summaryrefslogtreecommitdiff
path: root/gcc/tree-cfg.c
blob: 60dacbd5fc8f9e0ff55acb3f6ff3c9ba4e8afd54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
/* Control flow functions for trees.
   Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "toplev.h"
#include "except.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "hashtab.h"
#include "tree-ssa-propagate.h"

/* This file contains functions for building the Control Flow Graph (CFG)
   for a function tree.  */

/* Local declarations.  */

/* Initial capacity for the basic block array.  */
static const int initial_cfg_capacity = 20;

/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
   which use a particular edge.  The CASE_LABEL_EXPRs are chained together
   via their TREE_CHAIN field, which we clear after we're done with the
   hash table to prevent problems with duplication of SWITCH_EXPRs.

   Access to this list of CASE_LABEL_EXPRs allows us to efficiently
   update the case vector in response to edge redirections.

   Right now this table is set up and torn down at key points in the
   compilation process.  It would be nice if we could make the table
   more persistent.  The key is getting notification of changes to
   the CFG (particularly edge removal, creation and redirection).  */

struct edge_to_cases_elt
{
  /* The edge itself.  Necessary for hashing and equality tests.  */
  edge e;

  /* The case labels associated with this edge.  We link these up via
     their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
     when we destroy the hash table.  This prevents problems when copying
     SWITCH_EXPRs.  */
  tree case_labels;
};

static htab_t edge_to_cases;

/* CFG statistics.  */
struct cfg_stats_d
{
  long num_merged_labels;
};

static struct cfg_stats_d cfg_stats;

/* Nonzero if we found a computed goto while building basic blocks.  */
static bool found_computed_goto;

/* Basic blocks and flowgraphs.  */
static basic_block create_bb (void *, void *, basic_block);
static void make_blocks (tree);
static void factor_computed_gotos (void);

/* Edges.  */
static void make_edges (void);
static void make_ctrl_stmt_edges (basic_block);
static void make_exit_edges (basic_block);
static void make_cond_expr_edges (basic_block);
static void make_switch_expr_edges (basic_block);
static void make_goto_expr_edges (basic_block);
static edge tree_redirect_edge_and_branch (edge, basic_block);
static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
static void split_critical_edges (void);

/* Various helpers.  */
static inline bool stmt_starts_bb_p (tree, tree);
static int tree_verify_flow_info (void);
static void tree_make_forwarder_block (edge);
static void tree_cfg2vcg (FILE *);

/* Flowgraph optimization and cleanup.  */
static void tree_merge_blocks (basic_block, basic_block);
static bool tree_can_merge_blocks_p (basic_block, basic_block);
static void remove_bb (basic_block);
static edge find_taken_edge_computed_goto (basic_block, tree);
static edge find_taken_edge_cond_expr (basic_block, tree);
static edge find_taken_edge_switch_expr (basic_block, tree);
static tree find_case_label_for_value (tree, tree);

void
init_empty_tree_cfg (void)
{
  /* Initialize the basic block array.  */
  init_flow ();
  profile_status = PROFILE_ABSENT;
  n_basic_blocks = NUM_FIXED_BLOCKS;
  last_basic_block = NUM_FIXED_BLOCKS;
  basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
  VEC_safe_grow (basic_block, gc, basic_block_info, initial_cfg_capacity);
  memset (VEC_address (basic_block, basic_block_info), 0,
	  sizeof (basic_block) * initial_cfg_capacity);

  /* Build a mapping of labels to their associated blocks.  */
  label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
  VEC_safe_grow (basic_block, gc, label_to_block_map, initial_cfg_capacity);
  memset (VEC_address (basic_block, label_to_block_map),
	  0, sizeof (basic_block) * initial_cfg_capacity);

  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
}

/*---------------------------------------------------------------------------
			      Create basic blocks
---------------------------------------------------------------------------*/

/* Entry point to the CFG builder for trees.  TP points to the list of
   statements to be added to the flowgraph.  */

static void
build_tree_cfg (tree *tp)
{
  /* Register specific tree functions.  */
  tree_register_cfg_hooks ();

  memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));

  init_empty_tree_cfg ();

  found_computed_goto = 0;
  make_blocks (*tp);

  /* Computed gotos are hell to deal with, especially if there are
     lots of them with a large number of destinations.  So we factor
     them to a common computed goto location before we build the
     edge list.  After we convert back to normal form, we will un-factor
     the computed gotos since factoring introduces an unwanted jump.  */
  if (found_computed_goto)
    factor_computed_gotos ();

  /* Make sure there is always at least one block, even if it's empty.  */
  if (n_basic_blocks == NUM_FIXED_BLOCKS)
    create_empty_bb (ENTRY_BLOCK_PTR);

  /* Adjust the size of the array.  */
  if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
    {
      size_t old_size = VEC_length (basic_block, basic_block_info);
      basic_block *p;
      VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks);
      p = VEC_address (basic_block, basic_block_info);
      memset (&p[old_size], 0,
	      sizeof (basic_block) * (n_basic_blocks - old_size));
    }

  /* To speed up statement iterator walks, we first purge dead labels.  */
  cleanup_dead_labels ();

  /* Group case nodes to reduce the number of edges.
     We do this after cleaning up dead labels because otherwise we miss
     a lot of obvious case merging opportunities.  */
  group_case_labels ();

  /* Create the edges of the flowgraph.  */
  make_edges ();

  /* Debugging dumps.  */

  /* Write the flowgraph to a VCG file.  */
  {
    int local_dump_flags;
    FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
    if (vcg_file)
      {
	tree_cfg2vcg (vcg_file);
	dump_end (TDI_vcg, vcg_file);
      }
  }

#ifdef ENABLE_CHECKING
  verify_stmts ();
#endif

  /* Dump a textual representation of the flowgraph.  */
  if (dump_file)
    dump_tree_cfg (dump_file, dump_flags);
}

static void
execute_build_cfg (void)
{
  build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
}

struct tree_opt_pass pass_build_cfg =
{
  "cfg",				/* name */
  NULL,					/* gate */
  execute_build_cfg,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_CFG,				/* tv_id */
  PROP_gimple_leh,			/* properties_required */
  PROP_cfg,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_stmts,			/* todo_flags_finish */
  0					/* letter */
};

/* Search the CFG for any computed gotos.  If found, factor them to a 
   common computed goto site.  Also record the location of that site so
   that we can un-factor the gotos after we have converted back to 
   normal form.  */

static void
factor_computed_gotos (void)
{
  basic_block bb;
  tree factored_label_decl = NULL;
  tree var = NULL;
  tree factored_computed_goto_label = NULL;
  tree factored_computed_goto = NULL;

  /* We know there are one or more computed gotos in this function.
     Examine the last statement in each basic block to see if the block
     ends with a computed goto.  */
	
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator bsi = bsi_last (bb);
      tree last;

      if (bsi_end_p (bsi))
	continue;
      last = bsi_stmt (bsi);

      /* Ignore the computed goto we create when we factor the original
	 computed gotos.  */
      if (last == factored_computed_goto)
	continue;

      /* If the last statement is a computed goto, factor it.  */
      if (computed_goto_p (last))
	{
	  tree assignment;

	  /* The first time we find a computed goto we need to create
	     the factored goto block and the variable each original
	     computed goto will use for their goto destination.  */
	  if (! factored_computed_goto)
	    {
	      basic_block new_bb = create_empty_bb (bb);
	      block_stmt_iterator new_bsi = bsi_start (new_bb);

	      /* Create the destination of the factored goto.  Each original
		 computed goto will put its desired destination into this
		 variable and jump to the label we create immediately
		 below.  */
	      var = create_tmp_var (ptr_type_node, "gotovar");

	      /* Build a label for the new block which will contain the
		 factored computed goto.  */
	      factored_label_decl = create_artificial_label ();
	      factored_computed_goto_label
		= build1 (LABEL_EXPR, void_type_node, factored_label_decl);
	      bsi_insert_after (&new_bsi, factored_computed_goto_label,
				BSI_NEW_STMT);

	      /* Build our new computed goto.  */
	      factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
	      bsi_insert_after (&new_bsi, factored_computed_goto,
				BSI_NEW_STMT);
	    }

	  /* Copy the original computed goto's destination into VAR.  */
	  assignment = build2 (MODIFY_EXPR, ptr_type_node,
			       var, GOTO_DESTINATION (last));
	  bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);

	  /* And re-vector the computed goto to the new destination.  */
	  GOTO_DESTINATION (last) = factored_label_decl;
	}
    }
}


/* Build a flowgraph for the statement_list STMT_LIST.  */

static void
make_blocks (tree stmt_list)
{
  tree_stmt_iterator i = tsi_start (stmt_list);
  tree stmt = NULL;
  bool start_new_block = true;
  bool first_stmt_of_list = true;
  basic_block bb = ENTRY_BLOCK_PTR;

  while (!tsi_end_p (i))
    {
      tree prev_stmt;

      prev_stmt = stmt;
      stmt = tsi_stmt (i);

      /* If the statement starts a new basic block or if we have determined
	 in a previous pass that we need to create a new block for STMT, do
	 so now.  */
      if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
	{
	  if (!first_stmt_of_list)
	    stmt_list = tsi_split_statement_list_before (&i);
	  bb = create_basic_block (stmt_list, NULL, bb);
	  start_new_block = false;
	}

      /* Now add STMT to BB and create the subgraphs for special statement
	 codes.  */
      set_bb_for_stmt (stmt, bb);

      if (computed_goto_p (stmt))
	found_computed_goto = true;

      /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
	 next iteration.  */
      if (stmt_ends_bb_p (stmt))
	start_new_block = true;

      tsi_next (&i);
      first_stmt_of_list = false;
    }
}


/* Create and return a new empty basic block after bb AFTER.  */

static basic_block
create_bb (void *h, void *e, basic_block after)
{
  basic_block bb;

  gcc_assert (!e);

  /* Create and initialize a new basic block.  Since alloc_block uses
     ggc_alloc_cleared to allocate a basic block, we do not have to
     clear the newly allocated basic block here.  */
  bb = alloc_block ();

  bb->index = last_basic_block;
  bb->flags = BB_NEW;
  bb->stmt_list = h ? (tree) h : alloc_stmt_list ();

  /* Add the new block to the linked list of blocks.  */
  link_block (bb, after);

  /* Grow the basic block array if needed.  */
  if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
    {
      size_t old_size = VEC_length (basic_block, basic_block_info);
      size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
      basic_block *p;
      VEC_safe_grow (basic_block, gc, basic_block_info, new_size);
      p = VEC_address (basic_block, basic_block_info);
      memset (&p[old_size], 0, sizeof (basic_block) * (new_size - old_size));
    }

  /* Add the newly created block to the array.  */
  SET_BASIC_BLOCK (last_basic_block, bb);

  n_basic_blocks++;
  last_basic_block++;

  return bb;
}


/*---------------------------------------------------------------------------
				 Edge creation
---------------------------------------------------------------------------*/

/* Fold COND_EXPR_COND of each COND_EXPR.  */

void
fold_cond_expr_cond (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      tree stmt = last_stmt (bb);

      if (stmt
	  && TREE_CODE (stmt) == COND_EXPR)
	{
	  tree cond = fold (COND_EXPR_COND (stmt));
	  if (integer_zerop (cond))
	    COND_EXPR_COND (stmt) = boolean_false_node;
	  else if (integer_onep (cond))
	    COND_EXPR_COND (stmt) = boolean_true_node;
	}
    }
}

/* Join all the blocks in the flowgraph.  */

static void
make_edges (void)
{
  basic_block bb;

  /* Create an edge from entry to the first block with executable
     statements in it.  */
  make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);

  /* Traverse the basic block array placing edges.  */
  FOR_EACH_BB (bb)
    {
      tree first = first_stmt (bb);
      tree last = last_stmt (bb);

      if (first)
	{
	  /* Edges for statements that always alter flow control.  */
	  if (is_ctrl_stmt (last))
	    make_ctrl_stmt_edges (bb);

	  /* Edges for statements that sometimes alter flow control.  */
	  if (is_ctrl_altering_stmt (last))
	    make_exit_edges (bb);
	}

      /* Finally, if no edges were created above, this is a regular
	 basic block that only needs a fallthru edge.  */
      if (EDGE_COUNT (bb->succs) == 0)
	make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
    }

  /* We do not care about fake edges, so remove any that the CFG
     builder inserted for completeness.  */
  remove_fake_exit_edges ();

  /* Fold COND_EXPR_COND of each COND_EXPR.  */
  fold_cond_expr_cond ();

  /* Clean up the graph and warn for unreachable code.  */
  cleanup_tree_cfg ();
}


/* Link an OMP_SECTIONS block to all the OMP_SECTION blocks in its body.  */

static void
make_omp_sections_edges (basic_block bb)
{
  basic_block exit_bb;
  size_t i, n;
  tree vec, stmt;

  stmt = last_stmt (bb);
  vec = OMP_SECTIONS_SECTIONS (stmt);
  n = TREE_VEC_LENGTH (vec);
  exit_bb = bb_for_stmt (TREE_VEC_ELT (vec, n - 1));

  for (i = 0; i < n - 1; i += 2)
    {
      basic_block start_bb = bb_for_stmt (TREE_VEC_ELT (vec, i));
      basic_block end_bb = bb_for_stmt (TREE_VEC_ELT (vec, i + 1));
      make_edge (bb, start_bb, EDGE_ABNORMAL);
      make_edge (end_bb, exit_bb, EDGE_FALLTHRU);
    }

  /* Once the CFG has been built, the vector of sections is no longer
     useful.  The region can be easily obtained with build_omp_regions.
     Furthermore, this sharing of tree expressions is not allowed by the
     statement verifier.  */
  OMP_SECTIONS_SECTIONS (stmt) = NULL_TREE;
}



/* Create edges for control statement at basic block BB.  */

static void
make_ctrl_stmt_edges (basic_block bb)
{
  tree last = last_stmt (bb);

  gcc_assert (last);
  switch (TREE_CODE (last))
    {
    case GOTO_EXPR:
      make_goto_expr_edges (bb);
      break;

    case RETURN_EXPR:
      make_edge (bb, EXIT_BLOCK_PTR, 0);
      break;

    case COND_EXPR:
      make_cond_expr_edges (bb);
      break;

    case SWITCH_EXPR:
      make_switch_expr_edges (bb);
      break;

    case RESX_EXPR:
      make_eh_edges (last);
      /* Yet another NORETURN hack.  */
      if (EDGE_COUNT (bb->succs) == 0)
	make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
      break;

    default:
      gcc_unreachable ();
    }
}


/* Create exit edges for statements in block BB that alter the flow of
   control.  Statements that alter the control flow are 'goto', 'return'
   and calls to non-returning functions.  */

static void
make_exit_edges (basic_block bb)
{
  tree last = last_stmt (bb), op;

  gcc_assert (last);
  switch (TREE_CODE (last))
    {
    case RESX_EXPR:
      break;
    case CALL_EXPR:
      /* If this function receives a nonlocal goto, then we need to
	 make edges from this call site to all the nonlocal goto
	 handlers.  */
      if (TREE_SIDE_EFFECTS (last)
	  && current_function_has_nonlocal_label)
	make_goto_expr_edges (bb);

      /* If this statement has reachable exception handlers, then
	 create abnormal edges to them.  */
      make_eh_edges (last);

      /* Some calls are known not to return.  For such calls we create
	 a fake edge.

	 We really need to revamp how we build edges so that it's not
	 such a bloody pain to avoid creating edges for this case since
	 all we do is remove these edges when we're done building the
	 CFG.  */
      if (call_expr_flags (last) & ECF_NORETURN)
	{
	  make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
	  return;
	}

      /* Don't forget the fall-thru edge.  */
      make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      break;

    case MODIFY_EXPR:
      /* A MODIFY_EXPR may have a CALL_EXPR on its RHS and the CALL_EXPR
	 may have an abnormal edge.  Search the RHS for this case and
	 create any required edges.  */
      op = get_call_expr_in (last);
      if (op && TREE_SIDE_EFFECTS (op)
	  && current_function_has_nonlocal_label)
	make_goto_expr_edges (bb);

      make_eh_edges (last);
      make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      break;

    case OMP_PARALLEL:
    case OMP_FOR:
    case OMP_SINGLE:
    case OMP_MASTER:
    case OMP_ORDERED:
    case OMP_CRITICAL:
      make_edge (bb, bb->next_bb, EDGE_ABNORMAL);

    case OMP_RETURN_EXPR:
      if (EDGE_COUNT (bb->succs) == 0)
	make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      break;

    case OMP_SECTIONS:
      make_omp_sections_edges (bb);
      break;

    case OMP_SECTION:
      make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      break;

    default:
      gcc_unreachable ();
    }
}


/* Create the edges for a COND_EXPR starting at block BB.
   At this point, both clauses must contain only simple gotos.  */

static void
make_cond_expr_edges (basic_block bb)
{
  tree entry = last_stmt (bb);
  basic_block then_bb, else_bb;
  tree then_label, else_label;
  edge e;

  gcc_assert (entry);
  gcc_assert (TREE_CODE (entry) == COND_EXPR);

  /* Entry basic blocks for each component.  */
  then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
  else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
  then_bb = label_to_block (then_label);
  else_bb = label_to_block (else_label);

  e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
#ifdef USE_MAPPED_LOCATION
  e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
#else
  e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
#endif
  e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
  if (e)
    {
#ifdef USE_MAPPED_LOCATION
      e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
#else
      e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
#endif
    }
}

/* Hashing routine for EDGE_TO_CASES.  */

static hashval_t
edge_to_cases_hash (const void *p)
{
  edge e = ((struct edge_to_cases_elt *)p)->e;

  /* Hash on the edge itself (which is a pointer).  */
  return htab_hash_pointer (e);
}

/* Equality routine for EDGE_TO_CASES, edges are unique, so testing
   for equality is just a pointer comparison.  */

static int
edge_to_cases_eq (const void *p1, const void *p2)
{
  edge e1 = ((struct edge_to_cases_elt *)p1)->e;
  edge e2 = ((struct edge_to_cases_elt *)p2)->e;

  return e1 == e2;
}

/* Called for each element in the hash table (P) as we delete the
   edge to cases hash table.

