1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
/* Copyright (C) 2009 Free Software Foundation.
Verify that folding of complex mul and div work correctly.
Origin: Kaveh R. Ghazi, August 13, 2009. */
/* { dg-do run } */
/* C6X fails due to -freciprocal-math default. */
/* { dg-skip-if "" { tic6x-*-* } } */
/* { dg-require-effective-target inf } */
/* { dg-add-options ieee } */
/* { dg-require-effective-target large_double } */
extern void link_error(int);
/* Evaluate this expression at compile-time. */
#define COMPILETIME_TESTIT(TYPE,X,OP,Y,RES) do { \
if ((_Complex TYPE)(X) OP (_Complex TYPE)(Y) != (_Complex TYPE)(RES)) \
link_error(__LINE__); \
} while (0)
/* Use this error function for cases which only evaluate at
compile-time when optimizing. */
#ifdef __OPTIMIZE__
# define ERROR_FUNC(X) link_error(X)
#else
# define ERROR_FUNC(X) __builtin_abort()
#endif
/* Evaluate this expression at compile-time using static initializers. */
#define STATICINIT_TESTIT(TYPE,X,OP,Y,RES) do { \
static const _Complex TYPE foo = (_Complex TYPE)(X) OP (_Complex TYPE)(Y); \
if (foo != (_Complex TYPE)(RES)) \
ERROR_FUNC (__LINE__); \
} while (0)
/* Evaluate this expression at runtime. */
#define RUNTIME_TESTIT(TYPE,X,OP,Y,RES) do { \
volatile _Complex TYPE foo; \
foo = (_Complex TYPE)(X); \
foo OP##= (_Complex TYPE)(Y); \
if (foo != (_Complex TYPE)(RES)) \
__builtin_abort(); \
} while (0)
/* Evaluate this expression at compile-time and runtime. */
#define TESTIT(TYPE,X,OP,Y,RES) do { \
STATICINIT_TESTIT(TYPE,X,OP,Y,RES); \
COMPILETIME_TESTIT(TYPE,X,OP,Y,RES); \
RUNTIME_TESTIT(TYPE,X,OP,Y,RES); \
} while (0)
/* Either the real or imaginary parts should be infinity. */
#define TEST_ONE_PART_INF(VAL) do { \
static const _Complex double foo = (VAL); \
if (! __builtin_isinf(__real foo) && ! __builtin_isinf(__imag foo)) \
ERROR_FUNC (__LINE__); \
if (! __builtin_isinf(__real (VAL)) && ! __builtin_isinf(__imag (VAL))) \
__builtin_abort(); \
} while (0)
int main()
{
/* Test some regular finite values. */
TESTIT (double, 3.+4.i, *, 2, 6+8i);
TESTIT (double, 3.+4.i, /, 2, 1.5+2i);
TESTIT (int, 3+4i, *, 2, 6+8i);
TESTIT (int, 3+4i, /, 2, 1+2i);
TESTIT (double, 3.+4.i, *, 2+5i, -14+23i);
TESTIT (double, 3.+4.i, /, 5i, .8-.6i);
TESTIT (int, 3+4i, *, 2+5i, -14+23i);
TESTIT (int, 30+40i, /, 5i, 8-6i);
TESTIT (int, 14+6i, /, 7+3i, 2);
TESTIT (int, 8+24i, /, 4+12i, 2);
/* Test that we don't overflow. */
TESTIT (double,
(__DBL_MAX__ * 0.5 + __DBL_MAX__ * 0.5i),
/,
(__DBL_MAX__ * 0.25 + __DBL_MAX__ * 0.25i),
2);
/* Test for accuracy. */
COMPILETIME_TESTIT (double,
(1 + __DBL_EPSILON__ + 1i),
*,
(1 - __DBL_EPSILON__ + 1i),
-4.93038065763132378382330353301741393545754021943139377981e-32+2i);
/* This becomes (NaN + iInf). */
#define VAL1 ((_Complex double)__builtin_inf() * 1i)
/* Test some C99 Annex G special cases. */
TEST_ONE_PART_INF ((VAL1) * (VAL1));
TEST_ONE_PART_INF ((_Complex double)1 / (_Complex double)0);
TEST_ONE_PART_INF ((VAL1) / (_Complex double)1);
RUNTIME_TESTIT (double, 1, /, VAL1, 0);
STATICINIT_TESTIT (double, 1, /, VAL1, 0);
return 0;
}
|