1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
|
/* Chains of recurrences.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file implements operations on chains of recurrences. Chains
of recurrences are used for modeling evolution functions of scalar
variables.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree-pretty-print.h"
#include "cfgloop.h"
#include "tree-flow.h"
#include "tree-chrec.h"
#include "dumpfile.h"
#include "params.h"
#include "tree-scalar-evolution.h"
/* Extended folder for chrecs. */
/* Determines whether CST is not a constant evolution. */
static inline bool
is_not_constant_evolution (const_tree cst)
{
return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
}
/* Fold CODE for a polynomial function and a constant. */
static inline tree
chrec_fold_poly_cst (enum tree_code code,
tree type,
tree poly,
tree cst)
{
gcc_assert (poly);
gcc_assert (cst);
gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
gcc_assert (!is_not_constant_evolution (cst));
gcc_assert (type == chrec_type (poly));
switch (code)
{
case PLUS_EXPR:
return build_polynomial_chrec
(CHREC_VARIABLE (poly),
chrec_fold_plus (type, CHREC_LEFT (poly), cst),
CHREC_RIGHT (poly));
case MINUS_EXPR:
return build_polynomial_chrec
(CHREC_VARIABLE (poly),
chrec_fold_minus (type, CHREC_LEFT (poly), cst),
CHREC_RIGHT (poly));
case MULT_EXPR:
return build_polynomial_chrec
(CHREC_VARIABLE (poly),
chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
default:
return chrec_dont_know;
}
}
/* Fold the addition of two polynomial functions. */
static inline tree
chrec_fold_plus_poly_poly (enum tree_code code,
tree type,
tree poly0,
tree poly1)
{
tree left, right;
struct loop *loop0 = get_chrec_loop (poly0);
struct loop *loop1 = get_chrec_loop (poly1);
tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
gcc_assert (poly0);
gcc_assert (poly1);
gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
if (POINTER_TYPE_P (chrec_type (poly0)))
gcc_assert (ptrofftype_p (chrec_type (poly1)));
else
gcc_assert (chrec_type (poly0) == chrec_type (poly1));
gcc_assert (type == chrec_type (poly0));
/*
{a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
{a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
{a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
if (flow_loop_nested_p (loop0, loop1))
{
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
return build_polynomial_chrec
(CHREC_VARIABLE (poly1),
chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
CHREC_RIGHT (poly1));
else
return build_polynomial_chrec
(CHREC_VARIABLE (poly1),
chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
chrec_fold_multiply (type, CHREC_RIGHT (poly1),
SCALAR_FLOAT_TYPE_P (type)
? build_real (type, dconstm1)
: build_int_cst_type (type, -1)));
}
if (flow_loop_nested_p (loop1, loop0))
{
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
return build_polynomial_chrec
(CHREC_VARIABLE (poly0),
chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
CHREC_RIGHT (poly0));
else
return build_polynomial_chrec
(CHREC_VARIABLE (poly0),
chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
CHREC_RIGHT (poly0));
}
/* This function should never be called for chrecs of loops that
do not belong to the same loop nest. */
gcc_assert (loop0 == loop1);
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
{
left = chrec_fold_plus
(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
right = chrec_fold_plus
(rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
}
else
{
left = chrec_fold_minus
(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
right = chrec_fold_minus
(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
}
if (chrec_zerop (right))
return left;
else
return build_polynomial_chrec
(CHREC_VARIABLE (poly0), left, right);
}
/* Fold the multiplication of two polynomial functions. */
static inline tree
chrec_fold_multiply_poly_poly (tree type,
tree poly0,
tree poly1)
{
tree t0, t1, t2;
int var;
struct loop *loop0 = get_chrec_loop (poly0);
struct loop *loop1 = get_chrec_loop (poly1);
gcc_assert (poly0);
gcc_assert (poly1);
gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