   Clear all the TREE_CHAINs to prevent problems with copying of 
   SWITCH_EXPRs and structure sharing rules, then free the hash table
   element.  */

static void
edge_to_cases_cleanup (void *p)
{
  struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
  tree t, next;

  for (t = elt->case_labels; t; t = next)
    {
      next = TREE_CHAIN (t);
      TREE_CHAIN (t) = NULL;
    }
  free (p);
}

/* Start recording information mapping edges to case labels.  */

void
start_recording_case_labels (void)
{
  gcc_assert (edge_to_cases == NULL);

  edge_to_cases = htab_create (37,
			       edge_to_cases_hash,
			       edge_to_cases_eq,
			       edge_to_cases_cleanup);
}

/* Return nonzero if we are recording information for case labels.  */

static bool
recording_case_labels_p (void)
{
  return (edge_to_cases != NULL);
}

/* Stop recording information mapping edges to case labels and
   remove any information we have recorded.  */
void
end_recording_case_labels (void)
{
  htab_delete (edge_to_cases);
  edge_to_cases = NULL;
}

/* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E.  */

static void
record_switch_edge (edge e, tree case_label)
{
  struct edge_to_cases_elt *elt;
  void **slot;

  /* Build a hash table element so we can see if E is already
     in the table.  */
  elt = XNEW (struct edge_to_cases_elt);
  elt->e = e;
  elt->case_labels = case_label;

  slot = htab_find_slot (edge_to_cases, elt, INSERT);

  if (*slot == NULL)
    {
      /* E was not in the hash table.  Install E into the hash table.  */
      *slot = (void *)elt;
    }
  else
    {
      /* E was already in the hash table.  Free ELT as we do not need it
	 anymore.  */
      free (elt);

      /* Get the entry stored in the hash table.  */
      elt = (struct edge_to_cases_elt *) *slot;

      /* Add it to the chain of CASE_LABEL_EXPRs referencing E.  */
      TREE_CHAIN (case_label) = elt->case_labels;
      elt->case_labels = case_label;
    }
}

/* If we are inside a {start,end}_recording_cases block, then return
   a chain of CASE_LABEL_EXPRs from T which reference E.

   Otherwise return NULL.  */

static tree
get_cases_for_edge (edge e, tree t)
{
  struct edge_to_cases_elt elt, *elt_p;
  void **slot;
  size_t i, n;
  tree vec;

  /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
     chains available.  Return NULL so the caller can detect this case.  */
  if (!recording_case_labels_p ())
    return NULL;
  
restart:
  elt.e = e;
  elt.case_labels = NULL;
  slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);

  if (slot)
    {
      elt_p = (struct edge_to_cases_elt *)*slot;
      return elt_p->case_labels;
    }

  /* If we did not find E in the hash table, then this must be the first
     time we have been queried for information about E & T.  Add all the
     elements from T to the hash table then perform the query again.  */

  vec = SWITCH_LABELS (t);
  n = TREE_VEC_LENGTH (vec);
  for (i = 0; i < n; i++)
    {
      tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
      basic_block label_bb = label_to_block (lab);
      record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
    }
  goto restart;
}

/* Create the edges for a SWITCH_EXPR starting at block BB.
   At this point, the switch body has been lowered and the
   SWITCH_LABELS filled in, so this is in effect a multi-way branch.  */

static void
make_switch_expr_edges (basic_block bb)
{
  tree entry = last_stmt (bb);
  size_t i, n;
  tree vec;

  vec = SWITCH_LABELS (entry);
  n = TREE_VEC_LENGTH (vec);

  for (i = 0; i < n; ++i)
    {
      tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
      basic_block label_bb = label_to_block (lab);
      make_edge (bb, label_bb, 0);
    }
}


/* Return the basic block holding label DEST.  */

basic_block
label_to_block_fn (struct function *ifun, tree dest)
{
  int uid = LABEL_DECL_UID (dest);

  /* We would die hard when faced by an undefined label.  Emit a label to
     the very first basic block.  This will hopefully make even the dataflow
     and undefined variable warnings quite right.  */
  if ((errorcount || sorrycount) && uid < 0)
    {
      block_stmt_iterator bsi = 
	bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
      tree stmt;

      stmt = build1 (LABEL_EXPR, void_type_node, dest);
      bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
      uid = LABEL_DECL_UID (dest);
    }
  if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
      <= (unsigned int) uid)
    return NULL;
  return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
}

/* Create edges for a goto statement at block BB.  */

static void
make_goto_expr_edges (basic_block bb)
{
  tree goto_t;
  basic_block target_bb;
  int for_call;
  block_stmt_iterator last = bsi_last (bb);

  goto_t = bsi_stmt (last);

  /* If the last statement is not a GOTO (i.e., it is a RETURN_EXPR,
     CALL_EXPR or MODIFY_EXPR), then the edge is an abnormal edge resulting
     from a nonlocal goto.  */
  if (TREE_CODE (goto_t) != GOTO_EXPR)
    for_call = 1;
  else
    {
      tree dest = GOTO_DESTINATION (goto_t);
      for_call = 0;

      /* A GOTO to a local label creates normal edges.  */
      if (simple_goto_p (goto_t))
	{
	  edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
#ifdef USE_MAPPED_LOCATION
	  e->goto_locus = EXPR_LOCATION (goto_t);
#else
	  e->goto_locus = EXPR_LOCUS (goto_t);
#endif
	  bsi_remove (&last, true);
	  return;
	}

      /* Nothing more to do for nonlocal gotos.  */
      if (TREE_CODE (dest) == LABEL_DECL)
	return;

      /* Computed gotos remain.  */
    }

  /* Look for the block starting with the destination label.  In the
     case of a computed goto, make an edge to any label block we find
     in the CFG.  */
  FOR_EACH_BB (target_bb)
    {
      block_stmt_iterator bsi;

      for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree target = bsi_stmt (bsi);

	  if (TREE_CODE (target) != LABEL_EXPR)
	    break;

	  if (
	      /* Computed GOTOs.  Make an edge to every label block that has
		 been marked as a potential target for a computed goto.  */
	      (FORCED_LABEL (LABEL_EXPR_LABEL (target)) && for_call == 0)
	      /* Nonlocal GOTO target.  Make an edge to every label block
		 that has been marked as a potential target for a nonlocal
		 goto.  */
	      || (DECL_NONLOCAL (LABEL_EXPR_LABEL (target)) && for_call == 1))
	    {
	      make_edge (bb, target_bb, EDGE_ABNORMAL);
	      break;
	    }
	}
    }

  /* Degenerate case of computed goto with no labels.  */
  if (!for_call && EDGE_COUNT (bb->succs) == 0)
    make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}


/*---------------------------------------------------------------------------
			       Flowgraph analysis
---------------------------------------------------------------------------*/

/* Cleanup useless labels in basic blocks.  This is something we wish
   to do early because it allows us to group case labels before creating
   the edges for the CFG, and it speeds up block statement iterators in
   all passes later on.
   We only run this pass once, running it more than once is probably not
   profitable.  */

/* A map from basic block index to the leading label of that block.  */
static tree *label_for_bb;

/* Callback for for_each_eh_region.  Helper for cleanup_dead_labels.  */
static void
update_eh_label (struct eh_region *region)
{
  tree old_label = get_eh_region_tree_label (region);
  if (old_label)
    {
      tree new_label;
      basic_block bb = label_to_block (old_label);

      /* ??? After optimizing, there may be EH regions with labels
	 that have already been removed from the function body, so
	 there is no basic block for them.  */
      if (! bb)
	return;

      new_label = label_for_bb[bb->index];
      set_eh_region_tree_label (region, new_label);
    }
}

/* Given LABEL return the first label in the same basic block.  */
static tree
main_block_label (tree label)
{
  basic_block bb = label_to_block (label);

  /* label_to_block possibly inserted undefined label into the chain.  */
  if (!label_for_bb[bb->index])
    label_for_bb[bb->index] = label;
  return label_for_bb[bb->index];
}

/* Cleanup redundant labels.  This is a three-step process:
     1) Find the leading label for each block.
     2) Redirect all references to labels to the leading labels.
     3) Cleanup all useless labels.  */

void
cleanup_dead_labels (void)
{
  basic_block bb;
  label_for_bb = XCNEWVEC (tree, last_basic_block);

  /* Find a suitable label for each block.  We use the first user-defined
     label if there is one, or otherwise just the first label we see.  */
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator i;

      for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
	{
	  tree label, stmt = bsi_stmt (i);

	  if (TREE_CODE (stmt) != LABEL_EXPR)
	    break;

	  label = LABEL_EXPR_LABEL (stmt);

	  /* If we have not yet seen a label for the current block,
	     remember this one and see if there are more labels.  */
	  if (! label_for_bb[bb->index])
	    {
	      label_for_bb[bb->index] = label;
	      continue;
	    }

	  /* If we did see a label for the current block already, but it
	     is an artificially created label, replace it if the current
	     label is a user defined label.  */
	  if (! DECL_ARTIFICIAL (label)
	      && DECL_ARTIFICIAL (label_for_bb[bb->index]))
	    {
	      label_for_bb[bb->index] = label;
	      break;
	    }
	}
    }

  /* Now redirect all jumps/branches to the selected label.
     First do so for each block ending in a control statement.  */
  FOR_EACH_BB (bb)
    {
      tree stmt = last_stmt (bb);
      if (!stmt)
	continue;

      switch (TREE_CODE (stmt))
	{
	case COND_EXPR:
	  {
	    tree true_branch, false_branch;

	    true_branch = COND_EXPR_THEN (stmt);
	    false_branch = COND_EXPR_ELSE (stmt);

	    GOTO_DESTINATION (true_branch)
	      = main_block_label (GOTO_DESTINATION (true_branch));
	    GOTO_DESTINATION (false_branch)
	      = main_block_label (GOTO_DESTINATION (false_branch));

	    break;
	  }
  
	case SWITCH_EXPR:
	  {
	    size_t i;
	    tree vec = SWITCH_LABELS (stmt);
	    size_t n = TREE_VEC_LENGTH (vec);
  
	    /* Replace all destination labels.  */
	    for (i = 0; i < n; ++i)
	      {
		tree elt = TREE_VEC_ELT (vec, i);
		tree label = main_block_label (CASE_LABEL (elt));
		CASE_LABEL (elt) = label;
	      }
	    break;
	  }

	/* We have to handle GOTO_EXPRs until they're removed, and we don't
	   remove them until after we've created the CFG edges.  */
	case GOTO_EXPR:
          if (! computed_goto_p (stmt))
	    {
	      GOTO_DESTINATION (stmt)
		= main_block_label (GOTO_DESTINATION (stmt));
	      break;
	    }

	default:
	  break;
      }
    }

  for_each_eh_region (update_eh_label);

  /* Finally, purge dead labels.  All user-defined labels and labels that
     can be the target of non-local gotos and labels which have their
     address taken are preserved.  */
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator i;
      tree label_for_this_bb = label_for_bb[bb->index];

      if (! label_for_this_bb)
	continue;

      for (i = bsi_start (bb); !bsi_end_p (i); )
	{
	  tree label, stmt = bsi_stmt (i);

	  if (TREE_CODE (stmt) != LABEL_EXPR)
	    break;

	  label = LABEL_EXPR_LABEL (stmt);

	  if (label == label_for_this_bb
	      || ! DECL_ARTIFICIAL (label)
	      || DECL_NONLOCAL (label)
	      || FORCED_LABEL (label))
	    bsi_next (&i);
	  else
	    bsi_remove (&i, true);
	}
    }

  free (label_for_bb);
}

/* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
   and scan the sorted vector of cases.  Combine the ones jumping to the
   same label.
   Eg. three separate entries 1: 2: 3: become one entry 1..3:  */

void
group_case_labels (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      tree stmt = last_stmt (bb);
      if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
	{
	  tree labels = SWITCH_LABELS (stmt);
	  int old_size = TREE_VEC_LENGTH (labels);
	  int i, j, new_size = old_size;
	  tree default_case = TREE_VEC_ELT (labels, old_size - 1);
 	  tree default_label;

	  /* The default label is always the last case in a switch
	     statement after gimplification.  */
	  default_label = CASE_LABEL (default_case);

	  /* Look for possible opportunities to merge cases.
	     Ignore the last element of the label vector because it
	     must be the default case.  */
          i = 0;
	  while (i < old_size - 1)
	    {
	      tree base_case, base_label, base_high;
	      base_case = TREE_VEC_ELT (labels, i);

	      gcc_assert (base_case);
	      base_label = CASE_LABEL (base_case);

	      /* Discard cases that have the same destination as the
		 default case.  */
	      if (base_label == default_label)
		{
		  TREE_VEC_ELT (labels, i) = NULL_TREE;
		  i++;
		  new_size--;
		  continue;
		}

	      base_high = CASE_HIGH (base_case) ?
		CASE_HIGH (base_case) : CASE_LOW (base_case);
	      i++;
	      /* Try to merge case labels.  Break out when we reach the end
		 of the label vector or when we cannot merge the next case
		 label with the current one.  */
	      while (i < old_size - 1)
		{
		  tree merge_case = TREE_VEC_ELT (labels, i);
	          tree merge_label = CASE_LABEL (merge_case);
		  tree t = int_const_binop (PLUS_EXPR, base_high,
					    integer_one_node, 1);

		  /* Merge the cases if they jump to the same place,
		     and their ranges are consecutive.  */
		  if (merge_label == base_label
		      && tree_int_cst_equal (CASE_LOW (merge_case), t))
		    {
		      base_high = CASE_HIGH (merge_case) ?
			CASE_HIGH (merge_case) : CASE_LOW (merge_case);
		      CASE_HIGH (base_case) = base_high;
		      TREE_VEC_ELT (labels, i) = NULL_TREE;
		      new_size--;
		      i++;
		    }
		  else
		    break;
		}
	    }

	  /* Compress the case labels in the label vector, and adjust the
	     length of the vector.  */
	  for (i = 0, j = 0; i < new_size; i++)
	    {
	      while (! TREE_VEC_ELT (labels, j))
		j++;
	      TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
	    }
	  TREE_VEC_LENGTH (labels) = new_size;
	}
    }
}

/* Checks whether we can merge block B into block A.  */

static bool
tree_can_merge_blocks_p (basic_block a, basic_block b)
{
  tree stmt;
  block_stmt_iterator bsi;
  tree phi;

  if (!single_succ_p (a))
    return false;

  if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
    return false;

  if (single_succ (a) != b)
    return false;

  if (!single_pred_p (b))
    return false;

  if (b == EXIT_BLOCK_PTR)
    return false;
  
  /* If A ends by a statement causing exceptions or something similar, we
     cannot merge the blocks.  */
  stmt = last_stmt (a);
  if (stmt && stmt_ends_bb_p (stmt))
    return false;

  /* Do not allow a block with only a non-local label to be merged.  */
  if (stmt && TREE_CODE (stmt) == LABEL_EXPR
      && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
    return false;

  /* It must be possible to eliminate all phi nodes in B.  If ssa form
     is not up-to-date, we cannot eliminate any phis.  */
  phi = phi_nodes (b);
  if (phi)
    {
      if (need_ssa_update_p ())
	return false;

      for (; phi; phi = PHI_CHAIN (phi))
	if (!is_gimple_reg (PHI_RESULT (phi))
	    && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
	  return false;
    }

  /* Do not remove user labels.  */
  for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      stmt = bsi_stmt (bsi);
      if (TREE_CODE (stmt) != LABEL_EXPR)
	break;
      if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
	return false;
    }

  /* Protect the loop latches.  */
  if (current_loops
      && b->loop_father->latch == b)
    return false;

  return true;
}

/* Replaces all uses of NAME by VAL.  */

void
replace_uses_by (tree name, tree val)
{
  imm_use_iterator imm_iter;
  use_operand_p use;
  tree stmt;
  edge e;
  unsigned i;
  VEC(tree,heap) *stmts = VEC_alloc (tree, heap, 20);

  FOR_EACH_IMM_USE_SAFE (use, imm_iter, name)
    {
      stmt = USE_STMT (use);
      replace_exp (use, val);

      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
	  if (e->flags & EDGE_ABNORMAL)
	    {
	      /* This can only occur for virtual operands, since
		 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
		 would prevent replacement.  */
	      gcc_assert (!is_gimple_reg (name));
	      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
	    }
	}
      else
	VEC_safe_push (tree, heap, stmts, stmt);
    }
 
  /* We do not update the statements in the loop above.  Consider
     x = w * w;

     If we performed the update in the first loop, the statement
     would be rescanned after first occurrence of w is replaced,
     the new uses would be placed to the beginning of the list,
     and we would never process them.  */
  for (i = 0; VEC_iterate (tree, stmts, i, stmt); i++)
    {
      tree rhs;

      fold_stmt_inplace (stmt);

      rhs = get_rhs (stmt);
      if (TREE_CODE (rhs) == ADDR_EXPR)
	recompute_tree_invariant_for_addr_expr (rhs);

      maybe_clean_or_replace_eh_stmt (stmt, stmt);
      mark_new_vars_to_rename (stmt);
    }

  VEC_free (tree, heap, stmts);

  /* Also update the trees stored in loop structures.  */
  if (current_loops)
    {
      struct loop *loop;

      for (i = 0; i < current_loops->num; i++)
	{
	  loop = current_loops->parray[i];
	  if (loop)
	    substitute_in_loop_info (loop, name, val);
	}
    }
}

