{
found_orig_dest = 1;
break;
}
else if (GET_CODE (SET_DEST (set)) == SUBREG
&& SUBREG_REG (SET_DEST (set)) == orig_dest)
{
found_split_dest = 1;
break;
}
}
if (insn == last)
break;
}
if (found_split_dest)
{
/* Search backwards from FIRST, looking for the first insn that uses
the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
If we find an insn, and it has a REG_DEAD note, then delete the
note. */
for (insn = first; insn; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL
|| GET_CODE (insn) == JUMP_INSN)
break;
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (orig_dest, insn))
{
note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
if (note)
remove_note (insn, note);
}
}
}
else if (! found_orig_dest)
{
/* This should never happen. */
abort ();
}
}
/* Update reg_n_sets. This is necessary to prevent local alloc from
converting REG_EQUAL notes to REG_EQUIV when splitting has modified
a reg from set once to set multiple times. */
{
rtx x = PATTERN (orig_insn);
RTX_CODE code = GET_CODE (x);
if (code == SET || code == CLOBBER)
update_n_sets (x, -1);
else if (code == PARALLEL)
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
code = GET_CODE (XVECEXP (x, 0, i));
if (code == SET || code == CLOBBER)
update_n_sets (XVECEXP (x, 0, i), -1);
}
}
for (insn = first; ; insn = NEXT_INSN (insn))
{
x = PATTERN (insn);
code = GET_CODE (x);
if (code == SET || code == CLOBBER)
update_n_sets (x, 1);
else if (code == PARALLEL)
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
code = GET_CODE (XVECEXP (x, 0, i));
if (code == SET || code == CLOBBER)
update_n_sets (XVECEXP (x, 0, i), 1);
}
}
if (insn == last)
break;
}
}
}
/* The one entry point in this file. DUMP_FILE is the dump file for
this pass. */
void
schedule_insns (dump_file)
FILE *dump_file;
{
int max_uid = MAX_INSNS_PER_SPLIT * (get_max_uid () + 1);
int i, b;
rtx insn;
/* Taking care of this degenerate case makes the rest of
this code simpler. */
if (n_basic_blocks == 0)
return;
/* Create an insn here so that we can hang dependencies off of it later. */
sched_before_next_call = gen_rtx (INSN, VOIDmode, 0, 0, 0, 0, 0, 0, 0);
/* Initialize the unused_*_lists. We can't use the ones left over from
the previous function, because gcc has freed that memory. We can use
the ones left over from the first sched pass in the second pass however,
so only clear them on the first sched pass. The first pass is before
reload if flag_schedule_insns is set, otherwise it is afterwards. */
if (reload_completed == 0 || ! flag_schedule_insns)
{
unused_insn_list = 0;
unused_expr_list = 0;
}
/* We create no insns here, only reorder them, so we
remember how far we can cut back the stack on exit. */
/* Allocate data for this pass. See comments, above,
for what these vectors do. */
insn_luid = (int *) alloca (max_uid * sizeof (int));
insn_priority = (int *) alloca (max_uid * sizeof (int));
insn_costs = (short *) alloca (max_uid * sizeof (short));
insn_ref_count = (int *) alloca (max_uid * sizeof (int));
if (reload_completed == 0)
{
sched_reg_n_deaths = (short *) alloca (max_regno * sizeof (short));
sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
bb_dead_regs = (regset) alloca (regset_bytes);
bb_live_regs = (regset) alloca (regset_bytes);
bzero (sched_reg_n_calls_crossed, max_regno * sizeof (int));
bzero (sched_reg_live_length, max_regno * sizeof (int));
bcopy (reg_n_deaths, sched_reg_n_deaths, max_regno * sizeof (short));
init_alias_analysis ();
}
else
{
sched_reg_n_deaths = 0;
sched_reg_n_calls_crossed = 0;
sched_reg_live_length = 0;
bb_dead_regs = 0;
bb_live_regs = 0;
if (! flag_schedule_insns)
init_alias_analysis ();
}
if (write_symbols != NO_DEBUG)
{
rtx line;
line_note = (rtx *) alloca (max_uid * sizeof (rtx));
bzero (line_note, max_uid * sizeof (rtx));
line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
bzero (line_note_head, n_basic_blocks * sizeof (rtx));
/* Determine the line-number at the start of each basic block.