gcc_assert (chrec_type (poly0) == chrec_type (poly1));
gcc_assert (type == chrec_type (poly0));
/* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
{a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
{a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
if (flow_loop_nested_p (loop0, loop1))
/* poly0 is a constant wrt. poly1. */
return build_polynomial_chrec
(CHREC_VARIABLE (poly1),
chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
CHREC_RIGHT (poly1));
if (flow_loop_nested_p (loop1, loop0))
/* poly1 is a constant wrt. poly0. */
return build_polynomial_chrec
(CHREC_VARIABLE (poly0),
chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
CHREC_RIGHT (poly0));
gcc_assert (loop0 == loop1);
/* poly0 and poly1 are two polynomials in the same variable,
{a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
/* "a*c". */
t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
/* "a*d + b*c". */
t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
CHREC_RIGHT (poly0),
CHREC_LEFT (poly1)));
/* "b*d". */
t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
/* "a*d + b*c + b*d". */
t1 = chrec_fold_plus (type, t1, t2);
/* "2*b*d". */
t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
? build_real (type, dconst2)
: build_int_cst (type, 2), t2);
var = CHREC_VARIABLE (poly0);
return build_polynomial_chrec (var, t0,
build_polynomial_chrec (var, t1, t2));
}
/* When the operands are automatically_generated_chrec_p, the fold has
to respect the semantics of the operands. */
static inline tree
chrec_fold_automatically_generated_operands (tree op0,
tree op1)
{
if (op0 == chrec_dont_know
|| op1 == chrec_dont_know)
return chrec_dont_know;
if (op0 == chrec_known
|| op1 == chrec_known)
return chrec_known;
if (op0 == chrec_not_analyzed_yet
|| op1 == chrec_not_analyzed_yet)
return chrec_not_analyzed_yet;
/* The default case produces a safe result. */
return chrec_dont_know;
}
/* Fold the addition of two chrecs. */
static tree
chrec_fold_plus_1 (enum tree_code code, tree type,
tree op0, tree op1)
{
if (automatically_generated_chrec_p (op0)
|| automatically_generated_chrec_p (op1))
return chrec_fold_automatically_generated_operands (op0, op1);
switch (TREE_CODE (op0))
{
case POLYNOMIAL_CHREC:
switch (TREE_CODE (op1))
{
case POLYNOMIAL_CHREC:
return chrec_fold_plus_poly_poly (code, type, op0, op1);
CASE_CONVERT:
if (tree_contains_chrecs (op1, NULL))
return chrec_dont_know;
default:
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
return build_polynomial_chrec
(CHREC_VARIABLE (op0),
chrec_fold_plus (type, CHREC_LEFT (op0), op1),
CHREC_RIGHT (op0));
else
return build_polynomial_chrec
(CHREC_VARIABLE (op0),
chrec_fold_minus (type, CHREC_LEFT (op0), op1),
CHREC_RIGHT (op0));
}
CASE_CONVERT:
if (tree_contains_chrecs (op0, NULL))
return chrec_dont_know;
default:
switch (TREE_CODE (op1))
{
case POLYNOMIAL_CHREC:
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
return build_polynomial_chrec
(CHREC_VARIABLE (op1),
chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
CHREC_RIGHT (op1));
else
return build_polynomial_chrec
(CHREC_VARIABLE (op1),
chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
chrec_fold_multiply (type, CHREC_RIGHT (op1),
SCALAR_FLOAT_TYPE_P (type)
? build_real (type, dconstm1)
: build_int_cst_type (type, -1)));
CASE_CONVERT:
if (tree_contains_chrecs (op1, NULL))
return chrec_dont_know;
default:
{
int size = 0;
if ((tree_contains_chrecs (op0, &size)
|| tree_contains_chrecs (op1, &size))
&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
return build2 (code, type, op0, op1);
else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
{
if (code == POINTER_PLUS_EXPR)
return fold_build_pointer_plus (fold_convert (type, op0),
op1);
else
return fold_build2 (code, type,
fold_convert (type, op0),
fold_convert (type, op1));
}
else
return chrec_dont_know;
}
}
}
}
/* Fold the addition of two chrecs. */
tree
chrec_fold_plus (tree type,
tree op0,
tree op1)
{
enum tree_code code;
if (automatically_generated_chrec_p (op0)
|| automatically_generated_chrec_p (op1))
return chrec_fold_automatically_generated_operands (op0, op1);