/* Merge block B into block A.  */

static void
tree_merge_blocks (basic_block a, basic_block b)
{
  block_stmt_iterator bsi;
  tree_stmt_iterator last;
  tree phi;

  if (dump_file)
    fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);

  /* Remove all single-valued PHI nodes from block B of the form
     V_i = PHI <V_j> by propagating V_j to all the uses of V_i.  */
  bsi = bsi_last (a);
  for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
    {
      tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
      tree copy;
      bool may_replace_uses = may_propagate_copy (def, use);

      /* In case we have loops to care about, do not propagate arguments of
	 loop closed ssa phi nodes.  */
      if (current_loops
	  && is_gimple_reg (def)
	  && TREE_CODE (use) == SSA_NAME
	  && a->loop_father != b->loop_father)
	may_replace_uses = false;

      if (!may_replace_uses)
	{
	  gcc_assert (is_gimple_reg (def));

	  /* Note that just emitting the copies is fine -- there is no problem
	     with ordering of phi nodes.  This is because A is the single
	     predecessor of B, therefore results of the phi nodes cannot
	     appear as arguments of the phi nodes.  */
	  copy = build2 (MODIFY_EXPR, void_type_node, def, use);
	  bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
	  SET_PHI_RESULT (phi, NULL_TREE);
	  SSA_NAME_DEF_STMT (def) = copy;
	}
      else
	replace_uses_by (def, use);

      remove_phi_node (phi, NULL);
    }

  /* Ensure that B follows A.  */
  move_block_after (b, a);

  gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
  gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));

  /* Remove labels from B and set bb_for_stmt to A for other statements.  */
  for (bsi = bsi_start (b); !bsi_end_p (bsi);)
    {
      if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
	{
	  tree label = bsi_stmt (bsi);

	  bsi_remove (&bsi, false);
	  /* Now that we can thread computed gotos, we might have
	     a situation where we have a forced label in block B
	     However, the label at the start of block B might still be
	     used in other ways (think about the runtime checking for
	     Fortran assigned gotos).  So we can not just delete the
	     label.  Instead we move the label to the start of block A.  */
	  if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
	    {
	      block_stmt_iterator dest_bsi = bsi_start (a);
	      bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
	    }
	}
      else
	{
	  set_bb_for_stmt (bsi_stmt (bsi), a);
	  bsi_next (&bsi);
	}
    }

  /* Merge the chains.  */
  last = tsi_last (a->stmt_list);
  tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
  b->stmt_list = NULL;
}


/* Return the one of two successors of BB that is not reachable by a
   reached by a complex edge, if there is one.  Else, return BB.  We use
   this in optimizations that use post-dominators for their heuristics,
   to catch the cases in C++ where function calls are involved.  */
    
basic_block
single_noncomplex_succ (basic_block bb)  
{
  edge e0, e1;
  if (EDGE_COUNT (bb->succs) != 2)
    return bb;
   
  e0 = EDGE_SUCC (bb, 0);
  e1 = EDGE_SUCC (bb, 1);
  if (e0->flags & EDGE_COMPLEX)
    return e1->dest;
  if (e1->flags & EDGE_COMPLEX)
    return e0->dest;
   
  return bb;
}       
        


/* Walk the function tree removing unnecessary statements.

     * Empty statement nodes are removed

     * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed

     * Unnecessary COND_EXPRs are removed

     * Some unnecessary BIND_EXPRs are removed

   Clearly more work could be done.  The trick is doing the analysis
   and removal fast enough to be a net improvement in compile times.

   Note that when we remove a control structure such as a COND_EXPR
   BIND_EXPR, or TRY block, we will need to repeat this optimization pass
   to ensure we eliminate all the useless code.  */

struct rus_data
{
  tree *last_goto;
  bool repeat;
  bool may_throw;
  bool may_branch;
  bool has_label;
};

static void remove_useless_stmts_1 (tree *, struct rus_data *);

static bool
remove_useless_stmts_warn_notreached (tree stmt)
{
  if (EXPR_HAS_LOCATION (stmt))
    {
      location_t loc = EXPR_LOCATION (stmt);
      if (LOCATION_LINE (loc) > 0)
	{
	  warning (0, "%Hwill never be executed", &loc);
	  return true;
	}
    }

  switch (TREE_CODE (stmt))
    {
    case STATEMENT_LIST:
      {
	tree_stmt_iterator i;
	for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
	  if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
	    return true;
      }
      break;

    case COND_EXPR:
      if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
	return true;
      if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
	return true;
      if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
	return true;
      break;

    case TRY_FINALLY_EXPR:
    case TRY_CATCH_EXPR:
      if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
	return true;
      if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
	return true;
      break;

    case CATCH_EXPR:
      return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
    case EH_FILTER_EXPR:
      return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
    case BIND_EXPR:
      return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));

    default:
      /* Not a live container.  */
      break;
    }

  return false;
}

static void
remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
{
  tree then_clause, else_clause, cond;
  bool save_has_label, then_has_label, else_has_label;

  save_has_label = data->has_label;
  data->has_label = false;
  data->last_goto = NULL;

  remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);

  then_has_label = data->has_label;
  data->has_label = false;
  data->last_goto = NULL;

  remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);

  else_has_label = data->has_label;
  data->has_label = save_has_label | then_has_label | else_has_label;

  then_clause = COND_EXPR_THEN (*stmt_p);
  else_clause = COND_EXPR_ELSE (*stmt_p);
  cond = fold (COND_EXPR_COND (*stmt_p));

  /* If neither arm does anything at all, we can remove the whole IF.  */
  if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
    {
      *stmt_p = build_empty_stmt ();
      data->repeat = true;
    }

  /* If there are no reachable statements in an arm, then we can
     zap the entire conditional.  */
  else if (integer_nonzerop (cond) && !else_has_label)
    {
      if (warn_notreached)
	remove_useless_stmts_warn_notreached (else_clause);
      *stmt_p = then_clause;
      data->repeat = true;
    }
  else if (integer_zerop (cond) && !then_has_label)
    {
      if (warn_notreached)
	remove_useless_stmts_warn_notreached (then_clause);
      *stmt_p = else_clause;
      data->repeat = true;
    }

  /* Check a couple of simple things on then/else with single stmts.  */
  else
    {
      tree then_stmt = expr_only (then_clause);
      tree else_stmt = expr_only (else_clause);

      /* Notice branches to a common destination.  */
      if (then_stmt && else_stmt
	  && TREE_CODE (then_stmt) == GOTO_EXPR
	  && TREE_CODE (else_stmt) == GOTO_EXPR
	  && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
	{
	  *stmt_p = then_stmt;
	  data->repeat = true;
	}

      /* If the THEN/ELSE clause merely assigns a value to a variable or
	 parameter which is already known to contain that value, then
	 remove the useless THEN/ELSE clause.  */
      else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
	{
	  if (else_stmt
	      && TREE_CODE (else_stmt) == MODIFY_EXPR
	      && TREE_OPERAND (else_stmt, 0) == cond
	      && integer_zerop (TREE_OPERAND (else_stmt, 1)))
	    COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
	}
      else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
	       && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
		   || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
	       && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
	{
	  tree stmt = (TREE_CODE (cond) == EQ_EXPR
		       ? then_stmt : else_stmt);
	  tree *location = (TREE_CODE (cond) == EQ_EXPR
			    ? &COND_EXPR_THEN (*stmt_p)
			    : &COND_EXPR_ELSE (*stmt_p));

	  if (stmt
	      && TREE_CODE (stmt) == MODIFY_EXPR
	      && TREE_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
	      && TREE_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
	    *location = alloc_stmt_list ();
	}
    }

  /* Protect GOTOs in the arm of COND_EXPRs from being removed.  They
     would be re-introduced during lowering.  */
  data->last_goto = NULL;
}


static void
remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
{
  bool save_may_branch, save_may_throw;
  bool this_may_branch, this_may_throw;

  /* Collect may_branch and may_throw information for the body only.  */
  save_may_branch = data->may_branch;
  save_may_throw = data->may_throw;
  data->may_branch = false;
  data->may_throw = false;
  data->last_goto = NULL;

  remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);

  this_may_branch = data->may_branch;
  this_may_throw = data->may_throw;
  data->may_branch |= save_may_branch;
  data->may_throw |= save_may_throw;
  data->last_goto = NULL;

  remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);

  /* If the body is empty, then we can emit the FINALLY block without
     the enclosing TRY_FINALLY_EXPR.  */
  if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
    {
      *stmt_p = TREE_OPERAND (*stmt_p, 1);
      data->repeat = true;
    }

  /* If the handler is empty, then we can emit the TRY block without
     the enclosing TRY_FINALLY_EXPR.  */
  else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
    {
      *stmt_p = TREE_OPERAND (*stmt_p, 0);
      data->repeat = true;
    }

  /* If the body neither throws, nor branches, then we can safely
     string the TRY and FINALLY blocks together.  */
  else if (!this_may_branch && !this_may_throw)
    {
      tree stmt = *stmt_p;
      *stmt_p = TREE_OPERAND (stmt, 0);
      append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
      data->repeat = true;
    }
}


static void
remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
{
  bool save_may_throw, this_may_throw;
  tree_stmt_iterator i;
  tree stmt;

  /* Collect may_throw information for the body only.  */
  save_may_throw = data->may_throw;
  data->may_throw = false;
  data->last_goto = NULL;

  remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);

  this_may_throw = data->may_throw;
  data->may_throw = save_may_throw;

  /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR.  */
  if (!this_may_throw)
    {
      if (warn_notreached)
	remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
      *stmt_p = TREE_OPERAND (*stmt_p, 0);
      data->repeat = true;
      return;
    }

  /* Process the catch clause specially.  We may be able to tell that
     no exceptions propagate past this point.  */

  this_may_throw = true;
  i = tsi_start (TREE_OPERAND (*stmt_p, 1));
  stmt = tsi_stmt (i);
  data->last_goto = NULL;

  switch (TREE_CODE (stmt))
    {
    case CATCH_EXPR:
      for (; !tsi_end_p (i); tsi_next (&i))
	{
	  stmt = tsi_stmt (i);
	  /* If we catch all exceptions, then the body does not
	     propagate exceptions past this point.  */
	  if (CATCH_TYPES (stmt) == NULL)
	    this_may_throw = false;
	  data->last_goto = NULL;
	  remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
	}
      break;

    case EH_FILTER_EXPR:
      if (EH_FILTER_MUST_NOT_THROW (stmt))
	this_may_throw = false;
      else if (EH_FILTER_TYPES (stmt) == NULL)
	this_may_throw = false;
      remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
      break;

    default:
      /* Otherwise this is a cleanup.  */
      remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);

      /* If the cleanup is empty, then we can emit the TRY block without
	 the enclosing TRY_CATCH_EXPR.  */
      if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
	{
	  *stmt_p = TREE_OPERAND (*stmt_p, 0);
	  data->repeat = true;
	}
      break;
    }
  data->may_throw |= this_may_throw;
}


static void
remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
{
  tree block;

  /* First remove anything underneath the BIND_EXPR.  */
  remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);

  /* If the BIND_EXPR has no variables, then we can pull everything
     up one level and remove the BIND_EXPR, unless this is the toplevel
     BIND_EXPR for the current function or an inlined function.

     When this situation occurs we will want to apply this
     optimization again.  */
  block = BIND_EXPR_BLOCK (*stmt_p);
  if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
      && *stmt_p != DECL_SAVED_TREE (current_function_decl)
      && (! block
	  || ! BLOCK_ABSTRACT_ORIGIN (block)
	  || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
	      != FUNCTION_DECL)))
    {
      *stmt_p = BIND_EXPR_BODY (*stmt_p);
      data->repeat = true;
    }
}


static void
remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
{
  tree dest = GOTO_DESTINATION (*stmt_p);

  data->may_branch = true;
  data->last_goto = NULL;

  /* Record the last goto expr, so that we can delete it if unnecessary.  */
  if (TREE_CODE (dest) == LABEL_DECL)
    data->last_goto = stmt_p;
}


static void
remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
{
  tree label = LABEL_EXPR_LABEL (*stmt_p);

  data->has_label = true;

  /* We do want to jump across non-local label receiver code.  */
  if (DECL_NONLOCAL (label))
    data->last_goto = NULL;

  else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
    {
      *data->last_goto = build_empty_stmt ();
      data->repeat = true;
    }

  /* ??? Add something here to delete unused labels.  */
}


/* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
   decl.  This allows us to eliminate redundant or useless
   calls to "const" functions. 

   Gimplifier already does the same operation, but we may notice functions
   being const and pure once their calls has been gimplified, so we need
   to update the flag.  */

static void
update_call_expr_flags (tree call)
{
  tree decl = get_callee_fndecl (call);
  if (!decl)
    return;
  if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
    TREE_SIDE_EFFECTS (call) = 0;
  if (TREE_NOTHROW (decl))
    TREE_NOTHROW (call) = 1;
}


/* T is CALL_EXPR.  Set current_function_calls_* flags.  */

void
notice_special_calls (tree t)
{
  int flags = call_expr_flags (t);

  if (flags & ECF_MAY_BE_ALLOCA)
    current_function_calls_alloca = true;
  if (flags & ECF_RETURNS_TWICE)
    current_function_calls_setjmp = true;
}


/* Clear flags set by notice_special_calls.  Used by dead code removal
   to update the flags.  */

void
clear_special_calls (void)
{
  current_function_calls_alloca = false;
  current_function_calls_setjmp = false;
}


static void
remove_useless_stmts_1 (tree *tp, struct rus_data *data)
{
  tree t = *tp, op;

  switch (TREE_CODE (t))
    {
    case COND_EXPR:
      remove_useless_stmts_cond (tp, data);
      break;

    case TRY_FINALLY_EXPR:
      remove_useless_stmts_tf (tp, data);
      break;

    case TRY_CATCH_EXPR:
      remove_useless_stmts_tc (tp, data);
      break;

    case BIND_EXPR:
      remove_useless_stmts_bind (tp, data);
      break;

    case GOTO_EXPR:
      remove_useless_stmts_goto (tp, data);
      break;

    case LABEL_EXPR:
      remove_useless_stmts_label (tp, data);
      break;

    case RETURN_EXPR:
      fold_stmt (tp);
      data->last_goto = NULL;
      data->may_branch = true;
      break;

    case CALL_EXPR:
      fold_stmt (tp);
      data->last_goto = NULL;
      notice_special_calls (t);
      update_call_expr_flags (t);
      if (tree_could_throw_p (t))
	data->may_throw = true;
      break;

    case MODIFY_EXPR:
      data->last_goto = NULL;
      fold_stmt (tp);
      op = get_call_expr_in (t);
      if (op)
	{
	  update_call_expr_flags (op);
	  notice_special_calls (op);
	}
      if (tree_could_throw_p (t))
	data->may_throw = true;
      break;

    case STATEMENT_LIST:
      {
	tree_stmt_iterator i = tsi_start (t);
	while (!tsi_end_p (i))
	  {
	    t = tsi_stmt (i);
	    if (IS_EMPTY_STMT (t))
	      {
		tsi_delink (&i);
		continue;
	      }
	    
	    remove_useless_stmts_1 (tsi_stmt_ptr (i), data);

	    t = tsi_stmt (i);
	    if (TREE_CODE (t) == STATEMENT_LIST)
	      {
		tsi_link_before (&i, t, TSI_SAME_STMT);
		tsi_delink (&i);
	      }
	    else
	      tsi_next (&i);
	  }
      }
      break;
    case ASM_EXPR:
      fold_stmt (tp);
      data->last_goto = NULL;
      break;

    default:
      data->last_goto = NULL;
      break;
    }
}

static void
remove_useless_stmts (void)
{
  struct rus_data data;

  clear_special_calls ();

  do
    {
      memset (&data, 0, sizeof (data));
      remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
    }
  while (data.repeat);
}


struct tree_opt_pass pass_remove_useless_stmts = 
{
  "useless",				/* name */
  NULL,					/* gate */
  remove_useless_stmts,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_gimple_any,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func,			/* todo_flags_finish */
  0					/* letter */
};

/* Remove PHI nodes associated with basic block BB and all edges out of BB.  */

static void
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
{
  tree phi;

  /* Since this block is no longer reachable, we can just delete all
     of its PHI nodes.  */
  phi = phi_nodes (bb);
  while (phi)
    {
      tree next = PHI_CHAIN (phi);
      remove_phi_node (phi, NULL_TREE);
      phi = next;
    }

  /* Remove edges to BB's successors.  */
  while (EDGE_COUNT (bb->succs) > 0)
    remove_edge (EDGE_SUCC (bb, 0));
}


/* Remove statements of basic block BB.  */

static void
remove_bb (basic_block bb)
{
  block_stmt_iterator i;
#ifdef USE_MAPPED_LOCATION
  source_location loc = UNKNOWN_LOCATION;
#else
  source_locus loc = 0;
#endif

  if (dump_file)
    {
      fprintf (dump_file, "Removing basic block %d\n", bb->index);
      if (dump_flags & TDF_DETAILS)
	{
	  dump_bb (bb, dump_file, 0);
	  fprintf (dump_file, "\n");
	}
    }

  /* If we remove the header or the latch of a loop, mark the loop for
     removal by setting its header and latch to NULL.  */
  if (current_loops)
    {
      struct loop *loop = bb->loop_father;

      if (loop->latch == bb
	  || loop->header == bb)
	{
	  loop->latch = NULL;
	  loop->header = NULL;

	  /* Also clean up the information associated with the loop.  Updating
	     it would waste time. More importantly, it may refer to ssa
	     names that were defined in other removed basic block -- these
	     ssa names are now removed and invalid.  */
	  free_numbers_of_iterations_estimates_loop (loop);
	}
    }

