summaryrefslogtreecommitdiff
path: root/gcc/tree-cfg.c
blob: 097de2358360d511fc9a8a8ef0f65558ade20832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
/* Control flow functions for trees.
   Copyright (C) 2001-2014 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hash-table.h"
#include "hash-map.h"
#include "tm.h"
#include "tree.h"
#include "trans-mem.h"
#include "stor-layout.h"
#include "print-tree.h"
#include "tm_p.h"
#include "predict.h"
#include "vec.h"
#include "hashtab.h"
#include "hash-set.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
#include "cfganal.h"
#include "basic-block.h"
#include "flags.h"
#include "gimple-pretty-print.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "gimple-ssa.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "expr.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "diagnostic-core.h"
#include "except.h"
#include "cfgloop.h"
#include "tree-ssa-propagate.h"
#include "value-prof.h"
#include "tree-inline.h"
#include "target.h"
#include "tree-ssa-live.h"
#include "omp-low.h"
#include "tree-cfgcleanup.h"
#include "wide-int.h"
#include "wide-int-print.h"

/* This file contains functions for building the Control Flow Graph (CFG)
   for a function tree.  */

/* Local declarations.  */

/* Initial capacity for the basic block array.  */
static const int initial_cfg_capacity = 20;

/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
   which use a particular edge.  The CASE_LABEL_EXPRs are chained together
   via their CASE_CHAIN field, which we clear after we're done with the
   hash table to prevent problems with duplication of GIMPLE_SWITCHes.

   Access to this list of CASE_LABEL_EXPRs allows us to efficiently
   update the case vector in response to edge redirections.

   Right now this table is set up and torn down at key points in the
   compilation process.  It would be nice if we could make the table
   more persistent.  The key is getting notification of changes to
   the CFG (particularly edge removal, creation and redirection).  */

static hash_map<edge, tree> *edge_to_cases;

/* If we record edge_to_cases, this bitmap will hold indexes
   of basic blocks that end in a GIMPLE_SWITCH which we touched
   due to edge manipulations.  */

static bitmap touched_switch_bbs;

/* CFG statistics.  */
struct cfg_stats_d
{
  long num_merged_labels;
};

static struct cfg_stats_d cfg_stats;

/* Hash table to store last discriminator assigned for each locus.  */
struct locus_discrim_map
{
  location_t locus;
  int discriminator;
};

/* Hashtable helpers.  */

struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
{
  typedef locus_discrim_map value_type;
  typedef locus_discrim_map compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Trivial hash function for a location_t.  ITEM is a pointer to
   a hash table entry that maps a location_t to a discriminator.  */

inline hashval_t
locus_discrim_hasher::hash (const value_type *item)
{
  return LOCATION_LINE (item->locus);
}

/* Equality function for the locus-to-discriminator map.  A and B
   point to the two hash table entries to compare.  */

inline bool
locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
{
  return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
}

static hash_table<locus_discrim_hasher> *discriminator_per_locus;

/* Basic blocks and flowgraphs.  */
static void make_blocks (gimple_seq);

/* Edges.  */
static void make_edges (void);
static void assign_discriminators (void);
static void make_cond_expr_edges (basic_block);
static void make_gimple_switch_edges (basic_block);
static bool make_goto_expr_edges (basic_block);
static void make_gimple_asm_edges (basic_block);
static edge gimple_redirect_edge_and_branch (edge, basic_block);
static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);

/* Various helpers.  */
static inline bool stmt_starts_bb_p (gimple, gimple);
static int gimple_verify_flow_info (void);
static void gimple_make_forwarder_block (edge);
static gimple first_non_label_stmt (basic_block);
static bool verify_gimple_transaction (gimple);
static bool call_can_make_abnormal_goto (gimple);

/* Flowgraph optimization and cleanup.  */
static void gimple_merge_blocks (basic_block, basic_block);
static bool gimple_can_merge_blocks_p (basic_block, basic_block);
static void remove_bb (basic_block);
static edge find_taken_edge_computed_goto (basic_block, tree);
static edge find_taken_edge_cond_expr (basic_block, tree);
static edge find_taken_edge_switch_expr (basic_block, tree);
static tree find_case_label_for_value (gimple, tree);

void
init_empty_tree_cfg_for_function (struct function *fn)
{
  /* Initialize the basic block array.  */
  init_flow (fn);
  profile_status_for_fn (fn) = PROFILE_ABSENT;
  n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
  last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
  vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
  vec_safe_grow_cleared (basic_block_info_for_fn (fn),
			 initial_cfg_capacity);

  /* Build a mapping of labels to their associated blocks.  */
  vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
  vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
			 initial_cfg_capacity);

  SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
  SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));

  ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
    = EXIT_BLOCK_PTR_FOR_FN (fn);
  EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
    = ENTRY_BLOCK_PTR_FOR_FN (fn);
}

void
init_empty_tree_cfg (void)
{
  init_empty_tree_cfg_for_function (cfun);
}

/*---------------------------------------------------------------------------
			      Create basic blocks
---------------------------------------------------------------------------*/

/* Entry point to the CFG builder for trees.  SEQ is the sequence of
   statements to be added to the flowgraph.  */

static void
build_gimple_cfg (gimple_seq seq)
{
  /* Register specific gimple functions.  */
  gimple_register_cfg_hooks ();

  memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));

  init_empty_tree_cfg ();

  make_blocks (seq);

  /* Make sure there is always at least one block, even if it's empty.  */
  if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
    create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  /* Adjust the size of the array.  */
  if (basic_block_info_for_fn (cfun)->length ()
      < (size_t) n_basic_blocks_for_fn (cfun))
    vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
			   n_basic_blocks_for_fn (cfun));

  /* To speed up statement iterator walks, we first purge dead labels.  */
  cleanup_dead_labels ();

  /* Group case nodes to reduce the number of edges.
     We do this after cleaning up dead labels because otherwise we miss
     a lot of obvious case merging opportunities.  */
  group_case_labels ();

  /* Create the edges of the flowgraph.  */
  discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
  make_edges ();
  assign_discriminators ();
  cleanup_dead_labels ();
  delete discriminator_per_locus;
  discriminator_per_locus = NULL;
}


/* Look for ANNOTATE calls with loop annotation kind; if found, remove
   them and propagate the information to the loop.  We assume that the
   annotations come immediately before the condition of the loop.  */

static void
replace_loop_annotate ()
{
  struct loop *loop;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple stmt;

  FOR_EACH_LOOP (loop, 0)
    {
      gsi = gsi_last_bb (loop->header);
      stmt = gsi_stmt (gsi);
      if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
	continue;
      for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
	{
	  stmt = gsi_stmt (gsi);
	  if (gimple_code (stmt) != GIMPLE_CALL)
	    break;
	  if (!gimple_call_internal_p (stmt)
	      || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
	    break;
	  switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
	    {
	    case annot_expr_ivdep_kind:
	      loop->safelen = INT_MAX;
	      break;
	    case annot_expr_no_vector_kind:
	      loop->dont_vectorize = true;
	      break;
	    case annot_expr_vector_kind:
	      loop->force_vectorize = true;
	      cfun->has_force_vectorize_loops = true;
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  stmt = gimple_build_assign (gimple_call_lhs (stmt),
				      gimple_call_arg (stmt, 0));
	  gsi_replace (&gsi, stmt, true);
	}
    }

  /* Remove IFN_ANNOTATE.  Safeguard for the case loop->latch == NULL.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
	{
	  stmt = gsi_stmt (gsi);
	  if (gimple_code (stmt) != GIMPLE_CALL)
	    break;
	  if (!gimple_call_internal_p (stmt)
	      || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
	    break;
	  switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
	    {
	    case annot_expr_ivdep_kind:
	    case annot_expr_no_vector_kind:
	    case annot_expr_vector_kind:
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
	  stmt = gimple_build_assign (gimple_call_lhs (stmt),
				      gimple_call_arg (stmt, 0));
	  gsi_replace (&gsi, stmt, true);
	}
    }
}


static unsigned int
execute_build_cfg (void)
{
  gimple_seq body = gimple_body (current_function_decl);

  build_gimple_cfg (body);
  gimple_set_body (current_function_decl, NULL);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Scope blocks:\n");
      dump_scope_blocks (dump_file, dump_flags);
    }
  cleanup_tree_cfg ();
  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
  replace_loop_annotate ();
  return 0;
}

namespace {

const pass_data pass_data_build_cfg =
{
  GIMPLE_PASS, /* type */
  "cfg", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_CFG, /* tv_id */
  PROP_gimple_leh, /* properties_required */
  ( PROP_cfg | PROP_loops ), /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_build_cfg : public gimple_opt_pass
{
public:
  pass_build_cfg (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_build_cfg, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *) { return execute_build_cfg (); }

}; // class pass_build_cfg

} // anon namespace

gimple_opt_pass *
make_pass_build_cfg (gcc::context *ctxt)
{
  return new pass_build_cfg (ctxt);
}


/* Return true if T is a computed goto.  */

bool
computed_goto_p (gimple t)
{
  return (gimple_code (t) == GIMPLE_GOTO
	  && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
}

/* Returns true for edge E where e->src ends with a GIMPLE_COND and
   the other edge points to a bb with just __builtin_unreachable ().
   I.e. return true for C->M edge in:
   <bb C>:
   ...
   if (something)
     goto <bb N>;
   else
     goto <bb M>;
   <bb N>:
   __builtin_unreachable ();
   <bb M>:  */

bool
assert_unreachable_fallthru_edge_p (edge e)
{
  basic_block pred_bb = e->src;
  gimple last = last_stmt (pred_bb);
  if (last && gimple_code (last) == GIMPLE_COND)
    {
      basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
      if (other_bb == e->dest)
	other_bb = EDGE_SUCC (pred_bb, 1)->dest;
      if (EDGE_COUNT (other_bb->succs) == 0)
	{
	  gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
	  gimple stmt;

	  if (gsi_end_p (gsi))
	    return false;
	  stmt = gsi_stmt (gsi);
	  while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
	    {
	      gsi_next (&gsi);
	      if (gsi_end_p (gsi))
		return false;
	      stmt = gsi_stmt (gsi);
	    }
	  return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
	}
    }
  return false;
}


/* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
   could alter control flow except via eh. We initialize the flag at
   CFG build time and only ever clear it later.  */

static void
gimple_call_initialize_ctrl_altering (gimple stmt)
{
  int flags = gimple_call_flags (stmt);

  /* A call alters control flow if it can make an abnormal goto.  */
  if (call_can_make_abnormal_goto (stmt)
      /* A call also alters control flow if it does not return.  */
      || flags & ECF_NORETURN
      /* TM ending statements have backedges out of the transaction.
	 Return true so we split the basic block containing them.
	 Note that the TM_BUILTIN test is merely an optimization.  */
      || ((flags & ECF_TM_BUILTIN)
	  && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
      /* BUILT_IN_RETURN call is same as return statement.  */
      || gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
    gimple_call_set_ctrl_altering (stmt, true);
  else
    gimple_call_set_ctrl_altering (stmt, false);
}


/* Build a flowgraph for the sequence of stmts SEQ.  */

static void
make_blocks (gimple_seq seq)
{
  gimple_stmt_iterator i = gsi_start (seq);
  gimple stmt = NULL;
  bool start_new_block = true;
  bool first_stmt_of_seq = true;
  basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);

  while (!gsi_end_p (i))
    {
      gimple prev_stmt;

      prev_stmt = stmt;
      stmt = gsi_stmt (i);

      if (stmt && is_gimple_call (stmt))
	gimple_call_initialize_ctrl_altering (stmt);

      /* If the statement starts a new basic block or if we have determined
	 in a previous pass that we need to create a new block for STMT, do
	 so now.  */
      if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
	{
	  if (!first_stmt_of_seq)
	    gsi_split_seq_before (&i, &seq);
	  bb = create_basic_block (seq, NULL, bb);
	  start_new_block = false;
	}

      /* Now add STMT to BB and create the subgraphs for special statement
	 codes.  */
      gimple_set_bb (stmt, bb);

      /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
	 next iteration.  */
      if (stmt_ends_bb_p (stmt))
	{
	  /* If the stmt can make abnormal goto use a new temporary
	     for the assignment to the LHS.  This makes sure the old value
	     of the LHS is available on the abnormal edge.  Otherwise
	     we will end up with overlapping life-ranges for abnormal
	     SSA names.  */
	  if (gimple_has_lhs (stmt)
	      && stmt_can_make_abnormal_goto (stmt)
	      && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
	    {
	      tree lhs = gimple_get_lhs (stmt);
	      tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
	      gimple s = gimple_build_assign (lhs, tmp);
	      gimple_set_location (s, gimple_location (stmt));
	      gimple_set_block (s, gimple_block (stmt));
	      gimple_set_lhs (stmt, tmp);
	      if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
		  || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
		DECL_GIMPLE_REG_P (tmp) = 1;
	      gsi_insert_after (&i, s, GSI_SAME_STMT);
	    }
	  start_new_block = true;
	}

      gsi_next (&i);
      first_stmt_of_seq = false;
    }
}


/* Create and return a new empty basic block after bb AFTER.  */

static basic_block
create_bb (void *h, void *e, basic_block after)
{
  basic_block bb;

  gcc_assert (!e);

  /* Create and initialize a new basic block.  Since alloc_block uses
     GC allocation that clears memory to allocate a basic block, we do
     not have to clear the newly allocated basic block here.  */
  bb = alloc_block ();

  bb->index = last_basic_block_for_fn (cfun);
  bb->flags = BB_NEW;
  set_bb_seq (bb, h ? (gimple_seq) h : NULL);

  /* Add the new block to the linked list of blocks.  */
  link_block (bb, after);

  /* Grow the basic block array if needed.  */
  if ((size_t) last_basic_block_for_fn (cfun)
      == basic_block_info_for_fn (cfun)->length ())
    {
      size_t new_size =
	(last_basic_block_for_fn (cfun)
	 + (last_basic_block_for_fn (cfun) + 3) / 4);
      vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
    }

  /* Add the newly created block to the array.  */
  SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);

  n_basic_blocks_for_fn (cfun)++;
  last_basic_block_for_fn (cfun)++;

  return bb;
}


/*---------------------------------------------------------------------------
				 Edge creation
---------------------------------------------------------------------------*/

/* Fold COND_EXPR_COND of each COND_EXPR.  */

void
fold_cond_expr_cond (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple stmt = last_stmt (bb);

      if (stmt && gimple_code (stmt) == GIMPLE_COND)
	{
	  location_t loc = gimple_location (stmt);
	  tree cond;
	  bool zerop, onep;

	  fold_defer_overflow_warnings ();
	  cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
			      gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
	  if (cond)
	    {
	      zerop = integer_zerop (cond);
	      onep = integer_onep (cond);
	    }
	  else
	    zerop = onep = false;

	  fold_undefer_overflow_warnings (zerop || onep,
					  stmt,
					  WARN_STRICT_OVERFLOW_CONDITIONAL);
	  if (zerop)
	    gimple_cond_make_false (stmt);
	  else if (onep)
	    gimple_cond_make_true (stmt);
	}
    }
}

/* If basic block BB has an abnormal edge to a basic block
   containing IFN_ABNORMAL_DISPATCHER internal call, return
   that the dispatcher's basic block, otherwise return NULL.  */

basic_block
get_abnormal_succ_dispatcher (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
      {
	gimple_stmt_iterator gsi
	  = gsi_start_nondebug_after_labels_bb (e->dest);
	gimple g = gsi_stmt (gsi);
	if (g
	    && is_gimple_call (g)
	    && gimple_call_internal_p (g)
	    && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
	  return e->dest;
      }
  return NULL;
}

/* Helper function for make_edges.  Create a basic block with
   with ABNORMAL_DISPATCHER internal call in it if needed, and
   create abnormal edges from BBS to it and from it to FOR_BB
   if COMPUTED_GOTO is false, otherwise factor the computed gotos.  */

static void
handle_abnormal_edges (basic_block *dispatcher_bbs,
		       basic_block for_bb, int *bb_to_omp_idx,
		       auto_vec<basic_block> *bbs, bool computed_goto)
{
  basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
  unsigned int idx = 0;
  basic_block bb;
  bool inner = false;

  if (bb_to_omp_idx)
    {
      dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
      if (bb_to_omp_idx[for_bb->index] != 0)
	inner = true;
    }

  /* If the dispatcher has been created already, then there are basic
     blocks with abnormal edges to it, so just make a new edge to
     for_bb.  */
  if (*dispatcher == NULL)
    {
      /* Check if there are any basic blocks that need to have
	 abnormal edges to this dispatcher.  If there are none, return
	 early.  */
      if (bb_to_omp_idx == NULL)
	{
	  if (bbs->is_empty ())
	    return;
	}
      else
	{
	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
	    if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
	      break;
	  if (bb == NULL)
	    return;
	}

      /* Create the dispatcher bb.  */
      *dispatcher = create_basic_block (NULL, NULL, for_bb);
      if (computed_goto)
	{
	  /* Factor computed gotos into a common computed goto site.  Also
	     record the location of that site so that we can un-factor the
	     gotos after we have converted back to normal form.  */
	  gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);

	  /* Create the destination of the factored goto.  Each original
	     computed goto will put its desired destination into this
	     variable and jump to the label we create immediately below.  */
	  tree var = create_tmp_var (ptr_type_node, "gotovar");

	  /* Build a label for the new block which will contain the
	     factored computed goto.  */
	  tree factored_label_decl
	    = create_artificial_label (UNKNOWN_LOCATION);
	  gimple factored_computed_goto_label
	    = gimple_build_label (factored_label_decl);
	  gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);

	  /* Build our new computed goto.  */
	  gimple factored_computed_goto = gimple_build_goto (var);
	  gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);

	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
	    {
	      if (bb_to_omp_idx
		  && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
		continue;

	      gsi = gsi_last_bb (bb);
	      gimple last = gsi_stmt (gsi);

	      gcc_assert (computed_goto_p (last));

	      /* Copy the original computed goto's destination into VAR.  */
	      gimple assignment
		= gimple_build_assign (var, gimple_goto_dest (last));
	      gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);

	      edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
	      e->goto_locus = gimple_location (last);
	      gsi_remove (&gsi, true);
	    }
	}
      else
	{
	  tree arg = inner ? boolean_true_node : boolean_false_node;
	  gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
						 1, arg);
	  gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
	  gsi_insert_after (&gsi, g, GSI_NEW_STMT);

	  /* Create predecessor edges of the dispatcher.  */
	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
	    {
	      if (bb_to_omp_idx
		  && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
		continue;
	      make_edge (bb, *dispatcher, EDGE_ABNORMAL);
	    }
	}
    }

  make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
}

/* Join all the blocks in the flowgraph.  */

static void
make_edges (void)
{
  basic_block bb;
  struct omp_region *cur_region = NULL;
  auto_vec<basic_block> ab_edge_goto;
  auto_vec<basic_block> ab_edge_call;
  int *bb_to_omp_idx = NULL;
  int cur_omp_region_idx = 0;

  /* Create an edge from entry to the first block with executable
     statements in it.  */
  make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
	     BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
	     EDGE_FALLTHRU);

  /* Traverse the basic block array placing edges.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple last = last_stmt (bb);
      bool fallthru;

      if (bb_to_omp_idx)
	bb_to_omp_idx[bb->index] = cur_omp_region_idx;

      if (last)
	{
	  enum gimple_code code = gimple_code (last);
	  switch (code)
	    {
	    case GIMPLE_GOTO:
	      if (make_goto_expr_edges (bb))
		ab_edge_goto.safe_push (bb);
	      fallthru = false;
	      break;
	    case GIMPLE_RETURN:
	      {
		edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
		e->goto_locus = gimple_location (last);
		fallthru = false;
	      }
	      break;
	    case GIMPLE_COND:
	      make_cond_expr_edges (bb);
	      fallthru = false;
	      break;
	    case GIMPLE_SWITCH:
	      make_gimple_switch_edges (bb);
	      fallthru = false;
	      break;
	    case GIMPLE_RESX:
	      make_eh_edges (last);
	      fallthru = false;
	      break;
	    case GIMPLE_EH_DISPATCH:
	      fallthru = make_eh_dispatch_edges (last);
	      break;

	    case GIMPLE_CALL:
	      /* If this function receives a nonlocal goto, then we need to
		 make edges from this call site to all the nonlocal goto
		 handlers.  */
	      if (stmt_can_make_abnormal_goto (last))
		ab_edge_call.safe_push (bb);

	      /* If this statement has reachable exception handlers, then
		 create abnormal edges to them.  */
	      make_eh_edges (last);

	      /* BUILTIN_RETURN is really a return statement.  */
	      if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
		{
		  make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
		  fallthru = false;
		}
	      /* Some calls are known not to return.  */
	      else
	        fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
	      break;

	    case GIMPLE_ASSIGN:
	       /* A GIMPLE_ASSIGN may throw internally and thus be considered
		  control-altering. */
	      if (is_ctrl_altering_stmt (last))
		make_eh_edges (last);
	      fallthru = true;
	      break;

	    case GIMPLE_ASM:
	      make_gimple_asm_edges (bb);
	      fallthru = true;
	      break;

	    CASE_GIMPLE_OMP:
	      fallthru = make_gimple_omp_edges (bb, &cur_region,
						&cur_omp_region_idx);
	      if (cur_region && bb_to_omp_idx == NULL)
		bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
	      break;

	    case GIMPLE_TRANSACTION:
	      {
		tree abort_label = gimple_transaction_label (last);
		if (abort_label)
		  make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
		fallthru = true;
	      }
	      break;

	    default:
	      gcc_assert (!stmt_ends_bb_p (last));
	      fallthru = true;
	    }
	}
      else
	fallthru = true;

      if (fallthru)
	make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
    }

  /* Computed gotos are hell to deal with, especially if there are
     lots of them with a large number of destinations.  So we factor
     them to a common computed goto location before we build the
     edge list.  After we convert back to normal form, we will un-factor
     the computed gotos since factoring introduces an unwanted jump.
     For non-local gotos and abnormal edges from calls to calls that return
     twice or forced labels, factor the abnormal edges too, by having all
     abnormal edges from the calls go to a common artificial basic block
     with ABNORMAL_DISPATCHER internal call and abnormal edges from that
     basic block to all forced labels and calls returning twice.
     We do this per-OpenMP structured block, because those regions
     are guaranteed to be single entry single exit by the standard,
     so it is not allowed to enter or exit such regions abnormally this way,
     thus all computed gotos, non-local gotos and setjmp/longjmp calls
     must not transfer control across SESE region boundaries.  */
  if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
    {
      gimple_stmt_iterator gsi;
      basic_block dispatcher_bb_array[2] = { NULL, NULL };
      basic_block *dispatcher_bbs = dispatcher_bb_array;
      int count = n_basic_blocks_for_fn (cfun);

      if (bb_to_omp_idx)
	dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);

      FOR_EACH_BB_FN (bb, cfun)
	{
	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gimple label_stmt = gsi_stmt (gsi);
	      tree target;

	      if (gimple_code (label_stmt) != GIMPLE_LABEL)
		break;

	      target = gimple_label_label (label_stmt);

	      /* Make an edge to every label block that has been marked as a
		 potential target for a computed goto or a non-local goto.  */
	      if (FORCED_LABEL (target))
		handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
				       &ab_edge_goto, true);
	      if (DECL_NONLOCAL (target))
		{
		  handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
					 &ab_edge_call, false);
		  break;
		}
	    }

	  if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
	    gsi_next_nondebug (&gsi);
	  if (!gsi_end_p (gsi))
	    {
	      /* Make an edge to every setjmp-like call.  */
	      gimple call_stmt = gsi_stmt (gsi);
	      if (is_gimple_call (call_stmt)
		  && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
		      || gimple_call_builtin_p (call_stmt,
						BUILT_IN_SETJMP_RECEIVER)))
		handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
				       &ab_edge_call, false);
	    }
	}

      if (bb_to_omp_idx)
	XDELETE (dispatcher_bbs);
    }

  XDELETE (bb_to_omp_idx);

  free_omp_regions ();

  /* Fold COND_EXPR_COND of each COND_EXPR.  */
  fold_cond_expr_cond ();
}

/* Find the next available discriminator value for LOCUS.  The
   discriminator distinguishes among several basic blocks that
   share a common locus, allowing for more accurate sample-based
   profiling.  */

static int
next_discriminator_for_locus (location_t locus)
{
  struct locus_discrim_map item;
  struct locus_discrim_map **slot;

  item.locus = locus;
  item.discriminator = 0;
  slot = discriminator_per_locus->find_slot_with_hash (
      &item, LOCATION_LINE (locus), INSERT);
  gcc_assert (slot);
  if (*slot == HTAB_EMPTY_ENTRY)
    {
      *slot = XNEW (struct locus_discrim_map);
      gcc_assert (*slot);
      (*slot)->locus = locus;
      (*slot)->discriminator = 0;
    }
  (*slot)->discriminator++;
  return (*slot)->discriminator;
}

/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line.  */

static bool
same_line_p (location_t locus1, location_t locus2)
{
  expanded_location from, to;

  if (locus1 == locus2)
    return true;

  from = expand_location (locus1);
  to = expand_location (locus2);

  if (from.line != to.line)
    return false;
  if (from.file == to.file)
    return true;
  return (from.file != NULL
          && to.file != NULL
          && filename_cmp (from.file, to.file) == 0);
}

/* Assign discriminators to each basic block.  */

static void
assign_discriminators (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      edge e;
      edge_iterator ei;
      gimple last = last_stmt (bb);
      location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;

      if (locus == UNKNOWN_LOCATION)
	continue;

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  gimple first = first_non_label_stmt (e->dest);
	  gimple last = last_stmt (e->dest);
	  if ((first && same_line_p (locus, gimple_location (first)))
	      || (last && same_line_p (locus, gimple_location (last))))
	    {
	      if (e->dest->discriminator != 0 && bb->discriminator == 0)
		bb->discriminator = next_discriminator_for_locus (locus);
	      else
		e->dest->discriminator = next_discriminator_for_locus (locus);
	    }
	}
    }
}

/* Create the edges for a GIMPLE_COND starting at block BB.  */

static void
make_cond_expr_edges (basic_block bb)
{
  gimple entry = last_stmt (bb);
  gimple then_stmt, else_stmt;
  basic_block then_bb, else_bb;
  tree then_label, else_label;
  edge e;

  gcc_assert (entry);
  gcc_assert (gimple_code (entry) == GIMPLE_COND);

  /* Entry basic blocks for each component.  */
  then_label = gimple_cond_true_label (entry);
  else_label = gimple_cond_false_label (entry);
  then_bb = label_to_block (then_label);
  else_bb = label_to_block (else_label);
  then_stmt = first_stmt (then_bb);
  else_stmt = first_stmt (else_bb);

  e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
  e->goto_locus = gimple_location (then_stmt);
  e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
  if (e)
    e->goto_locus = gimple_location (else_stmt);

  /* We do not need the labels anymore.  */
  gimple_cond_set_true_label (entry, NULL_TREE);
  gimple_cond_set_false_label (entry, NULL_TREE);
}


/* Called for each element in the hash table (P) as we delete the
   edge to cases hash table.