if (integer_zerop (op0))
return chrec_convert (type, op1, NULL);
if (integer_zerop (op1))
return chrec_convert (type, op0, NULL);
if (POINTER_TYPE_P (type))
code = POINTER_PLUS_EXPR;
else
code = PLUS_EXPR;
return chrec_fold_plus_1 (code, type, op0, op1);
}
/* Fold the subtraction of two chrecs. */
tree
chrec_fold_minus (tree type,
tree op0,
tree op1)
{
if (automatically_generated_chrec_p (op0)
|| automatically_generated_chrec_p (op1))
return chrec_fold_automatically_generated_operands (op0, op1);
if (integer_zerop (op1))
return op0;
return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
}
/* Fold the multiplication of two chrecs. */
tree
chrec_fold_multiply (tree type,
tree op0,
tree op1)
{
if (automatically_generated_chrec_p (op0)
|| automatically_generated_chrec_p (op1))
return chrec_fold_automatically_generated_operands (op0, op1);
switch (TREE_CODE (op0))
{
case POLYNOMIAL_CHREC:
switch (TREE_CODE (op1))
{
case POLYNOMIAL_CHREC:
return chrec_fold_multiply_poly_poly (type, op0, op1);
CASE_CONVERT:
if (tree_contains_chrecs (op1, NULL))
return chrec_dont_know;
default:
if (integer_onep (op1))
return op0;
if (integer_zerop (op1))
return build_int_cst (type, 0);
return build_polynomial_chrec
(CHREC_VARIABLE (op0),
chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
}
CASE_CONVERT:
if (tree_contains_chrecs (op0, NULL))
return chrec_dont_know;
default:
if (integer_onep (op0))
return op1;
if (integer_zerop (op0))
return build_int_cst (type, 0);
switch (TREE_CODE (op1))
{
case POLYNOMIAL_CHREC:
return build_polynomial_chrec
(CHREC_VARIABLE (op1),
chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
CASE_CONVERT:
if (tree_contains_chrecs (op1, NULL))
return chrec_dont_know;
default:
if (integer_onep (op1))
return op0;
if (integer_zerop (op1))
return build_int_cst (type, 0);
return fold_build2 (MULT_EXPR, type, op0, op1);
}
}
}
/* Operations. */
/* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
calculation overflows, otherwise return C(n,k) with type TYPE. */
static tree
tree_fold_binomial (tree type, tree n, unsigned int k)
{
double_int num, denom, idx, di_res;
bool overflow;
unsigned int i;
tree res;
/* Handle the most frequent cases. */
if (k == 0)
return build_int_cst (type, 1);
if (k == 1)
return fold_convert (type, n);
/* Numerator = n. */
num = TREE_INT_CST (n);
/* Check that k <= n. */
if (num.ult (double_int::from_uhwi (k)))
return NULL_TREE;
/* Denominator = 2. */
denom = double_int::from_uhwi (2);
/* Index = Numerator-1. */
idx = num - double_int_one;
/* Numerator = Numerator*Index = n*(n-1). */
num = num.mul_with_sign (idx, false, &overflow);
if (overflow)
return NULL_TREE;
for (i = 3; i <= k; i++)
{
/* Index--. */
--idx;
/* Numerator *= Index. */
num = num.mul_with_sign (idx, false, &overflow);
if (overflow)
return NULL_TREE;
/* Denominator *= i. */
denom *= double_int::from_uhwi (i);
}
/* Result = Numerator / Denominator. */
di_res = num.div (denom, true, EXACT_DIV_EXPR);
res = build_int_cst_wide (type, di_res.low, di_res.high);
return int_fits_type_p (res, type) ? res : NULL_TREE;
}
/* Helper function. Use the Newton's interpolating formula for
evaluating the value of the evolution function. */
static tree
chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
{
tree arg0, arg1, binomial_n_k;
tree type = TREE_TYPE (chrec);
struct loop *var_loop = get_loop (var);
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
&& flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
chrec = CHREC_LEFT (chrec);
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
&& CHREC_VARIABLE (chrec) == var)
{
arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
if (arg1 == chrec_dont_know)
return chrec_dont_know;
binomial_n_k = tree_fold_binomial (type, n, k);
if (!binomial_n_k)
return chrec_dont_know;
arg0 = fold_build2 (MULT_EXPR, type,
CHREC_LEFT (chrec), binomial_n_k);
return chrec_fold_plus (type, arg0, arg1);
}
binomial_n_k = tree_fold_binomial (type, n, k);
if (!binomial_n_k)
return chrec_dont_know;
return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
}
/* Evaluates "CHREC (X)" when the varying variable is VAR.