  /* Remove all the instructions in the block.  */
  for (i = bsi_start (bb); !bsi_end_p (i);)
    {
      tree stmt = bsi_stmt (i);
      if (TREE_CODE (stmt) == LABEL_EXPR
          && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
	      || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
	{
	  basic_block new_bb;
	  block_stmt_iterator new_bsi;

	  /* A non-reachable non-local label may still be referenced.
	     But it no longer needs to carry the extra semantics of
	     non-locality.  */
	  if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
	    {
	      DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
	      FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
	    }
	  	  
	  new_bb = bb->prev_bb;
	  new_bsi = bsi_start (new_bb);
	  bsi_remove (&i, false);
	  bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
	}
      else
        {
	  /* Release SSA definitions if we are in SSA.  Note that we
	     may be called when not in SSA.  For example,
	     final_cleanup calls this function via
	     cleanup_tree_cfg.  */
	  if (in_ssa_p)
	    release_defs (stmt);

	  bsi_remove (&i, true);
	}

      /* Don't warn for removed gotos.  Gotos are often removed due to
	 jump threading, thus resulting in bogus warnings.  Not great,
	 since this way we lose warnings for gotos in the original
	 program that are indeed unreachable.  */
      if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
	{
#ifdef USE_MAPPED_LOCATION
	  if (EXPR_HAS_LOCATION (stmt))
	    loc = EXPR_LOCATION (stmt);
#else
	  source_locus t;
	  t = EXPR_LOCUS (stmt);
	  if (t && LOCATION_LINE (*t) > 0)
	    loc = t;
#endif
	}
    }

  /* If requested, give a warning that the first statement in the
     block is unreachable.  We walk statements backwards in the
     loop above, so the last statement we process is the first statement
     in the block.  */
#ifdef USE_MAPPED_LOCATION
  if (loc > BUILTINS_LOCATION)
    warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
#else
  if (loc)
    warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
#endif

  remove_phi_nodes_and_edges_for_unreachable_block (bb);
}


/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
   predicate VAL, return the edge that will be taken out of the block.
   If VAL does not match a unique edge, NULL is returned.  */

edge
find_taken_edge (basic_block bb, tree val)
{
  tree stmt;

  stmt = last_stmt (bb);

  gcc_assert (stmt);
  gcc_assert (is_ctrl_stmt (stmt));
  gcc_assert (val);

  if (! is_gimple_min_invariant (val))
    return NULL;

  if (TREE_CODE (stmt) == COND_EXPR)
    return find_taken_edge_cond_expr (bb, val);

  if (TREE_CODE (stmt) == SWITCH_EXPR)
    return find_taken_edge_switch_expr (bb, val);

  if (computed_goto_p (stmt))
    return find_taken_edge_computed_goto (bb, TREE_OPERAND( val, 0));

  gcc_unreachable ();
}

/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
   statement, determine which of the outgoing edges will be taken out of the
   block.  Return NULL if either edge may be taken.  */

static edge
find_taken_edge_computed_goto (basic_block bb, tree val)
{
  basic_block dest;
  edge e = NULL;

  dest = label_to_block (val);
  if (dest)
    {
      e = find_edge (bb, dest);
      gcc_assert (e != NULL);
    }

  return e;
}

/* Given a constant value VAL and the entry block BB to a COND_EXPR
   statement, determine which of the two edges will be taken out of the
   block.  Return NULL if either edge may be taken.  */

static edge
find_taken_edge_cond_expr (basic_block bb, tree val)
{
  edge true_edge, false_edge;

  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
  
  gcc_assert (TREE_CODE (val) == INTEGER_CST);
  return (zero_p (val) ? false_edge : true_edge);
}

/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
   statement, determine which edge will be taken out of the block.  Return
   NULL if any edge may be taken.  */

static edge
find_taken_edge_switch_expr (basic_block bb, tree val)
{
  tree switch_expr, taken_case;
  basic_block dest_bb;
  edge e;

  switch_expr = last_stmt (bb);
  taken_case = find_case_label_for_value (switch_expr, val);
  dest_bb = label_to_block (CASE_LABEL (taken_case));

  e = find_edge (bb, dest_bb);
  gcc_assert (e);
  return e;
}


/* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
   We can make optimal use here of the fact that the case labels are
   sorted: We can do a binary search for a case matching VAL.  */

static tree
find_case_label_for_value (tree switch_expr, tree val)
{
  tree vec = SWITCH_LABELS (switch_expr);
  size_t low, high, n = TREE_VEC_LENGTH (vec);
  tree default_case = TREE_VEC_ELT (vec, n - 1);

  for (low = -1, high = n - 1; high - low > 1; )
    {
      size_t i = (high + low) / 2;
      tree t = TREE_VEC_ELT (vec, i);
      int cmp;

      /* Cache the result of comparing CASE_LOW and val.  */
      cmp = tree_int_cst_compare (CASE_LOW (t), val);

      if (cmp > 0)
	high = i;
      else
	low = i;

      if (CASE_HIGH (t) == NULL)
	{
	  /* A singe-valued case label.  */
	  if (cmp == 0)
	    return t;
	}
      else
	{
	  /* A case range.  We can only handle integer ranges.  */
	  if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
	    return t;
	}
    }

  return default_case;
}




/*---------------------------------------------------------------------------
			      Debugging functions
---------------------------------------------------------------------------*/

/* Dump tree-specific information of block BB to file OUTF.  */

void
tree_dump_bb (basic_block bb, FILE *outf, int indent)
{
  dump_generic_bb (outf, bb, indent, TDF_VOPS);
}


/* Dump a basic block on stderr.  */

void
debug_tree_bb (basic_block bb)
{
  dump_bb (bb, stderr, 0);
}


/* Dump basic block with index N on stderr.  */

basic_block
debug_tree_bb_n (int n)
{
  debug_tree_bb (BASIC_BLOCK (n));
  return BASIC_BLOCK (n);
}	 


/* Dump the CFG on stderr.

   FLAGS are the same used by the tree dumping functions
   (see TDF_* in tree.h).  */

void
debug_tree_cfg (int flags)
{
  dump_tree_cfg (stderr, flags);
}


/* Dump the program showing basic block boundaries on the given FILE.

   FLAGS are the same used by the tree dumping functions (see TDF_* in
   tree.h).  */

void
dump_tree_cfg (FILE *file, int flags)
{
  if (flags & TDF_DETAILS)
    {
      const char *funcname
	= lang_hooks.decl_printable_name (current_function_decl, 2);

      fputc ('\n', file);
      fprintf (file, ";; Function %s\n\n", funcname);
      fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
	       n_basic_blocks, n_edges, last_basic_block);

      brief_dump_cfg (file);
      fprintf (file, "\n");
    }

  if (flags & TDF_STATS)
    dump_cfg_stats (file);

  dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
}


/* Dump CFG statistics on FILE.  */

void
dump_cfg_stats (FILE *file)
{
  static long max_num_merged_labels = 0;
  unsigned long size, total = 0;
  long num_edges;
  basic_block bb;
  const char * const fmt_str   = "%-30s%-13s%12s\n";
  const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
  const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
  const char * const fmt_str_3 = "%-43s%11lu%c\n";
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);


  fprintf (file, "\nCFG Statistics for %s\n\n", funcname);

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str, "", "  Number of  ", "Memory");
  fprintf (file, fmt_str, "", "  instances  ", "used ");
  fprintf (file, "---------------------------------------------------------\n");

  size = n_basic_blocks * sizeof (struct basic_block_def);
  total += size;
  fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
	   SCALE (size), LABEL (size));

  num_edges = 0;
  FOR_EACH_BB (bb)
    num_edges += EDGE_COUNT (bb->succs);
  size = num_edges * sizeof (struct edge_def);
  total += size;
  fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
	   LABEL (total));
  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, "\n");

  if (cfg_stats.num_merged_labels > max_num_merged_labels)
    max_num_merged_labels = cfg_stats.num_merged_labels;

  fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
	   cfg_stats.num_merged_labels, max_num_merged_labels);

  fprintf (file, "\n");
}


/* Dump CFG statistics on stderr.  Keep extern so that it's always
   linked in the final executable.  */

void
debug_cfg_stats (void)
{
  dump_cfg_stats (stderr);
}


/* Dump the flowgraph to a .vcg FILE.  */

static void
tree_cfg2vcg (FILE *file)
{
  edge e;
  edge_iterator ei;
  basic_block bb;
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);

  /* Write the file header.  */
  fprintf (file, "graph: { title: \"%s\"\n", funcname);
  fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
  fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");

  /* Write blocks and edges.  */
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    {
      fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
	       e->dest->index);

      if (e->flags & EDGE_FAKE)
	fprintf (file, " linestyle: dotted priority: 10");
      else
	fprintf (file, " linestyle: solid priority: 100");

      fprintf (file, " }\n");
    }
  fputc ('\n', file);

  FOR_EACH_BB (bb)
    {
      enum tree_code head_code, end_code;
      const char *head_name, *end_name;
      int head_line = 0;
      int end_line = 0;
      tree first = first_stmt (bb);
      tree last = last_stmt (bb);

      if (first)
	{
	  head_code = TREE_CODE (first);
	  head_name = tree_code_name[head_code];
	  head_line = get_lineno (first);
	}
      else
	head_name = "no-statement";

      if (last)
	{
	  end_code = TREE_CODE (last);
	  end_name = tree_code_name[end_code];
	  end_line = get_lineno (last);
	}
      else
	end_name = "no-statement";

      fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
	       bb->index, bb->index, head_name, head_line, end_name,
	       end_line);

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (e->dest == EXIT_BLOCK_PTR)
	    fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
	  else
	    fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);

	  if (e->flags & EDGE_FAKE)
	    fprintf (file, " priority: 10 linestyle: dotted");
	  else
	    fprintf (file, " priority: 100 linestyle: solid");

	  fprintf (file, " }\n");
	}

      if (bb->next_bb != EXIT_BLOCK_PTR)
	fputc ('\n', file);
    }

  fputs ("}\n\n", file);
}



/*---------------------------------------------------------------------------
			     Miscellaneous helpers
---------------------------------------------------------------------------*/

/* Return true if T represents a stmt that always transfers control.  */

bool
is_ctrl_stmt (tree t)
{
  return (TREE_CODE (t) == COND_EXPR
	  || TREE_CODE (t) == SWITCH_EXPR
	  || TREE_CODE (t) == GOTO_EXPR
	  || TREE_CODE (t) == RETURN_EXPR
	  || TREE_CODE (t) == RESX_EXPR);
}


/* Return true if T is a statement that may alter the flow of control
   (e.g., a call to a non-returning function).  */

bool
is_ctrl_altering_stmt (tree t)
{
  tree call;

  gcc_assert (t);
  call = get_call_expr_in (t);
  if (call)
    {
      /* A non-pure/const CALL_EXPR alters flow control if the current
	 function has nonlocal labels.  */
      if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
	return true;

      /* A CALL_EXPR also alters control flow if it does not return.  */
      if (call_expr_flags (call) & ECF_NORETURN)
	return true;
    }

  /* OpenMP directives alter control flow.  */
  if (flag_openmp && OMP_DIRECTIVE_P (t))
    return true;

  /* If a statement can throw, it alters control flow.  */
  return tree_can_throw_internal (t);
}


/* Return true if T is a computed goto.  */

bool
computed_goto_p (tree t)
{
  return (TREE_CODE (t) == GOTO_EXPR
	  && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
}


/* Checks whether EXPR is a simple local goto.  */

bool
simple_goto_p (tree expr)
{
  return (TREE_CODE (expr) == GOTO_EXPR
	  && TREE_CODE (GOTO_DESTINATION (expr)) == LABEL_DECL);
}


/* Return true if T should start a new basic block.  PREV_T is the
   statement preceding T.  It is used when T is a label or a case label.
   Labels should only start a new basic block if their previous statement
   wasn't a label.  Otherwise, sequence of labels would generate
   unnecessary basic blocks that only contain a single label.  */

static inline bool
stmt_starts_bb_p (tree t, tree prev_t)
{
  if (t == NULL_TREE)
    return false;

  /* LABEL_EXPRs start a new basic block only if the preceding
     statement wasn't a label of the same type.  This prevents the
     creation of consecutive blocks that have nothing but a single
     label.  */
  if (TREE_CODE (t) == LABEL_EXPR)
    {
      /* Nonlocal and computed GOTO targets always start a new block.  */
      if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
	  || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
	return true;

      if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
	{
	  if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
	    return true;

	  cfg_stats.num_merged_labels++;
	  return false;
	}
      else
	return true;
    }

  return false;
}


/* Return true if T should end a basic block.  */

bool
stmt_ends_bb_p (tree t)
{
  return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
}


/* Add gotos that used to be represented implicitly in the CFG.  */

void
disband_implicit_edges (void)
{
  basic_block bb;
  block_stmt_iterator last;
  edge e;
  edge_iterator ei;
  tree stmt, label;

  FOR_EACH_BB (bb)
    {
      last = bsi_last (bb);
      stmt = last_stmt (bb);

      if (stmt && TREE_CODE (stmt) == COND_EXPR)
	{
	  /* Remove superfluous gotos from COND_EXPR branches.  Moved
	     from cfg_remove_useless_stmts here since it violates the
	     invariants for tree--cfg correspondence and thus fits better
	     here where we do it anyway.  */
	  e = find_edge (bb, bb->next_bb);
	  if (e)
	    {
	      if (e->flags & EDGE_TRUE_VALUE)
		COND_EXPR_THEN (stmt) = build_empty_stmt ();
	      else if (e->flags & EDGE_FALSE_VALUE)
		COND_EXPR_ELSE (stmt) = build_empty_stmt ();
	      else
		gcc_unreachable ();
	      e->flags |= EDGE_FALLTHRU;
	    }

	  continue;
	}

      if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
	{
	  /* Remove the RETURN_EXPR if we may fall though to the exit
	     instead.  */
	  gcc_assert (single_succ_p (bb));
	  gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);

	  if (bb->next_bb == EXIT_BLOCK_PTR
	      && !TREE_OPERAND (stmt, 0))
	    {
	      bsi_remove (&last, true);
	      single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
	    }
	  continue;
	}

      /* There can be no fallthru edge if the last statement is a control
	 one.  */
      if (stmt && is_ctrl_stmt (stmt))
	continue;

      /* Find a fallthru edge and emit the goto if necessary.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->flags & EDGE_FALLTHRU)
	  break;

      if (!e || e->dest == bb->next_bb)
	continue;

      gcc_assert (e->dest != EXIT_BLOCK_PTR);
      label = tree_block_label (e->dest);

      stmt = build1 (GOTO_EXPR, void_type_node, label);
#ifdef USE_MAPPED_LOCATION
      SET_EXPR_LOCATION (stmt, e->goto_locus);
#else
      SET_EXPR_LOCUS (stmt, e->goto_locus);
#endif
      bsi_insert_after (&last, stmt, BSI_NEW_STMT);
      e->flags &= ~EDGE_FALLTHRU;
    }
}

/* Remove block annotations and other datastructures.  */

void
delete_tree_cfg_annotations (void)
{
  label_to_block_map = NULL;
}


/* Return the first statement in basic block BB.  */

tree
first_stmt (basic_block bb)
{
  block_stmt_iterator i = bsi_start (bb);
  return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
}


/* Return the last statement in basic block BB.  */

tree
last_stmt (basic_block bb)
{
  block_stmt_iterator b = bsi_last (bb);
  return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
}


/* Return a pointer to the last statement in block BB.  */

tree *
last_stmt_ptr (basic_block bb)
{
  block_stmt_iterator last = bsi_last (bb);
  return !bsi_end_p (last) ? bsi_stmt_ptr (last) : NULL;
}


/* Return the last statement of an otherwise empty block.  Return NULL
   if the block is totally empty, or if it contains more than one
   statement.  */

tree
last_and_only_stmt (basic_block bb)
{
  block_stmt_iterator i = bsi_last (bb);
  tree last, prev;

  if (bsi_end_p (i))
    return NULL_TREE;

  last = bsi_stmt (i);
  bsi_prev (&i);
  if (bsi_end_p (i))
    return last;

  /* Empty statements should no longer appear in the instruction stream.
     Everything that might have appeared before should be deleted by
     remove_useless_stmts, and the optimizers should just bsi_remove
     instead of smashing with build_empty_stmt.