This must be computed and saved now, because after a basic block's
predecessor has been scheduled, it is impossible to accurately
determine the correct line number for the first insn of the block. */
for (b = 0; b < n_basic_blocks; b++)
for (line = basic_block_head[b]; line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
{
line_note_head[b] = line;
break;
}
}
bzero (insn_luid, max_uid * sizeof (int));
bzero (insn_priority, max_uid * sizeof (int));
bzero (insn_costs, max_uid * sizeof (short));
bzero (insn_ref_count, max_uid * sizeof (int));
/* Schedule each basic block, block by block. */
if (NEXT_INSN (basic_block_end[n_basic_blocks-1]) == 0
|| (GET_CODE (basic_block_end[n_basic_blocks-1]) != NOTE
&& GET_CODE (basic_block_end[n_basic_blocks-1]) != CODE_LABEL))
emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks-1]);
for (b = 0; b < n_basic_blocks; b++)
{
rtx insn, next;
rtx insns;
note_list = 0;
for (insn = basic_block_head[b]; ; insn = next)
{
rtx prev;
rtx set;
/* Can't use `next_real_insn' because that
might go across CODE_LABELS and short-out basic blocks. */
next = NEXT_INSN (insn);
if (GET_CODE (insn) != INSN)
{
if (insn == basic_block_end[b])
break;
continue;
}
/* Don't split no-op move insns. These should silently disappear
later in final. Splitting such insns would break the code
that handles REG_NO_CONFLICT blocks. */
set = single_set (insn);
if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
{
if (insn == basic_block_end[b])
break;
/* Nops get in the way while scheduling, so delete them now if
register allocation has already been done. It is too risky
to try to do this before register allocation, and there are
unlikely to be very many nops then anyways. */
if (reload_completed)
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
continue;
}
/* Split insns here to get max fine-grain parallelism. */
prev = PREV_INSN (insn);
if (reload_completed == 0)
{
rtx last, first = PREV_INSN (insn);
rtx notes = REG_NOTES (insn);
last = try_split (PATTERN (insn), insn, 1);
if (last != insn)
{
/* try_split returns the NOTE that INSN became. */
first = NEXT_INSN (first);
update_flow_info (notes, first, last, insn);
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
if (insn == basic_block_head[b])
basic_block_head[b] = first;
if (insn == basic_block_end[b])
{
basic_block_end[b] = last;
break;
}
}
}
if (insn == basic_block_end[b])
break;
}
schedule_block (b, dump_file);
#ifdef USE_C_ALLOCA
alloca (0);
#endif
}
if (write_symbols != NO_DEBUG)
{
rtx line = 0;
rtx insn = get_insns ();
int active_insn = 0;
int notes = 0;
/* Walk the insns deleting redundant line-number notes. Many of these
are already present. The remainder tend to occur at basic
block boundaries. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
{
/* If there are no active insns following, INSN is redundant. */
if (active_insn == 0)
{
notes++;
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
}
/* If the line number is unchanged, LINE is redundant. */
else if (line
&& NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
&& NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
{
notes++;
NOTE_SOURCE_FILE (line) = 0;
NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
line = insn;
}
else
line = insn;
active_insn = 0;
}
else if (! ((GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER))))
active_insn++;
if (dump_file && notes)
fprintf (dump_file, ";; deleted %d line-number notes\n", notes);
}
if (reload_completed == 0)
{
int regno;
for (regno = 0; regno < max_regno; regno++)
if (sched_reg_live_length[regno])
{
if (dump_file)
{
if (reg_live_length[regno] > sched_reg_live_length[regno])
fprintf (dump_file,
";; register %d life shortened from %d to %d\n",
regno, reg_live_length[regno],
sched_reg_live_length[regno]);
/* Negative values are special; don't overwrite the current
reg_live_length value if it is negative. */
else if (reg_live_length[regno] < sched_reg_live_length[regno]
&& reg_live_length[regno] >= 0)
fprintf (dump_file,
";; register %d life extended from %d to %d\n",
regno, reg_live_length[regno],
sched_reg_live_length[regno]);
if (reg_n_calls_crossed[regno]
&& ! sched_reg_n_calls_crossed[regno])
fprintf (dump_file,
";; register %d no longer crosses calls\n", regno);
else if (! reg_n_calls_crossed[regno]
&& sched_reg_n_calls_crossed[regno])
fprintf (dump_file,
";; register %d now crosses calls\n", regno);
}
/* Negative values are special; don't overwrite the current
reg_live_length value if it is negative. */
if (reg_live_length[regno] >= 0)
reg_live_length[regno] = sched_reg_live_length[regno];
reg_n_calls_crossed[regno] = sched_reg_n_calls_crossed[regno];
}
}
}
#endif /* INSN_SCHEDULING */
|