Example: Given the following parameters,
var = 1
chrec = {3, +, 4}_1
x = 10
The result is given by the Newton's interpolating formula:
3 * \binom{10}{0} + 4 * \binom{10}{1}.
*/
tree
chrec_apply (unsigned var,
tree chrec,
tree x)
{
tree type = chrec_type (chrec);
tree res = chrec_dont_know;
if (automatically_generated_chrec_p (chrec)
|| automatically_generated_chrec_p (x)
/* When the symbols are defined in an outer loop, it is possible
to symbolically compute the apply, since the symbols are
constants with respect to the varying loop. */
|| chrec_contains_symbols_defined_in_loop (chrec, var))
return chrec_dont_know;
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, "(chrec_apply \n");
if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
x = build_real_from_int_cst (type, x);
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
if (evolution_function_is_affine_p (chrec))
{
if (CHREC_VARIABLE (chrec) != var)
return build_polynomial_chrec
(CHREC_VARIABLE (chrec),
chrec_apply (var, CHREC_LEFT (chrec), x),
chrec_apply (var, CHREC_RIGHT (chrec), x));
/* "{a, +, b} (x)" -> "a + b*x". */
x = chrec_convert_rhs (type, x, NULL);
res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
}
else if (TREE_CODE (x) == INTEGER_CST
&& tree_int_cst_sgn (x) == 1)
/* testsuite/.../ssa-chrec-38.c. */
res = chrec_evaluate (var, chrec, x, 0);
else
res = chrec_dont_know;
break;
CASE_CONVERT:
res = chrec_convert (TREE_TYPE (chrec),
chrec_apply (var, TREE_OPERAND (chrec, 0), x),
NULL);
break;
default:
res = chrec;
break;
}
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (varying_loop = %d\n", var);
fprintf (dump_file, ")\n (chrec = ");
print_generic_expr (dump_file, chrec, 0);
fprintf (dump_file, ")\n (x = ");
print_generic_expr (dump_file, x, 0);
fprintf (dump_file, ")\n (res = ");
print_generic_expr (dump_file, res, 0);
fprintf (dump_file, "))\n");
}
return res;
}
/* For a given CHREC and an induction variable map IV_MAP that maps
(loop->num, expr) for every loop number of the current_loops an
expression, calls chrec_apply when the expression is not NULL. */
tree
chrec_apply_map (tree chrec, VEC (tree, heap) *iv_map)
{
int i;
tree expr;
FOR_EACH_VEC_ELT (tree, iv_map, i, expr)
if (expr)
chrec = chrec_apply (i, chrec, expr);
return chrec;
}
/* Replaces the initial condition in CHREC with INIT_COND. */
tree
chrec_replace_initial_condition (tree chrec,
tree init_cond)
{
if (automatically_generated_chrec_p (chrec))
return chrec;
gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
return build_polynomial_chrec
(CHREC_VARIABLE (chrec),
chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
CHREC_RIGHT (chrec));
default:
return init_cond;
}
}
/* Returns the initial condition of a given CHREC. */
tree
initial_condition (tree chrec)
{
if (automatically_generated_chrec_p (chrec))
return chrec;
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
return initial_condition (CHREC_LEFT (chrec));
else
return chrec;
}
/* Returns a univariate function that represents the evolution in
LOOP_NUM. Mask the evolution of any other loop. */
tree
hide_evolution_in_other_loops_than_loop (tree chrec,
unsigned loop_num)
{
struct loop *loop = get_loop (loop_num), *chloop;
if (automatically_generated_chrec_p (chrec))
return chrec;
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
chloop = get_chrec_loop (chrec);
if (chloop == loop)
return build_polynomial_chrec
(loop_num,
hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
loop_num),
CHREC_RIGHT (chrec));
else if (flow_loop_nested_p (chloop, loop))
/* There is no evolution in this loop. */
return initial_condition (chrec);
else
{
gcc_assert (flow_loop_nested_p (loop, chloop));
return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
loop_num);
}
default:
return chrec;
}
}
/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
true, otherwise returns the initial condition in LOOP_NUM. */
static tree
chrec_component_in_loop_num (tree chrec,
unsigned loop_num,
bool right)
{
tree component;
struct loop *loop = get_loop (loop_num), *chloop;
if (automatically_generated_chrec_p (chrec))
return chrec;
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
chloop = get_chrec_loop (chrec);
if (chloop == loop)
{
if (right)
component = CHREC_RIGHT (chrec);
else
component = CHREC_LEFT (chrec);
if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
|| CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
return component;
else
return build_polynomial_chrec
(loop_num,
chrec_component_in_loop_num (CHREC_LEFT (chrec),
loop_num,
right),
component);
}
else if (flow_loop_nested_p (chloop, loop))
/* There is no evolution part in this loop. */
return NULL_TREE;
else
{