   Clear all the TREE_CHAINs to prevent problems with copying of
   SWITCH_EXPRs and structure sharing rules, then free the hash table
   element.  */

bool
edge_to_cases_cleanup (edge const &, tree const &value, void *)
{
  tree t, next;

  for (t = value; t; t = next)
    {
      next = CASE_CHAIN (t);
      CASE_CHAIN (t) = NULL;
    }

  return true;
}

/* Start recording information mapping edges to case labels.  */

void
start_recording_case_labels (void)
{
  gcc_assert (edge_to_cases == NULL);
  edge_to_cases = new hash_map<edge, tree>;
  touched_switch_bbs = BITMAP_ALLOC (NULL);
}

/* Return nonzero if we are recording information for case labels.  */

static bool
recording_case_labels_p (void)
{
  return (edge_to_cases != NULL);
}

/* Stop recording information mapping edges to case labels and
   remove any information we have recorded.  */
void
end_recording_case_labels (void)
{
  bitmap_iterator bi;
  unsigned i;
  edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
  delete edge_to_cases;
  edge_to_cases = NULL;
  EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
      if (bb)
	{
	  gimple stmt = last_stmt (bb);
	  if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
	    group_case_labels_stmt (stmt);
	}
    }
  BITMAP_FREE (touched_switch_bbs);
}

/* If we are inside a {start,end}_recording_cases block, then return
   a chain of CASE_LABEL_EXPRs from T which reference E.

   Otherwise return NULL.  */

static tree
get_cases_for_edge (edge e, gimple t)
{
  tree *slot;
  size_t i, n;

  /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
     chains available.  Return NULL so the caller can detect this case.  */
  if (!recording_case_labels_p ())
    return NULL;

  slot = edge_to_cases->get (e);
  if (slot)
    return *slot;

  /* If we did not find E in the hash table, then this must be the first
     time we have been queried for information about E & T.  Add all the
     elements from T to the hash table then perform the query again.  */

  n = gimple_switch_num_labels (t);
  for (i = 0; i < n; i++)
    {
      tree elt = gimple_switch_label (t, i);
      tree lab = CASE_LABEL (elt);
      basic_block label_bb = label_to_block (lab);
      edge this_edge = find_edge (e->src, label_bb);

      /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
	 a new chain.  */
      tree &s = edge_to_cases->get_or_insert (this_edge);
      CASE_CHAIN (elt) = s;
      s = elt;
    }

  return *edge_to_cases->get (e);
}

/* Create the edges for a GIMPLE_SWITCH starting at block BB.  */

static void
make_gimple_switch_edges (basic_block bb)
{
  gimple entry = last_stmt (bb);
  size_t i, n;

  n = gimple_switch_num_labels (entry);

  for (i = 0; i < n; ++i)
    {
      tree lab = CASE_LABEL (gimple_switch_label (entry, i));
      basic_block label_bb = label_to_block (lab);
      make_edge (bb, label_bb, 0);
    }
}


/* Return the basic block holding label DEST.  */

basic_block
label_to_block_fn (struct function *ifun, tree dest)
{
  int uid = LABEL_DECL_UID (dest);

  /* We would die hard when faced by an undefined label.  Emit a label to
     the very first basic block.  This will hopefully make even the dataflow
     and undefined variable warnings quite right.  */
  if (seen_error () && uid < 0)
    {
      gimple_stmt_iterator gsi =
	gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
      gimple stmt;

      stmt = gimple_build_label (dest);
      gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
      uid = LABEL_DECL_UID (dest);
    }
  if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
    return NULL;
  return (*ifun->cfg->x_label_to_block_map)[uid];
}

/* Create edges for a goto statement at block BB.  Returns true
   if abnormal edges should be created.  */

static bool
make_goto_expr_edges (basic_block bb)
{
  gimple_stmt_iterator last = gsi_last_bb (bb);
  gimple goto_t = gsi_stmt (last);

  /* A simple GOTO creates normal edges.  */
  if (simple_goto_p (goto_t))
    {
      tree dest = gimple_goto_dest (goto_t);
      basic_block label_bb = label_to_block (dest);
      edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
      e->goto_locus = gimple_location (goto_t);
      gsi_remove (&last, true);
      return false;
    }

  /* A computed GOTO creates abnormal edges.  */
  return true;
}

/* Create edges for an asm statement with labels at block BB.  */

static void
make_gimple_asm_edges (basic_block bb)
{
  gimple stmt = last_stmt (bb);
  int i, n = gimple_asm_nlabels (stmt);

  for (i = 0; i < n; ++i)
    {
      tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
      basic_block label_bb = label_to_block (label);
      make_edge (bb, label_bb, 0);
    }
}

/*---------------------------------------------------------------------------
			       Flowgraph analysis
---------------------------------------------------------------------------*/

/* Cleanup useless labels in basic blocks.  This is something we wish
   to do early because it allows us to group case labels before creating
   the edges for the CFG, and it speeds up block statement iterators in
   all passes later on.
   We rerun this pass after CFG is created, to get rid of the labels that
   are no longer referenced.  After then we do not run it any more, since
   (almost) no new labels should be created.  */

/* A map from basic block index to the leading label of that block.  */
static struct label_record
{
  /* The label.  */
  tree label;

  /* True if the label is referenced from somewhere.  */
  bool used;
} *label_for_bb;

/* Given LABEL return the first label in the same basic block.  */

static tree
main_block_label (tree label)
{
  basic_block bb = label_to_block (label);
  tree main_label = label_for_bb[bb->index].label;

  /* label_to_block possibly inserted undefined label into the chain.  */
  if (!main_label)
    {
      label_for_bb[bb->index].label = label;
      main_label = label;
    }

  label_for_bb[bb->index].used = true;
  return main_label;
}

/* Clean up redundant labels within the exception tree.  */

static void
cleanup_dead_labels_eh (void)
{
  eh_landing_pad lp;
  eh_region r;
  tree lab;
  int i;

  if (cfun->eh == NULL)
    return;

  for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
    if (lp && lp->post_landing_pad)
      {
	lab = main_block_label (lp->post_landing_pad);
	if (lab != lp->post_landing_pad)
	  {
	    EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
	    EH_LANDING_PAD_NR (lab) = lp->index;
	  }
      }

  FOR_ALL_EH_REGION (r)
    switch (r->type)
      {
      case ERT_CLEANUP:
      case ERT_MUST_NOT_THROW:
	break;

      case ERT_TRY:
	{
	  eh_catch c;
	  for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
	    {
	      lab = c->label;
	      if (lab)
		c->label = main_block_label (lab);
	    }
	}
	break;

      case ERT_ALLOWED_EXCEPTIONS:
	lab = r->u.allowed.label;
	if (lab)
	  r->u.allowed.label = main_block_label (lab);
	break;
      }
}


/* Cleanup redundant labels.  This is a three-step process:
     1) Find the leading label for each block.
     2) Redirect all references to labels to the leading labels.
     3) Cleanup all useless labels.  */

void
cleanup_dead_labels (void)
{
  basic_block bb;
  label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));

  /* Find a suitable label for each block.  We use the first user-defined
     label if there is one, or otherwise just the first label we see.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
	{
	  tree label;
	  gimple stmt = gsi_stmt (i);

	  if (gimple_code (stmt) != GIMPLE_LABEL)
	    break;

	  label = gimple_label_label (stmt);

	  /* If we have not yet seen a label for the current block,
	     remember this one and see if there are more labels.  */
	  if (!label_for_bb[bb->index].label)
	    {
	      label_for_bb[bb->index].label = label;
	      continue;
	    }

	  /* If we did see a label for the current block already, but it
	     is an artificially created label, replace it if the current
	     label is a user defined label.  */
	  if (!DECL_ARTIFICIAL (label)
	      && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
	    {
	      label_for_bb[bb->index].label = label;
	      break;
	    }
	}
    }

  /* Now redirect all jumps/branches to the selected label.
     First do so for each block ending in a control statement.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple stmt = last_stmt (bb);
      tree label, new_label;

      if (!stmt)
	continue;

      switch (gimple_code (stmt))
	{
	case GIMPLE_COND:
	  label = gimple_cond_true_label (stmt);
	  if (label)
	    {
	      new_label = main_block_label (label);
	      if (new_label != label)
		gimple_cond_set_true_label (stmt, new_label);
	    }

	  label = gimple_cond_false_label (stmt);
	  if (label)
	    {
	      new_label = main_block_label (label);
	      if (new_label != label)
		gimple_cond_set_false_label (stmt, new_label);
	    }
	  break;

	case GIMPLE_SWITCH:
	  {
	    size_t i, n = gimple_switch_num_labels (stmt);

	    /* Replace all destination labels.  */
	    for (i = 0; i < n; ++i)
	      {
		tree case_label = gimple_switch_label (stmt, i);
		label = CASE_LABEL (case_label);
		new_label = main_block_label (label);
		if (new_label != label)
		  CASE_LABEL (case_label) = new_label;
	      }
	    break;
	  }

	case GIMPLE_ASM:
	  {
	    int i, n = gimple_asm_nlabels (stmt);

	    for (i = 0; i < n; ++i)
	      {
		tree cons = gimple_asm_label_op (stmt, i);
		tree label = main_block_label (TREE_VALUE (cons));
		TREE_VALUE (cons) = label;
	      }
	    break;
	  }

	/* We have to handle gotos until they're removed, and we don't
	   remove them until after we've created the CFG edges.  */
	case GIMPLE_GOTO:
	  if (!computed_goto_p (stmt))
	    {
	      label = gimple_goto_dest (stmt);
	      new_label = main_block_label (label);
	      if (new_label != label)
		gimple_goto_set_dest (stmt, new_label);
	    }
	  break;

	case GIMPLE_TRANSACTION:
	  {
	    tree label = gimple_transaction_label (stmt);
	    if (label)
	      {
		tree new_label = main_block_label (label);
		if (new_label != label)
		  gimple_transaction_set_label (stmt, new_label);
	      }
	  }
	  break;

	default:
	  break;
      }
    }

  /* Do the same for the exception region tree labels.  */
  cleanup_dead_labels_eh ();

  /* Finally, purge dead labels.  All user-defined labels and labels that
     can be the target of non-local gotos and labels which have their
     address taken are preserved.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator i;
      tree label_for_this_bb = label_for_bb[bb->index].label;

      if (!label_for_this_bb)
	continue;

      /* If the main label of the block is unused, we may still remove it.  */
      if (!label_for_bb[bb->index].used)
	label_for_this_bb = NULL;

      for (i = gsi_start_bb (bb); !gsi_end_p (i); )
	{
	  tree label;
	  gimple stmt = gsi_stmt (i);

	  if (gimple_code (stmt) != GIMPLE_LABEL)
	    break;

	  label = gimple_label_label (stmt);

	  if (label == label_for_this_bb
	      || !DECL_ARTIFICIAL (label)
	      || DECL_NONLOCAL (label)
	      || FORCED_LABEL (label))
	    gsi_next (&i);
	  else
	    gsi_remove (&i, true);
	}
    }

  free (label_for_bb);
}

/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
   the ones jumping to the same label.
   Eg. three separate entries 1: 2: 3: become one entry 1..3:  */

void
group_case_labels_stmt (gimple stmt)
{
  int old_size = gimple_switch_num_labels (stmt);
  int i, j, new_size = old_size;
  basic_block default_bb = NULL;

  default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));

  /* Look for possible opportunities to merge cases.  */
  i = 1;
  while (i < old_size)
    {
      tree base_case, base_high;
      basic_block base_bb;

      base_case = gimple_switch_label (stmt, i);

      gcc_assert (base_case);
      base_bb = label_to_block (CASE_LABEL (base_case));

      /* Discard cases that have the same destination as the
	 default case.  */
      if (base_bb == default_bb)
	{
	  gimple_switch_set_label (stmt, i, NULL_TREE);
	  i++;
	  new_size--;
	  continue;
	}

      base_high = CASE_HIGH (base_case)
	  ? CASE_HIGH (base_case)
	  : CASE_LOW (base_case);
      i++;

      /* Try to merge case labels.  Break out when we reach the end
	 of the label vector or when we cannot merge the next case
	 label with the current one.  */
      while (i < old_size)
	{
	  tree merge_case = gimple_switch_label (stmt, i);
	  basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
	  wide_int bhp1 = wi::add (base_high, 1);

	  /* Merge the cases if they jump to the same place,
	     and their ranges are consecutive.  */
	  if (merge_bb == base_bb
	      && wi::eq_p (CASE_LOW (merge_case), bhp1))
	    {
	      base_high = CASE_HIGH (merge_case) ?
		  CASE_HIGH (merge_case) : CASE_LOW (merge_case);
	      CASE_HIGH (base_case) = base_high;
	      gimple_switch_set_label (stmt, i, NULL_TREE);
	      new_size--;
	      i++;
	    }
	  else
	    break;
	}
    }

  /* Compress the case labels in the label vector, and adjust the
     length of the vector.  */
  for (i = 0, j = 0; i < new_size; i++)
    {
      while (! gimple_switch_label (stmt, j))
	j++;
      gimple_switch_set_label (stmt, i,
			       gimple_switch_label (stmt, j++));
    }

  gcc_assert (new_size <= old_size);
  gimple_switch_set_num_labels (stmt, new_size);
}

/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
   and scan the sorted vector of cases.  Combine the ones jumping to the
   same label.  */

void
group_case_labels (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple stmt = last_stmt (bb);
      if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
	group_case_labels_stmt (stmt);
    }
}

/* Checks whether we can merge block B into block A.  */

static bool
gimple_can_merge_blocks_p (basic_block a, basic_block b)
{
  gimple stmt;
  gimple_stmt_iterator gsi;

  if (!single_succ_p (a))
    return false;

  if (single_succ_edge (a)->flags & EDGE_COMPLEX)
    return false;

  if (single_succ (a) != b)
    return false;

  if (!single_pred_p (b))
    return false;

  if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return false;

  /* If A ends by a statement causing exceptions or something similar, we
     cannot merge the blocks.  */
  stmt = last_stmt (a);
  if (stmt && stmt_ends_bb_p (stmt))
    return false;

  /* Do not allow a block with only a non-local label to be merged.  */
  if (stmt
      && gimple_code (stmt) == GIMPLE_LABEL
      && DECL_NONLOCAL (gimple_label_label (stmt)))
    return false;

  /* Examine the labels at the beginning of B.  */
  for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree lab;
      stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) != GIMPLE_LABEL)
	break;
      lab = gimple_label_label (stmt);

      /* Do not remove user forced labels or for -O0 any user labels.  */
      if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
	return false;
    }

  /* Protect simple loop latches.  We only want to avoid merging
     the latch with the loop header in this case.  */
  if (current_loops
      && b->loop_father->latch == b
      && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
      && b->loop_father->header == a)
    return false;

  /* It must be possible to eliminate all phi nodes in B.  If ssa form
     is not up-to-date and a name-mapping is registered, we cannot eliminate
     any phis.  Symbols marked for renaming are never a problem though.  */
  for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      /* Technically only new names matter.  */
      if (name_registered_for_update_p (PHI_RESULT (phi)))
	return false;
    }

  /* When not optimizing, don't merge if we'd lose goto_locus.  */
  if (!optimize
      && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
    {
      location_t goto_locus = single_succ_edge (a)->goto_locus;
      gimple_stmt_iterator prev, next;
      prev = gsi_last_nondebug_bb (a);
      next = gsi_after_labels (b);
      if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
	gsi_next_nondebug (&next);
      if ((gsi_end_p (prev)
	   || gimple_location (gsi_stmt (prev)) != goto_locus)
	  && (gsi_end_p (next)
	      || gimple_location (gsi_stmt (next)) != goto_locus))
	return false;
    }

  return true;
}

/* Replaces all uses of NAME by VAL.  */

void
replace_uses_by (tree name, tree val)
{
  imm_use_iterator imm_iter;
  use_operand_p use;
  gimple stmt;
  edge e;

  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
    {
      /* Mark the block if we change the last stmt in it.  */
      if (cfgcleanup_altered_bbs
	  && stmt_ends_bb_p (stmt))
	bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);

      FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
        {
	  replace_exp (use, val);

	  if (gimple_code (stmt) == GIMPLE_PHI)
	    {
	      e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
	      if (e->flags & EDGE_ABNORMAL)
		{
		  /* This can only occur for virtual operands, since
		     for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
		     would prevent replacement.  */
		  gcc_checking_assert (virtual_operand_p (name));
		  SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
		}
	    }
	}

      if (gimple_code (stmt) != GIMPLE_PHI)
	{
	  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
	  gimple orig_stmt = stmt;
	  size_t i;

	  /* FIXME.  It shouldn't be required to keep TREE_CONSTANT
	     on ADDR_EXPRs up-to-date on GIMPLE.  Propagation will
	     only change sth from non-invariant to invariant, and only
	     when propagating constants.  */
	  if (is_gimple_min_invariant (val))
	    for (i = 0; i < gimple_num_ops (stmt); i++)
	      {
		tree op = gimple_op (stmt, i);
		/* Operands may be empty here.  For example, the labels
		   of a GIMPLE_COND are nulled out following the creation
		   of the corresponding CFG edges.  */
		if (op && TREE_CODE (op) == ADDR_EXPR)
		  recompute_tree_invariant_for_addr_expr (op);
	      }

	  if (fold_stmt (&gsi))
	    stmt = gsi_stmt (gsi);

	  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
	    gimple_purge_dead_eh_edges (gimple_bb (stmt));

	  update_stmt (stmt);
	}
    }

  gcc_checking_assert (has_zero_uses (name));

  /* Also update the trees stored in loop structures.  */
  if (current_loops)
    {
      struct loop *loop;

      FOR_EACH_LOOP (loop, 0)
	{
	  substitute_in_loop_info (loop, name, val);
	}
    }
}

/* Merge block B into block A.  */

static void
gimple_merge_blocks (basic_block a, basic_block b)
{
  gimple_stmt_iterator last, gsi, psi;

  if (dump_file)
    fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);

  /* Remove all single-valued PHI nodes from block B of the form
     V_i = PHI <V_j> by propagating V_j to all the uses of V_i.  */
  gsi = gsi_last_bb (a);
  for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
    {
      gimple phi = gsi_stmt (psi);
      tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
      gimple copy;
      bool may_replace_uses = (virtual_operand_p (def)
			       || may_propagate_copy (def, use));

      /* In case we maintain loop closed ssa form, do not propagate arguments
	 of loop exit phi nodes.  */
      if (current_loops
	  && loops_state_satisfies_p (LOOP_CLOSED_SSA)
	  && !virtual_operand_p (def)
	  && TREE_CODE (use) == SSA_NAME
	  && a->loop_father != b->loop_father)
	may_replace_uses = false;

      if (!may_replace_uses)
	{
	  gcc_assert (!virtual_operand_p (def));

	  /* Note that just emitting the copies is fine -- there is no problem
	     with ordering of phi nodes.  This is because A is the single
	     predecessor of B, therefore results of the phi nodes cannot
	     appear as arguments of the phi nodes.  */
	  copy = gimple_build_assign (def, use);
	  gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
          remove_phi_node (&psi, false);
	}
      else
        {
	  /* If we deal with a PHI for virtual operands, we can simply
	     propagate these without fussing with folding or updating
	     the stmt.  */
	  if (virtual_operand_p (def))
	    {
	      imm_use_iterator iter;
	      use_operand_p use_p;
	      gimple stmt;

	      FOR_EACH_IMM_USE_STMT (stmt, iter, def)
		FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		  SET_USE (use_p, use);

	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
	    }
	  else
            replace_uses_by (def, use);

          remove_phi_node (&psi, true);
        }
    }

  /* Ensure that B follows A.  */
  move_block_after (b, a);

  gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
  gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));

  /* Remove labels from B and set gimple_bb to A for other statements.  */
  for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
    {
      gimple stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) == GIMPLE_LABEL)
	{
	  tree label = gimple_label_label (stmt);
	  int lp_nr;

	  gsi_remove (&gsi, false);

	  /* Now that we can thread computed gotos, we might have
	     a situation where we have a forced label in block B
	     However, the label at the start of block B might still be
	     used in other ways (think about the runtime checking for
	     Fortran assigned gotos).  So we can not just delete the
	     label.  Instead we move the label to the start of block A.  */
	  if (FORCED_LABEL (label))
	    {
	      gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
	      gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
	    }
	  /* Other user labels keep around in a form of a debug stmt.  */
	  else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
	    {
	      gimple dbg = gimple_build_debug_bind (label,
						    integer_zero_node,
						    stmt);
	      gimple_debug_bind_reset_value (dbg);
	      gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
	    }

	  lp_nr = EH_LANDING_PAD_NR (label);
	  if (lp_nr)
	    {
	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
	      lp->post_landing_pad = NULL;
	    }
	}
      else
	{
	  gimple_set_bb (stmt, a);
	  gsi_next (&gsi);
	}
    }

  /* When merging two BBs, if their counts are different, the larger count
     is selected as the new bb count. This is to handle inconsistent
     profiles.  */
  if (a->loop_father == b->loop_father)
    {
      a->count = MAX (a->count, b->count);
      a->frequency = MAX (a->frequency, b->frequency);
    }

  /* Merge the sequences.  */
  last = gsi_last_bb (a);
  gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
  set_bb_seq (b, NULL);

  if (cfgcleanup_altered_bbs)
    bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
}


/* Return the one of two successors of BB that is not reachable by a
   complex edge, if there is one.  Else, return BB.  We use
   this in optimizations that use post-dominators for their heuristics,
   to catch the cases in C++ where function calls are involved.  */

basic_block
single_noncomplex_succ (basic_block bb)
{
  edge e0, e1;
  if (EDGE_COUNT (bb->succs) != 2)
    return bb;

  e0 = EDGE_SUCC (bb, 0);
  e1 = EDGE_SUCC (bb, 1);
  if (e0->flags & EDGE_COMPLEX)
    return e1->dest;
  if (e1->flags & EDGE_COMPLEX)
    return e0->dest;

  return bb;
}

/* T is CALL_EXPR.  Set current_function_calls_* flags.  */

void
notice_special_calls (gimple call)
{
  int flags = gimple_call_flags (call);

  if (flags & ECF_MAY_BE_ALLOCA)
    cfun->calls_alloca = true;
  if (flags & ECF_RETURNS_TWICE)
    cfun->calls_setjmp = true;
}


/* Clear flags set by notice_special_calls.  Used by dead code removal
   to update the flags.  */

void
clear_special_calls (void)
{
  cfun->calls_alloca = false;
  cfun->calls_setjmp = false;
}

/* Remove PHI nodes associated with basic block BB and all edges out of BB.  */

static void
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
{
  /* Since this block is no longer reachable, we can just delete all
     of its PHI nodes.  */
  remove_phi_nodes (bb);

  /* Remove edges to BB's successors.  */
  while (EDGE_COUNT (bb->succs) > 0)
    remove_edge (EDGE_SUCC (bb, 0));
}


/* Remove statements of basic block BB.  */

static void
remove_bb (basic_block bb)
{
  gimple_stmt_iterator i;

  if (dump_file)
    {
      fprintf (dump_file, "Removing basic block %d\n", bb->index);
      if (dump_flags & TDF_DETAILS)
	{
	  dump_bb (dump_file, bb, 0, TDF_BLOCKS);
	  fprintf (dump_file, "\n");
	}
    }

  if (current_loops)
    {
      struct loop *loop = bb->loop_father;

      /* If a loop gets removed, clean up the information associated
	 with it.  */
      if (loop->latch == bb
	  || loop->header == bb)
	free_numbers_of_iterations_estimates_loop (loop);
    }

  /* Remove all the instructions in the block.  */
  if (bb_seq (bb) != NULL)
    {
      /* Walk backwards so as to get a chance to substitute all
	 released DEFs into debug stmts.  See
	 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
	 details.  */
      for (i = gsi_last_bb (bb); !gsi_end_p (i);)
	{
	  gimple stmt = gsi_stmt (i);
	  if (gimple_code (stmt) == GIMPLE_LABEL
	      && (FORCED_LABEL (gimple_label_label (stmt))
		  || DECL_NONLOCAL (gimple_label_label (stmt))))
	    {
	      basic_block new_bb;
	      gimple_stmt_iterator new_gsi;

	      /* A non-reachable non-local label may still be referenced.
		 But it no longer needs to carry the extra semantics of
		 non-locality.  */
	      if (DECL_NONLOCAL (gimple_label_label (stmt)))
		{
		  DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
		  FORCED_LABEL (gimple_label_label (stmt)) = 1;
		}

	      new_bb = bb->prev_bb;
	      new_gsi = gsi_start_bb (new_bb);
	      gsi_remove (&i, false);
	      gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
	    }
	  else
	    {
	      /* Release SSA definitions if we are in SSA.  Note that we
		 may be called when not in SSA.  For example,
		 final_cleanup calls this function via
		 cleanup_tree_cfg.  */
	      if (gimple_in_ssa_p (cfun))
		release_defs (stmt);

	      gsi_remove (&i, true);
	    }

	  if (gsi_end_p (i))
	    i = gsi_last_bb (bb);
	  else
	    gsi_prev (&i);
	}
    }

  remove_phi_nodes_and_edges_for_unreachable_block (bb);
  bb->il.gimple.seq = NULL;
  bb->il.gimple.phi_nodes = NULL;
}


/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
   predicate VAL, return the edge that will be taken out of the block.
   If VAL does not match a unique edge, NULL is returned.  */

edge
find_taken_edge (basic_block bb, tree val)
{
  gimple stmt;

  stmt = last_stmt (bb);

  gcc_assert (stmt);
  gcc_assert (is_ctrl_stmt (stmt));

  if (val == NULL)
    return NULL;

  if (!is_gimple_min_invariant (val))
    return NULL;

  if (gimple_code (stmt) == GIMPLE_COND)
    return find_taken_edge_cond_expr (bb, val);

  if (gimple_code (stmt) == GIMPLE_SWITCH)
    return find_taken_edge_switch_expr (bb, val);

  if (computed_goto_p (stmt))
    {
      /* Only optimize if the argument is a label, if the argument is
	 not a label then we can not construct a proper CFG.