     Thus the only thing that should appear here in a block containing
     one executable statement is a label.  */
  prev = bsi_stmt (i);
  if (TREE_CODE (prev) == LABEL_EXPR)
    return last;
  else
    return NULL_TREE;
}


/* Mark BB as the basic block holding statement T.  */

void
set_bb_for_stmt (tree t, basic_block bb)
{
  if (TREE_CODE (t) == PHI_NODE)
    PHI_BB (t) = bb;
  else if (TREE_CODE (t) == STATEMENT_LIST)
    {
      tree_stmt_iterator i;
      for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
	set_bb_for_stmt (tsi_stmt (i), bb);
    }
  else
    {
      stmt_ann_t ann = get_stmt_ann (t);
      ann->bb = bb;

      /* If the statement is a label, add the label to block-to-labels map
        so that we can speed up edge creation for GOTO_EXPRs.  */
      if (TREE_CODE (t) == LABEL_EXPR)
	{
	  int uid;

	  t = LABEL_EXPR_LABEL (t);
	  uid = LABEL_DECL_UID (t);
	  if (uid == -1)
	    {
	      unsigned old_len = VEC_length (basic_block, label_to_block_map);
	      LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
	      if (old_len <= (unsigned) uid)
		{
		  basic_block *addr;
		  unsigned new_len = 3 * uid / 2;

		  VEC_safe_grow (basic_block, gc, label_to_block_map,
				 new_len);
		  addr = VEC_address (basic_block, label_to_block_map);
		  memset (&addr[old_len],
			  0, sizeof (basic_block) * (new_len - old_len));
		}
	    }
	  else
	    /* We're moving an existing label.  Make sure that we've
		removed it from the old block.  */
	    gcc_assert (!bb
			|| !VEC_index (basic_block, label_to_block_map, uid));
	  VEC_replace (basic_block, label_to_block_map, uid, bb);
	}
    }
}

/* Finds iterator for STMT.  */

extern block_stmt_iterator
bsi_for_stmt (tree stmt)
{
  block_stmt_iterator bsi;

  for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
    if (bsi_stmt (bsi) == stmt)
      return bsi;

  gcc_unreachable ();
}

/* Mark statement T as modified, and update it.  */
static inline void
update_modified_stmts (tree t)
{
  if (TREE_CODE (t) == STATEMENT_LIST)
    {
      tree_stmt_iterator i;
      tree stmt;
      for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
        {
	  stmt = tsi_stmt (i);
	  update_stmt_if_modified (stmt);
	}
    }
  else
    update_stmt_if_modified (t);
}

/* Insert statement (or statement list) T before the statement
   pointed-to by iterator I.  M specifies how to update iterator I
   after insertion (see enum bsi_iterator_update).  */

void
bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
{
  set_bb_for_stmt (t, i->bb);
  update_modified_stmts (t);
  tsi_link_before (&i->tsi, t, m);
}


/* Insert statement (or statement list) T after the statement
   pointed-to by iterator I.  M specifies how to update iterator I
   after insertion (see enum bsi_iterator_update).  */

void
bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
{
  set_bb_for_stmt (t, i->bb);
  update_modified_stmts (t);
  tsi_link_after (&i->tsi, t, m);
}


/* Remove the statement pointed to by iterator I.  The iterator is updated
   to the next statement. 

   When REMOVE_EH_INFO is true we remove the statement pointed to by
   iterator I from the EH tables.  Otherwise we do not modify the EH
   tables.

   Generally, REMOVE_EH_INFO should be true when the statement is going to
   be removed from the IL and not reinserted elsewhere.  */

void
bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
{
  tree t = bsi_stmt (*i);
  set_bb_for_stmt (t, NULL);
  delink_stmt_imm_use (t);
  tsi_delink (&i->tsi);
  mark_stmt_modified (t);
  if (remove_eh_info)
    remove_stmt_from_eh_region (t);
}


/* Move the statement at FROM so it comes right after the statement at TO.  */

void 
bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
{
  tree stmt = bsi_stmt (*from);
  bsi_remove (from, false);
  bsi_insert_after (to, stmt, BSI_SAME_STMT);
} 


/* Move the statement at FROM so it comes right before the statement at TO.  */

void 
bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
{
  tree stmt = bsi_stmt (*from);
  bsi_remove (from, false);
  bsi_insert_before (to, stmt, BSI_SAME_STMT);
}


/* Move the statement at FROM to the end of basic block BB.  */

void
bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
{
  block_stmt_iterator last = bsi_last (bb);
  
  /* Have to check bsi_end_p because it could be an empty block.  */
  if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
    bsi_move_before (from, &last);
  else
    bsi_move_after (from, &last);
}


/* Replace the contents of the statement pointed to by iterator BSI
   with STMT.  If UPDATE_EH_INFO is true, the exception handling
   information of the original statement is moved to the new statement.  */
  

void
bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
{
  int eh_region;
  tree orig_stmt = bsi_stmt (*bsi);

  SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
  set_bb_for_stmt (stmt, bsi->bb);

  /* Preserve EH region information from the original statement, if
     requested by the caller.  */
  if (update_eh_info)
    {
      eh_region = lookup_stmt_eh_region (orig_stmt);
      if (eh_region >= 0)
	{
	  remove_stmt_from_eh_region (orig_stmt);
	  add_stmt_to_eh_region (stmt, eh_region);
	}
    }

  delink_stmt_imm_use (orig_stmt);
  *bsi_stmt_ptr (*bsi) = stmt;
  mark_stmt_modified (stmt);
  update_modified_stmts (stmt);
}


/* Insert the statement pointed-to by BSI into edge E.  Every attempt
   is made to place the statement in an existing basic block, but
   sometimes that isn't possible.  When it isn't possible, the edge is
   split and the statement is added to the new block.

   In all cases, the returned *BSI points to the correct location.  The
   return value is true if insertion should be done after the location,
   or false if it should be done before the location.  If new basic block
   has to be created, it is stored in *NEW_BB.  */

static bool
tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
			   basic_block *new_bb)
{
  basic_block dest, src;
  tree tmp;

  dest = e->dest;
 restart:

  /* If the destination has one predecessor which has no PHI nodes,
     insert there.  Except for the exit block. 

     The requirement for no PHI nodes could be relaxed.  Basically we
     would have to examine the PHIs to prove that none of them used
     the value set by the statement we want to insert on E.  That
     hardly seems worth the effort.  */
  if (single_pred_p (dest)
      && ! phi_nodes (dest)
      && dest != EXIT_BLOCK_PTR)
    {
      *bsi = bsi_start (dest);
      if (bsi_end_p (*bsi))
	return true;

      /* Make sure we insert after any leading labels.  */
      tmp = bsi_stmt (*bsi);
      while (TREE_CODE (tmp) == LABEL_EXPR)
	{
	  bsi_next (bsi);
	  if (bsi_end_p (*bsi))
	    break;
	  tmp = bsi_stmt (*bsi);
	}

      if (bsi_end_p (*bsi))
	{
	  *bsi = bsi_last (dest);
	  return true;
	}
      else
	return false;
    }

  /* If the source has one successor, the edge is not abnormal and
     the last statement does not end a basic block, insert there.
     Except for the entry block.  */
  src = e->src;
  if ((e->flags & EDGE_ABNORMAL) == 0
      && single_succ_p (src)
      && src != ENTRY_BLOCK_PTR)
    {
      *bsi = bsi_last (src);
      if (bsi_end_p (*bsi))
	return true;

      tmp = bsi_stmt (*bsi);
      if (!stmt_ends_bb_p (tmp))
	return true;

      /* Insert code just before returning the value.  We may need to decompose
         the return in the case it contains non-trivial operand.  */
      if (TREE_CODE (tmp) == RETURN_EXPR)
        {
	  tree op = TREE_OPERAND (tmp, 0);
	  if (op && !is_gimple_val (op))
	    {
	      gcc_assert (TREE_CODE (op) == MODIFY_EXPR);
	      bsi_insert_before (bsi, op, BSI_NEW_STMT);
	      TREE_OPERAND (tmp, 0) = TREE_OPERAND (op, 0);
	    }
	  bsi_prev (bsi);
	  return true;
        }
    }

  /* Otherwise, create a new basic block, and split this edge.  */
  dest = split_edge (e);
  if (new_bb)
    *new_bb = dest;
  e = single_pred_edge (dest);
  goto restart;
}


/* This routine will commit all pending edge insertions, creating any new
   basic blocks which are necessary.  */

void
bsi_commit_edge_inserts (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);

  FOR_EACH_BB (bb)
    FOR_EACH_EDGE (e, ei, bb->succs)
      bsi_commit_one_edge_insert (e, NULL);
}


/* Commit insertions pending at edge E. If a new block is created, set NEW_BB
   to this block, otherwise set it to NULL.  */

void
bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
{
  if (new_bb)
    *new_bb = NULL;
  if (PENDING_STMT (e))
    {
      block_stmt_iterator bsi;
      tree stmt = PENDING_STMT (e);

      PENDING_STMT (e) = NULL_TREE;

      if (tree_find_edge_insert_loc (e, &bsi, new_bb))
	bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
      else
	bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
    }
}


/* Add STMT to the pending list of edge E.  No actual insertion is
   made until a call to bsi_commit_edge_inserts () is made.  */

void
bsi_insert_on_edge (edge e, tree stmt)
{
  append_to_statement_list (stmt, &PENDING_STMT (e));
}

/* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts.  If a new
   block has to be created, it is returned.  */

basic_block
bsi_insert_on_edge_immediate (edge e, tree stmt)
{
  block_stmt_iterator bsi;
  basic_block new_bb = NULL;

  gcc_assert (!PENDING_STMT (e));

  if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
    bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
  else
    bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);

  return new_bb;
}

/*---------------------------------------------------------------------------
	     Tree specific functions for CFG manipulation
---------------------------------------------------------------------------*/

/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE.  */

static void
reinstall_phi_args (edge new_edge, edge old_edge)
{
  tree var, phi;

  if (!PENDING_STMT (old_edge))
    return;
  
  for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
       var && phi;
       var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
    {
      tree result = TREE_PURPOSE (var);
      tree arg = TREE_VALUE (var);

      gcc_assert (result == PHI_RESULT (phi));

      add_phi_arg (phi, arg, new_edge);
    }

  PENDING_STMT (old_edge) = NULL;
}

/* Returns the basic block after that the new basic block created
   by splitting edge EDGE_IN should be placed.  Tries to keep the new block
   near its "logical" location.  This is of most help to humans looking
   at debugging dumps.  */

static basic_block
split_edge_bb_loc (edge edge_in)
{
  basic_block dest = edge_in->dest;

  if (dest->prev_bb && find_edge (dest->prev_bb, dest))
    return edge_in->src;
  else
    return dest->prev_bb;
}

/* Split a (typically critical) edge EDGE_IN.  Return the new block.
   Abort on abnormal edges.  */

static basic_block
tree_split_edge (edge edge_in)
{
  basic_block new_bb, after_bb, dest, src;
  edge new_edge, e;

  /* Abnormal edges cannot be split.  */
  gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));

  src = edge_in->src;
  dest = edge_in->dest;

  after_bb = split_edge_bb_loc (edge_in);

  new_bb = create_empty_bb (after_bb);
  new_bb->frequency = EDGE_FREQUENCY (edge_in);
  new_bb->count = edge_in->count;
  new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
  new_edge->probability = REG_BR_PROB_BASE;
  new_edge->count = edge_in->count;

  e = redirect_edge_and_branch (edge_in, new_bb);
  gcc_assert (e);
  reinstall_phi_args (new_edge, e);

  return new_bb;
}


/* Return true when BB has label LABEL in it.  */

static bool
has_label_p (basic_block bb, tree label)
{
  block_stmt_iterator bsi;

  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      tree stmt = bsi_stmt (bsi);

      if (TREE_CODE (stmt) != LABEL_EXPR)
	return false;
      if (LABEL_EXPR_LABEL (stmt) == label)
	return true;
    }
  return false;
}


/* Callback for walk_tree, check that all elements with address taken are
   properly noticed as such.  The DATA is an int* that is 1 if TP was seen
   inside a PHI node.  */

static tree
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  tree t = *tp, x;
  bool in_phi = (data != NULL);

  if (TYPE_P (t))
    *walk_subtrees = 0;
  
  /* Check operand N for being valid GIMPLE and give error MSG if not.  */
#define CHECK_OP(N, MSG) \
  do { if (!is_gimple_val (TREE_OPERAND (t, N)))		\
       { error (MSG); return TREE_OPERAND (t, N); }} while (0)

  switch (TREE_CODE (t))
    {
    case SSA_NAME:
      if (SSA_NAME_IN_FREE_LIST (t))
	{
	  error ("SSA name in freelist but still referenced");
	  return *tp;
	}
      break;

    case ASSERT_EXPR:
      x = fold (ASSERT_EXPR_COND (t));
      if (x == boolean_false_node)
	{
	  error ("ASSERT_EXPR with an always-false condition");
	  return *tp;
	}
      break;

    case MODIFY_EXPR:
      x = TREE_OPERAND (t, 0);
      if (TREE_CODE (x) == BIT_FIELD_REF
	  && is_gimple_reg (TREE_OPERAND (x, 0)))
	{
	  error ("GIMPLE register modified with BIT_FIELD_REF");
	  return t;
	}
      break;

    case ADDR_EXPR:
      {
	bool old_invariant;
	bool old_constant;
	bool old_side_effects;
	bool new_invariant;
	bool new_constant;
	bool new_side_effects;

        /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
	   dead PHIs that take the address of something.  But if the PHI
	   result is dead, the fact that it takes the address of anything
	   is irrelevant.  Because we can not tell from here if a PHI result
	   is dead, we just skip this check for PHIs altogether.  This means
	   we may be missing "valid" checks, but what can you do?
	   This was PR19217.  */
        if (in_phi)
	  break;

	old_invariant = TREE_INVARIANT (t);
	old_constant = TREE_CONSTANT (t);
	old_side_effects = TREE_SIDE_EFFECTS (t);

	recompute_tree_invariant_for_addr_expr (t);
	new_invariant = TREE_INVARIANT (t);
	new_side_effects = TREE_SIDE_EFFECTS (t);
	new_constant = TREE_CONSTANT (t);

	if (old_invariant != new_invariant)
	  {
	    error ("invariant not recomputed when ADDR_EXPR changed");
	    return t;
	  }

        if (old_constant != new_constant)
	  {
	    error ("constant not recomputed when ADDR_EXPR changed");
	    return t;
	  }
	if (old_side_effects != new_side_effects)
	  {
	    error ("side effects not recomputed when ADDR_EXPR changed");
	    return t;
	  }

	/* Skip any references (they will be checked when we recurse down the
	   tree) and ensure that any variable used as a prefix is marked
	   addressable.  */
	for (x = TREE_OPERAND (t, 0);
	     handled_component_p (x);
	     x = TREE_OPERAND (x, 0))
	  ;

	if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
	  return NULL;
	if (!TREE_ADDRESSABLE (x))
	  {
	    error ("address taken, but ADDRESSABLE bit not set");
	    return x;
	  }
	break;
      }

    case COND_EXPR:
      x = COND_EXPR_COND (t);
      if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
	{
	  error ("non-boolean used in condition");
	  return x;
	}
      if (!is_gimple_condexpr (x))
        {
	  error ("invalid conditional operand");
	  return x;
	}
      break;

    case NOP_EXPR:
    case CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_ROUND_EXPR:
    case FLOAT_EXPR:
    case NEGATE_EXPR:
    case ABS_EXPR:
    case BIT_NOT_EXPR:
    case NON_LVALUE_EXPR:
    case TRUTH_NOT_EXPR:
      CHECK_OP (0, "invalid operand to unary operator");
      break;

    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case COMPONENT_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case BIT_FIELD_REF:
    case VIEW_CONVERT_EXPR:
      /* We have a nest of references.  Verify that each of the operands
	 that determine where to reference is either a constant or a variable,
	 verify that the base is valid, and then show we've already checked
	 the subtrees.  */
      while (handled_component_p (t))
	{
	  if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
	    CHECK_OP (2, "invalid COMPONENT_REF offset operator");
	  else if (TREE_CODE (t) == ARRAY_REF
		   || TREE_CODE (t) == ARRAY_RANGE_REF)
	    {
	      CHECK_OP (1, "invalid array index");
	      if (TREE_OPERAND (t, 2))
		CHECK_OP (2, "invalid array lower bound");
	      if (TREE_OPERAND (t, 3))
		CHECK_OP (3, "invalid array stride");
	    }
	  else if (TREE_CODE (t) == BIT_FIELD_REF)
	    {
	      CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
	      CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
	    }

	  t = TREE_OPERAND (t, 0);
	}

      if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
	{
	  error ("invalid reference prefix");
	  return t;
	}
      *walk_subtrees = 0;
      break;

    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case EXACT_DIV_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
      CHECK_OP (0, "invalid operand to binary operator");
      CHECK_OP (1, "invalid operand to binary operator");
      break;

    default:
      break;
    }
  return NULL;

#undef CHECK_OP
}


/* Verify STMT, return true if STMT is not in GIMPLE form.
   TODO: Implement type checking.  */

static bool
verify_stmt (tree stmt, bool last_in_block)
{
  tree addr;

  if (OMP_DIRECTIVE_P (stmt))
    {
      /* OpenMP directives are validated by the FE and never operated
	 on by the optimizers.  Furthermore, OMP_FOR may contain
	 non-gimple expressions when the main index variable has had
	 its address taken.  This does not affect the loop itself
	 because the header of an OMP_FOR is merely used to determine
	 how to setup the parallel iteration.  */
      return false;
    }

  if (!is_gimple_stmt (stmt))
    {
      error ("is not a valid GIMPLE statement");
      goto fail;
    }

  addr = walk_tree (&stmt, verify_expr, NULL, NULL);
  if (addr)
    {
      debug_generic_stmt (addr);
      return true;
    }

  /* If the statement is marked as part of an EH region, then it is
     expected that the statement could throw.  Verify that when we
     have optimizations that simplify statements such that we prove
     that they cannot throw, that we update other data structures
     to match.  */
  if (lookup_stmt_eh_region (stmt) >= 0)
    {
      if (!tree_could_throw_p (stmt))
	{
	  error ("statement marked for throw, but doesn%'t");
	  goto fail;
	}
      if (!last_in_block && tree_can_throw_internal (stmt))
	{
	  error ("statement marked for throw in middle of block");
	  goto fail;
	}
    }

  return false;

 fail:
  debug_generic_stmt (stmt);
  return true;
}


/* Return true when the T can be shared.  */

static bool
tree_node_can_be_shared (tree t)
{
  if (IS_TYPE_OR_DECL_P (t)
      || is_gimple_min_invariant (t)
      || TREE_CODE (t) == SSA_NAME
      || t == error_mark_node
      || TREE_CODE (t) == IDENTIFIER_NODE)
    return true;

  if (TREE_CODE (t) == CASE_LABEL_EXPR)
    return true;

  while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
	   && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
	 || TREE_CODE (t) == COMPONENT_REF
	 || TREE_CODE (t) == REALPART_EXPR
	 || TREE_CODE (t) == IMAGPART_EXPR)
    t = TREE_OPERAND (t, 0);

  if (DECL_P (t))
    return true;

  return false;
}


/* Called via walk_trees.  Verify tree sharing.  */

static tree
verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
{
  htab_t htab = (htab_t) data;
  void **slot;

  if (tree_node_can_be_shared (*tp))
    {
      *walk_subtrees = false;
      return NULL;
    }

  slot = htab_find_slot (htab, *tp, INSERT);
  if (*slot)
    return (tree) *slot;
  *slot = *tp;

  return NULL;
}


/* Verify the GIMPLE statement chain.  */

void
verify_stmts (void)
{
  basic_block bb;
  block_stmt_iterator bsi;
  bool err = false;
  htab_t htab;
  tree addr;

  timevar_push (TV_TREE_STMT_VERIFY);
  htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);