gcc_assert (flow_loop_nested_p (loop, chloop));
return chrec_component_in_loop_num (CHREC_LEFT (chrec),
loop_num,
right);
}
default:
if (right)
return NULL_TREE;
else
return chrec;
}
}
/* Returns the evolution part in LOOP_NUM. Example: the call
evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
{1, +, 2}_1 */
tree
evolution_part_in_loop_num (tree chrec,
unsigned loop_num)
{
return chrec_component_in_loop_num (chrec, loop_num, true);
}
/* Returns the initial condition in LOOP_NUM. Example: the call
initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
{0, +, 1}_1 */
tree
initial_condition_in_loop_num (tree chrec,
unsigned loop_num)
{
return chrec_component_in_loop_num (chrec, loop_num, false);
}
/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
This function is essentially used for setting the evolution to
chrec_dont_know, for example after having determined that it is
impossible to say how many times a loop will execute. */
tree
reset_evolution_in_loop (unsigned loop_num,
tree chrec,
tree new_evol)
{
struct loop *loop = get_loop (loop_num);
if (POINTER_TYPE_P (chrec_type (chrec)))
gcc_assert (ptrofftype_p (chrec_type (new_evol)));
else
gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
&& flow_loop_nested_p (loop, get_chrec_loop (chrec)))
{
tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
new_evol);
tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
new_evol);
return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
CHREC_VAR (chrec), left, right);
}
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
&& CHREC_VARIABLE (chrec) == loop_num)
chrec = CHREC_LEFT (chrec);
return build_polynomial_chrec (loop_num, chrec, new_evol);
}
/* Merges two evolution functions that were found by following two
alternate paths of a conditional expression. */
tree
chrec_merge (tree chrec1,
tree chrec2)
{
if (chrec1 == chrec_dont_know
|| chrec2 == chrec_dont_know)
return chrec_dont_know;
if (chrec1 == chrec_known
|| chrec2 == chrec_known)
return chrec_known;
if (chrec1 == chrec_not_analyzed_yet)
return chrec2;
if (chrec2 == chrec_not_analyzed_yet)
return chrec1;
if (eq_evolutions_p (chrec1, chrec2))
return chrec1;
return chrec_dont_know;
}
/* Observers. */
/* Helper function for is_multivariate_chrec. */
static bool
is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
{
if (chrec == NULL_TREE)
return false;
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
{
if (CHREC_VARIABLE (chrec) != rec_var)
return true;
else
return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
}
else
return false;
}
/* Determine whether the given chrec is multivariate or not. */
bool
is_multivariate_chrec (const_tree chrec)
{
if (chrec == NULL_TREE)
return false;
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
CHREC_VARIABLE (chrec))
|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
CHREC_VARIABLE (chrec)));
else
return false;
}
/* Determines whether the chrec contains symbolic names or not. */
bool
chrec_contains_symbols (const_tree chrec)
{
int i, n;
if (chrec == NULL_TREE)
return false;
if (TREE_CODE (chrec) == SSA_NAME
|| TREE_CODE (chrec) == VAR_DECL
|| TREE_CODE (chrec) == PARM_DECL
|| TREE_CODE (chrec) == FUNCTION_DECL
|| TREE_CODE (chrec) == LABEL_DECL
|| TREE_CODE (chrec) == RESULT_DECL
|| TREE_CODE (chrec) == FIELD_DECL)
return true;
n = TREE_OPERAND_LENGTH (chrec);
for (i = 0; i < n; i++)
if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
return true;
return false;
}
/* Determines whether the chrec contains undetermined coefficients. */
bool
chrec_contains_undetermined (const_tree chrec)
{
int i, n;
if (chrec == chrec_dont_know)
return true;
if (chrec == NULL_TREE)
return false;
n = TREE_OPERAND_LENGTH (chrec);
for (i = 0; i < n; i++)
if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
return true;
return false;
}
/* Determines whether the tree EXPR contains chrecs, and increment
SIZE if it is not a NULL pointer by an estimation of the depth of
the tree. */
bool
tree_contains_chrecs (const_tree expr, int *size)
{
int i, n;
if (expr == NULL_TREE)
return false;
if (size)
(*size)++;
if (tree_is_chrec (expr))
return true;
n = TREE_OPERAND_LENGTH (expr);
for (i = 0; i < n; i++)
if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
return true;
return false;
}
/* Recursive helper function. */
static bool
evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
{
if (evolution_function_is_constant_p (chrec))
return true;
if (TREE_CODE (chrec) == SSA_NAME
&& (loopnum == 0
|| expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
return true;
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
{
if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
|| flow_loop_nested_p (get_loop (loopnum),