         It may be the case that we only need to allow the LABEL_REF to
         appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
         appear inside a LABEL_EXPR just to be safe.  */
      if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
	  && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
	return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
      return NULL;
    }

  gcc_unreachable ();
}

/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
   statement, determine which of the outgoing edges will be taken out of the
   block.  Return NULL if either edge may be taken.  */

static edge
find_taken_edge_computed_goto (basic_block bb, tree val)
{
  basic_block dest;
  edge e = NULL;

  dest = label_to_block (val);
  if (dest)
    {
      e = find_edge (bb, dest);
      gcc_assert (e != NULL);
    }

  return e;
}

/* Given a constant value VAL and the entry block BB to a COND_EXPR
   statement, determine which of the two edges will be taken out of the
   block.  Return NULL if either edge may be taken.  */

static edge
find_taken_edge_cond_expr (basic_block bb, tree val)
{
  edge true_edge, false_edge;

  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

  gcc_assert (TREE_CODE (val) == INTEGER_CST);
  return (integer_zerop (val) ? false_edge : true_edge);
}

/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
   statement, determine which edge will be taken out of the block.  Return
   NULL if any edge may be taken.  */

static edge
find_taken_edge_switch_expr (basic_block bb, tree val)
{
  basic_block dest_bb;
  edge e;
  gimple switch_stmt;
  tree taken_case;

  switch_stmt = last_stmt (bb);
  taken_case = find_case_label_for_value (switch_stmt, val);
  dest_bb = label_to_block (CASE_LABEL (taken_case));

  e = find_edge (bb, dest_bb);
  gcc_assert (e);
  return e;
}


/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
   We can make optimal use here of the fact that the case labels are
   sorted: We can do a binary search for a case matching VAL.  */

static tree
find_case_label_for_value (gimple switch_stmt, tree val)
{
  size_t low, high, n = gimple_switch_num_labels (switch_stmt);
  tree default_case = gimple_switch_default_label (switch_stmt);

  for (low = 0, high = n; high - low > 1; )
    {
      size_t i = (high + low) / 2;
      tree t = gimple_switch_label (switch_stmt, i);
      int cmp;

      /* Cache the result of comparing CASE_LOW and val.  */
      cmp = tree_int_cst_compare (CASE_LOW (t), val);

      if (cmp > 0)
	high = i;
      else
	low = i;

      if (CASE_HIGH (t) == NULL)
	{
	  /* A singe-valued case label.  */
	  if (cmp == 0)
	    return t;
	}
      else
	{
	  /* A case range.  We can only handle integer ranges.  */
	  if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
	    return t;
	}
    }

  return default_case;
}


/* Dump a basic block on stderr.  */

void
gimple_debug_bb (basic_block bb)
{
  dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
}


/* Dump basic block with index N on stderr.  */

basic_block
gimple_debug_bb_n (int n)
{
  gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
  return BASIC_BLOCK_FOR_FN (cfun, n);
}


/* Dump the CFG on stderr.

   FLAGS are the same used by the tree dumping functions
   (see TDF_* in dumpfile.h).  */

void
gimple_debug_cfg (int flags)
{
  gimple_dump_cfg (stderr, flags);
}


/* Dump the program showing basic block boundaries on the given FILE.

   FLAGS are the same used by the tree dumping functions (see TDF_* in
   tree.h).  */

void
gimple_dump_cfg (FILE *file, int flags)
{
  if (flags & TDF_DETAILS)
    {
      dump_function_header (file, current_function_decl, flags);
      fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
	       n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
	       last_basic_block_for_fn (cfun));

      brief_dump_cfg (file, flags | TDF_COMMENT);
      fprintf (file, "\n");
    }

  if (flags & TDF_STATS)
    dump_cfg_stats (file);

  dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
}


/* Dump CFG statistics on FILE.  */

void
dump_cfg_stats (FILE *file)
{
  static long max_num_merged_labels = 0;
  unsigned long size, total = 0;
  long num_edges;
  basic_block bb;
  const char * const fmt_str   = "%-30s%-13s%12s\n";
  const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
  const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
  const char * const fmt_str_3 = "%-43s%11lu%c\n";
  const char *funcname = current_function_name ();

  fprintf (file, "\nCFG Statistics for %s\n\n", funcname);

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str, "", "  Number of  ", "Memory");
  fprintf (file, fmt_str, "", "  instances  ", "used ");
  fprintf (file, "---------------------------------------------------------\n");

  size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
  total += size;
  fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
	   SCALE (size), LABEL (size));

  num_edges = 0;
  FOR_EACH_BB_FN (bb, cfun)
    num_edges += EDGE_COUNT (bb->succs);
  size = num_edges * sizeof (struct edge_def);
  total += size;
  fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
	   LABEL (total));
  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, "\n");

  if (cfg_stats.num_merged_labels > max_num_merged_labels)
    max_num_merged_labels = cfg_stats.num_merged_labels;

  fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
	   cfg_stats.num_merged_labels, max_num_merged_labels);

  fprintf (file, "\n");
}


/* Dump CFG statistics on stderr.  Keep extern so that it's always
   linked in the final executable.  */

DEBUG_FUNCTION void
debug_cfg_stats (void)
{
  dump_cfg_stats (stderr);
}

/*---------------------------------------------------------------------------
			     Miscellaneous helpers
---------------------------------------------------------------------------*/

/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
   flow.  Transfers of control flow associated with EH are excluded.  */

static bool
call_can_make_abnormal_goto (gimple t)
{
  /* If the function has no non-local labels, then a call cannot make an
     abnormal transfer of control.  */
  if (!cfun->has_nonlocal_label
      && !cfun->calls_setjmp)
   return false;

  /* Likewise if the call has no side effects.  */
  if (!gimple_has_side_effects (t))
    return false;

  /* Likewise if the called function is leaf.  */
  if (gimple_call_flags (t) & ECF_LEAF)
    return false;

  return true;
}


/* Return true if T can make an abnormal transfer of control flow.
   Transfers of control flow associated with EH are excluded.  */

bool
stmt_can_make_abnormal_goto (gimple t)
{
  if (computed_goto_p (t))
    return true;
  if (is_gimple_call (t))
    return call_can_make_abnormal_goto (t);
  return false;
}


/* Return true if T represents a stmt that always transfers control.  */

bool
is_ctrl_stmt (gimple t)
{
  switch (gimple_code (t))
    {
    case GIMPLE_COND:
    case GIMPLE_SWITCH:
    case GIMPLE_GOTO:
    case GIMPLE_RETURN:
    case GIMPLE_RESX:
      return true;
    default:
      return false;
    }
}


/* Return true if T is a statement that may alter the flow of control
   (e.g., a call to a non-returning function).  */

bool
is_ctrl_altering_stmt (gimple t)
{
  gcc_assert (t);

  switch (gimple_code (t))
    {
    case GIMPLE_CALL:
      /* Per stmt call flag indicates whether the call could alter
	 controlflow.  */
      if (gimple_call_ctrl_altering_p (t))
	return true;
      break;

    case GIMPLE_EH_DISPATCH:
      /* EH_DISPATCH branches to the individual catch handlers at
	 this level of a try or allowed-exceptions region.  It can
	 fallthru to the next statement as well.  */
      return true;

    case GIMPLE_ASM:
      if (gimple_asm_nlabels (t) > 0)
	return true;
      break;

    CASE_GIMPLE_OMP:
      /* OpenMP directives alter control flow.  */
      return true;

    case GIMPLE_TRANSACTION:
      /* A transaction start alters control flow.  */
      return true;

    default:
      break;
    }

  /* If a statement can throw, it alters control flow.  */
  return stmt_can_throw_internal (t);
}


/* Return true if T is a simple local goto.  */

bool
simple_goto_p (gimple t)
{
  return (gimple_code (t) == GIMPLE_GOTO
	  && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
}


/* Return true if STMT should start a new basic block.  PREV_STMT is
   the statement preceding STMT.  It is used when STMT is a label or a
   case label.  Labels should only start a new basic block if their
   previous statement wasn't a label.  Otherwise, sequence of labels
   would generate unnecessary basic blocks that only contain a single
   label.  */

static inline bool
stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
{
  if (stmt == NULL)
    return false;

  /* Labels start a new basic block only if the preceding statement
     wasn't a label of the same type.  This prevents the creation of
     consecutive blocks that have nothing but a single label.  */
  if (gimple_code (stmt) == GIMPLE_LABEL)
    {
      /* Nonlocal and computed GOTO targets always start a new block.  */
      if (DECL_NONLOCAL (gimple_label_label (stmt))
	  || FORCED_LABEL (gimple_label_label (stmt)))
	return true;

      if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
	{
	  if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
	    return true;

	  cfg_stats.num_merged_labels++;
	  return false;
	}
      else
	return true;
    }
  else if (gimple_code (stmt) == GIMPLE_CALL
	   && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
    /* setjmp acts similar to a nonlocal GOTO target and thus should
       start a new block.  */
    return true;

  return false;
}


/* Return true if T should end a basic block.  */

bool
stmt_ends_bb_p (gimple t)
{
  return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
}

/* Remove block annotations and other data structures.  */

void
delete_tree_cfg_annotations (void)
{
  vec_free (label_to_block_map_for_fn (cfun));
}


/* Return the first statement in basic block BB.  */

gimple
first_stmt (basic_block bb)
{
  gimple_stmt_iterator i = gsi_start_bb (bb);
  gimple stmt = NULL;

  while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
    {
      gsi_next (&i);
      stmt = NULL;
    }
  return stmt;
}

/* Return the first non-label statement in basic block BB.  */

static gimple
first_non_label_stmt (basic_block bb)
{
  gimple_stmt_iterator i = gsi_start_bb (bb);
  while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
    gsi_next (&i);
  return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
}

/* Return the last statement in basic block BB.  */

gimple
last_stmt (basic_block bb)
{
  gimple_stmt_iterator i = gsi_last_bb (bb);
  gimple stmt = NULL;

  while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
    {
      gsi_prev (&i);
      stmt = NULL;
    }
  return stmt;
}

/* Return the last statement of an otherwise empty block.  Return NULL
   if the block is totally empty, or if it contains more than one
   statement.  */

gimple
last_and_only_stmt (basic_block bb)
{
  gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
  gimple last, prev;

  if (gsi_end_p (i))
    return NULL;

  last = gsi_stmt (i);
  gsi_prev_nondebug (&i);
  if (gsi_end_p (i))
    return last;

  /* Empty statements should no longer appear in the instruction stream.
     Everything that might have appeared before should be deleted by
     remove_useless_stmts, and the optimizers should just gsi_remove
     instead of smashing with build_empty_stmt.

     Thus the only thing that should appear here in a block containing
     one executable statement is a label.  */
  prev = gsi_stmt (i);
  if (gimple_code (prev) == GIMPLE_LABEL)
    return last;
  else
    return NULL;
}

/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE.  */

static void
reinstall_phi_args (edge new_edge, edge old_edge)
{
  edge_var_map *vm;
  int i;
  gimple_stmt_iterator phis;

  vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
  if (!v)
    return;

  for (i = 0, phis = gsi_start_phis (new_edge->dest);
       v->iterate (i, &vm) && !gsi_end_p (phis);
       i++, gsi_next (&phis))
    {
      gimple phi = gsi_stmt (phis);
      tree result = redirect_edge_var_map_result (vm);
      tree arg = redirect_edge_var_map_def (vm);

      gcc_assert (result == gimple_phi_result (phi));

      add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
    }

  redirect_edge_var_map_clear (old_edge);
}

/* Returns the basic block after which the new basic block created
   by splitting edge EDGE_IN should be placed.  Tries to keep the new block
   near its "logical" location.  This is of most help to humans looking
   at debugging dumps.  */

static basic_block
split_edge_bb_loc (edge edge_in)
{
  basic_block dest = edge_in->dest;
  basic_block dest_prev = dest->prev_bb;

  if (dest_prev)
    {
      edge e = find_edge (dest_prev, dest);
      if (e && !(e->flags & EDGE_COMPLEX))
	return edge_in->src;
    }
  return dest_prev;
}

/* Split a (typically critical) edge EDGE_IN.  Return the new block.
   Abort on abnormal edges.  */

static basic_block
gimple_split_edge (edge edge_in)
{
  basic_block new_bb, after_bb, dest;
  edge new_edge, e;

  /* Abnormal edges cannot be split.  */
  gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));

  dest = edge_in->dest;

  after_bb = split_edge_bb_loc (edge_in);

  new_bb = create_empty_bb (after_bb);
  new_bb->frequency = EDGE_FREQUENCY (edge_in);
  new_bb->count = edge_in->count;
  new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
  new_edge->probability = REG_BR_PROB_BASE;
  new_edge->count = edge_in->count;

  e = redirect_edge_and_branch (edge_in, new_bb);
  gcc_assert (e == edge_in);
  reinstall_phi_args (new_edge, e);

  return new_bb;
}


/* Verify properties of the address expression T with base object BASE.  */

static tree
verify_address (tree t, tree base)
{
  bool old_constant;
  bool old_side_effects;
  bool new_constant;
  bool new_side_effects;

  old_constant = TREE_CONSTANT (t);
  old_side_effects = TREE_SIDE_EFFECTS (t);

  recompute_tree_invariant_for_addr_expr (t);
  new_side_effects = TREE_SIDE_EFFECTS (t);
  new_constant = TREE_CONSTANT (t);

  if (old_constant != new_constant)
    {
      error ("constant not recomputed when ADDR_EXPR changed");
      return t;
    }
  if (old_side_effects != new_side_effects)
    {
      error ("side effects not recomputed when ADDR_EXPR changed");
      return t;
    }

  if (!(TREE_CODE (base) == VAR_DECL
	|| TREE_CODE (base) == PARM_DECL
	|| TREE_CODE (base) == RESULT_DECL))
    return NULL_TREE;

  if (DECL_GIMPLE_REG_P (base))
    {
      error ("DECL_GIMPLE_REG_P set on a variable with address taken");
      return base;
    }

  return NULL_TREE;
}

/* Callback for walk_tree, check that all elements with address taken are
   properly noticed as such.  The DATA is an int* that is 1 if TP was seen
   inside a PHI node.  */

static tree
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  tree t = *tp, x;

  if (TYPE_P (t))
    *walk_subtrees = 0;

  /* Check operand N for being valid GIMPLE and give error MSG if not.  */
#define CHECK_OP(N, MSG) \
  do { if (!is_gimple_val (TREE_OPERAND (t, N)))		\
       { error (MSG); return TREE_OPERAND (t, N); }} while (0)

  switch (TREE_CODE (t))
    {
    case SSA_NAME:
      if (SSA_NAME_IN_FREE_LIST (t))
	{
	  error ("SSA name in freelist but still referenced");
	  return *tp;
	}
      break;

    case INDIRECT_REF:
      error ("INDIRECT_REF in gimple IL");
      return t;

    case MEM_REF:
      x = TREE_OPERAND (t, 0);
      if (!POINTER_TYPE_P (TREE_TYPE (x))
	  || !is_gimple_mem_ref_addr (x))
	{
	  error ("invalid first operand of MEM_REF");
	  return x;
	}
      if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
	  || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
	{
	  error ("invalid offset operand of MEM_REF");
	  return TREE_OPERAND (t, 1);
	}
      if (TREE_CODE (x) == ADDR_EXPR
	  && (x = verify_address (x, TREE_OPERAND (x, 0))))
	return x;
      *walk_subtrees = 0;
      break;

    case ASSERT_EXPR:
      x = fold (ASSERT_EXPR_COND (t));
      if (x == boolean_false_node)
	{
	  error ("ASSERT_EXPR with an always-false condition");
	  return *tp;
	}
      break;

    case MODIFY_EXPR:
      error ("MODIFY_EXPR not expected while having tuples");
      return *tp;

    case ADDR_EXPR:
      {
	tree tem;

	gcc_assert (is_gimple_address (t));

	/* Skip any references (they will be checked when we recurse down the
	   tree) and ensure that any variable used as a prefix is marked
	   addressable.  */
	for (x = TREE_OPERAND (t, 0);
	     handled_component_p (x);
	     x = TREE_OPERAND (x, 0))
	  ;

	if ((tem = verify_address (t, x)))
	  return tem;

	if (!(TREE_CODE (x) == VAR_DECL
	      || TREE_CODE (x) == PARM_DECL
	      || TREE_CODE (x) == RESULT_DECL))
	  return NULL;

	if (!TREE_ADDRESSABLE (x))
	  {
	    error ("address taken, but ADDRESSABLE bit not set");
	    return x;
	  }

	break;
      }

    case COND_EXPR:
      x = COND_EXPR_COND (t);
      if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
	{
	  error ("non-integral used in condition");
	  return x;
	}
      if (!is_gimple_condexpr (x))
        {
	  error ("invalid conditional operand");
	  return x;
	}
      break;

    case NON_LVALUE_EXPR:
    case TRUTH_NOT_EXPR:
      gcc_unreachable ();

    CASE_CONVERT:
    case FIX_TRUNC_EXPR:
    case FLOAT_EXPR:
    case NEGATE_EXPR:
    case ABS_EXPR:
    case BIT_NOT_EXPR:
      CHECK_OP (0, "invalid operand to unary operator");
      break;

    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case BIT_FIELD_REF:
      if (!is_gimple_reg_type (TREE_TYPE (t)))
	{
	  error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
	  return t;
	}

      if (TREE_CODE (t) == BIT_FIELD_REF)
	{
	  tree t0 = TREE_OPERAND (t, 0);
	  tree t1 = TREE_OPERAND (t, 1);
	  tree t2 = TREE_OPERAND (t, 2);
	  if (!tree_fits_uhwi_p (t1)
	      || !tree_fits_uhwi_p (t2))
	    {
	      error ("invalid position or size operand to BIT_FIELD_REF");
	      return t;
	    }
	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
	      && (TYPE_PRECISION (TREE_TYPE (t))
		  != tree_to_uhwi (t1)))
	    {
	      error ("integral result type precision does not match "
		     "field size of BIT_FIELD_REF");
	      return t;
	    }
	  else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
		   && TYPE_MODE (TREE_TYPE (t)) != BLKmode
		   && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
		       != tree_to_uhwi (t1)))
	    {
	      error ("mode precision of non-integral result does not "
		     "match field size of BIT_FIELD_REF");
	      return t;
	    }
	  if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
	      && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
		  > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
	    {
	      error ("position plus size exceeds size of referenced object in "
		     "BIT_FIELD_REF");
	      return t;
	    }
	}
      t = TREE_OPERAND (t, 0);

      /* Fall-through.  */
    case COMPONENT_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case VIEW_CONVERT_EXPR:
      /* We have a nest of references.  Verify that each of the operands
	 that determine where to reference is either a constant or a variable,
	 verify that the base is valid, and then show we've already checked
	 the subtrees.  */
      while (handled_component_p (t))
	{
	  if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
	    CHECK_OP (2, "invalid COMPONENT_REF offset operator");
	  else if (TREE_CODE (t) == ARRAY_REF
		   || TREE_CODE (t) == ARRAY_RANGE_REF)
	    {
	      CHECK_OP (1, "invalid array index");
	      if (TREE_OPERAND (t, 2))
		CHECK_OP (2, "invalid array lower bound");
	      if (TREE_OPERAND (t, 3))
		CHECK_OP (3, "invalid array stride");
	    }
	  else if (TREE_CODE (t) == BIT_FIELD_REF
		   || TREE_CODE (t) == REALPART_EXPR
		   || TREE_CODE (t) == IMAGPART_EXPR)
	    {
	      error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
		     "REALPART_EXPR");
	      return t;
	    }

	  t = TREE_OPERAND (t, 0);
	}

      if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
	{
	  error ("invalid reference prefix");
	  return t;
	}
      *walk_subtrees = 0;
      break;
    case PLUS_EXPR:
    case MINUS_EXPR:
      /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
	 POINTER_PLUS_EXPR. */
      if (POINTER_TYPE_P (TREE_TYPE (t)))
	{
	  error ("invalid operand to plus/minus, type is a pointer");
	  return t;
	}
      CHECK_OP (0, "invalid operand to binary operator");
      CHECK_OP (1, "invalid operand to binary operator");
      break;

    case POINTER_PLUS_EXPR:
      /* Check to make sure the first operand is a pointer or reference type. */
      if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
	{
	  error ("invalid operand to pointer plus, first operand is not a pointer");
	  return t;
	}
      /* Check to make sure the second operand is a ptrofftype.  */
      if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
	{
	  error ("invalid operand to pointer plus, second operand is not an "
		 "integer type of appropriate width");
	  return t;
	}
      /* FALLTHROUGH */
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case EXACT_DIV_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
      CHECK_OP (0, "invalid operand to binary operator");
      CHECK_OP (1, "invalid operand to binary operator");
      break;

    case CONSTRUCTOR:
      if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
	*walk_subtrees = 0;
      break;

    case CASE_LABEL_EXPR:
      if (CASE_CHAIN (t))
	{
	  error ("invalid CASE_CHAIN");
	  return t;
	}
      break;

    default:
      break;
    }
  return NULL;

#undef CHECK_OP
}


/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
   Returns true if there is an error, otherwise false.  */

static bool
verify_types_in_gimple_min_lval (tree expr)
{
  tree op;

  if (is_gimple_id (expr))
    return false;

  if (TREE_CODE (expr) != TARGET_MEM_REF
      && TREE_CODE (expr) != MEM_REF)
    {
      error ("invalid expression for min lvalue");
      return true;
    }

  /* TARGET_MEM_REFs are strange beasts.  */
  if (TREE_CODE (expr) == TARGET_MEM_REF)
    return false;

  op = TREE_OPERAND (expr, 0);
  if (!is_gimple_val (op))
    {
      error ("invalid operand in indirect reference");
      debug_generic_stmt (op);
      return true;
    }
  /* Memory references now generally can involve a value conversion.  */

  return false;
}

/* Verify if EXPR is a valid GIMPLE reference expression.  If
   REQUIRE_LVALUE is true verifies it is an lvalue.  Returns true
   if there is an error, otherwise false.  */

static bool
verify_types_in_gimple_reference (tree expr, bool require_lvalue)
{
  while (handled_component_p (expr))
    {
      tree op = TREE_OPERAND (expr, 0);

      if (TREE_CODE (expr) == ARRAY_REF
	  || TREE_CODE (expr) == ARRAY_RANGE_REF)
	{
	  if (!is_gimple_val (TREE_OPERAND (expr, 1))
	      || (TREE_OPERAND (expr, 2)
		  && !is_gimple_val (TREE_OPERAND (expr, 2)))
	      || (TREE_OPERAND (expr, 3)
		  && !is_gimple_val (TREE_OPERAND (expr, 3))))
	    {
	      error ("invalid operands to array reference");
	      debug_generic_stmt (expr);
	      return true;
	    }
	}

      /* Verify if the reference array element types are compatible.  */
      if (TREE_CODE (expr) == ARRAY_REF
	  && !useless_type_conversion_p (TREE_TYPE (expr),
					 TREE_TYPE (TREE_TYPE (op))))
	{
	  error ("type mismatch in array reference");
	  debug_generic_stmt (TREE_TYPE (expr));
	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
	  return true;
	}
      if (TREE_CODE (expr) == ARRAY_RANGE_REF
	  && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
					 TREE_TYPE (TREE_TYPE (op))))
	{
	  error ("type mismatch in array range reference");
	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
	  return true;
	}

      if ((TREE_CODE (expr) == REALPART_EXPR
	   || TREE_CODE (expr) == IMAGPART_EXPR)
	  && !useless_type_conversion_p (TREE_TYPE (expr),
					 TREE_TYPE (TREE_TYPE (op))))
	{
	  error ("type mismatch in real/imagpart reference");
	  debug_generic_stmt (TREE_TYPE (expr));
	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
	  return true;
	}

      if (TREE_CODE (expr) == COMPONENT_REF
	  && !useless_type_conversion_p (TREE_TYPE (expr),
					 TREE_TYPE (TREE_OPERAND (expr, 1))))
	{
	  error ("type mismatch in component reference");
	  debug_generic_stmt (TREE_TYPE (expr));
	  debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
	  return true;
	}

      if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
	{
	  /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
	     that their operand is not an SSA name or an invariant when
	     requiring an lvalue (this usually means there is a SRA or IPA-SRA
	     bug).  Otherwise there is nothing to verify, gross mismatches at
	     most invoke undefined behavior.  */
	  if (require_lvalue
	      && (TREE_CODE (op) == SSA_NAME
		  || is_gimple_min_invariant (op)))
	    {
	      error ("conversion of an SSA_NAME on the left hand side");
	      debug_generic_stmt (expr);
	      return true;
	    }
	  else if (TREE_CODE (op) == SSA_NAME
		   && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
	    {
	      error ("conversion of register to a different size");
	      debug_generic_stmt (expr);
	      return true;
	    }
	  else if (!handled_component_p (op))
	    return false;
	}

      expr = op;
    }

  if (TREE_CODE (expr) == MEM_REF)
    {
      if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
	{
	  error ("invalid address operand in MEM_REF");
	  debug_generic_stmt (expr);
	  return true;
	}
      if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
	  || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
	{
	  error ("invalid offset operand in MEM_REF");
	  debug_generic_stmt (expr);
	  return true;
	}
    }
  else if (TREE_CODE (expr) == TARGET_MEM_REF)
    {
      if (!TMR_BASE (expr)
	  || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
	{
	  error ("invalid address operand in TARGET_MEM_REF");
	  return true;
	}
      if (!TMR_OFFSET (expr)
	  || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
	  || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
	{
	  error ("invalid offset operand in TARGET_MEM_REF");
	  debug_generic_stmt (expr);
	  return true;
	}
    }

  return ((require_lvalue || !is_gimple_min_invariant (expr))
	  && verify_types_in_gimple_min_lval (expr));
}

/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
   list of pointer-to types that is trivially convertible to DEST.  */

static bool
one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
{
  tree src;

  if (!TYPE_POINTER_TO (src_obj))
    return true;

  for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
    if (useless_type_conversion_p (dest, src))
      return true;

  return false;
}

/* Return true if TYPE1 is a fixed-point type and if conversions to and
   from TYPE2 can be handled by FIXED_CONVERT_EXPR.  */

static bool
valid_fixed_convert_types_p (tree type1, tree type2)
{
  return (FIXED_POINT_TYPE_P (type1)
	  && (INTEGRAL_TYPE_P (type2)
	      || SCALAR_FLOAT_TYPE_P (type2)
	      || FIXED_POINT_TYPE_P (type2)));
}

/* Verify the contents of a GIMPLE_CALL STMT.  Returns true when there
   is a problem, otherwise false.  */

static bool
verify_gimple_call (gimple stmt)
{
  tree fn = gimple_call_fn (stmt);
  tree fntype, fndecl;
  unsigned i;

  if (gimple_call_internal_p (stmt))
    {
      if (fn)
	{
	  error ("gimple call has two targets");
	  debug_generic_stmt (fn);
	  return true;
	}
    }
  else
    {
      if (!fn)
	{
	  error ("gimple call has no target");
	  return true;
	}
    }

  if (fn && !is_gimple_call_addr (fn))
    {
      error ("invalid function in gimple call");
      debug_generic_stmt (fn);
      return true;
    }

  if (fn
      && (!POINTER_TYPE_P (TREE_TYPE (fn))
	  || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
	      && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
    {
      error ("non-function in gimple call");
      return true;
    }

   fndecl = gimple_call_fndecl (stmt);
   if (fndecl
       && TREE_CODE (fndecl) == FUNCTION_DECL
       && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
       && !DECL_PURE_P (fndecl)
       && !TREE_READONLY (fndecl))
     {
       error ("invalid pure const state for function");
       return true;
     }

  if (gimple_call_lhs (stmt)
      && (!is_gimple_lvalue (gimple_call_lhs (stmt))
	  || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
    {
      error ("invalid LHS in gimple call");
      return true;
    }

  if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
    {
      error ("LHS in noreturn call");
      return true;
    }

  fntype = gimple_call_fntype (stmt);
  if (fntype
      && gimple_call_lhs (stmt)
      && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
				     TREE_TYPE (fntype))
      /* ???  At least C++ misses conversions at assignments from
	 void * call results.
	 ???  Java is completely off.  Especially with functions
	 returning java.lang.Object.
	 For now simply allow arbitrary pointer type conversions.  */
      && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
	   && POINTER_TYPE_P (TREE_TYPE (fntype))))
    {
      error ("invalid conversion in gimple call");
      debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
      debug_generic_stmt (TREE_TYPE (fntype));
      return true;
    }

  if (gimple_call_chain (stmt)
      && !is_gimple_val (gimple_call_chain (stmt)))
    {
      error ("invalid static chain in gimple call");
      debug_generic_stmt (gimple_call_chain (stmt));
      return true;
    }