  FOR_EACH_BB (bb)
    {
      tree phi;
      int i;

      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
	{
	  int phi_num_args = PHI_NUM_ARGS (phi);

	  if (bb_for_stmt (phi) != bb)
	    {
	      error ("bb_for_stmt (phi) is set to a wrong basic block");
	      err |= true;
	    }

	  for (i = 0; i < phi_num_args; i++)
	    {
	      tree t = PHI_ARG_DEF (phi, i);
	      tree addr;

	      /* Addressable variables do have SSA_NAMEs but they
		 are not considered gimple values.  */
	      if (TREE_CODE (t) != SSA_NAME
		  && TREE_CODE (t) != FUNCTION_DECL
		  && !is_gimple_val (t))
		{
		  error ("PHI def is not a GIMPLE value");
		  debug_generic_stmt (phi);
		  debug_generic_stmt (t);
		  err |= true;
		}

	      addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
	      if (addr)
		{
		  debug_generic_stmt (addr);
		  err |= true;
		}

	      addr = walk_tree (&t, verify_node_sharing, htab, NULL);
	      if (addr)
		{
		  error ("incorrect sharing of tree nodes");
		  debug_generic_stmt (phi);
		  debug_generic_stmt (addr);
		  err |= true;
		}
	    }
	}

      for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
	{
	  tree stmt = bsi_stmt (bsi);

	  if (bb_for_stmt (stmt) != bb)
	    {
	      error ("bb_for_stmt (stmt) is set to a wrong basic block");
	      err |= true;
	    }

	  bsi_next (&bsi);
	  err |= verify_stmt (stmt, bsi_end_p (bsi));
	  addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
	  if (addr)
	    {
	      error ("incorrect sharing of tree nodes");
	      debug_generic_stmt (stmt);
	      debug_generic_stmt (addr);
	      err |= true;
	    }
	}
    }

  if (err)
    internal_error ("verify_stmts failed");

  htab_delete (htab);
  timevar_pop (TV_TREE_STMT_VERIFY);
}


/* Verifies that the flow information is OK.  */

static int
tree_verify_flow_info (void)
{
  int err = 0;
  basic_block bb;
  block_stmt_iterator bsi;
  tree stmt;
  edge e;
  edge_iterator ei;

  if (ENTRY_BLOCK_PTR->stmt_list)
    {
      error ("ENTRY_BLOCK has a statement list associated with it");
      err = 1;
    }

  if (EXIT_BLOCK_PTR->stmt_list)
    {
      error ("EXIT_BLOCK has a statement list associated with it");
      err = 1;
    }

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
    if (e->flags & EDGE_FALLTHRU)
      {
	error ("fallthru to exit from bb %d", e->src->index);
	err = 1;
      }

  FOR_EACH_BB (bb)
    {
      bool found_ctrl_stmt = false;

      stmt = NULL_TREE;

      /* Skip labels on the start of basic block.  */
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree prev_stmt = stmt;

	  stmt = bsi_stmt (bsi);

	  if (TREE_CODE (stmt) != LABEL_EXPR)
	    break;

	  if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
	    {
	      error ("nonlocal label ");
	      print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
	      fprintf (stderr, " is not first in a sequence of labels in bb %d",
		       bb->index);
	      err = 1;
	    }

	  if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
	    {
	      error ("label ");
	      print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
	      fprintf (stderr, " to block does not match in bb %d",
		       bb->index);
	      err = 1;
	    }

	  if (decl_function_context (LABEL_EXPR_LABEL (stmt))
	      != current_function_decl)
	    {
	      error ("label ");
	      print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
	      fprintf (stderr, " has incorrect context in bb %d",
		       bb->index);
	      err = 1;
	    }
	}

      /* Verify that body of basic block BB is free of control flow.  */
      for (; !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt = bsi_stmt (bsi);

	  if (found_ctrl_stmt)
	    {
	      error ("control flow in the middle of basic block %d",
		     bb->index);
	      err = 1;
	    }

	  if (stmt_ends_bb_p (stmt))
	    found_ctrl_stmt = true;

	  if (TREE_CODE (stmt) == LABEL_EXPR)
	    {
	      error ("label ");
	      print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
	      fprintf (stderr, " in the middle of basic block %d", bb->index);
	      err = 1;
	    }
	}

      bsi = bsi_last (bb);
      if (bsi_end_p (bsi))
	continue;

      stmt = bsi_stmt (bsi);

      err |= verify_eh_edges (stmt);

      if (is_ctrl_stmt (stmt))
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & EDGE_FALLTHRU)
	      {
		error ("fallthru edge after a control statement in bb %d",
		       bb->index);
		err = 1;
	      }
	}

      switch (TREE_CODE (stmt))
	{
	case COND_EXPR:
	  {
	    edge true_edge;
	    edge false_edge;
	    if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
		|| TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
	      {
		error ("structured COND_EXPR at the end of bb %d", bb->index);
		err = 1;
	      }

	    extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

	    if (!true_edge || !false_edge
		|| !(true_edge->flags & EDGE_TRUE_VALUE)
		|| !(false_edge->flags & EDGE_FALSE_VALUE)
		|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
		|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
		|| EDGE_COUNT (bb->succs) >= 3)
	      {
		error ("wrong outgoing edge flags at end of bb %d",
		       bb->index);
		err = 1;
	      }

	    if (!has_label_p (true_edge->dest,
			      GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
	      {
		error ("%<then%> label does not match edge at end of bb %d",
		       bb->index);
		err = 1;
	      }

	    if (!has_label_p (false_edge->dest,
			      GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
	      {
		error ("%<else%> label does not match edge at end of bb %d",
		       bb->index);
		err = 1;
	      }
	  }
	  break;

	case GOTO_EXPR:
	  if (simple_goto_p (stmt))
	    {
	      error ("explicit goto at end of bb %d", bb->index);
    	      err = 1;
	    }
	  else
	    {
	      /* FIXME.  We should double check that the labels in the 
		 destination blocks have their address taken.  */
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
				 | EDGE_FALSE_VALUE))
		    || !(e->flags & EDGE_ABNORMAL))
		  {
		    error ("wrong outgoing edge flags at end of bb %d",
			   bb->index);
		    err = 1;
		  }
	    }
	  break;

	case RETURN_EXPR:
	  if (!single_succ_p (bb)
	      || (single_succ_edge (bb)->flags
		  & (EDGE_FALLTHRU | EDGE_ABNORMAL
		     | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
	    {
	      error ("wrong outgoing edge flags at end of bb %d", bb->index);
	      err = 1;
	    }
	  if (single_succ (bb) != EXIT_BLOCK_PTR)
	    {
	      error ("return edge does not point to exit in bb %d",
		     bb->index);
	      err = 1;
	    }
	  break;

	case SWITCH_EXPR:
	  {
	    tree prev;
	    edge e;
	    size_t i, n;
	    tree vec;

	    vec = SWITCH_LABELS (stmt);
	    n = TREE_VEC_LENGTH (vec);

	    /* Mark all the destination basic blocks.  */
	    for (i = 0; i < n; ++i)
	      {
		tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
		basic_block label_bb = label_to_block (lab);

		gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
		label_bb->aux = (void *)1;
	      }

	    /* Verify that the case labels are sorted.  */
	    prev = TREE_VEC_ELT (vec, 0);
	    for (i = 1; i < n - 1; ++i)
	      {
		tree c = TREE_VEC_ELT (vec, i);
		if (! CASE_LOW (c))
		  {
		    error ("found default case not at end of case vector");
		    err = 1;
		    continue;
		  }
		if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
		  {
		    error ("case labels not sorted: ");
		    print_generic_expr (stderr, prev, 0);
		    fprintf (stderr," is greater than ");
		    print_generic_expr (stderr, c, 0);
		    fprintf (stderr," but comes before it.\n");
		    err = 1;
		  }
		prev = c;
	      }
	    if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
	      {
		error ("no default case found at end of case vector");
		err = 1;
	      }

	    FOR_EACH_EDGE (e, ei, bb->succs)
	      {
		if (!e->dest->aux)
		  {
		    error ("extra outgoing edge %d->%d",
			   bb->index, e->dest->index);
		    err = 1;
		  }
		e->dest->aux = (void *)2;
		if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
				 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
		  {
		    error ("wrong outgoing edge flags at end of bb %d",
			   bb->index);
		    err = 1;
		  }
	      }

	    /* Check that we have all of them.  */
	    for (i = 0; i < n; ++i)
	      {
		tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
		basic_block label_bb = label_to_block (lab);

		if (label_bb->aux != (void *)2)
		  {
		    error ("missing edge %i->%i",
			   bb->index, label_bb->index);
		    err = 1;
		  }
	      }

	    FOR_EACH_EDGE (e, ei, bb->succs)
	      e->dest->aux = (void *)0;
	  }

	default: ;
	}
    }

  if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
    verify_dominators (CDI_DOMINATORS);

  return err;
}


/* Updates phi nodes after creating a forwarder block joined
   by edge FALLTHRU.  */

static void
tree_make_forwarder_block (edge fallthru)
{
  edge e;
  edge_iterator ei;
  basic_block dummy, bb;
  tree phi, new_phi, var;

  dummy = fallthru->src;
  bb = fallthru->dest;

  if (single_pred_p (bb))
    return;

  /* If we redirected a branch we must create new phi nodes at the
     start of BB.  */
  for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
    {
      var = PHI_RESULT (phi);
      new_phi = create_phi_node (var, bb);
      SSA_NAME_DEF_STMT (var) = new_phi;
      SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
      add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
    }

  /* Ensure that the PHI node chain is in the same order.  */
  set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));

  /* Add the arguments we have stored on edges.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (e == fallthru)
	continue;

      flush_pending_stmts (e);
    }
}


/* Return a non-special label in the head of basic block BLOCK.
   Create one if it doesn't exist.  */

tree
tree_block_label (basic_block bb)
{
  block_stmt_iterator i, s = bsi_start (bb);
  bool first = true;
  tree label, stmt;

  for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
    {
      stmt = bsi_stmt (i);
      if (TREE_CODE (stmt) != LABEL_EXPR)
	break;
      label = LABEL_EXPR_LABEL (stmt);
      if (!DECL_NONLOCAL (label))
	{
	  if (!first)
	    bsi_move_before (&i, &s);
	  return label;
	}
    }

  label = create_artificial_label ();
  stmt = build1 (LABEL_EXPR, void_type_node, label);
  bsi_insert_before (&s, stmt, BSI_NEW_STMT);
  return label;
}


/* Attempt to perform edge redirection by replacing a possibly complex
   jump instruction by a goto or by removing the jump completely.
   This can apply only if all edges now point to the same block.  The
   parameters and return values are equivalent to
   redirect_edge_and_branch.  */

static edge
tree_try_redirect_by_replacing_jump (edge e, basic_block target)
{
  basic_block src = e->src;
  block_stmt_iterator b;
  tree stmt;

  /* We can replace or remove a complex jump only when we have exactly
     two edges.  */
  if (EDGE_COUNT (src->succs) != 2
      /* Verify that all targets will be TARGET.  Specifically, the
	 edge that is not E must also go to TARGET.  */
      || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
    return NULL;

  b = bsi_last (src);
  if (bsi_end_p (b))
    return NULL;
  stmt = bsi_stmt (b);

  if (TREE_CODE (stmt) == COND_EXPR
      || TREE_CODE (stmt) == SWITCH_EXPR)
    {
      bsi_remove (&b, true);
      e = ssa_redirect_edge (e, target);
      e->flags = EDGE_FALLTHRU;
      return e;
    }

  return NULL;
}


/* Redirect E to DEST.  Return NULL on failure.  Otherwise, return the
   edge representing the redirected branch.  */

static edge
tree_redirect_edge_and_branch (edge e, basic_block dest)
{
  basic_block bb = e->src;
  block_stmt_iterator bsi;
  edge ret;
  tree label, stmt;

  if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
    return NULL;

  if (e->src != ENTRY_BLOCK_PTR 
      && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
    return ret;

  if (e->dest == dest)
    return NULL;

  label = tree_block_label (dest);

  bsi = bsi_last (bb);
  stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);

  switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
    {
    case COND_EXPR:
      stmt = (e->flags & EDGE_TRUE_VALUE
	      ? COND_EXPR_THEN (stmt)
	      : COND_EXPR_ELSE (stmt));
      GOTO_DESTINATION (stmt) = label;
      break;

    case GOTO_EXPR:
      /* No non-abnormal edges should lead from a non-simple goto, and
	 simple ones should be represented implicitly.  */
      gcc_unreachable ();

    case SWITCH_EXPR:
      {
        tree cases = get_cases_for_edge (e, stmt);

	/* If we have a list of cases associated with E, then use it
	   as it's a lot faster than walking the entire case vector.  */
	if (cases)
	  {
	    edge e2 = find_edge (e->src, dest);
	    tree last, first;

	    first = cases;
	    while (cases)
	      {
		last = cases;
		CASE_LABEL (cases) = label;
		cases = TREE_CHAIN (cases);
	      }

	    /* If there was already an edge in the CFG, then we need
	       to move all the cases associated with E to E2.  */
	    if (e2)
	      {
		tree cases2 = get_cases_for_edge (e2, stmt);

		TREE_CHAIN (last) = TREE_CHAIN (cases2);
		TREE_CHAIN (cases2) = first;
	      }
	  }
	else
	  {
	    tree vec = SWITCH_LABELS (stmt);
	    size_t i, n = TREE_VEC_LENGTH (vec);

	    for (i = 0; i < n; i++)
	      {
		tree elt = TREE_VEC_ELT (vec, i);

		if (label_to_block (CASE_LABEL (elt)) == e->dest)
		  CASE_LABEL (elt) = label;
	      }
	  }

	break;
      }

    case RETURN_EXPR:
      bsi_remove (&bsi, true);
      e->flags |= EDGE_FALLTHRU;
      break;

    default:
      /* Otherwise it must be a fallthru edge, and we don't need to
	 do anything besides redirecting it.  */
      gcc_assert (e->flags & EDGE_FALLTHRU);
      break;
    }

  /* Update/insert PHI nodes as necessary.  */

  /* Now update the edges in the CFG.  */
  e = ssa_redirect_edge (e, dest);

  return e;
}


/* Simple wrapper, as we can always redirect fallthru edges.  */

static basic_block
tree_redirect_edge_and_branch_force (edge e, basic_block dest)
{
  e = tree_redirect_edge_and_branch (e, dest);
  gcc_assert (e);

  return NULL;
}


/* Splits basic block BB after statement STMT (but at least after the
   labels).  If STMT is NULL, BB is split just after the labels.  */

static basic_block
tree_split_block (basic_block bb, void *stmt)
{
  block_stmt_iterator bsi, bsi_tgt;
  tree act;
  basic_block new_bb;
  edge e;
  edge_iterator ei;

  new_bb = create_empty_bb (bb);

  /* Redirect the outgoing edges.  */
  new_bb->succs = bb->succs;
  bb->succs = NULL;
  FOR_EACH_EDGE (e, ei, new_bb->succs)
    e->src = new_bb;

  if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
    stmt = NULL;

  /* Move everything from BSI to the new basic block.  */
  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      act = bsi_stmt (bsi);
      if (TREE_CODE (act) == LABEL_EXPR)
	continue;

      if (!stmt)
	break;

      if (stmt == act)
	{
	  bsi_next (&bsi);
	  break;
	}
    }

  bsi_tgt = bsi_start (new_bb);
  while (!bsi_end_p (bsi))
    {
      act = bsi_stmt (bsi);
      bsi_remove (&bsi, false);
      bsi_insert_after (&bsi_tgt, act, BSI_NEW_STMT);
    }

  return new_bb;
}


/* Moves basic block BB after block AFTER.  */

static bool
tree_move_block_after (basic_block bb, basic_block after)
{
  if (bb->prev_bb == after)
    return true;

  unlink_block (bb);
  link_block (bb, after);

  return true;
}


/* Return true if basic_block can be duplicated.  */

static bool
tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
{
  return true;
}


/* Create a duplicate of the basic block BB.  NOTE: This does not
   preserve SSA form.  */

static basic_block
tree_duplicate_bb (basic_block bb)
{
  basic_block new_bb;
  block_stmt_iterator bsi, bsi_tgt;
  tree phi;

  new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);

  /* Copy the PHI nodes.  We ignore PHI node arguments here because
     the incoming edges have not been setup yet.  */
  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
      create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
    }

  /* Keep the chain of PHI nodes in the same order so that they can be
     updated by ssa_redirect_edge.  */
  set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));

  bsi_tgt = bsi_start (new_bb);
  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      def_operand_p def_p;
      ssa_op_iter op_iter;
      tree stmt, copy;
      int region;

      stmt = bsi_stmt (bsi);
      if (TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      /* Create a new copy of STMT and duplicate STMT's virtual
	 operands.  */
      copy = unshare_expr (stmt);
      bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
      copy_virtual_operands (copy, stmt);
      region = lookup_stmt_eh_region (stmt);
      if (region >= 0)
	add_stmt_to_eh_region (copy, region);