get_loop (CHREC_VARIABLE (chrec)))
|| !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
loopnum)
|| !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
loopnum))
return false;
return true;
}
switch (TREE_OPERAND_LENGTH (chrec))
{
case 2:
if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
loopnum))
return false;
case 1:
if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
loopnum))
return false;
return true;
default:
return false;
}
return false;
}
/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
bool
evolution_function_is_invariant_p (tree chrec, int loopnum)
{
return evolution_function_is_invariant_rec_p (chrec, loopnum);
}
/* Determine whether the given tree is an affine multivariate
evolution. */
bool
evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
{
if (chrec == NULL_TREE)
return false;
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
{
if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
return true;
else
{
if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
&& CHREC_VARIABLE (CHREC_RIGHT (chrec))
!= CHREC_VARIABLE (chrec)
&& evolution_function_is_affine_multivariate_p
(CHREC_RIGHT (chrec), loopnum))
return true;
else
return false;
}
}
else
{
if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
&& TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
&& CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
&& evolution_function_is_affine_multivariate_p
(CHREC_LEFT (chrec), loopnum))
return true;
else
return false;
}
default:
return false;
}
}
/* Determine whether the given tree is a function in zero or one
variables. */
bool
evolution_function_is_univariate_p (const_tree chrec)
{
if (chrec == NULL_TREE)
return true;
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
switch (TREE_CODE (CHREC_LEFT (chrec)))
{
case POLYNOMIAL_CHREC:
if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
return false;
if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
return false;
break;
default:
if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
return false;
break;
}
switch (TREE_CODE (CHREC_RIGHT (chrec)))
{
case POLYNOMIAL_CHREC:
if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
return false;
if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
return false;
break;
default:
if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
return false;
break;
}
default:
return true;
}
}
/* Returns the number of variables of CHREC. Example: the call
nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
unsigned
nb_vars_in_chrec (tree chrec)
{
if (chrec == NULL_TREE)
return 0;
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
return 1 + nb_vars_in_chrec
(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
default:
return 0;
}
}
static tree chrec_convert_1 (tree, tree, gimple, bool);
/* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
the scev corresponds to. AT_STMT is the statement at that the scev is
evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
the rules for overflow of the given language apply (e.g., that signed
arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
tests, but also to enforce that the result follows them. Returns true if the
conversion succeeded, false otherwise. */
bool
convert_affine_scev (struct loop *loop, tree type,
tree *base, tree *step, gimple at_stmt,
bool use_overflow_semantics)
{
tree ct = TREE_TYPE (*step);
bool enforce_overflow_semantics;
bool must_check_src_overflow, must_check_rslt_overflow;
tree new_base, new_step;
tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
/* In general,
(TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
but we must check some assumptions.
1) If [BASE, +, STEP] wraps, the equation is not valid when precision
of CT is smaller than the precision of TYPE. For example, when we
cast unsigned char [254, +, 1] to unsigned, the values on left side
are 254, 255, 0, 1, ..., but those on the right side are
254, 255, 256, 257, ...
2) In case that we must also preserve the fact that signed ivs do not
overflow, we must additionally check that the new iv does not wrap.
For example, unsigned char [125, +, 1] casted to signed char could
become a wrapping variable with values 125, 126, 127, -128, -127, ...,
which would confuse optimizers that assume that this does not
happen. */
must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
enforce_overflow_semantics = (use_overflow_semantics
&& nowrap_type_p (type));
if (enforce_overflow_semantics)
{
/* We can avoid checking whether the result overflows in the following
cases:
-- must_check_src_overflow is true, and the range of TYPE is superset
of the range of CT -- i.e., in all cases except if CT signed and
TYPE unsigned.