  /* If there is a static chain argument, this should not be an indirect
     call, and the decl should have DECL_STATIC_CHAIN set.  */
  if (gimple_call_chain (stmt))
    {
      if (!gimple_call_fndecl (stmt))
	{
	  error ("static chain in indirect gimple call");
	  return true;
	}
      fn = TREE_OPERAND (fn, 0);

      if (!DECL_STATIC_CHAIN (fn))
	{
	  error ("static chain with function that doesn%'t use one");
	  return true;
	}
    }

  /* ???  The C frontend passes unpromoted arguments in case it
     didn't see a function declaration before the call.  So for now
     leave the call arguments mostly unverified.  Once we gimplify
     unit-at-a-time we have a chance to fix this.  */

  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);
      if ((is_gimple_reg_type (TREE_TYPE (arg))
	   && !is_gimple_val (arg))
	  || (!is_gimple_reg_type (TREE_TYPE (arg))
	      && !is_gimple_lvalue (arg)))
	{
	  error ("invalid argument to gimple call");
	  debug_generic_expr (arg);
	  return true;
	}
    }

  return false;
}

/* Verifies the gimple comparison with the result type TYPE and
   the operands OP0 and OP1.  */

static bool
verify_gimple_comparison (tree type, tree op0, tree op1)
{
  tree op0_type = TREE_TYPE (op0);
  tree op1_type = TREE_TYPE (op1);

  if (!is_gimple_val (op0) || !is_gimple_val (op1))
    {
      error ("invalid operands in gimple comparison");
      return true;
    }

  /* For comparisons we do not have the operations type as the
     effective type the comparison is carried out in.  Instead
     we require that either the first operand is trivially
     convertible into the second, or the other way around.
     Because we special-case pointers to void we allow
     comparisons of pointers with the same mode as well.  */
  if (!useless_type_conversion_p (op0_type, op1_type)
      && !useless_type_conversion_p (op1_type, op0_type)
      && (!POINTER_TYPE_P (op0_type)
	  || !POINTER_TYPE_P (op1_type)
	  || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
    {
      error ("mismatching comparison operand types");
      debug_generic_expr (op0_type);
      debug_generic_expr (op1_type);
      return true;
    }

  /* The resulting type of a comparison may be an effective boolean type.  */
  if (INTEGRAL_TYPE_P (type)
      && (TREE_CODE (type) == BOOLEAN_TYPE
	  || TYPE_PRECISION (type) == 1))
    {
      if (TREE_CODE (op0_type) == VECTOR_TYPE
	  || TREE_CODE (op1_type) == VECTOR_TYPE)
        {
          error ("vector comparison returning a boolean");
          debug_generic_expr (op0_type);
          debug_generic_expr (op1_type);
          return true;
        }
    }
  /* Or an integer vector type with the same size and element count
     as the comparison operand types.  */
  else if (TREE_CODE (type) == VECTOR_TYPE
	   && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
    {
      if (TREE_CODE (op0_type) != VECTOR_TYPE
	  || TREE_CODE (op1_type) != VECTOR_TYPE)
        {
          error ("non-vector operands in vector comparison");
          debug_generic_expr (op0_type);
          debug_generic_expr (op1_type);
          return true;
        }

      if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
	  || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
	      != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
	  /* The result of a vector comparison is of signed
	     integral type.  */
	  || TYPE_UNSIGNED (TREE_TYPE (type)))
        {
          error ("invalid vector comparison resulting type");
          debug_generic_expr (type);
          return true;
        }
    }
  else
    {
      error ("bogus comparison result type");
      debug_generic_expr (type);
      return true;
    }

  return false;
}

/* Verify a gimple assignment statement STMT with an unary rhs.
   Returns true if anything is wrong.  */

static bool
verify_gimple_assign_unary (gimple stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree lhs = gimple_assign_lhs (stmt);
  tree lhs_type = TREE_TYPE (lhs);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs1_type = TREE_TYPE (rhs1);

  if (!is_gimple_reg (lhs))
    {
      error ("non-register as LHS of unary operation");
      return true;
    }

  if (!is_gimple_val (rhs1))
    {
      error ("invalid operand in unary operation");
      return true;
    }

  /* First handle conversions.  */
  switch (rhs_code)
    {
    CASE_CONVERT:
      {
	/* Allow conversions from pointer type to integral type only if
	   there is no sign or zero extension involved.
	   For targets were the precision of ptrofftype doesn't match that
	   of pointers we need to allow arbitrary conversions to ptrofftype.  */
	if ((POINTER_TYPE_P (lhs_type)
	     && INTEGRAL_TYPE_P (rhs1_type))
	    || (POINTER_TYPE_P (rhs1_type)
		&& INTEGRAL_TYPE_P (lhs_type)
		&& (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
		    || ptrofftype_p (sizetype))))
	  return false;

	/* Allow conversion from integral to offset type and vice versa.  */
	if ((TREE_CODE (lhs_type) == OFFSET_TYPE
	     && INTEGRAL_TYPE_P (rhs1_type))
	    || (INTEGRAL_TYPE_P (lhs_type)
		&& TREE_CODE (rhs1_type) == OFFSET_TYPE))
	  return false;

	/* Otherwise assert we are converting between types of the
	   same kind.  */
	if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
	  {
	    error ("invalid types in nop conversion");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    return true;
	  }

	return false;
      }

    case ADDR_SPACE_CONVERT_EXPR:
      {
	if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
	    || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
		== TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
	  {
	    error ("invalid types in address space conversion");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    return true;
	  }

	return false;
      }

    case FIXED_CONVERT_EXPR:
      {
	if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
	    && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
	  {
	    error ("invalid types in fixed-point conversion");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    return true;
	  }

	return false;
      }

    case FLOAT_EXPR:
      {
	if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
	    && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
	        || !VECTOR_FLOAT_TYPE_P (lhs_type)))
	  {
	    error ("invalid types in conversion to floating point");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    return true;
	  }

        return false;
      }

    case FIX_TRUNC_EXPR:
      {
        if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
            && (!VECTOR_INTEGER_TYPE_P (lhs_type)
                || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
	  {
	    error ("invalid types in conversion to integer");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    return true;
	  }

        return false;
      }

    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_LO_EXPR:
    case REDUC_MAX_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_PLUS_EXPR:
    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
      /* FIXME.  */
      return false;

    case NEGATE_EXPR:
    case ABS_EXPR:
    case BIT_NOT_EXPR:
    case PAREN_EXPR:
    case CONJ_EXPR:
      break;

    default:
      gcc_unreachable ();
    }

  /* For the remaining codes assert there is no conversion involved.  */
  if (!useless_type_conversion_p (lhs_type, rhs1_type))
    {
      error ("non-trivial conversion in unary operation");
      debug_generic_expr (lhs_type);
      debug_generic_expr (rhs1_type);
      return true;
    }

  return false;
}

/* Verify a gimple assignment statement STMT with a binary rhs.
   Returns true if anything is wrong.  */

static bool
verify_gimple_assign_binary (gimple stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree lhs = gimple_assign_lhs (stmt);
  tree lhs_type = TREE_TYPE (lhs);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs1_type = TREE_TYPE (rhs1);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  tree rhs2_type = TREE_TYPE (rhs2);

  if (!is_gimple_reg (lhs))
    {
      error ("non-register as LHS of binary operation");
      return true;
    }

  if (!is_gimple_val (rhs1)
      || !is_gimple_val (rhs2))
    {
      error ("invalid operands in binary operation");
      return true;
    }

  /* First handle operations that involve different types.  */
  switch (rhs_code)
    {
    case COMPLEX_EXPR:
      {
	if (TREE_CODE (lhs_type) != COMPLEX_TYPE
	    || !(INTEGRAL_TYPE_P (rhs1_type)
	         || SCALAR_FLOAT_TYPE_P (rhs1_type))
	    || !(INTEGRAL_TYPE_P (rhs2_type)
	         || SCALAR_FLOAT_TYPE_P (rhs2_type)))
	  {
	    error ("type mismatch in complex expression");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    debug_generic_expr (rhs2_type);
	    return true;
	  }

	return false;
      }

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      {
	/* Shifts and rotates are ok on integral types, fixed point
	   types and integer vector types.  */
	if ((!INTEGRAL_TYPE_P (rhs1_type)
	     && !FIXED_POINT_TYPE_P (rhs1_type)
	     && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
		  && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
	    || (!INTEGRAL_TYPE_P (rhs2_type)
		/* Vector shifts of vectors are also ok.  */
		&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
		     && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
		     && TREE_CODE (rhs2_type) == VECTOR_TYPE
		     && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
	    || !useless_type_conversion_p (lhs_type, rhs1_type))
	  {
	    error ("type mismatch in shift expression");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    debug_generic_expr (rhs2_type);
	    return true;
	  }

	return false;
      }

    case VEC_LSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
      {
	if (TREE_CODE (rhs1_type) != VECTOR_TYPE
	    || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
		 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
		 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
		 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
	    || (!INTEGRAL_TYPE_P (rhs2_type)
		&& (TREE_CODE (rhs2_type) != VECTOR_TYPE
		    || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
	    || !useless_type_conversion_p (lhs_type, rhs1_type))
	  {
	    error ("type mismatch in vector shift expression");
	    debug_generic_expr (lhs_type);
	    debug_generic_expr (rhs1_type);
	    debug_generic_expr (rhs2_type);
	    return true;
	  }
	/* For shifting a vector of non-integral components we
	   only allow shifting by a constant multiple of the element size.  */
	if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
	    && (TREE_CODE (rhs2) != INTEGER_CST
		|| !div_if_zero_remainder (rhs2,
					   TYPE_SIZE (TREE_TYPE (rhs1_type)))))
	  {
	    error ("non-element sized vector shift of floating point vector");
	    return true;
	  }

	return false;
      }

    case WIDEN_LSHIFT_EXPR:
      {
        if (!INTEGRAL_TYPE_P (lhs_type)
            || !INTEGRAL_TYPE_P (rhs1_type)
            || TREE_CODE (rhs2) != INTEGER_CST
            || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
          {
            error ("type mismatch in widening vector shift expression");
            debug_generic_expr (lhs_type);
            debug_generic_expr (rhs1_type);
            debug_generic_expr (rhs2_type);
            return true;
          }

        return false;
      }

    case VEC_WIDEN_LSHIFT_HI_EXPR:
    case VEC_WIDEN_LSHIFT_LO_EXPR:
      {
        if (TREE_CODE (rhs1_type) != VECTOR_TYPE
            || TREE_CODE (lhs_type) != VECTOR_TYPE
            || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
            || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
            || TREE_CODE (rhs2) != INTEGER_CST
            || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
                > TYPE_PRECISION (TREE_TYPE (lhs_type))))
          {
            error ("type mismatch in widening vector shift expression");
            debug_generic_expr (lhs_type);
            debug_generic_expr (rhs1_type);
            debug_generic_expr (rhs2_type);
            return true;
          }

        return false;
      }

    case PLUS_EXPR:
    case MINUS_EXPR:
      {
	tree lhs_etype = lhs_type;
	tree rhs1_etype = rhs1_type;
	tree rhs2_etype = rhs2_type;
	if (TREE_CODE (lhs_type) == VECTOR_TYPE)
	  {
	    if (TREE_CODE (rhs1_type) != VECTOR_TYPE
		|| TREE_CODE (rhs2_type) != VECTOR_TYPE)
	      {
		error ("invalid non-vector operands to vector valued plus");
		return true;
	      }
	    lhs_etype = TREE_TYPE (lhs_type);
	    rhs1_etype = TREE_TYPE (rhs1_type);
	    rhs2_etype = TREE_TYPE (rhs2_type);
	  }
	if (POINTER_TYPE_P (lhs_etype)
	    || POINTER_TYPE_P (rhs1_etype)
	    || POINTER_TYPE_P (rhs2_etype))
	  {
	    error ("invalid (pointer) operands to plus/minus");
	    return true;
	  }

	/* Continue with generic binary expression handling.  */
	break;
      }

    case POINTER_PLUS_EXPR:
      {
	if (!POINTER_TYPE_P (rhs1_type)
	    || !useless_type_conversion_p (lhs_type, rhs1_type)
	    || !ptrofftype_p (rhs2_type))
	  {
	    error ("type mismatch in pointer plus expression");
	    debug_generic_stmt (lhs_type);
	    debug_generic_stmt (rhs1_type);
	    debug_generic_stmt (rhs2_type);
	    return true;
	  }

	return false;
      }

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:

      gcc_unreachable ();

    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
      /* Comparisons are also binary, but the result type is not
	 connected to the operand types.  */
      return verify_gimple_comparison (lhs_type, rhs1, rhs2);

    case WIDEN_MULT_EXPR:
      if (TREE_CODE (lhs_type) != INTEGER_TYPE)
	return true;
      return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
	      || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));

    case WIDEN_SUM_EXPR:
    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_EVEN_EXPR:
    case VEC_WIDEN_MULT_ODD_EXPR:
    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
      /* FIXME.  */
      return false;

    case MULT_EXPR:
    case MULT_HIGHPART_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case EXACT_DIV_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
      /* Continue with generic binary expression handling.  */
      break;

    default:
      gcc_unreachable ();
    }

  if (!useless_type_conversion_p (lhs_type, rhs1_type)
      || !useless_type_conversion_p (lhs_type, rhs2_type))
    {
      error ("type mismatch in binary expression");
      debug_generic_stmt (lhs_type);
      debug_generic_stmt (rhs1_type);
      debug_generic_stmt (rhs2_type);
      return true;
    }

  return false;
}

/* Verify a gimple assignment statement STMT with a ternary rhs.
   Returns true if anything is wrong.  */

static bool
verify_gimple_assign_ternary (gimple stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree lhs = gimple_assign_lhs (stmt);
  tree lhs_type = TREE_TYPE (lhs);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs1_type = TREE_TYPE (rhs1);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  tree rhs2_type = TREE_TYPE (rhs2);
  tree rhs3 = gimple_assign_rhs3 (stmt);
  tree rhs3_type = TREE_TYPE (rhs3);

  if (!is_gimple_reg (lhs))
    {
      error ("non-register as LHS of ternary operation");
      return true;
    }

  if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
       ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
      || !is_gimple_val (rhs2)
      || !is_gimple_val (rhs3))
    {
      error ("invalid operands in ternary operation");
      return true;
    }

  /* First handle operations that involve different types.  */
  switch (rhs_code)
    {
    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
      if ((!INTEGRAL_TYPE_P (rhs1_type)
	   && !FIXED_POINT_TYPE_P (rhs1_type))
	  || !useless_type_conversion_p (rhs1_type, rhs2_type)
	  || !useless_type_conversion_p (lhs_type, rhs3_type)
	  || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
	  || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
	{
	  error ("type mismatch in widening multiply-accumulate expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}
      break;

    case FMA_EXPR:
      if (!useless_type_conversion_p (lhs_type, rhs1_type)
	  || !useless_type_conversion_p (lhs_type, rhs2_type)
	  || !useless_type_conversion_p (lhs_type, rhs3_type))
	{
	  error ("type mismatch in fused multiply-add expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}
      break;

    case COND_EXPR:
    case VEC_COND_EXPR:
      if (!useless_type_conversion_p (lhs_type, rhs2_type)
	  || !useless_type_conversion_p (lhs_type, rhs3_type))
	{
	  error ("type mismatch in conditional expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}
      break;

    case VEC_PERM_EXPR:
      if (!useless_type_conversion_p (lhs_type, rhs1_type)
	  || !useless_type_conversion_p (lhs_type, rhs2_type))
	{
	  error ("type mismatch in vector permute expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      if (TREE_CODE (rhs1_type) != VECTOR_TYPE
	  || TREE_CODE (rhs2_type) != VECTOR_TYPE
	  || TREE_CODE (rhs3_type) != VECTOR_TYPE)
	{
	  error ("vector types expected in vector permute expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
	  || TYPE_VECTOR_SUBPARTS (rhs2_type)
	     != TYPE_VECTOR_SUBPARTS (rhs3_type)
	  || TYPE_VECTOR_SUBPARTS (rhs3_type)
	     != TYPE_VECTOR_SUBPARTS (lhs_type))
	{
	  error ("vectors with different element number found "
		 "in vector permute expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
	  || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
	     != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
	{
	  error ("invalid mask type in vector permute expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      return false;

    case SAD_EXPR:
      if (!useless_type_conversion_p (rhs1_type, rhs2_type)
	  || !useless_type_conversion_p (lhs_type, rhs3_type)
	  || 2 * GET_MODE_BITSIZE (GET_MODE_INNER
				     (TYPE_MODE (TREE_TYPE (rhs1_type))))
	       > GET_MODE_BITSIZE (GET_MODE_INNER
				     (TYPE_MODE (TREE_TYPE (lhs_type)))))
	{
	  error ("type mismatch in sad expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      if (TREE_CODE (rhs1_type) != VECTOR_TYPE
	  || TREE_CODE (rhs2_type) != VECTOR_TYPE
	  || TREE_CODE (rhs3_type) != VECTOR_TYPE)
	{
	  error ("vector types expected in sad expression");
	  debug_generic_expr (lhs_type);
	  debug_generic_expr (rhs1_type);
	  debug_generic_expr (rhs2_type);
	  debug_generic_expr (rhs3_type);
	  return true;
	}

      return false;

    case DOT_PROD_EXPR:
    case REALIGN_LOAD_EXPR:
      /* FIXME.  */
      return false;

    default:
      gcc_unreachable ();
    }
  return false;
}

/* Verify a gimple assignment statement STMT with a single rhs.
   Returns true if anything is wrong.  */

static bool
verify_gimple_assign_single (gimple stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree lhs = gimple_assign_lhs (stmt);
  tree lhs_type = TREE_TYPE (lhs);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs1_type = TREE_TYPE (rhs1);
  bool res = false;

  if (!useless_type_conversion_p (lhs_type, rhs1_type))
    {
      error ("non-trivial conversion at assignment");
      debug_generic_expr (lhs_type);
      debug_generic_expr (rhs1_type);
      return true;
    }

  if (gimple_clobber_p (stmt)
      && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
    {
      error ("non-decl/MEM_REF LHS in clobber statement");
      debug_generic_expr (lhs);
      return true;
    }

  if (handled_component_p (lhs)
      || TREE_CODE (lhs) == MEM_REF
      || TREE_CODE (lhs) == TARGET_MEM_REF)
    res |= verify_types_in_gimple_reference (lhs, true);

  /* Special codes we cannot handle via their class.  */
  switch (rhs_code)
    {
    case ADDR_EXPR:
      {
	tree op = TREE_OPERAND (rhs1, 0);
	if (!is_gimple_addressable (op))
	  {
	    error ("invalid operand in unary expression");
	    return true;
	  }

	/* Technically there is no longer a need for matching types, but
	   gimple hygiene asks for this check.  In LTO we can end up
	   combining incompatible units and thus end up with addresses
	   of globals that change their type to a common one.  */
	if (!in_lto_p
	    && !types_compatible_p (TREE_TYPE (op),
				    TREE_TYPE (TREE_TYPE (rhs1)))
	    && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
							  TREE_TYPE (op)))
	  {
	    error ("type mismatch in address expression");
	    debug_generic_stmt (TREE_TYPE (rhs1));
	    debug_generic_stmt (TREE_TYPE (op));
	    return true;
	  }

	return verify_types_in_gimple_reference (op, true);
      }

    /* tcc_reference  */
    case INDIRECT_REF:
      error ("INDIRECT_REF in gimple IL");
      return true;

    case COMPONENT_REF:
    case BIT_FIELD_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case VIEW_CONVERT_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case TARGET_MEM_REF:
    case MEM_REF:
      if (!is_gimple_reg (lhs)
	  && is_gimple_reg_type (TREE_TYPE (lhs)))
	{
	  error ("invalid rhs for gimple memory store");
	  debug_generic_stmt (lhs);
	  debug_generic_stmt (rhs1);
	  return true;
	}
      return res || verify_types_in_gimple_reference (rhs1, false);

    /* tcc_constant  */
    case SSA_NAME:
    case INTEGER_CST:
    case REAL_CST:
    case FIXED_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
    case STRING_CST:
      return res;

    /* tcc_declaration  */
    case CONST_DECL:
      return res;
    case VAR_DECL:
    case PARM_DECL:
      if (!is_gimple_reg (lhs)
	  && !is_gimple_reg (rhs1)
	  && is_gimple_reg_type (TREE_TYPE (lhs)))
	{
	  error ("invalid rhs for gimple memory store");
	  debug_generic_stmt (lhs);
	  debug_generic_stmt (rhs1);
	  return true;
	}
      return res;

    case CONSTRUCTOR:
      if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
	{
	  unsigned int i;
	  tree elt_i, elt_v, elt_t = NULL_TREE;

	  if (CONSTRUCTOR_NELTS (rhs1) == 0)
	    return res;
	  /* For vector CONSTRUCTORs we require that either it is empty
	     CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
	     (then the element count must be correct to cover the whole
	     outer vector and index must be NULL on all elements, or it is
	     a CONSTRUCTOR of scalar elements, where we as an exception allow
	     smaller number of elements (assuming zero filling) and
	     consecutive indexes as compared to NULL indexes (such
	     CONSTRUCTORs can appear in the IL from FEs).  */
	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
	    {
	      if (elt_t == NULL_TREE)
		{
		  elt_t = TREE_TYPE (elt_v);
		  if (TREE_CODE (elt_t) == VECTOR_TYPE)
		    {
		      tree elt_t = TREE_TYPE (elt_v);
		      if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
						      TREE_TYPE (elt_t)))
			{
			  error ("incorrect type of vector CONSTRUCTOR"
				 " elements");
			  debug_generic_stmt (rhs1);
			  return true;
			}
		      else if (CONSTRUCTOR_NELTS (rhs1)
			       * TYPE_VECTOR_SUBPARTS (elt_t)
			       != TYPE_VECTOR_SUBPARTS (rhs1_type))
			{
			  error ("incorrect number of vector CONSTRUCTOR"
				 " elements");
			  debug_generic_stmt (rhs1);
			  return true;
			}
		    }
		  else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
						       elt_t))
		    {
		      error ("incorrect type of vector CONSTRUCTOR elements");
		      debug_generic_stmt (rhs1);
		      return true;
		    }
		  else if (CONSTRUCTOR_NELTS (rhs1)
			   > TYPE_VECTOR_SUBPARTS (rhs1_type))
		    {
		      error ("incorrect number of vector CONSTRUCTOR elements");
		      debug_generic_stmt (rhs1);
		      return true;
		    }
		}
	      else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
		{
		  error ("incorrect type of vector CONSTRUCTOR elements");
		  debug_generic_stmt (rhs1);
		  return true;
		}
	      if (elt_i != NULL_TREE
		  && (TREE_CODE (elt_t) == VECTOR_TYPE
		      || TREE_CODE (elt_i) != INTEGER_CST
		      || compare_tree_int (elt_i, i) != 0))
		{
		  error ("vector CONSTRUCTOR with non-NULL element index");
		  debug_generic_stmt (rhs1);
		  return true;
		}
	      if (!is_gimple_val (elt_v))
		{
		  error ("vector CONSTRUCTOR element is not a GIMPLE value");
		  debug_generic_stmt (rhs1);
		  return true;
		}
	    }
	}
      else if (CONSTRUCTOR_NELTS (rhs1) != 0)
	{
	  error ("non-vector CONSTRUCTOR with elements");
	  debug_generic_stmt (rhs1);
	  return true;
	}
      return res;
    case OBJ_TYPE_REF:
    case ASSERT_EXPR:
    case WITH_SIZE_EXPR:
      /* FIXME.  */
      return res;

    default:;
    }

  return res;
}

/* Verify the contents of a GIMPLE_ASSIGN STMT.  Returns true when there
   is a problem, otherwise false.  */

static bool
verify_gimple_assign (gimple stmt)
{
  switch (gimple_assign_rhs_class (stmt))
    {
    case GIMPLE_SINGLE_RHS:
      return verify_gimple_assign_single (stmt);

    case GIMPLE_UNARY_RHS:
      return verify_gimple_assign_unary (stmt);

    case GIMPLE_BINARY_RHS:
      return verify_gimple_assign_binary (stmt);

    case GIMPLE_TERNARY_RHS:
      return verify_gimple_assign_ternary (stmt);

    default:
      gcc_unreachable ();
    }
}

/* Verify the contents of a GIMPLE_RETURN STMT.  Returns true when there
   is a problem, otherwise false.  */

static bool
verify_gimple_return (gimple stmt)
{
  tree op = gimple_return_retval (stmt);
  tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));

  /* We cannot test for present return values as we do not fix up missing
     return values from the original source.  */
  if (op == NULL)
    return false;

  if (!is_gimple_val (op)
      && TREE_CODE (op) != RESULT_DECL)
    {
      error ("invalid operand in return statement");
      debug_generic_stmt (op);
      return true;
    }

  if ((TREE_CODE (op) == RESULT_DECL
       && DECL_BY_REFERENCE (op))
      || (TREE_CODE (op) == SSA_NAME
	  && SSA_NAME_VAR (op)
	  && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
	  && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
    op = TREE_TYPE (op);

  if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
    {
      error ("invalid conversion in return statement");
      debug_generic_stmt (restype);
      debug_generic_stmt (TREE_TYPE (op));
      return true;
    }

  return false;
}


/* Verify the contents of a GIMPLE_GOTO STMT.  Returns true when there
   is a problem, otherwise false.  */

static bool
verify_gimple_goto (gimple stmt)
{
  tree dest = gimple_goto_dest (stmt);

