1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/* Operations with affine combinations of trees.
Copyright (C) 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-affine.h"
/* Extends CST as appropriate for the affine combinations COMB. */
double_int
double_int_ext_for_comb (double_int cst, aff_tree *comb)
{
return double_int_sext (cst, TYPE_PRECISION (comb->type));
}
/* Initializes affine combination COMB so that its value is zero in TYPE. */
static void
aff_combination_zero (aff_tree *comb, tree type)
{
comb->type = type;
comb->offset = double_int_zero;
comb->n = 0;
comb->rest = NULL_TREE;
}
/* Sets COMB to CST. */
void
aff_combination_const (aff_tree *comb, tree type, double_int cst)
{
aff_combination_zero (comb, type);
comb->offset = double_int_ext_for_comb (cst, comb);
}
/* Sets COMB to single element ELT. */
void
aff_combination_elt (aff_tree *comb, tree type, tree elt)
{
aff_combination_zero (comb, type);
comb->n = 1;
comb->elts[0].val = elt;
comb->elts[0].coef = double_int_one;
}
/* Scales COMB by SCALE. */
void
aff_combination_scale (aff_tree *comb, double_int scale)
{
unsigned i, j;
scale = double_int_ext_for_comb (scale, comb);
if (double_int_one_p (scale))
return;
if (double_int_zero_p (scale))
{
aff_combination_zero (comb, comb->type);
return;
}
comb->offset
= double_int_ext_for_comb (double_int_mul (scale, comb->offset), comb);
for (i = 0, j = 0; i < comb->n; i++)
{
double_int new_coef;
new_coef
= double_int_ext_for_comb (double_int_mul (scale, comb->elts[i].coef),
comb);
/* A coefficient may become zero due to overflow. Remove the zero
elements. */
if (double_int_zero_p (new_coef))
continue;
comb->elts[j].coef = new_coef;
comb->elts[j].val = comb->elts[i].val;
j++;
}
comb->n = j;
if (comb->rest)
{
if (comb->n < MAX_AFF_ELTS)
{
comb->elts[comb->n].coef = scale;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
else
comb->rest = fold_build2 (MULT_EXPR, comb->type, comb->rest,
double_int_to_tree (comb->type, scale));
}
}
/* Adds ELT * SCALE to COMB. */
void
aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
{
unsigned i;
scale = double_int_ext_for_comb (scale, comb);
if (double_int_zero_p (scale))
return;
for (i = 0; i < comb->n; i++)
if (operand_equal_p (comb->elts[i].val, elt, 0))
{
double_int new_coef;
new_coef = double_int_add (comb->elts[i].coef, scale);
new_coef = double_int_ext_for_comb (new_coef, comb);
if (!double_int_zero_p (new_coef))
{
comb->elts[i].coef = new_coef;
return;
}
comb->n--;
comb->elts[i] = comb->elts[comb->n];
if (comb->rest)
{
gcc_assert (comb->n == MAX_AFF_ELTS - 1);
comb->elts[comb->n].coef = double_int_one;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
return;
}
if (comb->n < MAX_AFF_ELTS)
{
comb->elts[comb->n].coef = scale;
comb->elts[comb->n].val = elt;
comb->n++;
return;
}
if (double_int_one_p (scale))
elt = fold_convert (comb->type, elt);
else
elt = fold_build2 (MULT_EXPR, comb->type,
fold_convert (comb->type, elt),
double_int_to_tree (comb->type, scale));
if (comb->rest)
comb->rest = fold_build2 (PLUS_EXPR, comb->type, comb->rest, elt);
else
comb->rest = elt;
}
/* Adds CST to C. */
static void
aff_combination_add_cst (aff_tree *c, double_int cst)
{
c->offset = double_int_ext_for_comb (double_int_add (c->offset, cst), c);
}
/* Adds COMB2 to COMB1. */
void
aff_combination_add (aff_tree *comb1, aff_tree *comb2)
{
unsigned i;
aff_combination_add_cst (comb1, comb2->offset);
for (i = 0; i < comb2->n; i++)
aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
if (comb2->rest)
aff_combination_add_elt (comb1, comb2->rest, double_int_one);
}
/* Converts affine combination COMB to TYPE. */
void
aff_combination_convert (aff_tree *comb, tree type)
{
unsigned i, j;
tree comb_type = comb->type;
if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
{
tree val = fold_convert (type, aff_combination_to_tree (comb));
tree_to_aff_combination (val, type, comb);
return;
}
comb->type = type;
if (comb->rest)
comb->rest = fold_convert (type, comb->rest);
if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
return;
comb->offset = double_int_ext_for_comb (comb->offset, comb);
for (i = j = 0; i < comb->n; i++)
{
double_int new_coef = double_int_ext_for_comb (comb->elts[i].coef, comb);
if (double_int_zero_p (new_coef))
continue;
comb->elts[j].coef = new_coef;
comb->elts[j].val = fold_convert (type, comb->elts[i].val);
j++;
}
comb->n = j;
if (comb->n < MAX_AFF_ELTS && comb->rest)
{
comb->elts[comb->n].coef = double_int_one;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
}
/* Splits EXPR into an affine combination of parts. */
void
tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
{
aff_tree tmp;
enum tree_code code;
tree cst, core, toffset;
HOST_WIDE_INT bitpos, bitsize;
enum machine_mode mode;
int unsignedp, volatilep;