-- both CT and TYPE have the same precision and signedness, and we
verify instead that the source does not overflow (this may be
easier than verifying it for the result, as we may use the
information about the semantics of overflow in CT). */
if (must_check_src_overflow)
{
if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
must_check_rslt_overflow = true;
else
must_check_rslt_overflow = false;
}
else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
&& TYPE_PRECISION (ct) == TYPE_PRECISION (type))
{
must_check_rslt_overflow = false;
must_check_src_overflow = true;
}
else
must_check_rslt_overflow = true;
}
else
must_check_rslt_overflow = false;
if (must_check_src_overflow
&& scev_probably_wraps_p (*base, *step, at_stmt, loop,
use_overflow_semantics))
return false;
new_base = chrec_convert_1 (type, *base, at_stmt,
use_overflow_semantics);
/* The step must be sign extended, regardless of the signedness
of CT and TYPE. This only needs to be handled specially when
CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
(with values 100, 99, 98, ...) from becoming signed or unsigned
[100, +, 255] with values 100, 355, ...; the sign-extension is
performed by default when CT is signed. */
new_step = *step;
if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
{
tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
use_overflow_semantics);
}
new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
if (automatically_generated_chrec_p (new_base)
|| automatically_generated_chrec_p (new_step))
return false;
if (must_check_rslt_overflow
/* Note that in this case we cannot use the fact that signed variables
do not overflow, as this is what we are verifying for the new iv. */
&& scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
return false;
*base = new_base;
*step = new_step;
return true;
}
/* Convert CHREC for the right hand side of a CHREC.
The increment for a pointer type is always sizetype. */
tree
chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
{
if (POINTER_TYPE_P (type))
type = sizetype;
return chrec_convert (type, chrec, at_stmt);
}
/* Convert CHREC to TYPE. When the analyzer knows the context in
which the CHREC is built, it sets AT_STMT to the statement that
contains the definition of the analyzed variable, otherwise the
conversion is less accurate: the information is used for
determining a more accurate estimation of the number of iterations.
By default AT_STMT could be safely set to NULL_TREE.
The following rule is always true: TREE_TYPE (chrec) ==
TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
An example of what could happen when adding two chrecs and the type
of the CHREC_RIGHT is different than CHREC_LEFT is:
{(uint) 0, +, (uchar) 10} +
{(uint) 0, +, (uchar) 250}
that would produce a wrong result if CHREC_RIGHT is not (uint):
{(uint) 0, +, (uchar) 4}
instead of
{(uint) 0, +, (uint) 260}
*/
tree
chrec_convert (tree type, tree chrec, gimple at_stmt)
{
return chrec_convert_1 (type, chrec, at_stmt, true);
}
/* Convert CHREC to TYPE. When the analyzer knows the context in
which the CHREC is built, it sets AT_STMT to the statement that
contains the definition of the analyzed variable, otherwise the
conversion is less accurate: the information is used for
determining a more accurate estimation of the number of iterations.
By default AT_STMT could be safely set to NULL_TREE.