  /* ???  We have two canonical forms of direct goto destinations, a
     bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL.  */
  if (TREE_CODE (dest) != LABEL_DECL
      && (!is_gimple_val (dest)
	  || !POINTER_TYPE_P (TREE_TYPE (dest))))
    {
      error ("goto destination is neither a label nor a pointer");
      return true;
    }

  return false;
}

/* Verify the contents of a GIMPLE_SWITCH STMT.  Returns true when there
   is a problem, otherwise false.  */

static bool
verify_gimple_switch (gimple stmt)
{
  unsigned int i, n;
  tree elt, prev_upper_bound = NULL_TREE;
  tree index_type, elt_type = NULL_TREE;

  if (!is_gimple_val (gimple_switch_index (stmt)))
    {
      error ("invalid operand to switch statement");
      debug_generic_stmt (gimple_switch_index (stmt));
      return true;
    }

  index_type = TREE_TYPE (gimple_switch_index (stmt));
  if (! INTEGRAL_TYPE_P (index_type))
    {
      error ("non-integral type switch statement");
      debug_generic_expr (index_type);
      return true;
    }

  elt = gimple_switch_label (stmt, 0);
  if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
    {
      error ("invalid default case label in switch statement");
      debug_generic_expr (elt);
      return true;
    }

  n = gimple_switch_num_labels (stmt);
  for (i = 1; i < n; i++)
    {
      elt = gimple_switch_label (stmt, i);

      if (! CASE_LOW (elt))
	{
	  error ("invalid case label in switch statement");
	  debug_generic_expr (elt);
	  return true;
	}
      if (CASE_HIGH (elt)
	  && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
	{
	  error ("invalid case range in switch statement");
	  debug_generic_expr (elt);
	  return true;
	}

      if (elt_type)
	{
	  if (TREE_TYPE (CASE_LOW (elt)) != elt_type
	      || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
	    {
	      error ("type mismatch for case label in switch statement");
	      debug_generic_expr (elt);
	      return true;
	    }
	}
      else
	{
	  elt_type = TREE_TYPE (CASE_LOW (elt));
	  if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
	    {
	      error ("type precision mismatch in switch statement");
	      return true;
	    }
	}

      if (prev_upper_bound)
	{
	  if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
	    {
	      error ("case labels not sorted in switch statement");
	      return true;
	    }
	}

      prev_upper_bound = CASE_HIGH (elt);
      if (! prev_upper_bound)
	prev_upper_bound = CASE_LOW (elt);
    }

  return false;
}

/* Verify a gimple debug statement STMT.
   Returns true if anything is wrong.  */

static bool
verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
{
  /* There isn't much that could be wrong in a gimple debug stmt.  A
     gimple debug bind stmt, for example, maps a tree, that's usually
     a VAR_DECL or a PARM_DECL, but that could also be some scalarized
     component or member of an aggregate type, to another tree, that
     can be an arbitrary expression.  These stmts expand into debug
     insns, and are converted to debug notes by var-tracking.c.  */
  return false;
}

/* Verify a gimple label statement STMT.
   Returns true if anything is wrong.  */

static bool
verify_gimple_label (gimple stmt)
{
  tree decl = gimple_label_label (stmt);
  int uid;
  bool err = false;

  if (TREE_CODE (decl) != LABEL_DECL)
    return true;
  if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
      && DECL_CONTEXT (decl) != current_function_decl)
    {
      error ("label's context is not the current function decl");
      err |= true;
    }

  uid = LABEL_DECL_UID (decl);
  if (cfun->cfg
      && (uid == -1
	  || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
    {
      error ("incorrect entry in label_to_block_map");
      err |= true;
    }

  uid = EH_LANDING_PAD_NR (decl);
  if (uid)
    {
      eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
      if (decl != lp->post_landing_pad)
	{
	  error ("incorrect setting of landing pad number");
	  err |= true;
	}
    }

  return err;
}

/* Verify the GIMPLE statement STMT.  Returns true if there is an
   error, otherwise false.  */

static bool
verify_gimple_stmt (gimple stmt)
{
  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      return verify_gimple_assign (stmt);

    case GIMPLE_LABEL:
      return verify_gimple_label (stmt);

    case GIMPLE_CALL:
      return verify_gimple_call (stmt);

    case GIMPLE_COND:
      if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
	{
	  error ("invalid comparison code in gimple cond");
	  return true;
	}
      if (!(!gimple_cond_true_label (stmt)
	    || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
	  || !(!gimple_cond_false_label (stmt)
	       || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
	{
	  error ("invalid labels in gimple cond");
	  return true;
	}
	  
      return verify_gimple_comparison (boolean_type_node,
				       gimple_cond_lhs (stmt),
				       gimple_cond_rhs (stmt));

    case GIMPLE_GOTO:
      return verify_gimple_goto (stmt);

    case GIMPLE_SWITCH:
      return verify_gimple_switch (stmt);

    case GIMPLE_RETURN:
      return verify_gimple_return (stmt);

    case GIMPLE_ASM:
      return false;

    case GIMPLE_TRANSACTION:
      return verify_gimple_transaction (stmt);

    /* Tuples that do not have tree operands.  */
    case GIMPLE_NOP:
    case GIMPLE_PREDICT:
    case GIMPLE_RESX:
    case GIMPLE_EH_DISPATCH:
    case GIMPLE_EH_MUST_NOT_THROW:
      return false;

    CASE_GIMPLE_OMP:
      /* OpenMP directives are validated by the FE and never operated
	 on by the optimizers.  Furthermore, GIMPLE_OMP_FOR may contain
	 non-gimple expressions when the main index variable has had
	 its address taken.  This does not affect the loop itself
	 because the header of an GIMPLE_OMP_FOR is merely used to determine
	 how to setup the parallel iteration.  */
      return false;

    case GIMPLE_DEBUG:
      return verify_gimple_debug (stmt);

    default:
      gcc_unreachable ();
    }
}

/* Verify the contents of a GIMPLE_PHI.  Returns true if there is a problem,
   and false otherwise.  */

static bool
verify_gimple_phi (gimple phi)
{
  bool err = false;
  unsigned i;
  tree phi_result = gimple_phi_result (phi);
  bool virtual_p;

  if (!phi_result)
    {
      error ("invalid PHI result");
      return true;
    }

  virtual_p = virtual_operand_p (phi_result);
  if (TREE_CODE (phi_result) != SSA_NAME
      || (virtual_p
	  && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
    {
      error ("invalid PHI result");
      err = true;
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree t = gimple_phi_arg_def (phi, i);

      if (!t)
	{
	  error ("missing PHI def");
	  err |= true;
	  continue;
	}
      /* Addressable variables do have SSA_NAMEs but they
	 are not considered gimple values.  */
      else if ((TREE_CODE (t) == SSA_NAME
		&& virtual_p != virtual_operand_p (t))
	       || (virtual_p
		   && (TREE_CODE (t) != SSA_NAME
		       || SSA_NAME_VAR (t) != gimple_vop (cfun)))
	       || (!virtual_p
		   && !is_gimple_val (t)))
	{
	  error ("invalid PHI argument");
	  debug_generic_expr (t);
	  err |= true;
	}
#ifdef ENABLE_TYPES_CHECKING
      if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
	{
	  error ("incompatible types in PHI argument %u", i);
	  debug_generic_stmt (TREE_TYPE (phi_result));
	  debug_generic_stmt (TREE_TYPE (t));
	  err |= true;
	}
#endif
    }

  return err;
}

/* Verify the GIMPLE statements inside the sequence STMTS.  */

static bool
verify_gimple_in_seq_2 (gimple_seq stmts)
{
  gimple_stmt_iterator ittr;
  bool err = false;

  for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
    {
      gimple stmt = gsi_stmt (ittr);

      switch (gimple_code (stmt))
        {
	case GIMPLE_BIND:
	  err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
	  break;

	case GIMPLE_TRY:
	  err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
	  err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
	  break;

	case GIMPLE_EH_FILTER:
	  err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
	  break;

	case GIMPLE_EH_ELSE:
	  err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
	  err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
	  break;

	case GIMPLE_CATCH:
	  err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
	  break;

	case GIMPLE_TRANSACTION:
	  err |= verify_gimple_transaction (stmt);
	  break;

	default:
	  {
	    bool err2 = verify_gimple_stmt (stmt);
	    if (err2)
	      debug_gimple_stmt (stmt);
	    err |= err2;
	  }
	}
    }

  return err;
}

/* Verify the contents of a GIMPLE_TRANSACTION.  Returns true if there
   is a problem, otherwise false.  */

static bool
verify_gimple_transaction (gimple stmt)
{
  tree lab = gimple_transaction_label (stmt);
  if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
    return true;
  return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
}


/* Verify the GIMPLE statements inside the statement list STMTS.  */

DEBUG_FUNCTION void
verify_gimple_in_seq (gimple_seq stmts)
{
  timevar_push (TV_TREE_STMT_VERIFY);
  if (verify_gimple_in_seq_2 (stmts))
    internal_error ("verify_gimple failed");
  timevar_pop (TV_TREE_STMT_VERIFY);
}

/* Return true when the T can be shared.  */

static bool
tree_node_can_be_shared (tree t)
{
  if (IS_TYPE_OR_DECL_P (t)
      || is_gimple_min_invariant (t)
      || TREE_CODE (t) == SSA_NAME
      || t == error_mark_node
      || TREE_CODE (t) == IDENTIFIER_NODE)
    return true;

  if (TREE_CODE (t) == CASE_LABEL_EXPR)
    return true;

  if (DECL_P (t))
    return true;

  return false;
}

/* Called via walk_tree.  Verify tree sharing.  */

static tree
verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
{
  hash_set<void *> *visited = (hash_set<void *> *) data;

  if (tree_node_can_be_shared (*tp))
    {
      *walk_subtrees = false;
      return NULL;
    }

  if (visited->add (*tp))
    return *tp;

  return NULL;
}

/* Called via walk_gimple_stmt.  Verify tree sharing.  */

static tree
verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
{
  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
  return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
}

static bool eh_error_found;
bool
verify_eh_throw_stmt_node (const gimple &stmt, const int &,
			   hash_set<gimple> *visited)
{
  if (!visited->contains (stmt))
    {
      error ("dead STMT in EH table");
      debug_gimple_stmt (stmt);
      eh_error_found = true;
    }
  return true;
}

/* Verify if the location LOCs block is in BLOCKS.  */

static bool
verify_location (hash_set<tree> *blocks, location_t loc)
{
  tree block = LOCATION_BLOCK (loc);
  if (block != NULL_TREE
      && !blocks->contains (block))
    {
      error ("location references block not in block tree");
      return true;
    }
  if (block != NULL_TREE)
    return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
  return false;
}

/* Called via walk_tree.  Verify that expressions have no blocks.  */

static tree
verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
{
  if (!EXPR_P (*tp))
    {
      *walk_subtrees = false;
      return NULL;
    }

  location_t loc = EXPR_LOCATION (*tp);
  if (LOCATION_BLOCK (loc) != NULL)
    return *tp;

  return NULL;
}

/* Called via walk_tree.  Verify locations of expressions.  */

static tree
verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
{
  hash_set<tree> *blocks = (hash_set<tree> *) data;

  if (TREE_CODE (*tp) == VAR_DECL
      && DECL_HAS_DEBUG_EXPR_P (*tp))
    {
      tree t = DECL_DEBUG_EXPR (*tp);
      tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
      if (addr)
	return addr;
    }
  if ((TREE_CODE (*tp) == VAR_DECL
       || TREE_CODE (*tp) == PARM_DECL
       || TREE_CODE (*tp) == RESULT_DECL)
      && DECL_HAS_VALUE_EXPR_P (*tp))
    {
      tree t = DECL_VALUE_EXPR (*tp);
      tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
      if (addr)
	return addr;
    }

  if (!EXPR_P (*tp))
    {
      *walk_subtrees = false;
      return NULL;
    }

  location_t loc = EXPR_LOCATION (*tp);
  if (verify_location (blocks, loc))
    return *tp;

  return NULL;
}

/* Called via walk_gimple_op.  Verify locations of expressions.  */

static tree
verify_expr_location (tree *tp, int *walk_subtrees, void *data)
{
  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
  return verify_expr_location_1 (tp, walk_subtrees, wi->info);
}

/* Insert all subblocks of BLOCK into BLOCKS and recurse.  */

static void
collect_subblocks (hash_set<tree> *blocks, tree block)
{
  tree t;
  for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
    {
      blocks->add (t);
      collect_subblocks (blocks, t);
    }
}

/* Verify the GIMPLE statements in the CFG of FN.  */

DEBUG_FUNCTION void
verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
{
  basic_block bb;
  bool err = false;

  timevar_push (TV_TREE_STMT_VERIFY);
  hash_set<void *> visited;
  hash_set<gimple> visited_stmts;

  /* Collect all BLOCKs referenced by the BLOCK tree of FN.  */
  hash_set<tree> blocks;
  if (DECL_INITIAL (fn->decl))
    {
      blocks.add (DECL_INITIAL (fn->decl));
      collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
    }

  FOR_EACH_BB_FN (bb, fn)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);
	  bool err2 = false;
	  unsigned i;

	  visited_stmts.add (phi);

	  if (gimple_bb (phi) != bb)
	    {
	      error ("gimple_bb (phi) is set to a wrong basic block");
	      err2 = true;
	    }

	  err2 |= verify_gimple_phi (phi);

	  /* Only PHI arguments have locations.  */
	  if (gimple_location (phi) != UNKNOWN_LOCATION)
	    {
	      error ("PHI node with location");
	      err2 = true;
	    }

	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      tree addr = walk_tree (&arg, verify_node_sharing_1,
				     &visited, NULL);
	      if (addr)
		{
		  error ("incorrect sharing of tree nodes");
		  debug_generic_expr (addr);
		  err2 |= true;
		}
	      location_t loc = gimple_phi_arg_location (phi, i);
	      if (virtual_operand_p (gimple_phi_result (phi))
		  && loc != UNKNOWN_LOCATION)
		{
		  error ("virtual PHI with argument locations");
		  err2 = true;
		}
	      addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
	      if (addr)
		{
		  debug_generic_expr (addr);
		  err2 = true;
		}
	      err2 |= verify_location (&blocks, loc);
	    }

	  if (err2)
	    debug_gimple_stmt (phi);
	  err |= err2;
	}

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple stmt = gsi_stmt (gsi);
	  bool err2 = false;
	  struct walk_stmt_info wi;
	  tree addr;
	  int lp_nr;

	  visited_stmts.add (stmt);

	  if (gimple_bb (stmt) != bb)
	    {
	      error ("gimple_bb (stmt) is set to a wrong basic block");
	      err2 = true;
	    }

	  err2 |= verify_gimple_stmt (stmt);
	  err2 |= verify_location (&blocks, gimple_location (stmt));

	  memset (&wi, 0, sizeof (wi));
	  wi.info = (void *) &visited;
	  addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
	  if (addr)
	    {
	      error ("incorrect sharing of tree nodes");
	      debug_generic_expr (addr);
	      err2 |= true;
	    }

	  memset (&wi, 0, sizeof (wi));
	  wi.info = (void *) &blocks;
	  addr = walk_gimple_op (stmt, verify_expr_location, &wi);
	  if (addr)
	    {
	      debug_generic_expr (addr);
	      err2 |= true;
	    }

	  /* ???  Instead of not checking these stmts at all the walker
	     should know its context via wi.  */
	  if (!is_gimple_debug (stmt)
	      && !is_gimple_omp (stmt))
	    {
	      memset (&wi, 0, sizeof (wi));
	      addr = walk_gimple_op (stmt, verify_expr, &wi);
	      if (addr)
		{
		  debug_generic_expr (addr);
		  inform (gimple_location (stmt), "in statement");
		  err2 |= true;
		}
	    }

	  /* If the statement is marked as part of an EH region, then it is
	     expected that the statement could throw.  Verify that when we
	     have optimizations that simplify statements such that we prove
	     that they cannot throw, that we update other data structures
	     to match.  */
	  lp_nr = lookup_stmt_eh_lp (stmt);
	  if (lp_nr > 0)
	    {
	      if (!stmt_could_throw_p (stmt))
		{
		  if (verify_nothrow)
		    {
		      error ("statement marked for throw, but doesn%'t");
		      err2 |= true;
		    }
		}
	      else if (!gsi_one_before_end_p (gsi))
		{
		  error ("statement marked for throw in middle of block");
		  err2 |= true;
		}
	    }

	  if (err2)
	    debug_gimple_stmt (stmt);
	  err |= err2;
	}
    }

  eh_error_found = false;
  hash_map<gimple, int> *eh_table = get_eh_throw_stmt_table (cfun);
  if (eh_table)
    eh_table->traverse<hash_set<gimple> *, verify_eh_throw_stmt_node>
      (&visited_stmts);

  if (err || eh_error_found)
    internal_error ("verify_gimple failed");

  verify_histograms ();
  timevar_pop (TV_TREE_STMT_VERIFY);
}


/* Verifies that the flow information is OK.  */

static int
gimple_verify_flow_info (void)
{
  int err = 0;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple stmt;
  edge e;
  edge_iterator ei;

  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
      || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
    {
      error ("ENTRY_BLOCK has IL associated with it");
      err = 1;
    }

  if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
      || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
    {
      error ("EXIT_BLOCK has IL associated with it");
      err = 1;
    }

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (e->flags & EDGE_FALLTHRU)
      {
	error ("fallthru to exit from bb %d", e->src->index);
	err = 1;
      }

  FOR_EACH_BB_FN (bb, cfun)
    {
      bool found_ctrl_stmt = false;

      stmt = NULL;

      /* Skip labels on the start of basic block.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree label;
	  gimple prev_stmt = stmt;

	  stmt = gsi_stmt (gsi);

	  if (gimple_code (stmt) != GIMPLE_LABEL)
	    break;

	  label = gimple_label_label (stmt);
	  if (prev_stmt && DECL_NONLOCAL (label))
	    {
	      error ("nonlocal label ");
	      print_generic_expr (stderr, label, 0);
	      fprintf (stderr, " is not first in a sequence of labels in bb %d",
		       bb->index);
	      err = 1;
	    }

	  if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
	    {
	      error ("EH landing pad label ");
	      print_generic_expr (stderr, label, 0);
	      fprintf (stderr, " is not first in a sequence of labels in bb %d",
		       bb->index);
	      err = 1;
	    }

	  if (label_to_block (label) != bb)
	    {
	      error ("label ");
	      print_generic_expr (stderr, label, 0);
	      fprintf (stderr, " to block does not match in bb %d",
		       bb->index);
	      err = 1;
	    }

	  if (decl_function_context (label) != current_function_decl)
	    {
	      error ("label ");
	      print_generic_expr (stderr, label, 0);
	      fprintf (stderr, " has incorrect context in bb %d",
		       bb->index);
	      err = 1;
	    }
	}

      /* Verify that body of basic block BB is free of control flow.  */
      for (; !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple stmt = gsi_stmt (gsi);

	  if (found_ctrl_stmt)
	    {
	      error ("control flow in the middle of basic block %d",
		     bb->index);
	      err = 1;
	    }

	  if (stmt_ends_bb_p (stmt))
	    found_ctrl_stmt = true;

	  if (gimple_code (stmt) == GIMPLE_LABEL)
	    {
	      error ("label ");
	      print_generic_expr (stderr, gimple_label_label (stmt), 0);
	      fprintf (stderr, " in the middle of basic block %d", bb->index);
	      err = 1;
	    }
	}

      gsi = gsi_last_bb (bb);
      if (gsi_end_p (gsi))
	continue;

      stmt = gsi_stmt (gsi);

      if (gimple_code (stmt) == GIMPLE_LABEL)
	continue;

      err |= verify_eh_edges (stmt);

      if (is_ctrl_stmt (stmt))
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & EDGE_FALLTHRU)
	      {
		error ("fallthru edge after a control statement in bb %d",
		       bb->index);
		err = 1;
	      }
	}

      if (gimple_code (stmt) != GIMPLE_COND)
	{
	  /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
	     after anything else but if statement.  */
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
	      {
		error ("true/false edge after a non-GIMPLE_COND in bb %d",
		       bb->index);
		err = 1;
	      }
	}

      switch (gimple_code (stmt))
	{
	case GIMPLE_COND:
	  {
	    edge true_edge;
	    edge false_edge;

	    extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

	    if (!true_edge
		|| !false_edge
		|| !(true_edge->flags & EDGE_TRUE_VALUE)
		|| !(false_edge->flags & EDGE_FALSE_VALUE)
		|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
		|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
		|| EDGE_COUNT (bb->succs) >= 3)
	      {
		error ("wrong outgoing edge flags at end of bb %d",
		       bb->index);
		err = 1;
	      }
	  }
	  break;

	case GIMPLE_GOTO:
	  if (simple_goto_p (stmt))
	    {
	      error ("explicit goto at end of bb %d", bb->index);
	      err = 1;
	    }
	  else
	    {
	      /* FIXME.  We should double check that the labels in the
		 destination blocks have their address taken.  */
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
				 | EDGE_FALSE_VALUE))
		    || !(e->flags & EDGE_ABNORMAL))
		  {
		    error ("wrong outgoing edge flags at end of bb %d",
			   bb->index);
		    err = 1;
		  }
	    }
	  break;

	case GIMPLE_CALL:
	  if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
	    break;
	  /* ... fallthru ... */
	case GIMPLE_RETURN:
	  if (!single_succ_p (bb)
	      || (single_succ_edge (bb)->flags
		  & (EDGE_FALLTHRU | EDGE_ABNORMAL
		     | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
	    {
	      error ("wrong outgoing edge flags at end of bb %d", bb->index);
	      err = 1;
	    }
	  if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
	    {
	      error ("return edge does not point to exit in bb %d",
		     bb->index);
	      err = 1;
	    }
	  break;

	case GIMPLE_SWITCH:
	  {
	    tree prev;
	    edge e;
	    size_t i, n;

	    n = gimple_switch_num_labels (stmt);

	    /* Mark all the destination basic blocks.  */
	    for (i = 0; i < n; ++i)
	      {
		tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
		basic_block label_bb = label_to_block (lab);
		gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
		label_bb->aux = (void *)1;
	      }

	    /* Verify that the case labels are sorted.  */
	    prev = gimple_switch_label (stmt, 0);
	    for (i = 1; i < n; ++i)
	      {
		tree c = gimple_switch_label (stmt, i);
		if (!CASE_LOW (c))
		  {
		    error ("found default case not at the start of "
			   "case vector");
		    err = 1;
		    continue;
		  }
		if (CASE_LOW (prev)
		    && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
		  {
		    error ("case labels not sorted: ");
		    print_generic_expr (stderr, prev, 0);
		    fprintf (stderr," is greater than ");
		    print_generic_expr (stderr, c, 0);
		    fprintf (stderr," but comes before it.\n");
		    err = 1;
		  }
		prev = c;
	      }
	    /* VRP will remove the default case if it can prove it will
	       never be executed.  So do not verify there always exists
	       a default case here.  */

	    FOR_EACH_EDGE (e, ei, bb->succs)
	      {
		if (!e->dest->aux)
		  {
		    error ("extra outgoing edge %d->%d",
			   bb->index, e->dest->index);
		    err = 1;
		  }

		e->dest->aux = (void *)2;
		if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
				 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
		  {
		    error ("wrong outgoing edge flags at end of bb %d",
			   bb->index);
		    err = 1;
		  }
	      }

	    /* Check that we have all of them.  */
	    for (i = 0; i < n; ++i)
	      {
		tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
		basic_block label_bb = label_to_block (lab);

		if (label_bb->aux != (void *)2)
		  {
		    error ("missing edge %i->%i", bb->index, label_bb->index);
		    err = 1;
		  }
	      }

	    FOR_EACH_EDGE (e, ei, bb->succs)
	      e->dest->aux = (void *)0;
	  }
	  break;

	case GIMPLE_EH_DISPATCH:
	  err |= verify_eh_dispatch_edge (stmt);
	  break;

	default:
	  break;
	}
    }

  if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
    verify_dominators (CDI_DOMINATORS);

  return err;
}


/* Updates phi nodes after creating a forwarder block joined
   by edge FALLTHRU.  */

static void
gimple_make_forwarder_block (edge fallthru)
{
  edge e;
  edge_iterator ei;
  basic_block dummy, bb;
  tree var;
  gimple_stmt_iterator gsi;

  dummy = fallthru->src;
  bb = fallthru->dest;

  if (single_pred_p (bb))
    return;

  /* If we redirected a branch we must create new PHI nodes at the
     start of BB.  */
  for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi, new_phi;

      phi = gsi_stmt (gsi);
      var = gimple_phi_result (phi);
      new_phi = create_phi_node (var, bb);
      gimple_phi_set_result (phi, copy_ssa_name (var, phi));
      add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
		   UNKNOWN_LOCATION);
    }

  /* Add the arguments we have stored on edges.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (e == fallthru)
	continue;

      flush_pending_stmts (e);
    }
}


/* Return a non-special label in the head of basic block BLOCK.
   Create one if it doesn't exist.  */

tree
gimple_block_label (basic_block bb)
{
  gimple_stmt_iterator i, s = gsi_start_bb (bb);
  bool first = true;
  tree label;
  gimple stmt;

  for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
    {
      stmt = gsi_stmt (i);
      if (gimple_code (stmt) != GIMPLE_LABEL)
	break;
      label = gimple_label_label (stmt);
      if (!DECL_NONLOCAL (label))
	{
	  if (!first)
	    gsi_move_before (&i, &s);
	  return label;
	}
    }

  label = create_artificial_label (UNKNOWN_LOCATION);
  stmt = gimple_build_label (label);
  gsi_insert_before (&s, stmt, GSI_NEW_STMT);
  return label;
}


/* Attempt to perform edge redirection by replacing a possibly complex
   jump instruction by a goto or by removing the jump completely.
   This can apply only if all edges now point to the same block.  The
   parameters and return values are equivalent to
   redirect_edge_and_branch.  */

static edge
gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
{
  basic_block src = e->src;
  gimple_stmt_iterator i;
  gimple stmt;

  /* We can replace or remove a complex jump only when we have exactly
     two edges.  */
  if (EDGE_COUNT (src->succs) != 2
      /* Verify that all targets will be TARGET.  Specifically, the
	 edge that is not E must also go to TARGET.  */
      || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
    return NULL;

  i = gsi_last_bb (src);
  if (gsi_end_p (i))
    return NULL;

  stmt = gsi_stmt (i);

  if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
    {
      gsi_remove (&i, true);
      e = ssa_redirect_edge (e, target);
      e->flags = EDGE_FALLTHRU;
      return e;
    }

  return NULL;
}


/* Redirect E to DEST.  Return NULL on failure.  Otherwise, return the
   edge representing the redirected branch.  */

static edge
gimple_redirect_edge_and_branch (edge e, basic_block dest)
{
  basic_block bb = e->src;
  gimple_stmt_iterator gsi;
  edge ret;
  gimple stmt;

  if (e->flags & EDGE_ABNORMAL)
    return NULL;

  if (e->dest == dest)
    return NULL;

  if (e->flags & EDGE_EH)
    return redirect_eh_edge (e, dest);

  if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
    {
      ret = gimple_try_redirect_by_replacing_jump (e, dest);
      if (ret)
	return ret;
    }

  gsi = gsi_last_bb (bb);
  stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);

  switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
    {
    case GIMPLE_COND:
      /* For COND_EXPR, we only need to redirect the edge.  */
      break;

    case GIMPLE_GOTO:
      /* No non-abnormal edges should lead from a non-simple goto, and
	 simple ones should be represented implicitly.  */
      gcc_unreachable ();

    case GIMPLE_SWITCH:
      {
	tree label = gimple_block_label (dest);
        tree cases = get_cases_for_edge (e, stmt);

	/* If we have a list of cases associated with E, then use it
	   as it's a lot faster than walking the entire case vector.  */
	if (cases)
	  {
	    edge e2 = find_edge (e->src, dest);
	    tree last, first;

	    first = cases;
	    while (cases)
	      {
		last = cases;
		CASE_LABEL (cases) = label;
		cases = CASE_CHAIN (cases);
	      }

	    /* If there was already an edge in the CFG, then we need
	       to move all the cases associated with E to E2.  */
	    if (e2)
	      {
		tree cases2 = get_cases_for_edge (e2, stmt);