      /* Create new names for all the definitions created by COPY and
	 add replacement mappings for each new name.  */
      FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
	create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
    }

  return new_bb;
}


/* Basic block BB_COPY was created by code duplication.  Add phi node
   arguments for edges going out of BB_COPY.  The blocks that were
   duplicated have BB_DUPLICATED set.  */

void
add_phi_args_after_copy_bb (basic_block bb_copy)
{
  basic_block bb, dest;
  edge e, e_copy;
  edge_iterator ei;
  tree phi, phi_copy, phi_next, def;
      
  bb = get_bb_original (bb_copy);

  FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
    {
      if (!phi_nodes (e_copy->dest))
	continue;

      if (e_copy->dest->flags & BB_DUPLICATED)
	dest = get_bb_original (e_copy->dest);
      else
	dest = e_copy->dest;

      e = find_edge (bb, dest);
      if (!e)
	{
	  /* During loop unrolling the target of the latch edge is copied.
	     In this case we are not looking for edge to dest, but to
	     duplicated block whose original was dest.  */
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if ((e->dest->flags & BB_DUPLICATED)
		&& get_bb_original (e->dest) == dest)
	      break;

	  gcc_assert (e != NULL);
	}

      for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
	   phi;
	   phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
	{
	  phi_next = PHI_CHAIN (phi);
	  def = PHI_ARG_DEF_FROM_EDGE (phi, e);
	  add_phi_arg (phi_copy, def, e_copy);
	}
    }
}

/* Blocks in REGION_COPY array of length N_REGION were created by
   duplication of basic blocks.  Add phi node arguments for edges
   going from these blocks.  */

void
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
{
  unsigned i;

  for (i = 0; i < n_region; i++)
    region_copy[i]->flags |= BB_DUPLICATED;

  for (i = 0; i < n_region; i++)
    add_phi_args_after_copy_bb (region_copy[i]);

  for (i = 0; i < n_region; i++)
    region_copy[i]->flags &= ~BB_DUPLICATED;
}

/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
   important exit edge EXIT.  By important we mean that no SSA name defined
   inside region is live over the other exit edges of the region.  All entry
   edges to the region must go to ENTRY->dest.  The edge ENTRY is redirected
   to the duplicate of the region.  SSA form, dominance and loop information
   is updated.  The new basic blocks are stored to REGION_COPY in the same
   order as they had in REGION, provided that REGION_COPY is not NULL.
   The function returns false if it is unable to copy the region,
   true otherwise.  */

bool
tree_duplicate_sese_region (edge entry, edge exit,
			    basic_block *region, unsigned n_region,
			    basic_block *region_copy)
{
  unsigned i, n_doms;
  bool free_region_copy = false, copying_header = false;
  struct loop *loop = entry->dest->loop_father;
  edge exit_copy;
  basic_block *doms;
  edge redirected;
  int total_freq = 0, entry_freq = 0;
  gcov_type total_count = 0, entry_count = 0;

  if (!can_copy_bbs_p (region, n_region))
    return false;

  /* Some sanity checking.  Note that we do not check for all possible
     missuses of the functions.  I.e. if you ask to copy something weird,
     it will work, but the state of structures probably will not be
     correct.  */
  for (i = 0; i < n_region; i++)
    {
      /* We do not handle subloops, i.e. all the blocks must belong to the
	 same loop.  */
      if (region[i]->loop_father != loop)
	return false;

      if (region[i] != entry->dest
	  && region[i] == loop->header)
	return false;
    }

  loop->copy = loop;

  /* In case the function is used for loop header copying (which is the primary
     use), ensure that EXIT and its copy will be new latch and entry edges.  */
  if (loop->header == entry->dest)
    {
      copying_header = true;
      loop->copy = loop->outer;

      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
	return false;

      for (i = 0; i < n_region; i++)
	if (region[i] != exit->src
	    && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
	  return false;
    }

  if (!region_copy)
    {
      region_copy = XNEWVEC (basic_block, n_region);
      free_region_copy = true;
    }

  gcc_assert (!need_ssa_update_p ());

  /* Record blocks outside the region that are dominated by something
     inside.  */
  doms = XNEWVEC (basic_block, n_basic_blocks);
  initialize_original_copy_tables ();

  n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);

  if (entry->dest->count)
    {
      total_count = entry->dest->count;
      entry_count = entry->count;
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (entry_count > total_count)
	entry_count = total_count;
    }
  else
    {
      total_freq = entry->dest->frequency;
      entry_freq = EDGE_FREQUENCY (entry);
      /* Fix up corner cases, to avoid division by zero or creation of negative
	 frequencies.  */
      if (total_freq == 0)
	total_freq = 1;
      else if (entry_freq > total_freq)
	entry_freq = total_freq;
    }

  copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
	    split_edge_bb_loc (entry));
  if (total_count)
    {
      scale_bbs_frequencies_gcov_type (region, n_region,
				       total_count - entry_count,
				       total_count);
      scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
	  			       total_count);
    }
  else
    {
      scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
				 total_freq);
      scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
    }

  if (copying_header)
    {
      loop->header = exit->dest;
      loop->latch = exit->src;
    }

  /* Redirect the entry and add the phi node arguments.  */
  redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
  gcc_assert (redirected != NULL);
  flush_pending_stmts (entry);

  /* Concerning updating of dominators:  We must recount dominators
     for entry block and its copy.  Anything that is outside of the
     region, but was dominated by something inside needs recounting as
     well.  */
  set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
  doms[n_doms++] = get_bb_original (entry->dest);
  iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
  free (doms);

  /* Add the other PHI node arguments.  */
  add_phi_args_after_copy (region_copy, n_region);

  /* Update the SSA web.  */
  update_ssa (TODO_update_ssa);

  if (free_region_copy)
    free (region_copy);

  free_original_copy_tables ();
  return true;
}

/*
DEF_VEC_P(basic_block);
DEF_VEC_ALLOC_P(basic_block,heap);
*/

/* Add all the blocks dominated by ENTRY to the array BBS_P.  Stop
   adding blocks when the dominator traversal reaches EXIT.  This
   function silently assumes that ENTRY strictly dominates EXIT.  */

static void
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
			      VEC(basic_block,heap) **bbs_p)
{
  basic_block son;

  for (son = first_dom_son (CDI_DOMINATORS, entry);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    {
      VEC_safe_push (basic_block, heap, *bbs_p, son);
      if (son != exit)
	gather_blocks_in_sese_region (son, exit, bbs_p);
    }
}


struct move_stmt_d
{
  tree block;
  tree from_context;
  tree to_context;
  bitmap vars_to_remove;
  bool remap_decls_p;
};

/* Helper for move_block_to_fn.  Set TREE_BLOCK in every expression
   contained in *TP and change the DECL_CONTEXT of every local
   variable referenced in *TP.  */

static tree
move_stmt_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
{
  struct move_stmt_d *p = (struct move_stmt_d *) data;

  if (p->block && IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (*tp))))
    TREE_BLOCK (*tp) = p->block;

  if (OMP_DIRECTIVE_P (*tp))
    {
      /* Do not remap variables inside OMP directives.  Variables
	 referenced in clauses and directive header belong to the
	 parent function and should not be moved into the child
	 function.  */
      p->remap_decls_p = false;
    }

  if (p->remap_decls_p
      && DECL_P (*tp)
      && DECL_CONTEXT (*tp) == p->from_context)
    {
      DECL_CONTEXT (*tp) = p->to_context;

      if (TREE_CODE (*tp) == VAR_DECL)
	{
	  struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
	  f->unexpanded_var_list = tree_cons (0, *tp, f->unexpanded_var_list);

	  /* Mark *TP to be removed from the original function,
	     otherwise it will be given a DECL_RTL when the original
	     function is expanded.  */
	  bitmap_set_bit (p->vars_to_remove, DECL_UID (*tp));
	}
    }

  return NULL_TREE;
}


/* Move basic block BB from function CFUN to function DEST_FN.  The
   block is moved out of the original linked list and placed after
   block AFTER in the new list.  Also, the block is removed from the
   original array of blocks and placed in DEST_FN's array of blocks.
   If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
   updated to reflect the moved edges.
   
   On exit, local variables that need to be removed from
   CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE.  */

static void
move_block_to_fn (struct function *dest_cfun, basic_block bb,
		  basic_block after, bool update_edge_count_p,
		  bitmap vars_to_remove)
{
  struct control_flow_graph *cfg;
  edge_iterator ei;
  edge e;
  block_stmt_iterator si;
  struct move_stmt_d d;
  unsigned old_len, new_len;
  basic_block *addr;

  /* Link BB to the new linked list.  */
  move_block_after (bb, after);

  /* Update the edge count in the corresponding flowgraphs.  */
  if (update_edge_count_p)
    FOR_EACH_EDGE (e, ei, bb->succs)
      {
	cfun->cfg->x_n_edges--;
	dest_cfun->cfg->x_n_edges++;
      }

  /* Remove BB from the original basic block array.  */
  VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
  cfun->cfg->x_n_basic_blocks--;

  /* Grow DEST_CFUN's basic block array if needed.  */
  cfg = dest_cfun->cfg;
  cfg->x_n_basic_blocks++;
  if (bb->index > cfg->x_last_basic_block)
    cfg->x_last_basic_block = bb->index;

  old_len = VEC_length (basic_block, cfg->x_basic_block_info);
  if ((unsigned) cfg->x_last_basic_block >= old_len)
    {
      new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
      VEC_safe_grow (basic_block, gc, cfg->x_basic_block_info, new_len);
      addr = VEC_address (basic_block, cfg->x_basic_block_info);
      memset (&addr[old_len], 0, sizeof (basic_block) * (new_len - old_len));
    }

  VEC_replace (basic_block, cfg->x_basic_block_info,
               cfg->x_last_basic_block, bb);

  /* The statements in BB need to be associated with a new TREE_BLOCK.
     Labels need to be associated with a new label-to-block map.  */
  memset (&d, 0, sizeof (d));
  d.vars_to_remove = vars_to_remove;

  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
    {
      tree stmt = bsi_stmt (si);

      d.from_context = cfun->decl;
      d.to_context = dest_cfun->decl;
      d.remap_decls_p = true;
      if (TREE_BLOCK (stmt))
	d.block = DECL_INITIAL (dest_cfun->decl);

      walk_tree (&stmt, move_stmt_r, &d, NULL);

      if (TREE_CODE (stmt) == LABEL_EXPR)
	{
	  tree label = LABEL_EXPR_LABEL (stmt);
	  int uid = LABEL_DECL_UID (label);

	  gcc_assert (uid > -1);

	  old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
	  if (old_len <= (unsigned) uid)
	    {
	      new_len = 3 * uid / 2;
	      VEC_safe_grow (basic_block, gc, cfg->x_label_to_block_map,
			     new_len);
	      addr = VEC_address (basic_block, cfg->x_label_to_block_map);
	      memset (&addr[old_len], 0,
		      sizeof (basic_block) * (new_len - old_len));
	    }

	  VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
	  VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);

	  gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);

	  if (uid >= dest_cfun->last_label_uid)
	    dest_cfun->last_label_uid = uid + 1;
	}
    }
}


/* Move a single-entry, single-exit region delimited by ENTRY_BB and
   EXIT_BB to function DEST_CFUN.  The whole region is replaced by a
   single basic block in the original CFG and the new basic block is
   returned.  DEST_CFUN must not have a CFG yet.

   Note that the region need not be a pure SESE region.  Blocks inside
   the region may contain calls to abort/exit.  The only restriction
   is that ENTRY_BB should be the only entry point and it must
   dominate EXIT_BB.

   All local variables referenced in the region are assumed to be in
   the corresponding BLOCK_VARS and unexpanded variable lists
   associated with DEST_CFUN.  */

basic_block
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
		        basic_block exit_bb)
{
  VEC(basic_block,heap) *bbs;
  basic_block after, bb, *entry_pred, *exit_succ;
  struct function *saved_cfun;
  int *entry_flag, *exit_flag;
  unsigned i, num_entry_edges, num_exit_edges;
  edge e;
  edge_iterator ei;
  bitmap vars_to_remove;

  saved_cfun = cfun;

  /* Collect all the blocks in the region.  Manually add ENTRY_BB
     because it won't be added by dfs_enumerate_from.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
     region.  */
  gcc_assert (entry_bb != exit_bb
              && dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));

  bbs = NULL;
  VEC_safe_push (basic_block, heap, bbs, entry_bb);
  gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);

  /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG.  We need to remember
     the predecessor edges to ENTRY_BB and the successor edges to
     EXIT_BB so that we can re-attach them to the new basic block that
     will replace the region.  */
  num_entry_edges = EDGE_COUNT (entry_bb->preds);
  entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
  entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
  i = 0;
  for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
    {
      entry_flag[i] = e->flags;
      entry_pred[i++] = e->src;
      remove_edge (e);
    }

  num_exit_edges = EDGE_COUNT (exit_bb->succs);
  exit_succ = (basic_block *) xcalloc (num_exit_edges, sizeof (basic_block));
  exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
  i = 0;
  for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
    {
      exit_flag[i] = e->flags;
      exit_succ[i++] = e->dest;
      remove_edge (e);
    }

  /* Switch context to the child function to initialize DEST_FN's CFG.  */
  gcc_assert (dest_cfun->cfg == NULL);
  cfun = dest_cfun;
  init_empty_tree_cfg ();
  cfun = saved_cfun;

  /* Move blocks from BBS into DEST_CFUN.  */
  gcc_assert (VEC_length (basic_block, bbs) >= 2);
  after = dest_cfun->cfg->x_entry_block_ptr;
  vars_to_remove = BITMAP_ALLOC (NULL);
  for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
    {
      /* No need to update edge counts on the last block.  It has
	 already been updated earlier when we detached the region from
	 the original CFG.  */
      move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove);
      after = bb;
    }

  /* Remove the variables marked in VARS_TO_REMOVE from
     CFUN->UNEXPANDED_VAR_LIST.  Otherwise, they will be given a
     DECL_RTL in the context of CFUN.  */
  if (!bitmap_empty_p (vars_to_remove))
    {
      tree *p;

      for (p = &cfun->unexpanded_var_list; *p; )
	{
	  tree var = TREE_VALUE (*p);
	  if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
	    {
	      *p = TREE_CHAIN (*p);
	      continue;
	    }

	  p = &TREE_CHAIN (*p);
	}
    }

  BITMAP_FREE (vars_to_remove);

  /* Rewire the entry and exit blocks.  The successor to the entry
     block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
     the child function.  Similarly, the predecessor of DEST_FN's
     EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR.  We
     need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
     various CFG manipulation function get to the right CFG.

     FIXME, this is silly.  The CFG ought to become a parameter to
     these helpers.  */
  cfun = dest_cfun;
  make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
  make_edge (exit_bb,  EXIT_BLOCK_PTR, 0);
  cfun = saved_cfun;

  /* Back in the original function, the SESE region has disappeared,
     create a new basic block in its place.  */
  bb = create_empty_bb (entry_pred[0]);
  for (i = 0; i < num_entry_edges; i++)
    make_edge (entry_pred[i], bb, entry_flag[i]);

  for (i = 0; i < num_exit_edges; i++)
    make_edge (bb, exit_succ[i], exit_flag[i]);

  free (exit_flag);
  free (entry_flag);
  free (entry_pred);
  free (exit_succ);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  VEC_free (basic_block, heap, bbs);

  return bb;
}


/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h)  */

void
dump_function_to_file (tree fn, FILE *file, int flags)
{
  tree arg, vars, var;
  bool ignore_topmost_bind = false, any_var = false;
  basic_block bb;
  tree chain;
  struct function *saved_cfun;
  
  fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));

  arg = DECL_ARGUMENTS (fn);
  while (arg)
    {
      print_generic_expr (file, arg, dump_flags);
      if (TREE_CHAIN (arg))
	fprintf (file, ", ");
      arg = TREE_CHAIN (arg);
    }
  fprintf (file, ")\n");

  if (flags & TDF_DETAILS)
    dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
  if (flags & TDF_RAW)
    {
      dump_node (fn, TDF_SLIM | flags, file);
      return;
    }

  /* Switch CFUN to point to FN.  */
  saved_cfun = cfun;
  cfun = DECL_STRUCT_FUNCTION (fn);

  /* When GIMPLE is lowered, the variables are no longer available in
     BIND_EXPRs, so display them separately.  */
  if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
    {
      ignore_topmost_bind = true;

      fprintf (file, "{\n");
      for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
	{
	  var = TREE_VALUE (vars);

	  print_generic_decl (file, var, flags);
	  fprintf (file, "\n");

	  any_var = true;
	}
    }

  if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
    {
      /* Make a CFG based dump.  */
      check_bb_profile (ENTRY_BLOCK_PTR, file);
      if (!ignore_topmost_bind)
	fprintf (file, "{\n");

      if (any_var && n_basic_blocks)
	fprintf (file, "\n");

      FOR_EACH_BB (bb)
	dump_generic_bb (file, bb, 2, flags);
	
      fprintf (file, "}\n");
      check_bb_profile (EXIT_BLOCK_PTR, file);
    }
  else
    {
      int indent;

      /* Make a tree based dump.  */
      chain = DECL_SAVED_TREE (fn);

      if (chain && TREE_CODE (chain) == BIND_EXPR)
	{
	  if (ignore_topmost_bind)
	    {
	      chain = BIND_EXPR_BODY (chain);
	      indent = 2;
	    }
	  else
	    indent = 0;
	}
      else
	{
	  if (!ignore_topmost_bind)
	    fprintf (file, "{\n");
	  indent = 2;
	}

      if (any_var)
	fprintf (file, "\n");

      print_generic_stmt_indented (file, chain, flags, indent);
      if (ignore_topmost_bind)
	fprintf (file, "}\n");
    }

  fprintf (file, "\n\n");

  /* Restore CFUN.  */
  cfun = saved_cfun;
}


/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h)  */

void
debug_function (tree fn, int flags)
{
  dump_function_to_file (fn, stderr, flags);
}