STRIP_NOPS (expr);
code = TREE_CODE (expr);
switch (code)
{
case INTEGER_CST:
aff_combination_const (comb, type, tree_to_double_int (expr));
return;
case PLUS_EXPR:
case MINUS_EXPR:
tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
if (code == MINUS_EXPR)
aff_combination_scale (&tmp, double_int_minus_one);
aff_combination_add (comb, &tmp);
return;
case MULT_EXPR:
cst = TREE_OPERAND (expr, 1);
if (TREE_CODE (cst) != INTEGER_CST)
break;
tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
aff_combination_scale (comb, tree_to_double_int (cst));
return;
case NEGATE_EXPR:
tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
aff_combination_scale (comb, double_int_minus_one);
return;
case BIT_NOT_EXPR:
/* ~x = -x - 1 */
tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
aff_combination_scale (comb, double_int_minus_one);
aff_combination_add_cst (comb, double_int_minus_one);
return;
case ADDR_EXPR:
core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
&toffset, &mode, &unsignedp, &volatilep,
false);
if (bitpos % BITS_PER_UNIT != 0)
break;
aff_combination_const (comb, type,
uhwi_to_double_int (bitpos / BITS_PER_UNIT));
core = build_fold_addr_expr (core);
if (TREE_CODE (core) == ADDR_EXPR)
aff_combination_add_elt (comb, core, double_int_one);
else
{
tree_to_aff_combination (core, type, &tmp);
aff_combination_add (comb, &tmp);
}
if (toffset)
{
tree_to_aff_combination (toffset, type, &tmp);
aff_combination_add (comb, &tmp);
}
return;
default:
break;
}
aff_combination_elt (comb, type, expr);
}
/* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
combination COMB. */
static tree
add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
aff_tree *comb)
{
enum tree_code code;
scale = double_int_ext_for_comb (scale, comb);
elt = fold_convert (type, elt);
if (double_int_one_p (scale))
{
if (!expr)
return elt;
return fold_build2 (PLUS_EXPR, type, expr, elt);
}
if (double_int_minus_one_p (scale))
{
if (!expr)
return fold_build1 (NEGATE_EXPR, type, elt);
return fold_build2 (MINUS_EXPR, type, expr, elt);
}
if (!expr)
return fold_build2 (MULT_EXPR, type, elt,
double_int_to_tree (type, scale));
if (double_int_negative_p (scale))
{
code = MINUS_EXPR;
scale = double_int_neg (scale);
}
else
code = PLUS_EXPR;
elt = fold_build2 (MULT_EXPR, type, elt,
double_int_to_tree (type, scale));
return fold_build2 (code, type, expr, elt);
}
/* Makes tree from the affine combination COMB. */
tree
aff_combination_to_tree (aff_tree *comb)
{
tree type = comb->type;
tree expr = comb->rest;
unsigned i;
double_int off, sgn;
gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
for (i = 0; i < comb->n; i++)
expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef,
comb);
/* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
unsigned. */
if (double_int_negative_p (comb->offset))
{
off = double_int_neg (comb->offset);
sgn = double_int_minus_one;
}
else
{
off = comb->offset;
sgn = double_int_one;
}
return add_elt_to_tree (expr, type, double_int_to_tree (type, off), sgn,
comb);
}
/* Copies the tree elements of COMB to ensure that they are not shared. */
void
unshare_aff_combination (aff_tree *comb)
{
unsigned i;
for (i = 0; i < comb->n; i++)
comb->elts[i].val = unshare_expr (comb->elts[i].val);
if (comb->rest)
comb->rest = unshare_expr (comb->rest);
}
/* Remove M-th element from COMB. */
void
aff_combination_remove_elt (aff_tree *comb, unsigned m)
{
comb->n--;
if (m <= comb->n)
comb->elts[m] = comb->elts[comb->n];
if (comb->rest)
{
comb->elts[comb->n].coef = double_int_one;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
}
/* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
C * COEF is added to R. */
static void
aff_combination_add_product (aff_tree *c, double_int coef, tree val,
aff_tree *r)
{
unsigned i;
tree aval, type;
for (i = 0; i < c->n; i++)
{
aval = c->elts[i].val;
if (val)
{
type = TREE_TYPE (aval);
aval = fold_build2 (MULT_EXPR, type, aval,
fold_convert (type, val));
}
aff_combination_add_elt (r, aval,
double_int_mul (coef, c->elts[i].coef));
}
if (c->rest)
{
aval = c->rest;
if (val)
{
type = TREE_TYPE (aval);
aval = fold_build2 (MULT_EXPR, type, aval,
fold_convert (type, val));
}
aff_combination_add_elt (r, aval, coef);
}
if (val)
aff_combination_add_elt (r, val,
double_int_mul (coef, c->offset));
else
aff_combination_add_cst (r, double_int_mul (coef, c->offset));
}
/* Multiplies C1 by C2, storing the result to R */
void
aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
{
unsigned i;
gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
aff_combination_zero (r, c1->type);
for (i = 0; i < c2->n; i++)
aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
if (c2->rest)
aff_combination_add_product (c1, double_int_one, c2->rest, r);
aff_combination_add_product (c1, c2->offset, NULL, r);
}
|