		CASE_CHAIN (last) = CASE_CHAIN (cases2);
		CASE_CHAIN (cases2) = first;
	      }
	    bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
	  }
	else
	  {
	    size_t i, n = gimple_switch_num_labels (stmt);

	    for (i = 0; i < n; i++)
	      {
		tree elt = gimple_switch_label (stmt, i);
		if (label_to_block (CASE_LABEL (elt)) == e->dest)
		  CASE_LABEL (elt) = label;
	      }
	  }
      }
      break;

    case GIMPLE_ASM:
      {
	int i, n = gimple_asm_nlabels (stmt);
	tree label = NULL;

	for (i = 0; i < n; ++i)
	  {
	    tree cons = gimple_asm_label_op (stmt, i);
	    if (label_to_block (TREE_VALUE (cons)) == e->dest)
	      {
		if (!label)
		  label = gimple_block_label (dest);
		TREE_VALUE (cons) = label;
	      }
	  }

	/* If we didn't find any label matching the former edge in the
	   asm labels, we must be redirecting the fallthrough
	   edge.  */
	gcc_assert (label || (e->flags & EDGE_FALLTHRU));
      }
      break;

    case GIMPLE_RETURN:
      gsi_remove (&gsi, true);
      e->flags |= EDGE_FALLTHRU;
      break;

    case GIMPLE_OMP_RETURN:
    case GIMPLE_OMP_CONTINUE:
    case GIMPLE_OMP_SECTIONS_SWITCH:
    case GIMPLE_OMP_FOR:
      /* The edges from OMP constructs can be simply redirected.  */
      break;

    case GIMPLE_EH_DISPATCH:
      if (!(e->flags & EDGE_FALLTHRU))
	redirect_eh_dispatch_edge (stmt, e, dest);
      break;

    case GIMPLE_TRANSACTION:
      /* The ABORT edge has a stored label associated with it, otherwise
	 the edges are simply redirectable.  */
      if (e->flags == 0)
	gimple_transaction_set_label (stmt, gimple_block_label (dest));
      break;

    default:
      /* Otherwise it must be a fallthru edge, and we don't need to
	 do anything besides redirecting it.  */
      gcc_assert (e->flags & EDGE_FALLTHRU);
      break;
    }

  /* Update/insert PHI nodes as necessary.  */

  /* Now update the edges in the CFG.  */
  e = ssa_redirect_edge (e, dest);

  return e;
}

/* Returns true if it is possible to remove edge E by redirecting
   it to the destination of the other edge from E->src.  */

static bool
gimple_can_remove_branch_p (const_edge e)
{
  if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
    return false;

  return true;
}

/* Simple wrapper, as we can always redirect fallthru edges.  */

static basic_block
gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
{
  e = gimple_redirect_edge_and_branch (e, dest);
  gcc_assert (e);

  return NULL;
}


/* Splits basic block BB after statement STMT (but at least after the
   labels).  If STMT is NULL, BB is split just after the labels.  */

static basic_block
gimple_split_block (basic_block bb, void *stmt)
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi_tgt;
  gimple act;
  gimple_seq list;
  basic_block new_bb;
  edge e;
  edge_iterator ei;

  new_bb = create_empty_bb (bb);

  /* Redirect the outgoing edges.  */
  new_bb->succs = bb->succs;
  bb->succs = NULL;
  FOR_EACH_EDGE (e, ei, new_bb->succs)
    e->src = new_bb;

  if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
    stmt = NULL;

  /* Move everything from GSI to the new basic block.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      act = gsi_stmt (gsi);
      if (gimple_code (act) == GIMPLE_LABEL)
	continue;

      if (!stmt)
	break;

      if (stmt == act)
	{
	  gsi_next (&gsi);
	  break;
	}
    }

  if (gsi_end_p (gsi))
    return new_bb;

  /* Split the statement list - avoid re-creating new containers as this
     brings ugly quadratic memory consumption in the inliner.
     (We are still quadratic since we need to update stmt BB pointers,
     sadly.)  */
  gsi_split_seq_before (&gsi, &list);
  set_bb_seq (new_bb, list);
  for (gsi_tgt = gsi_start (list);
       !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
    gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);

  return new_bb;
}


/* Moves basic block BB after block AFTER.  */

static bool
gimple_move_block_after (basic_block bb, basic_block after)
{
  if (bb->prev_bb == after)
    return true;

  unlink_block (bb);
  link_block (bb, after);

  return true;
}


/* Return TRUE if block BB has no executable statements, otherwise return
   FALSE.  */

static bool
gimple_empty_block_p (basic_block bb)
{
  /* BB must have no executable statements.  */
  gimple_stmt_iterator gsi = gsi_after_labels (bb);
  if (phi_nodes (bb))
    return false;
  if (gsi_end_p (gsi))
    return true;
  if (is_gimple_debug (gsi_stmt (gsi)))
    gsi_next_nondebug (&gsi);
  return gsi_end_p (gsi);
}


/* Split a basic block if it ends with a conditional branch and if the
   other part of the block is not empty.  */

static basic_block
gimple_split_block_before_cond_jump (basic_block bb)
{
  gimple last, split_point;
  gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
  if (gsi_end_p (gsi))
    return NULL;
  last = gsi_stmt (gsi);
  if (gimple_code (last) != GIMPLE_COND
      && gimple_code (last) != GIMPLE_SWITCH)
    return NULL;
  gsi_prev_nondebug (&gsi);
  split_point = gsi_stmt (gsi);
  return split_block (bb, split_point)->dest;
}


/* Return true if basic_block can be duplicated.  */

static bool
gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
{
  return true;
}

/* Create a duplicate of the basic block BB.  NOTE: This does not
   preserve SSA form.  */

static basic_block
gimple_duplicate_bb (basic_block bb)
{
  basic_block new_bb;
  gimple_stmt_iterator gsi, gsi_tgt;
  gimple_seq phis = phi_nodes (bb);
  gimple phi, stmt, copy;

  new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);

  /* Copy the PHI nodes.  We ignore PHI node arguments here because
     the incoming edges have not been setup yet.  */
  for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      phi = gsi_stmt (gsi);
      copy = create_phi_node (NULL_TREE, new_bb);
      create_new_def_for (gimple_phi_result (phi), copy,
			  gimple_phi_result_ptr (copy));
      gimple_set_uid (copy, gimple_uid (phi));
    }

  gsi_tgt = gsi_start_bb (new_bb);
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      def_operand_p def_p;
      ssa_op_iter op_iter;
      tree lhs;

      stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) == GIMPLE_LABEL)
	continue;

      /* Don't duplicate label debug stmts.  */
      if (gimple_debug_bind_p (stmt)
	  && TREE_CODE (gimple_debug_bind_get_var (stmt))
	     == LABEL_DECL)
	continue;

      /* Create a new copy of STMT and duplicate STMT's virtual
	 operands.  */
      copy = gimple_copy (stmt);
      gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);

      maybe_duplicate_eh_stmt (copy, stmt);
      gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);

      /* When copying around a stmt writing into a local non-user
	 aggregate, make sure it won't share stack slot with other
	 vars.  */
      lhs = gimple_get_lhs (stmt);
      if (lhs && TREE_CODE (lhs) != SSA_NAME)
	{
	  tree base = get_base_address (lhs);
	  if (base
	      && (TREE_CODE (base) == VAR_DECL
		  || TREE_CODE (base) == RESULT_DECL)
	      && DECL_IGNORED_P (base)
	      && !TREE_STATIC (base)
	      && !DECL_EXTERNAL (base)
	      && (TREE_CODE (base) != VAR_DECL
		  || !DECL_HAS_VALUE_EXPR_P (base)))
	    DECL_NONSHAREABLE (base) = 1;
	}

      /* Create new names for all the definitions created by COPY and
	 add replacement mappings for each new name.  */
      FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
	create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
    }

  return new_bb;
}

/* Adds phi node arguments for edge E_COPY after basic block duplication.  */

static void
add_phi_args_after_copy_edge (edge e_copy)
{
  basic_block bb, bb_copy = e_copy->src, dest;
  edge e;
  edge_iterator ei;
  gimple phi, phi_copy;
  tree def;
  gimple_stmt_iterator psi, psi_copy;

  if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
    return;

  bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;

  if (e_copy->dest->flags & BB_DUPLICATED)
    dest = get_bb_original (e_copy->dest);
  else
    dest = e_copy->dest;

  e = find_edge (bb, dest);
  if (!e)
    {
      /* During loop unrolling the target of the latch edge is copied.
	 In this case we are not looking for edge to dest, but to
	 duplicated block whose original was dest.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if ((e->dest->flags & BB_DUPLICATED)
	      && get_bb_original (e->dest) == dest)
	    break;
	}

      gcc_assert (e != NULL);
    }

  for (psi = gsi_start_phis (e->dest),
       psi_copy = gsi_start_phis (e_copy->dest);
       !gsi_end_p (psi);
       gsi_next (&psi), gsi_next (&psi_copy))
    {
      phi = gsi_stmt (psi);
      phi_copy = gsi_stmt (psi_copy);
      def = PHI_ARG_DEF_FROM_EDGE (phi, e);
      add_phi_arg (phi_copy, def, e_copy,
		   gimple_phi_arg_location_from_edge (phi, e));
    }
}


/* Basic block BB_COPY was created by code duplication.  Add phi node
   arguments for edges going out of BB_COPY.  The blocks that were
   duplicated have BB_DUPLICATED set.  */

void
add_phi_args_after_copy_bb (basic_block bb_copy)
{
  edge e_copy;
  edge_iterator ei;

  FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
    {
      add_phi_args_after_copy_edge (e_copy);
    }
}

/* Blocks in REGION_COPY array of length N_REGION were created by
   duplication of basic blocks.  Add phi node arguments for edges
   going from these blocks.  If E_COPY is not NULL, also add
   phi node arguments for its destination.*/

void
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
			 edge e_copy)
{
  unsigned i;

  for (i = 0; i < n_region; i++)
    region_copy[i]->flags |= BB_DUPLICATED;

  for (i = 0; i < n_region; i++)
    add_phi_args_after_copy_bb (region_copy[i]);
  if (e_copy)
    add_phi_args_after_copy_edge (e_copy);

  for (i = 0; i < n_region; i++)
    region_copy[i]->flags &= ~BB_DUPLICATED;
}

/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
   important exit edge EXIT.  By important we mean that no SSA name defined
   inside region is live over the other exit edges of the region.  All entry
   edges to the region must go to ENTRY->dest.  The edge ENTRY is redirected
   to the duplicate of the region.  Dominance and loop information is
   updated if UPDATE_DOMINANCE is true, but not the SSA web.  If
   UPDATE_DOMINANCE is false then we assume that the caller will update the
   dominance information after calling this function.  The new basic
   blocks are stored to REGION_COPY in the same order as they had in REGION,
   provided that REGION_COPY is not NULL.
   The function returns false if it is unable to copy the region,
   true otherwise.  */

bool
gimple_duplicate_sese_region (edge entry, edge exit,
			    basic_block *region, unsigned n_region,
			    basic_block *region_copy,
			    bool update_dominance)
{
  unsigned i;
  bool free_region_copy = false, copying_header = false;
  struct loop *loop = entry->dest->loop_father;
  edge exit_copy;
  vec<basic_block> doms;
  edge redirected;
  int total_freq = 0, entry_freq = 0;
  gcov_type total_count = 0, entry_count = 0;

  if (!can_copy_bbs_p (region, n_region))
    return false;

  /* Some sanity checking.  Note that we do not check for all possible
     missuses of the functions.  I.e. if you ask to copy something weird,
     it will work, but the state of structures probably will not be
     correct.  */
  for (i = 0; i < n_region; i++)
    {
      /* We do not handle subloops, i.e. all the blocks must belong to the
	 same loop.  */
      if (region[i]->loop_father != loop)
	return false;

      if (region[i] != entry->dest
	  && region[i] == loop->header)
	return false;
    }

  /* In case the function is used for loop header copying (which is the primary
     use), ensure that EXIT and its copy will be new latch and entry edges.  */
  if (loop->header == entry->dest)
    {
      copying_header = true;

      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
	return false;

      for (i = 0; i < n_region; i++)
	if (region[i] != exit->src
	    && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
	  return false;
    }

  initialize_original_copy_tables ();

  if (copying_header)
    set_loop_copy (loop, loop_outer (loop));
  else
    set_loop_copy (loop, loop);

  if (!region_copy)
    {
      region_copy = XNEWVEC (basic_block, n_region);
      free_region_copy = true;
    }

  /* Record blocks outside the region that are dominated by something
     inside.  */
  if (update_dominance)
    {
      doms.create (0);
      doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
    }

  if (entry->dest->count)
    {
      total_count = entry->dest->count;
      entry_count = entry->count;
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (entry_count > total_count)
	entry_count = total_count;
    }
  else
    {
      total_freq = entry->dest->frequency;
      entry_freq = EDGE_FREQUENCY (entry);
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (total_freq == 0)
	total_freq = 1;
      else if (entry_freq > total_freq)
	entry_freq = total_freq;
    }

  copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
	    split_edge_bb_loc (entry), update_dominance);
  if (total_count)
    {
      scale_bbs_frequencies_gcov_type (region, n_region,
				       total_count - entry_count,
				       total_count);
      scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
				       total_count);
    }
  else
    {
      scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
				 total_freq);
      scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
    }

  if (copying_header)
    {
      loop->header = exit->dest;
      loop->latch = exit->src;
    }

  /* Redirect the entry and add the phi node arguments.  */
  redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
  gcc_assert (redirected != NULL);
  flush_pending_stmts (entry);

  /* Concerning updating of dominators:  We must recount dominators
     for entry block and its copy.  Anything that is outside of the
     region, but was dominated by something inside needs recounting as
     well.  */
  if (update_dominance)
    {
      set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
      doms.safe_push (get_bb_original (entry->dest));
      iterate_fix_dominators (CDI_DOMINATORS, doms, false);
      doms.release ();
    }

  /* Add the other PHI node arguments.  */
  add_phi_args_after_copy (region_copy, n_region, NULL);

  if (free_region_copy)
    free (region_copy);

  free_original_copy_tables ();
  return true;
}

/* Checks if BB is part of the region defined by N_REGION BBS.  */
static bool 
bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
{
  unsigned int n;

  for (n = 0; n < n_region; n++)
    {
     if (bb == bbs[n])
       return true;
    }
  return false;
}

/* Duplicates REGION consisting of N_REGION blocks.  The new blocks
   are stored to REGION_COPY in the same order in that they appear
   in REGION, if REGION_COPY is not NULL.  ENTRY is the entry to
   the region, EXIT an exit from it.  The condition guarding EXIT
   is moved to ENTRY.  Returns true if duplication succeeds, false
   otherwise.

   For example,

   some_code;
   if (cond)
     A;
   else
     B;

   is transformed to

   if (cond)
     {
       some_code;
       A;
     }
   else
     {
       some_code;
       B;
     }
*/

bool
gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
			  basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
			  basic_block *region_copy ATTRIBUTE_UNUSED)
{
  unsigned i;
  bool free_region_copy = false;
  struct loop *loop = exit->dest->loop_father;
  struct loop *orig_loop = entry->dest->loop_father;
  basic_block switch_bb, entry_bb, nentry_bb;
  vec<basic_block> doms;
  int total_freq = 0, exit_freq = 0;
  gcov_type total_count = 0, exit_count = 0;
  edge exits[2], nexits[2], e;
  gimple_stmt_iterator gsi;
  gimple cond_stmt;
  edge sorig, snew;
  basic_block exit_bb;
  gimple_stmt_iterator psi;
  gimple phi;
  tree def;
  struct loop *target, *aloop, *cloop;

  gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
  exits[0] = exit;
  exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);

  if (!can_copy_bbs_p (region, n_region))
    return false;

  initialize_original_copy_tables ();
  set_loop_copy (orig_loop, loop);

  target= loop;
  for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
    {
      if (bb_part_of_region_p (aloop->header, region, n_region))
	{
	  cloop = duplicate_loop (aloop, target);
	  duplicate_subloops (aloop, cloop);
	}
    }

  if (!region_copy)
    {
      region_copy = XNEWVEC (basic_block, n_region);
      free_region_copy = true;
    }

  gcc_assert (!need_ssa_update_p (cfun));

  /* Record blocks outside the region that are dominated by something
     inside.  */
  doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);

  if (exit->src->count)
    {
      total_count = exit->src->count;
      exit_count = exit->count;
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (exit_count > total_count)
	exit_count = total_count;
    }
  else
    {
      total_freq = exit->src->frequency;
      exit_freq = EDGE_FREQUENCY (exit);
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (total_freq == 0)
	total_freq = 1;
      if (exit_freq > total_freq)
	exit_freq = total_freq;
    }

  copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
	    split_edge_bb_loc (exit), true);
  if (total_count)
    {
      scale_bbs_frequencies_gcov_type (region, n_region,
				       total_count - exit_count,
				       total_count);
      scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
				       total_count);
    }
  else
    {
      scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
				 total_freq);
      scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
    }

  /* Create the switch block, and put the exit condition to it.  */
  entry_bb = entry->dest;
  nentry_bb = get_bb_copy (entry_bb);
  if (!last_stmt (entry->src)
      || !stmt_ends_bb_p (last_stmt (entry->src)))
    switch_bb = entry->src;
  else
    switch_bb = split_edge (entry);
  set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);

  gsi = gsi_last_bb (switch_bb);
  cond_stmt = last_stmt (exit->src);
  gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
  cond_stmt = gimple_copy (cond_stmt);

  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);

  sorig = single_succ_edge (switch_bb);
  sorig->flags = exits[1]->flags;
  snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);

  /* Register the new edge from SWITCH_BB in loop exit lists.  */
  rescan_loop_exit (snew, true, false);

  /* Add the PHI node arguments.  */
  add_phi_args_after_copy (region_copy, n_region, snew);

  /* Get rid of now superfluous conditions and associated edges (and phi node
     arguments).  */
  exit_bb = exit->dest;

  e = redirect_edge_and_branch (exits[0], exits[1]->dest);
  PENDING_STMT (e) = NULL;

  /* The latch of ORIG_LOOP was copied, and so was the backedge 
     to the original header.  We redirect this backedge to EXIT_BB.  */
  for (i = 0; i < n_region; i++)
    if (get_bb_original (region_copy[i]) == orig_loop->latch)
      {
	gcc_assert (single_succ_edge (region_copy[i]));
	e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
	PENDING_STMT (e) = NULL;
	for (psi = gsi_start_phis (exit_bb);
	     !gsi_end_p (psi);
	     gsi_next (&psi))
	  {
	    phi = gsi_stmt (psi);
	    def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
	    add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
	  }
      }
  e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
  PENDING_STMT (e) = NULL;
  
  /* Anything that is outside of the region, but was dominated by something
     inside needs to update dominance info.  */
  iterate_fix_dominators (CDI_DOMINATORS, doms, false);
  doms.release ();
  /* Update the SSA web.  */
  update_ssa (TODO_update_ssa);

  if (free_region_copy)
    free (region_copy);

  free_original_copy_tables ();
  return true;
}

/* Add all the blocks dominated by ENTRY to the array BBS_P.  Stop
   adding blocks when the dominator traversal reaches EXIT.  This
   function silently assumes that ENTRY strictly dominates EXIT.  */

void
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
			      vec<basic_block> *bbs_p)
{
  basic_block son;

  for (son = first_dom_son (CDI_DOMINATORS, entry);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    {
      bbs_p->safe_push (son);
      if (son != exit)
	gather_blocks_in_sese_region (son, exit, bbs_p);
    }
}

/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
   The duplicates are recorded in VARS_MAP.  */

static void
replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
			   tree to_context)
{
  tree t = *tp, new_t;
  struct function *f = DECL_STRUCT_FUNCTION (to_context);

  if (DECL_CONTEXT (t) == to_context)
    return;

  bool existed;
  tree &loc = vars_map->get_or_insert (t, &existed);

  if (!existed)
    {
      if (SSA_VAR_P (t))
	{
	  new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
	  add_local_decl (f, new_t);
	}
      else
	{
	  gcc_assert (TREE_CODE (t) == CONST_DECL);
	  new_t = copy_node (t);
	}
      DECL_CONTEXT (new_t) = to_context;

      loc = new_t;
    }
  else
    new_t = loc;

  *tp = new_t;
}


/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
   VARS_MAP maps old ssa names and var_decls to the new ones.  */

static tree
replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
		  tree to_context)
{
  tree new_name;

  gcc_assert (!virtual_operand_p (name));

  tree *loc = vars_map->get (name);

  if (!loc)
    {
      tree decl = SSA_NAME_VAR (name);
      if (decl)
	{
	  replace_by_duplicate_decl (&decl, vars_map, to_context);
	  new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
				       decl, SSA_NAME_DEF_STMT (name));
	  if (SSA_NAME_IS_DEFAULT_DEF (name))
	    set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
				 decl, new_name);
	}
      else
	new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
				     name, SSA_NAME_DEF_STMT (name));

      vars_map->put (name, new_name);
    }
  else
    new_name = *loc;

  return new_name;
}

struct move_stmt_d
{
  tree orig_block;
  tree new_block;
  tree from_context;
  tree to_context;
  hash_map<tree, tree> *vars_map;
  htab_t new_label_map;
  hash_map<void *, void *> *eh_map;
  bool remap_decls_p;
};

/* Helper for move_block_to_fn.  Set TREE_BLOCK in every expression
   contained in *TP if it has been ORIG_BLOCK previously and change the
   DECL_CONTEXT of every local variable referenced in *TP.  */

static tree
move_stmt_op (tree *tp, int *walk_subtrees, void *data)
{
  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
  struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
  tree t = *tp;

  if (EXPR_P (t))
    {
      tree block = TREE_BLOCK (t);
      if (block == p->orig_block
	  || (p->orig_block == NULL_TREE
	      && block != NULL_TREE))
	TREE_SET_BLOCK (t, p->new_block);
#ifdef ENABLE_CHECKING
      else if (block != NULL_TREE)
	{
	  while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
	    block = BLOCK_SUPERCONTEXT (block);
	  gcc_assert (block == p->orig_block);
	}
#endif
    }
  else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
    {
      if (TREE_CODE (t) == SSA_NAME)
	*tp = replace_ssa_name (t, p->vars_map, p->to_context);
      else if (TREE_CODE (t) == LABEL_DECL)
	{
	  if (p->new_label_map)
	    {
	      struct tree_map in, *out;
	      in.base.from = t;
	      out = (struct tree_map *)
		htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
	      if (out)
		*tp = t = out->to;
	    }

	  DECL_CONTEXT (t) = p->to_context;
	}
      else if (p->remap_decls_p)
	{
	  /* Replace T with its duplicate.  T should no longer appear in the
	     parent function, so this looks wasteful; however, it may appear
	     in referenced_vars, and more importantly, as virtual operands of
	     statements, and in alias lists of other variables.  It would be
	     quite difficult to expunge it from all those places.  ??? It might
	     suffice to do this for addressable variables.  */
	  if ((TREE_CODE (t) == VAR_DECL
	       && !is_global_var (t))
	      || TREE_CODE (t) == CONST_DECL)
	    replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
	}
      *walk_subtrees = 0;
    }
  else if (TYPE_P (t))
    *walk_subtrees = 0;

  return NULL_TREE;
}

/* Helper for move_stmt_r.  Given an EH region number for the source
   function, map that to the duplicate EH regio number in the dest.  */

static int
move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
{
  eh_region old_r, new_r;

  old_r = get_eh_region_from_number (old_nr);
  new_r = static_cast<eh_region> (*p->eh_map->get (old_r));

  return new_r->index;
}

/* Similar, but operate on INTEGER_CSTs.  */

static tree
move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
{
  int old_nr, new_nr;

  old_nr = tree_to_shwi (old_t_nr);
  new_nr = move_stmt_eh_region_nr (old_nr, p);

  return build_int_cst (integer_type_node, new_nr);
}

/* Like move_stmt_op, but for gimple statements.

   Helper for move_block_to_fn.  Set GIMPLE_BLOCK in every expression
   contained in the current statement in *GSI_P and change the
   DECL_CONTEXT of every local variable referenced in the current
   statement.  */

static tree
move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
	     struct walk_stmt_info *wi)
{
  struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
  gimple stmt = gsi_stmt (*gsi_p);
  tree block = gimple_block (stmt);

  if (block == p->orig_block
      || (p->orig_block == NULL_TREE
	  && block != NULL_TREE))
    gimple_set_block (stmt, p->new_block);

  switch (gimple_code (stmt))
    {
    case GIMPLE_CALL:
      /* Remap the region numbers for __builtin_eh_{pointer,filter}.  */
      {
	tree r, fndecl = gimple_call_fndecl (stmt);
	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
	  switch (DECL_FUNCTION_CODE (fndecl))
	    {
	    case BUILT_IN_EH_COPY_VALUES:
	      r = gimple_call_arg (stmt, 1);
	      r = move_stmt_eh_region_tree_nr (r, p);
	      gimple_call_set_arg (stmt, 1, r);
	      /* FALLTHRU */

	    case BUILT_IN_EH_POINTER:
	    case BUILT_IN_EH_FILTER:
	      r = gimple_call_arg (stmt, 0);
	      r = move_stmt_eh_region_tree_nr (r, p);
	      gimple_call_set_arg (stmt, 0, r);
	      break;

	    default:
	      break;
	    }
      }
      break;

    case GIMPLE_RESX:
      {
	int r = gimple_resx_region (stmt);
	r = move_stmt_eh_region_nr (r, p);
	gimple_resx_set_region (stmt, r);
      }
      break;

    case GIMPLE_EH_DISPATCH:
      {
	int r = gimple_eh_dispatch_region (stmt);
	r = move_stmt_eh_region_nr (r, p);
	gimple_eh_dispatch_set_region (stmt, r);
      }
      break;

    case GIMPLE_OMP_RETURN:
    case GIMPLE_OMP_CONTINUE:
      break;
    default:
      if (is_gimple_omp (stmt))
	{
	  /* Do not remap variables inside OMP directives.  Variables
	     referenced in clauses and directive header belong to the
	     parent function and should not be moved into the child
	     function.  */
	  bool save_remap_decls_p = p->remap_decls_p;
	  p->remap_decls_p = false;
	  *handled_ops_p = true;

	  walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
			       move_stmt_op, wi);

	  p->remap_decls_p = save_remap_decls_p;
	}
      break;
    }

  return NULL_TREE;
}

/* Move basic block BB from function CFUN to function DEST_FN.  The
   block is moved out of the original linked list and placed after
   block AFTER in the new list.  Also, the block is removed from the
   original array of blocks and placed in DEST_FN's array of blocks.
   If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
   updated to reflect the moved edges.