/* Pretty print of the loops intermediate representation.  */
static void print_loop (FILE *, struct loop *, int);
static void print_pred_bbs (FILE *, basic_block bb);
static void print_succ_bbs (FILE *, basic_block bb);


/* Print on FILE the indexes for the predecessors of basic_block BB.  */

static void
print_pred_bbs (FILE *file, basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    fprintf (file, "bb_%d ", e->src->index);
}


/* Print on FILE the indexes for the successors of basic_block BB.  */

static void
print_succ_bbs (FILE *file, basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    fprintf (file, "bb_%d ", e->dest->index);
}


/* Pretty print LOOP on FILE, indented INDENT spaces.  */

static void
print_loop (FILE *file, struct loop *loop, int indent)
{
  char *s_indent;
  basic_block bb;
  
  if (loop == NULL)
    return;

  s_indent = (char *) alloca ((size_t) indent + 1);
  memset ((void *) s_indent, ' ', (size_t) indent);
  s_indent[indent] = '\0';

  /* Print the loop's header.  */
  fprintf (file, "%sloop_%d\n", s_indent, loop->num);
  
  /* Print the loop's body.  */
  fprintf (file, "%s{\n", s_indent);
  FOR_EACH_BB (bb)
    if (bb->loop_father == loop)
      {
	/* Print the basic_block's header.  */
	fprintf (file, "%s  bb_%d (preds = {", s_indent, bb->index);
	print_pred_bbs (file, bb);
	fprintf (file, "}, succs = {");
	print_succ_bbs (file, bb);
	fprintf (file, "})\n");
	
	/* Print the basic_block's body.  */
	fprintf (file, "%s  {\n", s_indent);
	tree_dump_bb (bb, file, indent + 4);
	fprintf (file, "%s  }\n", s_indent);
      }
  
  print_loop (file, loop->inner, indent + 2);
  fprintf (file, "%s}\n", s_indent);
  print_loop (file, loop->next, indent);
}


/* Follow a CFG edge from the entry point of the program, and on entry
   of a loop, pretty print the loop structure on FILE.  */

void 
print_loop_ir (FILE *file)
{
  basic_block bb;
  
  bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
  if (bb && bb->loop_father)
    print_loop (file, bb->loop_father, 0);
}


/* Debugging loops structure at tree level.  */

void 
debug_loop_ir (void)
{
  print_loop_ir (stderr);
}


/* Return true if BB ends with a call, possibly followed by some
   instructions that must stay with the call.  Return false,
   otherwise.  */

static bool
tree_block_ends_with_call_p (basic_block bb)
{
  block_stmt_iterator bsi = bsi_last (bb);
  return get_call_expr_in (bsi_stmt (bsi)) != NULL;
}


/* Return true if BB ends with a conditional branch.  Return false,
   otherwise.  */

static bool
tree_block_ends_with_condjump_p (basic_block bb)
{
  tree stmt = last_stmt (bb);
  return (stmt && TREE_CODE (stmt) == COND_EXPR);
}


/* Return true if we need to add fake edge to exit at statement T.
   Helper function for tree_flow_call_edges_add.  */

static bool
need_fake_edge_p (tree t)
{
  tree call;

  /* NORETURN and LONGJMP calls already have an edge to exit.
     CONST and PURE calls do not need one.
     We don't currently check for CONST and PURE here, although
     it would be a good idea, because those attributes are
     figured out from the RTL in mark_constant_function, and
     the counter incrementation code from -fprofile-arcs
     leads to different results from -fbranch-probabilities.  */
  call = get_call_expr_in (t);
  if (call
      && !(call_expr_flags (call) & ECF_NORETURN))
    return true;

  if (TREE_CODE (t) == ASM_EXPR
       && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
    return true;

  return false;
}


/* Add fake edges to the function exit for any non constant and non
   noreturn calls, volatile inline assembly in the bitmap of blocks
   specified by BLOCKS or to the whole CFG if BLOCKS is zero.  Return
   the number of blocks that were split.

   The goal is to expose cases in which entering a basic block does
   not imply that all subsequent instructions must be executed.  */

static int
tree_flow_call_edges_add (sbitmap blocks)
{
  int i;
  int blocks_split = 0;
  int last_bb = last_basic_block;
  bool check_last_block = false;

  if (n_basic_blocks == NUM_FIXED_BLOCKS)
    return 0;

  if (! blocks)
    check_last_block = true;
  else
    check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);

  /* In the last basic block, before epilogue generation, there will be
     a fallthru edge to EXIT.  Special care is required if the last insn
     of the last basic block is a call because make_edge folds duplicate
     edges, which would result in the fallthru edge also being marked
     fake, which would result in the fallthru edge being removed by
     remove_fake_edges, which would result in an invalid CFG.

     Moreover, we can't elide the outgoing fake edge, since the block
     profiler needs to take this into account in order to solve the minimal
     spanning tree in the case that the call doesn't return.

     Handle this by adding a dummy instruction in a new last basic block.  */
  if (check_last_block)
    {
      basic_block bb = EXIT_BLOCK_PTR->prev_bb;
      block_stmt_iterator bsi = bsi_last (bb);
      tree t = NULL_TREE;
      if (!bsi_end_p (bsi))
	t = bsi_stmt (bsi);

      if (t && need_fake_edge_p (t))
	{
	  edge e;

	  e = find_edge (bb, EXIT_BLOCK_PTR);
	  if (e)
	    {
	      bsi_insert_on_edge (e, build_empty_stmt ());
	      bsi_commit_edge_inserts ();
	    }
	}
    }

  /* Now add fake edges to the function exit for any non constant
     calls since there is no way that we can determine if they will
     return or not...  */
  for (i = 0; i < last_bb; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      block_stmt_iterator bsi;
      tree stmt, last_stmt;

      if (!bb)
	continue;

      if (blocks && !TEST_BIT (blocks, i))
	continue;

      bsi = bsi_last (bb);
      if (!bsi_end_p (bsi))
	{
	  last_stmt = bsi_stmt (bsi);
	  do
	    {
	      stmt = bsi_stmt (bsi);
	      if (need_fake_edge_p (stmt))
		{
		  edge e;
		  /* The handling above of the final block before the
		     epilogue should be enough to verify that there is
		     no edge to the exit block in CFG already.
		     Calling make_edge in such case would cause us to
		     mark that edge as fake and remove it later.  */
#ifdef ENABLE_CHECKING
		  if (stmt == last_stmt)
		    {
		      e = find_edge (bb, EXIT_BLOCK_PTR);
		      gcc_assert (e == NULL);
		    }
#endif

		  /* Note that the following may create a new basic block
		     and renumber the existing basic blocks.  */
		  if (stmt != last_stmt)
		    {
		      e = split_block (bb, stmt);
		      if (e)
			blocks_split++;
		    }
		  make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
		}
	      bsi_prev (&bsi);
	    }
	  while (!bsi_end_p (bsi));
	}
    }

  if (blocks_split)
    verify_flow_info ();

  return blocks_split;
}

bool
tree_purge_dead_eh_edges (basic_block bb)
{
  bool changed = false;
  edge e;
  edge_iterator ei;
  tree stmt = last_stmt (bb);

  if (stmt && tree_can_throw_internal (stmt))
    return false;

  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
      if (e->flags & EDGE_EH)
	{
	  remove_edge (e);
	  changed = true;
	}
      else
	ei_next (&ei);
    }

  /* Removal of dead EH edges might change dominators of not
     just immediate successors.  E.g. when bb1 is changed so that
     it no longer can throw and bb1->bb3 and bb1->bb4 are dead
     eh edges purged by this function in:
           0
	  / \
	 v   v
	 1-->2
        / \  |
       v   v |
       3-->4 |
        \    v
	 --->5
	     |
	     -
     idom(bb5) must be recomputed.  For now just free the dominance
     info.  */
  if (changed)
    free_dominance_info (CDI_DOMINATORS);

  return changed;
}

bool
tree_purge_all_dead_eh_edges (bitmap blocks)
{
  bool changed = false;
  unsigned i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
    {
      changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
    }

  return changed;
}

/* This function is called whenever a new edge is created or
   redirected.  */

static void
tree_execute_on_growing_pred (edge e)
{
  basic_block bb = e->dest;

  if (phi_nodes (bb))
    reserve_phi_args_for_new_edge (bb);
}

/* This function is called immediately before edge E is removed from
   the edge vector E->dest->preds.  */

static void
tree_execute_on_shrinking_pred (edge e)
{
  if (phi_nodes (e->dest))
    remove_phi_args (e);
}

/*---------------------------------------------------------------------------
  Helper functions for Loop versioning
  ---------------------------------------------------------------------------*/

/* Adjust phi nodes for 'first' basic block.  'second' basic block is a copy
   of 'first'. Both of them are dominated by 'new_head' basic block. When
   'new_head' was created by 'second's incoming edge it received phi arguments
   on the edge by split_edge(). Later, additional edge 'e' was created to
   connect 'new_head' and 'first'. Now this routine adds phi args on this 
   additional edge 'e' that new_head to second edge received as part of edge 
   splitting.
*/

static void
tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
				basic_block new_head, edge e)
{
  tree phi1, phi2;
  edge e2 = find_edge (new_head, second);

  /* Because NEW_HEAD has been created by splitting SECOND's incoming
     edge, we should always have an edge from NEW_HEAD to SECOND.  */
  gcc_assert (e2 != NULL);

  /* Browse all 'second' basic block phi nodes and add phi args to
     edge 'e' for 'first' head. PHI args are always in correct order.  */

  for (phi2 = phi_nodes (second), phi1 = phi_nodes (first); 
       phi2 && phi1; 
       phi2 = PHI_CHAIN (phi2),  phi1 = PHI_CHAIN (phi1))
    {
      tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
      add_phi_arg (phi1, def, e);
    }
}

/* Adds a if else statement to COND_BB with condition COND_EXPR.  
   SECOND_HEAD is the destination of the THEN and FIRST_HEAD is 
   the destination of the ELSE part.  */
static void
tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
                            basic_block cond_bb, void *cond_e)
{
  block_stmt_iterator bsi;
  tree goto1 = NULL_TREE;
  tree goto2 = NULL_TREE;
  tree new_cond_expr = NULL_TREE;
  tree cond_expr = (tree) cond_e;
  edge e0;

  /* Build new conditional expr */
  goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
  goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
  new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);

  /* Add new cond in cond_bb.  */ 
  bsi = bsi_start (cond_bb); 
  bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
  /* Adjust edges appropriately to connect new head with first head
     as well as second head.  */
  e0 = single_succ_edge (cond_bb);
  e0->flags &= ~EDGE_FALLTHRU;
  e0->flags |= EDGE_FALSE_VALUE;
}

struct cfg_hooks tree_cfg_hooks = {
  "tree",
  tree_verify_flow_info,
  tree_dump_bb,			/* dump_bb  */
  create_bb,			/* create_basic_block  */
  tree_redirect_edge_and_branch,/* redirect_edge_and_branch  */
  tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force  */
  remove_bb,			/* delete_basic_block  */
  tree_split_block,		/* split_block  */
  tree_move_block_after,	/* move_block_after  */
  tree_can_merge_blocks_p,	/* can_merge_blocks_p  */
  tree_merge_blocks,		/* merge_blocks  */
  tree_predict_edge,		/* predict_edge  */
  tree_predicted_by_p,		/* predicted_by_p  */
  tree_can_duplicate_bb_p,	/* can_duplicate_block_p  */
  tree_duplicate_bb,		/* duplicate_block  */
  tree_split_edge,		/* split_edge  */
  tree_make_forwarder_block,	/* make_forward_block  */
  NULL,				/* tidy_fallthru_edge  */
  tree_block_ends_with_call_p,	/* block_ends_with_call_p */
  tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
  tree_flow_call_edges_add,     /* flow_call_edges_add */
  tree_execute_on_growing_pred,	/* execute_on_growing_pred */
  tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
  tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
  tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
  tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
  extract_true_false_edges_from_block, /* extract_cond_bb_edges */
  flush_pending_stmts 		/* flush_pending_stmts */  
};


/* Split all critical edges.  */

static void
split_critical_edges (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
     expensive.  So we want to enable recording of edge to CASE_LABEL_EXPR
     mappings around the calls to split_edge.  */
  start_recording_case_labels ();
  FOR_ALL_BB (bb)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
	  {
	    split_edge (e);
	  }
    }
  end_recording_case_labels ();
}

struct tree_opt_pass pass_split_crit_edges = 
{
  "crited",                          /* name */
  NULL,                          /* gate */
  split_critical_edges,          /* execute */
  NULL,                          /* sub */
  NULL,                          /* next */
  0,                             /* static_pass_number */
  TV_TREE_SPLIT_EDGES,           /* tv_id */
  PROP_cfg,                      /* properties required */
  PROP_no_crit_edges,            /* properties_provided */
  0,                             /* properties_destroyed */
  0,                             /* todo_flags_start */
  TODO_dump_func,                /* todo_flags_finish */
  0                              /* letter */
};


/* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
   a temporary, make sure and register it to be renamed if necessary,
   and finally return the temporary.  Put the statements to compute
   EXP before the current statement in BSI.  */

tree
gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
{
  tree t, new_stmt, orig_stmt;

  if (is_gimple_val (exp))
    return exp;

  t = make_rename_temp (type, NULL);
  new_stmt = build2 (MODIFY_EXPR, type, t, exp);

  orig_stmt = bsi_stmt (*bsi);
  SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
  TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);

  bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);

  return t;
}

/* Build a ternary operation and gimplify it.  Emit code before BSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
		 tree type, tree a, tree b, tree c)
{
  tree ret;

  ret = fold_build3 (code, type, a, b, c);
  STRIP_NOPS (ret);

  return gimplify_val (bsi, type, ret);
}

/* Build a binary operation and gimplify it.  Emit code before BSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
		 tree type, tree a, tree b)
{
  tree ret;

  ret = fold_build2 (code, type, a, b);
  STRIP_NOPS (ret);

  return gimplify_val (bsi, type, ret);
}

/* Build a unary operation and gimplify it.  Emit code before BSI.
   Return the gimple_val holding the result.  */

tree
gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
		 tree a)
{
  tree ret;

  ret = fold_build1 (code, type, a);
  STRIP_NOPS (ret);

  return gimplify_val (bsi, type, ret);
}



/* Emit return warnings.  */

static void
execute_warn_function_return (void)
{
#ifdef USE_MAPPED_LOCATION
  source_location location;
#else
  location_t *locus;
#endif
  tree last;
  edge e;
  edge_iterator ei;

  /* If we have a path to EXIT, then we do return.  */
  if (TREE_THIS_VOLATILE (cfun->decl)
      && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
    {
#ifdef USE_MAPPED_LOCATION
      location = UNKNOWN_LOCATION;
#else
      locus = NULL;
#endif
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
	{
	  last = last_stmt (e->src);
	  if (TREE_CODE (last) == RETURN_EXPR
#ifdef USE_MAPPED_LOCATION
	      && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
#else
	      && (locus = EXPR_LOCUS (last)) != NULL)
#endif
	    break;
	}
#ifdef USE_MAPPED_LOCATION
      if (location == UNKNOWN_LOCATION)
	location = cfun->function_end_locus;
      warning (0, "%H%<noreturn%> function does return", &location);
#else
      if (!locus)
	locus = &cfun->function_end_locus;
      warning (0, "%H%<noreturn%> function does return", locus);
#endif
    }

  /* If we see "return;" in some basic block, then we do reach the end
     without returning a value.  */
  else if (warn_return_type
	   && !TREE_NO_WARNING (cfun->decl)
	   && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
	   && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
    {
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
	{
	  tree last = last_stmt (e->src);
	  if (TREE_CODE (last) == RETURN_EXPR
	      && TREE_OPERAND (last, 0) == NULL
	      && !TREE_NO_WARNING (last))
	    {
#ifdef USE_MAPPED_LOCATION
	      location = EXPR_LOCATION (last);
	      if (location == UNKNOWN_LOCATION)
		  location = cfun->function_end_locus;
	      warning (0, "%Hcontrol reaches end of non-void function", &location);
#else
	      locus = EXPR_LOCUS (last);
	      if (!locus)
		locus = &cfun->function_end_locus;
	      warning (0, "%Hcontrol reaches end of non-void function", locus);
#endif
	      TREE_NO_WARNING (cfun->decl) = 1;
	      break;
	    }
	}
    }
}


/* Given a basic block B which ends with a conditional and has
   precisely two successors, determine which of the edges is taken if
   the conditional is true and which is taken if the conditional is
   false.  Set TRUE_EDGE and FALSE_EDGE appropriately.  */

void
extract_true_false_edges_from_block (basic_block b,
				     edge *true_edge,
				     edge *false_edge)
{
  edge e = EDGE_SUCC (b, 0);

  if (e->flags & EDGE_TRUE_VALUE)
    {
      *true_edge = e;
      *false_edge = EDGE_SUCC (b, 1);
    }
  else
    {
      *false_edge = e;
      *true_edge = EDGE_SUCC (b, 1);
    }
}

struct tree_opt_pass pass_warn_function_return =
{
  NULL,					/* name */
  NULL,					/* gate */
  execute_warn_function_return,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0,					/* todo_flags_finish */
  0					/* letter */
};

/* Emit noreturn warnings.  */

static void
execute_warn_function_noreturn (void)
{
  if (warn_missing_noreturn
      && !TREE_THIS_VOLATILE (cfun->decl)
      && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
      && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
    warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
	     "for attribute %<noreturn%>",
	     cfun->decl);
}

struct tree_opt_pass pass_warn_function_noreturn =
{
  NULL,					/* name */
  NULL,					/* gate */
  execute_warn_function_noreturn,	/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0,					/* todo_flags_finish */
  0					/* letter */
};