   The local variables are remapped to new instances, VARS_MAP is used
   to record the mapping.  */

static void
move_block_to_fn (struct function *dest_cfun, basic_block bb,
		  basic_block after, bool update_edge_count_p,
		  struct move_stmt_d *d)
{
  struct control_flow_graph *cfg;
  edge_iterator ei;
  edge e;
  gimple_stmt_iterator si;
  unsigned old_len, new_len;

  /* Remove BB from dominance structures.  */
  delete_from_dominance_info (CDI_DOMINATORS, bb);

  /* Move BB from its current loop to the copy in the new function.  */
  if (current_loops)
    {
      struct loop *new_loop = (struct loop *)bb->loop_father->aux;
      if (new_loop)
	bb->loop_father = new_loop;
    }

  /* Link BB to the new linked list.  */
  move_block_after (bb, after);

  /* Update the edge count in the corresponding flowgraphs.  */
  if (update_edge_count_p)
    FOR_EACH_EDGE (e, ei, bb->succs)
      {
	cfun->cfg->x_n_edges--;
	dest_cfun->cfg->x_n_edges++;
      }

  /* Remove BB from the original basic block array.  */
  (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
  cfun->cfg->x_n_basic_blocks--;

  /* Grow DEST_CFUN's basic block array if needed.  */
  cfg = dest_cfun->cfg;
  cfg->x_n_basic_blocks++;
  if (bb->index >= cfg->x_last_basic_block)
    cfg->x_last_basic_block = bb->index + 1;

  old_len = vec_safe_length (cfg->x_basic_block_info);
  if ((unsigned) cfg->x_last_basic_block >= old_len)
    {
      new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
      vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
    }

  (*cfg->x_basic_block_info)[bb->index] = bb;

  /* Remap the variables in phi nodes.  */
  for (si = gsi_start_phis (bb); !gsi_end_p (si); )
    {
      gimple phi = gsi_stmt (si);
      use_operand_p use;
      tree op = PHI_RESULT (phi);
      ssa_op_iter oi;
      unsigned i;

      if (virtual_operand_p (op))
	{
	  /* Remove the phi nodes for virtual operands (alias analysis will be
	     run for the new function, anyway).  */
          remove_phi_node (&si, true);
	  continue;
	}

      SET_PHI_RESULT (phi,
		      replace_ssa_name (op, d->vars_map, dest_cfun->decl));
      FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
	{
	  op = USE_FROM_PTR (use);
	  if (TREE_CODE (op) == SSA_NAME)
	    SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
	}

      for (i = 0; i < EDGE_COUNT (bb->preds); i++)
	{
	  location_t locus = gimple_phi_arg_location (phi, i);
	  tree block = LOCATION_BLOCK (locus);

	  if (locus == UNKNOWN_LOCATION)
	    continue;
	  if (d->orig_block == NULL_TREE || block == d->orig_block)
	    {
	      if (d->new_block == NULL_TREE)
		locus = LOCATION_LOCUS (locus);
	      else
		locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
	      gimple_phi_arg_set_location (phi, i, locus);
	    }
	}

      gsi_next (&si);
    }

  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      gimple stmt = gsi_stmt (si);
      struct walk_stmt_info wi;

      memset (&wi, 0, sizeof (wi));
      wi.info = d;
      walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);

      if (gimple_code (stmt) == GIMPLE_LABEL)
	{
	  tree label = gimple_label_label (stmt);
	  int uid = LABEL_DECL_UID (label);

	  gcc_assert (uid > -1);

	  old_len = vec_safe_length (cfg->x_label_to_block_map);
	  if (old_len <= (unsigned) uid)
	    {
	      new_len = 3 * uid / 2 + 1;
	      vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
	    }

	  (*cfg->x_label_to_block_map)[uid] = bb;
	  (*cfun->cfg->x_label_to_block_map)[uid] = NULL;

	  gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);

	  if (uid >= dest_cfun->cfg->last_label_uid)
	    dest_cfun->cfg->last_label_uid = uid + 1;
	}

      maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
      remove_stmt_from_eh_lp_fn (cfun, stmt);

      gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
      gimple_remove_stmt_histograms (cfun, stmt);

      /* We cannot leave any operands allocated from the operand caches of
	 the current function.  */
      free_stmt_operands (cfun, stmt);
      push_cfun (dest_cfun);
      update_stmt (stmt);
      pop_cfun ();
    }

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->goto_locus != UNKNOWN_LOCATION)
      {
	tree block = LOCATION_BLOCK (e->goto_locus);
	if (d->orig_block == NULL_TREE
	    || block == d->orig_block)
	  e->goto_locus = d->new_block ?
	      COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
	      LOCATION_LOCUS (e->goto_locus);
      }
}

/* Examine the statements in BB (which is in SRC_CFUN); find and return
   the outermost EH region.  Use REGION as the incoming base EH region.  */

static eh_region
find_outermost_region_in_block (struct function *src_cfun,
				basic_block bb, eh_region region)
{
  gimple_stmt_iterator si;

  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      gimple stmt = gsi_stmt (si);
      eh_region stmt_region;
      int lp_nr;

      lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
      stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
      if (stmt_region)
	{
	  if (region == NULL)
	    region = stmt_region;
	  else if (stmt_region != region)
	    {
	      region = eh_region_outermost (src_cfun, stmt_region, region);
	      gcc_assert (region != NULL);
	    }
	}
    }

  return region;
}

static tree
new_label_mapper (tree decl, void *data)
{
  htab_t hash = (htab_t) data;
  struct tree_map *m;
  void **slot;

  gcc_assert (TREE_CODE (decl) == LABEL_DECL);

  m = XNEW (struct tree_map);
  m->hash = DECL_UID (decl);
  m->base.from = decl;
  m->to = create_artificial_label (UNKNOWN_LOCATION);
  LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
  if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
    cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;

  slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
  gcc_assert (*slot == NULL);

  *slot = m;

  return m->to;
}

/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
   subblocks.  */

static void
replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
				  tree to_context)
{
  tree *tp, t;

  for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
    {
      t = *tp;
      if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
	continue;
      replace_by_duplicate_decl (&t, vars_map, to_context);
      if (t != *tp)
	{
	  if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
	    {
	      SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
	      DECL_HAS_VALUE_EXPR_P (t) = 1;
	    }
	  DECL_CHAIN (t) = DECL_CHAIN (*tp);
	  *tp = t;
	}
    }

  for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
    replace_block_vars_by_duplicates (block, vars_map, to_context);
}

/* Fixup the loop arrays and numbers after moving LOOP and its subloops
   from FN1 to FN2.  */

static void
fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
			      struct loop *loop)
{
  /* Discard it from the old loop array.  */
  (*get_loops (fn1))[loop->num] = NULL;

  /* Place it in the new loop array, assigning it a new number.  */
  loop->num = number_of_loops (fn2);
  vec_safe_push (loops_for_fn (fn2)->larray, loop);

  /* Recurse to children.  */
  for (loop = loop->inner; loop; loop = loop->next)
    fixup_loop_arrays_after_move (fn1, fn2, loop);
}

/* Move a single-entry, single-exit region delimited by ENTRY_BB and
   EXIT_BB to function DEST_CFUN.  The whole region is replaced by a
   single basic block in the original CFG and the new basic block is
   returned.  DEST_CFUN must not have a CFG yet.

   Note that the region need not be a pure SESE region.  Blocks inside
   the region may contain calls to abort/exit.  The only restriction
   is that ENTRY_BB should be the only entry point and it must
   dominate EXIT_BB.

   Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
   functions outermost BLOCK, move all subblocks of ORIG_BLOCK
   to the new function.

   All local variables referenced in the region are assumed to be in
   the corresponding BLOCK_VARS and unexpanded variable lists
   associated with DEST_CFUN.  */

basic_block
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
		        basic_block exit_bb, tree orig_block)
{
  vec<basic_block> bbs, dom_bbs;
  basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
  basic_block after, bb, *entry_pred, *exit_succ, abb;
  struct function *saved_cfun = cfun;
  int *entry_flag, *exit_flag;
  unsigned *entry_prob, *exit_prob;
  unsigned i, num_entry_edges, num_exit_edges, num_nodes;
  edge e;
  edge_iterator ei;
  htab_t new_label_map;
  hash_map<void *, void *> *eh_map;
  struct loop *loop = entry_bb->loop_father;
  struct loop *loop0 = get_loop (saved_cfun, 0);
  struct move_stmt_d d;

  /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
     region.  */
  gcc_assert (entry_bb != exit_bb
              && (!exit_bb
		  || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));

  /* Collect all the blocks in the region.  Manually add ENTRY_BB
     because it won't be added by dfs_enumerate_from.  */
  bbs.create (0);
  bbs.safe_push (entry_bb);
  gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);

  /* The blocks that used to be dominated by something in BBS will now be
     dominated by the new block.  */
  dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
				     bbs.address (),
				     bbs.length ());

  /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG.  We need to remember
     the predecessor edges to ENTRY_BB and the successor edges to
     EXIT_BB so that we can re-attach them to the new basic block that
     will replace the region.  */
  num_entry_edges = EDGE_COUNT (entry_bb->preds);
  entry_pred = XNEWVEC (basic_block, num_entry_edges);
  entry_flag = XNEWVEC (int, num_entry_edges);
  entry_prob = XNEWVEC (unsigned, num_entry_edges);
  i = 0;
  for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
    {
      entry_prob[i] = e->probability;
      entry_flag[i] = e->flags;
      entry_pred[i++] = e->src;
      remove_edge (e);
    }

  if (exit_bb)
    {
      num_exit_edges = EDGE_COUNT (exit_bb->succs);
      exit_succ = XNEWVEC (basic_block, num_exit_edges);
      exit_flag = XNEWVEC (int, num_exit_edges);
      exit_prob = XNEWVEC (unsigned, num_exit_edges);
      i = 0;
      for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
	{
	  exit_prob[i] = e->probability;
	  exit_flag[i] = e->flags;
	  exit_succ[i++] = e->dest;
	  remove_edge (e);
	}
    }
  else
    {
      num_exit_edges = 0;
      exit_succ = NULL;
      exit_flag = NULL;
      exit_prob = NULL;
    }

  /* Switch context to the child function to initialize DEST_FN's CFG.  */
  gcc_assert (dest_cfun->cfg == NULL);
  push_cfun (dest_cfun);

  init_empty_tree_cfg ();

  /* Initialize EH information for the new function.  */
  eh_map = NULL;
  new_label_map = NULL;
  if (saved_cfun->eh)
    {
      eh_region region = NULL;

      FOR_EACH_VEC_ELT (bbs, i, bb)
	region = find_outermost_region_in_block (saved_cfun, bb, region);

      init_eh_for_function ();
      if (region != NULL)
	{
	  new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
	  eh_map = duplicate_eh_regions (saved_cfun, region, 0,
					 new_label_mapper, new_label_map);
	}
    }

  /* Initialize an empty loop tree.  */
  struct loops *loops = ggc_cleared_alloc<struct loops> ();
  init_loops_structure (dest_cfun, loops, 1);
  loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
  set_loops_for_fn (dest_cfun, loops);

  /* Move the outlined loop tree part.  */
  num_nodes = bbs.length ();
  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      if (bb->loop_father->header == bb)
	{
	  struct loop *this_loop = bb->loop_father;
	  struct loop *outer = loop_outer (this_loop);
	  if (outer == loop
	      /* If the SESE region contains some bbs ending with
		 a noreturn call, those are considered to belong
		 to the outermost loop in saved_cfun, rather than
		 the entry_bb's loop_father.  */
	      || outer == loop0)
	    {
	      if (outer != loop)
		num_nodes -= this_loop->num_nodes;
	      flow_loop_tree_node_remove (bb->loop_father);
	      flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
	      fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
	    }
	}
      else if (bb->loop_father == loop0 && loop0 != loop)
	num_nodes--;

      /* Remove loop exits from the outlined region.  */
      if (loops_for_fn (saved_cfun)->exits)
	FOR_EACH_EDGE (e, ei, bb->succs)
	  {
	    struct loops *l = loops_for_fn (saved_cfun);
	    loop_exit **slot
	      = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
					       NO_INSERT);
	    if (slot)
	      l->exits->clear_slot (slot);
	  }
    }


  /* Adjust the number of blocks in the tree root of the outlined part.  */
  get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;

  /* Setup a mapping to be used by move_block_to_fn.  */
  loop->aux = current_loops->tree_root;
  loop0->aux = current_loops->tree_root;

  pop_cfun ();

  /* Move blocks from BBS into DEST_CFUN.  */
  gcc_assert (bbs.length () >= 2);
  after = dest_cfun->cfg->x_entry_block_ptr;
  hash_map<tree, tree> vars_map;

  memset (&d, 0, sizeof (d));
  d.orig_block = orig_block;
  d.new_block = DECL_INITIAL (dest_cfun->decl);
  d.from_context = cfun->decl;
  d.to_context = dest_cfun->decl;
  d.vars_map = &vars_map;
  d.new_label_map = new_label_map;
  d.eh_map = eh_map;
  d.remap_decls_p = true;

  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      /* No need to update edge counts on the last block.  It has
	 already been updated earlier when we detached the region from
	 the original CFG.  */
      move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
      after = bb;
    }

  loop->aux = NULL;
  loop0->aux = NULL;
  /* Loop sizes are no longer correct, fix them up.  */
  loop->num_nodes -= num_nodes;
  for (struct loop *outer = loop_outer (loop);
       outer; outer = loop_outer (outer))
    outer->num_nodes -= num_nodes;
  loop0->num_nodes -= bbs.length () - num_nodes;

  if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
    {
      struct loop *aloop;
      for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
	if (aloop != NULL)
	  {
	    if (aloop->simduid)
	      {
		replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
					   d.to_context);
		dest_cfun->has_simduid_loops = true;
	      }
	    if (aloop->force_vectorize)
	      dest_cfun->has_force_vectorize_loops = true;
	  }
    }

  /* Rewire BLOCK_SUBBLOCKS of orig_block.  */
  if (orig_block)
    {
      tree block;
      gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
		  == NULL_TREE);
      BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
	= BLOCK_SUBBLOCKS (orig_block);
      for (block = BLOCK_SUBBLOCKS (orig_block);
	   block; block = BLOCK_CHAIN (block))
	BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
      BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
    }

  replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
				    &vars_map, dest_cfun->decl);

  if (new_label_map)
    htab_delete (new_label_map);
  if (eh_map)
    delete eh_map;

  /* Rewire the entry and exit blocks.  The successor to the entry
     block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
     the child function.  Similarly, the predecessor of DEST_FN's
     EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR.  We
     need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
     various CFG manipulation function get to the right CFG.

     FIXME, this is silly.  The CFG ought to become a parameter to
     these helpers.  */
  push_cfun (dest_cfun);
  make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
  if (exit_bb)
    make_edge (exit_bb,  EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
  pop_cfun ();

  /* Back in the original function, the SESE region has disappeared,
     create a new basic block in its place.  */
  bb = create_empty_bb (entry_pred[0]);
  if (current_loops)
    add_bb_to_loop (bb, loop);
  for (i = 0; i < num_entry_edges; i++)
    {
      e = make_edge (entry_pred[i], bb, entry_flag[i]);
      e->probability = entry_prob[i];
    }

  for (i = 0; i < num_exit_edges; i++)
    {
      e = make_edge (bb, exit_succ[i], exit_flag[i]);
      e->probability = exit_prob[i];
    }

  set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
  FOR_EACH_VEC_ELT (dom_bbs, i, abb)
    set_immediate_dominator (CDI_DOMINATORS, abb, bb);
  dom_bbs.release ();

  if (exit_bb)
    {
      free (exit_prob);
      free (exit_flag);
      free (exit_succ);
    }
  free (entry_prob);
  free (entry_flag);
  free (entry_pred);
  bbs.release ();

  return bb;
}


/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
   */

void
dump_function_to_file (tree fndecl, FILE *file, int flags)
{
  tree arg, var, old_current_fndecl = current_function_decl;
  struct function *dsf;
  bool ignore_topmost_bind = false, any_var = false;
  basic_block bb;
  tree chain;
  bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
		  && decl_is_tm_clone (fndecl));
  struct function *fun = DECL_STRUCT_FUNCTION (fndecl);

  current_function_decl = fndecl;
  fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");

  arg = DECL_ARGUMENTS (fndecl);
  while (arg)
    {
      print_generic_expr (file, TREE_TYPE (arg), dump_flags);
      fprintf (file, " ");
      print_generic_expr (file, arg, dump_flags);
      if (flags & TDF_VERBOSE)
	print_node (file, "", arg, 4);
      if (DECL_CHAIN (arg))
	fprintf (file, ", ");
      arg = DECL_CHAIN (arg);
    }
  fprintf (file, ")\n");

  if (flags & TDF_VERBOSE)
    print_node (file, "", fndecl, 2);

  dsf = DECL_STRUCT_FUNCTION (fndecl);
  if (dsf && (flags & TDF_EH))
    dump_eh_tree (file, dsf);

  if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
    {
      dump_node (fndecl, TDF_SLIM | flags, file);
      current_function_decl = old_current_fndecl;
      return;
    }

  /* When GIMPLE is lowered, the variables are no longer available in
     BIND_EXPRs, so display them separately.  */
  if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
    {
      unsigned ix;
      ignore_topmost_bind = true;

      fprintf (file, "{\n");
      if (!vec_safe_is_empty (fun->local_decls))
	FOR_EACH_LOCAL_DECL (fun, ix, var)
	  {
	    print_generic_decl (file, var, flags);
	    if (flags & TDF_VERBOSE)
	      print_node (file, "", var, 4);
	    fprintf (file, "\n");

	    any_var = true;
	  }
      if (gimple_in_ssa_p (cfun))
	for (ix = 1; ix < num_ssa_names; ++ix)
	  {
	    tree name = ssa_name (ix);
	    if (name && !SSA_NAME_VAR (name))
	      {
		fprintf (file, "  ");
		print_generic_expr (file, TREE_TYPE (name), flags);
		fprintf (file, " ");
		print_generic_expr (file, name, flags);
		fprintf (file, ";\n");

		any_var = true;
	      }
	  }
    }

  if (fun && fun->decl == fndecl
      && fun->cfg
      && basic_block_info_for_fn (fun))
    {
      /* If the CFG has been built, emit a CFG-based dump.  */
      if (!ignore_topmost_bind)
	fprintf (file, "{\n");

      if (any_var && n_basic_blocks_for_fn (fun))
	fprintf (file, "\n");

      FOR_EACH_BB_FN (bb, fun)
	dump_bb (file, bb, 2, flags | TDF_COMMENT);

      fprintf (file, "}\n");
    }
  else if (DECL_SAVED_TREE (fndecl) == NULL)
    {
      /* The function is now in GIMPLE form but the CFG has not been
	 built yet.  Emit the single sequence of GIMPLE statements
	 that make up its body.  */
      gimple_seq body = gimple_body (fndecl);

      if (gimple_seq_first_stmt (body)
	  && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
	  && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
	print_gimple_seq (file, body, 0, flags);
      else
	{
	  if (!ignore_topmost_bind)
	    fprintf (file, "{\n");

	  if (any_var)
	    fprintf (file, "\n");

	  print_gimple_seq (file, body, 2, flags);
	  fprintf (file, "}\n");
	}
    }
  else
    {
      int indent;

      /* Make a tree based dump.  */
      chain = DECL_SAVED_TREE (fndecl);
      if (chain && TREE_CODE (chain) == BIND_EXPR)
	{
	  if (ignore_topmost_bind)
	    {
	      chain = BIND_EXPR_BODY (chain);
	      indent = 2;
	    }
	  else
	    indent = 0;
	}
      else
	{
	  if (!ignore_topmost_bind)
	    fprintf (file, "{\n");
	  indent = 2;
	}

      if (any_var)
	fprintf (file, "\n");

      print_generic_stmt_indented (file, chain, flags, indent);
      if (ignore_topmost_bind)
	fprintf (file, "}\n");
    }

  if (flags & TDF_ENUMERATE_LOCALS)
    dump_enumerated_decls (file, flags);
  fprintf (file, "\n\n");

  current_function_decl = old_current_fndecl;
}

/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h)  */

DEBUG_FUNCTION void
debug_function (tree fn, int flags)
{
  dump_function_to_file (fn, stderr, flags);
}


/* Print on FILE the indexes for the predecessors of basic_block BB.  */

static void
print_pred_bbs (FILE *file, basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    fprintf (file, "bb_%d ", e->src->index);
}


/* Print on FILE the indexes for the successors of basic_block BB.  */

static void
print_succ_bbs (FILE *file, basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    fprintf (file, "bb_%d ", e->dest->index);
}

/* Print to FILE the basic block BB following the VERBOSITY level.  */

void
print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
{
  char *s_indent = (char *) alloca ((size_t) indent + 1);
  memset ((void *) s_indent, ' ', (size_t) indent);
  s_indent[indent] = '\0';

  /* Print basic_block's header.  */
  if (verbosity >= 2)
    {
      fprintf (file, "%s  bb_%d (preds = {", s_indent, bb->index);
      print_pred_bbs (file, bb);
      fprintf (file, "}, succs = {");
      print_succ_bbs (file, bb);
      fprintf (file, "})\n");
    }

  /* Print basic_block's body.  */
  if (verbosity >= 3)
    {
      fprintf (file, "%s  {\n", s_indent);
      dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
      fprintf (file, "%s  }\n", s_indent);
    }
}

static void print_loop_and_siblings (FILE *, struct loop *, int, int);

/* Pretty print LOOP on FILE, indented INDENT spaces.  Following
   VERBOSITY level this outputs the contents of the loop, or just its
   structure.  */

static void
print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
{
  char *s_indent;
  basic_block bb;

  if (loop == NULL)
    return;

  s_indent = (char *) alloca ((size_t) indent + 1);
  memset ((void *) s_indent, ' ', (size_t) indent);
  s_indent[indent] = '\0';

  /* Print loop's header.  */
  fprintf (file, "%sloop_%d (", s_indent, loop->num);
  if (loop->header)
    fprintf (file, "header = %d", loop->header->index);
  else
    {
      fprintf (file, "deleted)\n");
      return;
    }
  if (loop->latch)
    fprintf (file, ", latch = %d", loop->latch->index);
  else
    fprintf (file, ", multiple latches");
  fprintf (file, ", niter = ");
  print_generic_expr (file, loop->nb_iterations, 0);

  if (loop->any_upper_bound)
    {
      fprintf (file, ", upper_bound = ");
      print_decu (loop->nb_iterations_upper_bound, file);
    }

  if (loop->any_estimate)
    {
      fprintf (file, ", estimate = ");
      print_decu (loop->nb_iterations_estimate, file);
    }
  fprintf (file, ")\n");

  /* Print loop's body.  */
  if (verbosity >= 1)
    {
      fprintf (file, "%s{\n", s_indent);
      FOR_EACH_BB_FN (bb, cfun)
	if (bb->loop_father == loop)
	  print_loops_bb (file, bb, indent, verbosity);

      print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
      fprintf (file, "%s}\n", s_indent);
    }
}

/* Print the LOOP and its sibling loops on FILE, indented INDENT
   spaces.  Following VERBOSITY level this outputs the contents of the
   loop, or just its structure.  */

static void
print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
			 int verbosity)
{
  if (loop == NULL)
    return;

  print_loop (file, loop, indent, verbosity);
  print_loop_and_siblings (file, loop->next, indent, verbosity);
}

/* Follow a CFG edge from the entry point of the program, and on entry
   of a loop, pretty print the loop structure on FILE.  */

void
print_loops (FILE *file, int verbosity)
{
  basic_block bb;

  bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
  if (bb && bb->loop_father)
    print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
}

/* Dump a loop.  */

DEBUG_FUNCTION void
debug (struct loop &ref)
{
  print_loop (stderr, &ref, 0, /*verbosity*/0);
}

DEBUG_FUNCTION void
debug (struct loop *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}

/* Dump a loop verbosely.  */

DEBUG_FUNCTION void
debug_verbose (struct loop &ref)
{
  print_loop (stderr, &ref, 0, /*verbosity*/3);
}

DEBUG_FUNCTION void
debug_verbose (struct loop *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


/* Debugging loops structure at tree level, at some VERBOSITY level.  */

DEBUG_FUNCTION void
debug_loops (int verbosity)
{
  print_loops (stderr, verbosity);
}

/* Print on stderr the code of LOOP, at some VERBOSITY level.  */

DEBUG_FUNCTION void
debug_loop (struct loop *loop, int verbosity)
{
  print_loop (stderr, loop, 0, verbosity);
}

/* Print on stderr the code of loop number NUM, at some VERBOSITY
   level.  */

DEBUG_FUNCTION void
debug_loop_num (unsigned num, int verbosity)
{
  debug_loop (get_loop (cfun, num), verbosity);
}

/* Return true if BB ends with a call, possibly followed by some
   instructions that must stay with the call.  Return false,
   otherwise.  */

static bool
gimple_block_ends_with_call_p (basic_block bb)
{
  gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
  return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
}


/* Return true if BB ends with a conditional branch.  Return false,
   otherwise.  */

static bool
gimple_block_ends_with_condjump_p (const_basic_block bb)
{
  gimple stmt = last_stmt (CONST_CAST_BB (bb));
  return (stmt && gimple_code (stmt) == GIMPLE_COND);
}


/* Return true if we need to add fake edge to exit at statement T.
   Helper function for gimple_flow_call_edges_add.  */

static bool
need_fake_edge_p (gimple t)
{
  tree fndecl = NULL_TREE;
  int call_flags = 0;

  /* NORETURN and LONGJMP calls already have an edge to exit.
     CONST and PURE calls do not need one.
     We don't currently check for CONST and PURE here, although
     it would be a good idea, because those attributes are
     figured out from the RTL in mark_constant_function, and
     the counter incrementation code from -fprofile-arcs
     leads to different results from -fbranch-probabilities.  */
  if (is_gimple_call (t))
    {
      fndecl = gimple_call_fndecl (t);
      call_flags = gimple_call_flags (t);
    }

  if (is_gimple_call (t)
      && fndecl
      && DECL_BUILT_IN (fndecl)
      && (call_flags & ECF_NOTHROW)
      && !(call_flags & ECF_RETURNS_TWICE)
      /* fork() doesn't really return twice, but the effect of
         wrapping it in __gcov_fork() which calls __gcov_flush()
	 and clears the counters before forking has the same
	 effect as returning twice.  Force a fake edge.  */
      && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
	   && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
    return false;

  if (is_gimple_call (t))
    {
      edge_iterator ei;
      edge e;
      basic_block bb;

      if (!(call_flags & ECF_NORETURN))
	return true;

      bb = gimple_bb (t);
      FOR_EACH_EDGE (e, ei, bb->succs)
	if ((e->flags & EDGE_FAKE) == 0)
	  return true;
    }

  if (gimple_code (t) == GIMPLE_ASM
       && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
    return true;

  return false;
}


/* Add fake edges to the function exit for any non constant and non
   noreturn calls (or noreturn calls with EH/abnormal edges),
   volatile inline assembly in the bitmap of blocks specified by BLOCKS
   or to the whole CFG if BLOCKS is zero.  Return the number of blocks
   that were split.

   The goal is to expose cases in which entering a basic block does
   not imply that all subsequent instructions must be executed.  */

static int
gimple_flow_call_edges_add (sbitmap blocks)
{
  int i;
  int blocks_split = 0;
  int last_bb = last_basic_block_for_fn (cfun);
  bool check_last_block = false;

  if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
    return 0;

  if (! blocks)
    check_last_block = true;
  else
    check_last_block = bitmap_bit_p (blocks,
				     EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);

  /* In the last basic block, before epilogue generation, there will be
     a fallthru edge to EXIT.  Special care is required if the last insn
     of the last basic block is a call because make_edge folds duplicate
     edges, which would result in the fallthru edge also being marked
     fake, which would result in the fallthru edge being removed by
     remove_fake_edges, which would result in an invalid CFG.

     Moreover, we can't elide the outgoing fake edge, since the block
     profiler needs to take this into account in order to solve the minimal
     spanning tree in the case that the call doesn't return.

     Handle this by adding a dummy instruction in a new last basic block.  */
  if (check_last_block)
    {
      basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
      gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
      gimple t = NULL;

      if (!gsi_end_p (gsi))
	t = gsi_stmt (gsi);

      if (t && need_fake_edge_p (t))
	{
	  edge e;

	  e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
	  if (e)
	    {
	      gsi_insert_on_edge (e, gimple_build_nop ());
	      gsi_commit_edge_inserts ();
	    }
	}
    }

  /* Now add fake edges to the function exit for any non constant
     calls since there is no way that we can determine if they will
     return or not...  */
  for (i = 0; i < last_bb; i++)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
      gimple_stmt_iterator gsi;
      gimple stmt, last_stmt;

      if (!bb)
	continue;

      if (blocks && !bitmap_bit_p (blocks, i))
	continue;

      gsi = gsi_last_nondebug_bb (bb);
      if (!gsi_end_p (gsi))
	{
	  last_stmt = gsi_stmt (gsi);
	  do
	    {
	      stmt = gsi_stmt (gsi);
	      if (need_fake_edge_p (stmt))
		{
		  edge e;

		  /* The handling above of the final block before the
		     epilogue should be enough to verify that there is
		     no edge to the exit block in CFG already.
		     Calling make_edge in such case would cause us to
		     mark that edge as fake and remove it later.  */
#ifdef ENABLE_CHECKING
		  if (stmt == last_stmt)
		    {
		      e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
		      gcc_assert (e == NULL);
		    }
#endif

		  /* Note that the following may create a new basic block
		     and renumber the existing basic blocks.  */
		  if (stmt != last_stmt)
		    {
		      e = split_block (bb, stmt);
		      if (e)
			blocks_split++;
		    }
		  make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
		}
	      gsi_prev (&gsi);
	    }
	  while (!gsi_end_p (gsi));
	}
    }

  if (blocks_split)
    verify_flow_info ();

  return blocks_split;
}

/* Removes edge E and all the blocks dominated by it, and updates dominance
   information.  The IL in E->src needs to be updated separately.
   If dominance info is not available, only the edge E is removed.*/

void
remove_edge_and_dominated_blocks (edge e)
{
  vec<basic_block> bbs_to_remove = vNULL;
  vec<basic_block> bbs_to_fix_dom = vNULL;
  bitmap df, df_idom;
  edge f;
  edge_iterator ei;
  bool none_removed = false;
  unsigned i;
  basic_block bb, dbb;
  bitmap_iterator bi;

  if (!dom_info_available_p (CDI_DOMINATORS))
    {
      remove_edge (e);
      return;
    }

  /* No updating is needed for edges to exit.  */
  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
    {
      if (cfgcleanup_altered_bbs)
	bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
      remove_edge (e);
      return;
    }

  /* First, we find the basic blocks to remove.  If E->dest has a predecessor
     that is not dominated by E->dest, then this set is empty.  Otherwise,
     all the basic blocks dominated by E->dest are removed.

     Also, to DF_IDOM we store the immediate dominators of the blocks in
     the dominance frontier of E (i.e., of the successors of the
     removed blocks, if there are any, and of E->dest otherwise).  */
  FOR_EACH_EDGE (f, ei, e->dest->preds)
    {
      if (f == e)
	continue;

      if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
	{
	  none_removed = true;
	  break;
	}
    }

  df = BITMAP_ALLOC (NULL);
  df_idom = BITMAP_ALLOC (NULL);

  if (none_removed)
    bitmap_set_bit (df_idom,
		    get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
  else
    {
      bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
      FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
	{
	  FOR_EACH_EDGE (f, ei, bb->succs)
	    {
	      if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
		bitmap_set_bit (df, f->dest->index);
	    }
	}
      FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
	bitmap_clear_bit (df, bb->index);

      EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
	{
	  bb = BASIC_BLOCK_FOR_FN (cfun, i);
	  bitmap_set_bit (df_idom,
			  get_immediate_dominator (CDI_DOMINATORS, bb)->index);
	}
    }

  if (cfgcleanup_altered_bbs)
    {
      /* Record the set of the altered basic blocks.  */
      bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
      bitmap_ior_into (cfgcleanup_altered_bbs, df);
    }

  /* Remove E and the cancelled blocks.  */
  if (none_removed)
    remove_edge (e);
  else
    {
      /* Walk backwards so as to get a chance to substitute all
	 released DEFs into debug stmts.  See
	 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
	 details.  */
      for (i = bbs_to_remove.length (); i-- > 0; )
	delete_basic_block (bbs_to_remove[i]);
    }

  /* Update the dominance information.  The immediate dominator may change only
     for blocks whose immediate dominator belongs to DF_IDOM:

     Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
     removal.  Let Z the arbitrary block such that idom(Z) = Y and
     Z dominates X after the removal.  Before removal, there exists a path P
     from Y to X that avoids Z.  Let F be the last edge on P that is
     removed, and let W = F->dest.  Before removal, idom(W) = Y (since Y
     dominates W, and because of P, Z does not dominate W), and W belongs to
     the dominance frontier of E.  Therefore, Y belongs to DF_IDOM.  */
  EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
    {
      bb = BASIC_BLOCK_FOR_FN (cfun, i);
      for (dbb = first_dom_son (CDI_DOMINATORS, bb);
	   dbb;
	   dbb = next_dom_son (CDI_DOMINATORS, dbb))
	bbs_to_fix_dom.safe_push (dbb);
    }

  iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);

  BITMAP_FREE (df);
  BITMAP_FREE (df_idom);
  bbs_to_remove.release ();
  bbs_to_fix_dom.release ();
}

/* Purge dead EH edges from basic block BB.  */

bool
gimple_purge_dead_eh_edges (basic_block bb)
{
  bool changed = false;
  edge e;
  edge_iterator ei;
  gimple stmt = last_stmt (bb);

  if (stmt && stmt_can_throw_internal (stmt))
    return false;

  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
      if (e->flags & EDGE_EH)
	{
	  remove_edge_and_dominated_blocks (e);
	  changed = true;
	}
      else
	ei_next (&ei);
    }

  return changed;
}

/* Purge dead EH edges from basic block listed in BLOCKS.  */

bool
gimple_purge_all_dead_eh_edges (const_bitmap blocks)
{
  bool changed = false;
  unsigned i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);

      /* Earlier gimple_purge_dead_eh_edges could have removed
	 this basic block already.  */
      gcc_assert (bb || changed);
      if (bb != NULL)
	changed |= gimple_purge_dead_eh_edges (bb);
    }

  return changed;
}

/* Purge dead abnormal call edges from basic block BB.  */

bool
gimple_purge_dead_abnormal_call_edges (basic_block bb)
{
  bool changed = false;
  edge e;
  edge_iterator ei;
  gimple stmt = last_stmt (bb);

  if (!cfun->has_nonlocal_label
      && !cfun->calls_setjmp)
    return false;

  if (stmt && stmt_can_make_abnormal_goto (stmt))
    return false;

  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
      if (e->flags & EDGE_ABNORMAL)
	{
	  if (e->flags & EDGE_FALLTHRU)
	    e->flags &= ~EDGE_ABNORMAL;
	  else
	    remove_edge_and_dominated_blocks (e);
	  changed = true;
	}
      else
	ei_next (&ei);
    }

  return changed;
}

/* Purge dead abnormal call edges from basic block listed in BLOCKS.  */

bool
gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
{
  bool changed = false;
  unsigned i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);

      /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
	 this basic block already.  */
      gcc_assert (bb || changed);
      if (bb != NULL)
	changed |= gimple_purge_dead_abnormal_call_edges (bb);
    }

  return changed;
}

/* This function is called whenever a new edge is created or
   redirected.  */

static void
gimple_execute_on_growing_pred (edge e)
{
  basic_block bb = e->dest;

  if (!gimple_seq_empty_p (phi_nodes (bb)))
    reserve_phi_args_for_new_edge (bb);
}

/* This function is called immediately before edge E is removed from
   the edge vector E->dest->preds.  */

static void
gimple_execute_on_shrinking_pred (edge e)
{
  if (!gimple_seq_empty_p (phi_nodes (e->dest)))
    remove_phi_args (e);
}

/*---------------------------------------------------------------------------
  Helper functions for Loop versioning
  ---------------------------------------------------------------------------*/

/* Adjust phi nodes for 'first' basic block.  'second' basic block is a copy
   of 'first'. Both of them are dominated by 'new_head' basic block. When
   'new_head' was created by 'second's incoming edge it received phi arguments
   on the edge by split_edge(). Later, additional edge 'e' was created to
   connect 'new_head' and 'first'. Now this routine adds phi args on this
   additional edge 'e' that new_head to second edge received as part of edge
   splitting.  */

static void
gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
				  basic_block new_head, edge e)
{
  gimple phi1, phi2;
  gimple_stmt_iterator psi1, psi2;
  tree def;
  edge e2 = find_edge (new_head, second);

  /* Because NEW_HEAD has been created by splitting SECOND's incoming
     edge, we should always have an edge from NEW_HEAD to SECOND.  */
  gcc_assert (e2 != NULL);

  /* Browse all 'second' basic block phi nodes and add phi args to
     edge 'e' for 'first' head. PHI args are always in correct order.  */

  for (psi2 = gsi_start_phis (second),
       psi1 = gsi_start_phis (first);
       !gsi_end_p (psi2) && !gsi_end_p (psi1);
       gsi_next (&psi2),  gsi_next (&psi1))
    {
      phi1 = gsi_stmt (psi1);
      phi2 = gsi_stmt (psi2);
      def = PHI_ARG_DEF (phi2, e2->dest_idx);
      add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
    }
}


/* Adds a if else statement to COND_BB with condition COND_EXPR.
   SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
   the destination of the ELSE part.  */

static void
gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
			       basic_block second_head ATTRIBUTE_UNUSED,
			       basic_block cond_bb, void *cond_e)
{
  gimple_stmt_iterator gsi;
  gimple new_cond_expr;
  tree cond_expr = (tree) cond_e;
  edge e0;

  /* Build new conditional expr */
  new_cond_expr = gimple_build_cond_from_tree (cond_expr,
					       NULL_TREE, NULL_TREE);

  /* Add new cond in cond_bb.  */
  gsi = gsi_last_bb (cond_bb);
  gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);

  /* Adjust edges appropriately to connect new head with first head
     as well as second head.  */
  e0 = single_succ_edge (cond_bb);
  e0->flags &= ~EDGE_FALLTHRU;
  e0->flags |= EDGE_FALSE_VALUE;
}


/* Do book-keeping of basic block BB for the profile consistency checker.
   If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
   then do post-pass accounting.  Store the counting in RECORD.  */
static void
gimple_account_profile_record (basic_block bb, int after_pass,
			       struct profile_record *record)
{
  gimple_stmt_iterator i;
  for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
    {
      record->size[after_pass]
	+= estimate_num_insns (gsi_stmt (i), &eni_size_weights);
      if (profile_status_for_fn (cfun) == PROFILE_READ)
	record->time[after_pass]
	  += estimate_num_insns (gsi_stmt (i),
				 &eni_time_weights) * bb->count;
      else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
	record->time[after_pass]
	  += estimate_num_insns (gsi_stmt (i),
				 &eni_time_weights) * bb->frequency;
    }
}

struct cfg_hooks gimple_cfg_hooks = {
  "gimple",
  gimple_verify_flow_info,
  gimple_dump_bb,		/* dump_bb  */
  gimple_dump_bb_for_graph,	/* dump_bb_for_graph  */
  create_bb,			/* create_basic_block  */
  gimple_redirect_edge_and_branch, /* redirect_edge_and_branch  */
  gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force  */
  gimple_can_remove_branch_p,	/* can_remove_branch_p  */
  remove_bb,			/* delete_basic_block  */
  gimple_split_block,		/* split_block  */
  gimple_move_block_after,	/* move_block_after  */
  gimple_can_merge_blocks_p,	/* can_merge_blocks_p  */
  gimple_merge_blocks,		/* merge_blocks  */
  gimple_predict_edge,		/* predict_edge  */
  gimple_predicted_by_p,	/* predicted_by_p  */
  gimple_can_duplicate_bb_p,	/* can_duplicate_block_p  */
  gimple_duplicate_bb,		/* duplicate_block  */
  gimple_split_edge,		/* split_edge  */
  gimple_make_forwarder_block,	/* make_forward_block  */
  NULL,				/* tidy_fallthru_edge  */
  NULL,				/* force_nonfallthru */
  gimple_block_ends_with_call_p,/* block_ends_with_call_p */
  gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
  gimple_flow_call_edges_add,   /* flow_call_edges_add */
  gimple_execute_on_growing_pred,	/* execute_on_growing_pred */
  gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
  gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
  gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
  gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
  extract_true_false_edges_from_block, /* extract_cond_bb_edges */
  flush_pending_stmts, 		/* flush_pending_stmts */  
  gimple_empty_block_p,           /* block_empty_p */
  gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
  gimple_account_profile_record,
};


/* Split all critical edges.  */

unsigned int
split_critical_edges (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
     expensive.  So we want to enable recording of edge to CASE_LABEL_EXPR
     mappings around the calls to split_edge.  */
  start_recording_case_labels ();
  FOR_ALL_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
	  if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
	    split_edge (e);
	  /* PRE inserts statements to edges and expects that
	     since split_critical_edges was done beforehand, committing edge
	     insertions will not split more edges.  In addition to critical
	     edges we must split edges that have multiple successors and
	     end by control flow statements, such as RESX.
	     Go ahead and split them too.  This matches the logic in
	     gimple_find_edge_insert_loc.  */
	  else if ((!single_pred_p (e->dest)
	            || !gimple_seq_empty_p (phi_nodes (e->dest))
		    || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
		   && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
	           && !(e->flags & EDGE_ABNORMAL))
	    {
	      gimple_stmt_iterator gsi;

	      gsi = gsi_last_bb (e->src);
	      if (!gsi_end_p (gsi)
		  && stmt_ends_bb_p (gsi_stmt (gsi))
		  && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
		      && !gimple_call_builtin_p (gsi_stmt (gsi),
						 BUILT_IN_RETURN)))
		split_edge (e);
	    }
	}
    }
  end_recording_case_labels ();
  return 0;
}

namespace {

const pass_data pass_data_split_crit_edges =
{
  GIMPLE_PASS, /* type */
  "crited", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SPLIT_EDGES, /* tv_id */
  PROP_cfg, /* properties_required */
  PROP_no_crit_edges, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_split_crit_edges : public gimple_opt_pass
{
public:
  pass_split_crit_edges (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *) { return split_critical_edges (); }

  opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
}; // class pass_split_crit_edges

} // anon namespace

gimple_opt_pass *
make_pass_split_crit_edges (gcc::context *ctxt)
{
  return new pass_split_crit_edges (ctxt);
}


/* Build a ternary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
		 tree type, tree a, tree b, tree c)
{
  tree ret;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  ret = fold_build3_loc (loc, code, type, a, b, c);
  STRIP_NOPS (ret);

  return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
                                   GSI_SAME_STMT);
}

/* Build a binary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
		 tree type, tree a, tree b)
{
  tree ret;

  ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
  STRIP_NOPS (ret);

  return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
                                   GSI_SAME_STMT);
}

/* Build a unary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
		 tree a)
{
  tree ret;

  ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
  STRIP_NOPS (ret);

  return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
                                   GSI_SAME_STMT);
}



/* Given a basic block B which ends with a conditional and has
   precisely two successors, determine which of the edges is taken if
   the conditional is true and which is taken if the conditional is
   false.  Set TRUE_EDGE and FALSE_EDGE appropriately.  */

void
extract_true_false_edges_from_block (basic_block b,
				     edge *true_edge,
				     edge *false_edge)
{
  edge e = EDGE_SUCC (b, 0);

  if (e->flags & EDGE_TRUE_VALUE)
    {
      *true_edge = e;
      *false_edge = EDGE_SUCC (b, 1);
    }
  else
    {
      *false_edge = e;
      *true_edge = EDGE_SUCC (b, 1);
    }
}

/* Emit return warnings.  */

namespace {

const pass_data pass_data_warn_function_return =
{
  GIMPLE_PASS, /* type */
  "*warn_function_return", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_warn_function_return : public gimple_opt_pass
{
public:
  pass_warn_function_return (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_warn_function_return, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *);

}; // class pass_warn_function_return

unsigned int
pass_warn_function_return::execute (function *fun)
{
  source_location location;
  gimple last;
  edge e;
  edge_iterator ei;

  if (!targetm.warn_func_return (fun->decl))
    return 0;

  /* If we have a path to EXIT, then we do return.  */
  if (TREE_THIS_VOLATILE (fun->decl)
      && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
    {
      location = UNKNOWN_LOCATION;
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
	{
	  last = last_stmt (e->src);
	  if ((gimple_code (last) == GIMPLE_RETURN
	       || gimple_call_builtin_p (last, BUILT_IN_RETURN))
	      && (location = gimple_location (last)) != UNKNOWN_LOCATION)
	    break;
	}
      if (location == UNKNOWN_LOCATION)
	location = cfun->function_end_locus;
      warning_at (location, 0, "%<noreturn%> function does return");
    }

  /* If we see "return;" in some basic block, then we do reach the end
     without returning a value.  */
  else if (warn_return_type
	   && !TREE_NO_WARNING (fun->decl)
	   && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
	   && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
    {
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
	{
	  gimple last = last_stmt (e->src);
	  if (gimple_code (last) == GIMPLE_RETURN
	      && gimple_return_retval (last) == NULL
	      && !gimple_no_warning_p (last))
	    {
	      location = gimple_location (last);
	      if (location == UNKNOWN_LOCATION)
		location = fun->function_end_locus;
	      warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
	      TREE_NO_WARNING (fun->decl) = 1;
	      break;
	    }
	}
    }
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_warn_function_return (gcc::context *ctxt)
{
  return new pass_warn_function_return (ctxt);
}

/* Walk a gimplified function and warn for functions whose return value is
   ignored and attribute((warn_unused_result)) is set.  This is done before
   inlining, so we don't have to worry about that.  */

static void
do_warn_unused_result (gimple_seq seq)
{
  tree fdecl, ftype;
  gimple_stmt_iterator i;

  for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
    {
      gimple g = gsi_stmt (i);

      switch (gimple_code (g))
	{
	case GIMPLE_BIND:
	  do_warn_unused_result (gimple_bind_body (g));
	  break;
	case GIMPLE_TRY:
	  do_warn_unused_result (gimple_try_eval (g));
	  do_warn_unused_result (gimple_try_cleanup (g));
	  break;
	case GIMPLE_CATCH:
	  do_warn_unused_result (gimple_catch_handler (g));
	  break;
	case GIMPLE_EH_FILTER:
	  do_warn_unused_result (gimple_eh_filter_failure (g));
	  break;

	case GIMPLE_CALL:
	  if (gimple_call_lhs (g))
	    break;
	  if (gimple_call_internal_p (g))
	    break;

	  /* This is a naked call, as opposed to a GIMPLE_CALL with an
	     LHS.  All calls whose value is ignored should be
	     represented like this.  Look for the attribute.  */
	  fdecl = gimple_call_fndecl (g);
	  ftype = gimple_call_fntype (g);

	  if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
	    {
	      location_t loc = gimple_location (g);

	      if (fdecl)
		warning_at (loc, OPT_Wunused_result,
			    "ignoring return value of %qD, "
			    "declared with attribute warn_unused_result",
			    fdecl);
	      else
		warning_at (loc, OPT_Wunused_result,
			    "ignoring return value of function "
			    "declared with attribute warn_unused_result");
	    }
	  break;

	default:
	  /* Not a container, not a call, or a call whose value is used.  */
	  break;
	}
    }
}

namespace {

const pass_data pass_data_warn_unused_result =
{
  GIMPLE_PASS, /* type */
  "*warn_unused_result", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_gimple_any, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_warn_unused_result : public gimple_opt_pass
{
public:
  pass_warn_unused_result (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_warn_unused_result; }
  virtual unsigned int execute (function *)
    {
      do_warn_unused_result (gimple_body (current_function_decl));
      return 0;
    }

}; // class pass_warn_unused_result

} // anon namespace

gimple_opt_pass *
make_pass_warn_unused_result (gcc::context *ctxt)
{
  return new pass_warn_unused_result (ctxt);
}

/* IPA passes, compilation of earlier functions or inlining
   might have changed some properties, such as marked functions nothrow,
   pure, const or noreturn.
   Remove redundant edges and basic blocks, and create new ones if necessary.

   This pass can't be executed as stand alone pass from pass manager, because
   in between inlining and this fixup the verify_flow_info would fail.  */

unsigned int
execute_fixup_cfg (void)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  int todo = 0;
  gcov_type count_scale;
  edge e;
  edge_iterator ei;

  count_scale
      = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
			    ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);

  ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
			    cgraph_node::get (current_function_decl)->count;
  EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
			    apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
                                       count_scale);

  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
    e->count = apply_scale (e->count, count_scale);

  FOR_EACH_BB_FN (bb, cfun)
    {
      bb->count = apply_scale (bb->count, count_scale);
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
	{
	  gimple stmt = gsi_stmt (gsi);
	  tree decl = is_gimple_call (stmt)
		      ? gimple_call_fndecl (stmt)
		      : NULL;
	  if (decl)
	    {
	      int flags = gimple_call_flags (stmt);
	      if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
		{
		  if (gimple_purge_dead_abnormal_call_edges (bb))
		    todo |= TODO_cleanup_cfg;

		  if (gimple_in_ssa_p (cfun))
		    {
		      todo |= TODO_update_ssa | TODO_cleanup_cfg;
		      update_stmt (stmt);
		    }
		}

	      if (flags & ECF_NORETURN
		  && fixup_noreturn_call (stmt))
		todo |= TODO_cleanup_cfg;
	     }

	  /* Remove stores to variables we marked write-only.
	     Keep access when store has side effect, i.e. in case when source
	     is volatile.  */
	  if (gimple_store_p (stmt)
	      && !gimple_has_side_effects (stmt))
	    {
	      tree lhs = get_base_address (gimple_get_lhs (stmt));

	      if (TREE_CODE (lhs) == VAR_DECL
		  && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
		  && varpool_node::get (lhs)->writeonly)
		{
		  unlink_stmt_vdef (stmt);
		  gsi_remove (&gsi, true);
		  release_defs (stmt);
	          todo |= TODO_update_ssa | TODO_cleanup_cfg;
	          continue;
		}
	    }
	  /* For calls we can simply remove LHS when it is known
	     to be write-only.  */
	  if (is_gimple_call (stmt)
	      && gimple_get_lhs (stmt))
	    {
	      tree lhs = get_base_address (gimple_get_lhs (stmt));

	      if (TREE_CODE (lhs) == VAR_DECL
		  && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
		  && varpool_node::get (lhs)->writeonly)
		{
		  gimple_call_set_lhs (stmt, NULL);
		  update_stmt (stmt);
	          todo |= TODO_update_ssa | TODO_cleanup_cfg;
		}
	    }

	  if (maybe_clean_eh_stmt (stmt)
	      && gimple_purge_dead_eh_edges (bb))
	    todo |= TODO_cleanup_cfg;
	  gsi_next (&gsi);
	}

      FOR_EACH_EDGE (e, ei, bb->succs)
        e->count = apply_scale (e->count, count_scale);

      /* If we have a basic block with no successors that does not
	 end with a control statement or a noreturn call end it with
	 a call to __builtin_unreachable.  This situation can occur
	 when inlining a noreturn call that does in fact return.  */
      if (EDGE_COUNT (bb->succs) == 0)
	{
	  gimple stmt = last_stmt (bb);
	  if (!stmt
	      || (!is_ctrl_stmt (stmt)
		  && (!is_gimple_call (stmt)
		      || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
	    {
	      if (stmt && is_gimple_call (stmt))
		gimple_call_set_ctrl_altering (stmt, false);
	      stmt = gimple_build_call
		  (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
	      gimple_stmt_iterator gsi = gsi_last_bb (bb);
	      gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
	    }
	}
    }
  if (count_scale != REG_BR_PROB_BASE)
    compute_function_frequency ();

  /* Dump a textual representation of the flowgraph.  */
  if (dump_file)
    gimple_dump_cfg (dump_file, dump_flags);

  if (current_loops
      && (todo & TODO_cleanup_cfg))
    loops_state_set (LOOPS_NEED_FIXUP);

  return todo;
}

namespace {

const pass_data pass_data_fixup_cfg =
{
  GIMPLE_PASS, /* type */
  "*free_cfg_annotations", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_fixup_cfg : public gimple_opt_pass
{
public:
  pass_fixup_cfg (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
  virtual unsigned int execute (function *) { return execute_fixup_cfg (); }

}; // class pass_fixup_cfg

} // anon namespace

gimple_opt_pass *
make_pass_fixup_cfg (gcc::context *ctxt)
{
  return new pass_fixup_cfg (ctxt);
}

/* Garbage collection support for edge_def.  */

extern void gt_ggc_mx (tree&);
extern void gt_ggc_mx (gimple&);
extern void gt_ggc_mx (rtx&);
extern void gt_ggc_mx (basic_block&);

static void
gt_ggc_mx (rtx_insn *& x)
{
  if (x)
    gt_ggc_mx_rtx_def ((void *) x);
}

void
gt_ggc_mx (edge_def *e)
{
  tree block = LOCATION_BLOCK (e->goto_locus);
  gt_ggc_mx (e->src);
  gt_ggc_mx (e->dest);
  if (current_ir_type () == IR_GIMPLE)
    gt_ggc_mx (e->insns.g);
  else
    gt_ggc_mx (e->insns.r);
  gt_ggc_mx (block);
}

/* PCH support for edge_def.  */

extern void gt_pch_nx (tree&);
extern void gt_pch_nx (gimple&);
extern void gt_pch_nx (rtx&);
extern void gt_pch_nx (basic_block&);

static void
gt_pch_nx (rtx_insn *& x)
{
  if (x)
    gt_pch_nx_rtx_def ((void *) x);
}

void
gt_pch_nx (edge_def *e)
{
  tree block = LOCATION_BLOCK (e->goto_locus);
  gt_pch_nx (e->src);
  gt_pch_nx (e->dest);
  if (current_ir_type () == IR_GIMPLE)
    gt_pch_nx (e->insns.g);
  else
    gt_pch_nx (e->insns.r);
  gt_pch_nx (block);
}

void
gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
{
  tree block = LOCATION_BLOCK (e->goto_locus);
  op (&(e->src), cookie);
  op (&(e->dest), cookie);
  if (current_ir_type () == IR_GIMPLE)
    op (&(e->insns.g), cookie);
  else
    op (&(e->insns.r), cookie);
  op (&(block), cookie);
}