USE_OVERFLOW_SEMANTICS is true if this function should assume that
the rules for overflow of the given language apply (e.g., that signed
arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
tests, but also to enforce that the result follows them. */
static tree
chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
bool use_overflow_semantics)
{
tree ct, res;
tree base, step;
struct loop *loop;
if (automatically_generated_chrec_p (chrec))
return chrec;
ct = chrec_type (chrec);
if (ct == type)
return chrec;
if (!evolution_function_is_affine_p (chrec))
goto keep_cast;
loop = get_chrec_loop (chrec);
base = CHREC_LEFT (chrec);
step = CHREC_RIGHT (chrec);
if (convert_affine_scev (loop, type, &base, &step, at_stmt,
use_overflow_semantics))
return build_polynomial_chrec (loop->num, base, step);
/* If we cannot propagate the cast inside the chrec, just keep the cast. */
keep_cast:
/* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
may be more expensive. We do want to perform this optimization here
though for canonicalization reasons. */
if (use_overflow_semantics
&& (TREE_CODE (chrec) == PLUS_EXPR
|| TREE_CODE (chrec) == MINUS_EXPR)
&& TREE_CODE (type) == INTEGER_TYPE
&& TREE_CODE (ct) == INTEGER_TYPE
&& TYPE_PRECISION (type) > TYPE_PRECISION (ct)
&& TYPE_OVERFLOW_UNDEFINED (ct))
res = fold_build2 (TREE_CODE (chrec), type,
fold_convert (type, TREE_OPERAND (chrec, 0)),
fold_convert (type, TREE_OPERAND (chrec, 1)));
/* Similar perform the trick that (signed char)((int)x + 2) can be
narrowed to (signed char)((unsigned char)x + 2). */
else if (use_overflow_semantics
&& TREE_CODE (chrec) == POLYNOMIAL_CHREC
&& TREE_CODE (ct) == INTEGER_TYPE
&& TREE_CODE (type) == INTEGER_TYPE
&& TYPE_OVERFLOW_UNDEFINED (type)
&& TYPE_PRECISION (type) < TYPE_PRECISION (ct))
{
tree utype = unsigned_type_for (type);
res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
fold_convert (utype,
CHREC_LEFT (chrec)),
fold_convert (utype,
CHREC_RIGHT (chrec)));
res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
}
else
res = fold_convert (type, chrec);
/* Don't propagate overflows. */
if (CONSTANT_CLASS_P (res))
TREE_OVERFLOW (res) = 0;
/* But reject constants that don't fit in their type after conversion.
This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
and can cause problems later when computing niters of loops. Note
that we don't do the check before converting because we don't want
to reject conversions of negative chrecs to unsigned types. */
if (TREE_CODE (res) == INTEGER_CST
&& TREE_CODE (type) == INTEGER_TYPE
&& !int_fits_type_p (res, type))
res = chrec_dont_know;
return res;
}
/* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
chrec if something else than what chrec_convert would do happens, NULL_TREE
otherwise. */
tree
chrec_convert_aggressive (tree type, tree chrec)
{
tree inner_type, left, right, lc, rc, rtype;
if (automatically_generated_chrec_p (chrec)
|| TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return NULL_TREE;
inner_type = TREE_TYPE (chrec);
if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
return NULL_TREE;
rtype = POINTER_TYPE_P (type) ? sizetype : type;
left = CHREC_LEFT (chrec);
right = CHREC_RIGHT (chrec);
lc = chrec_convert_aggressive (type, left);
if (!lc)
lc = chrec_convert (type, left, NULL);
rc = chrec_convert_aggressive (rtype, right);
if (!rc)
rc = chrec_convert (rtype, right, NULL);
return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
}
/* Returns true when CHREC0 == CHREC1. */
bool
eq_evolutions_p (const_tree chrec0, const_tree chrec1)
{
if (chrec0 == NULL_TREE
|| chrec1 == NULL_TREE
|| TREE_CODE (chrec0) != TREE_CODE (chrec1))
return false;
if (chrec0 == chrec1)
return true;
switch (TREE_CODE (chrec0))
{
case INTEGER_CST:
return operand_equal_p (chrec0, chrec1, 0);
case POLYNOMIAL_CHREC:
return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
&& eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
&& eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
case PLUS_EXPR:
case MULT_EXPR:
case MINUS_EXPR:
case POINTER_PLUS_EXPR:
return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
TREE_OPERAND (chrec1, 0))
&& eq_evolutions_p (TREE_OPERAND (chrec0, 1),
TREE_OPERAND (chrec1, 1));
default:
return false;
}
}
/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
which of these cases happens. */
enum ev_direction
scev_direction (const_tree chrec)
{
const_tree step;
if (!evolution_function_is_affine_p (chrec))
return EV_DIR_UNKNOWN;
step = CHREC_RIGHT (chrec);
if (TREE_CODE (step) != INTEGER_CST)
return EV_DIR_UNKNOWN;
if (tree_int_cst_sign_bit (step))
return EV_DIR_DECREASES;
else
return EV_DIR_GROWS;
}
/* Iterates over all the components of SCEV, and calls CBCK. */
void
for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
{
switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
{
case 3:
for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
case 2:
for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
case 1:
for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
default:
cbck (scev, data);
break;
}
}
/* Returns true when the operation can be part of a linear
expression. */
static inline bool
operator_is_linear (tree scev)
{
switch (TREE_CODE (scev))
{
case INTEGER_CST:
case POLYNOMIAL_CHREC:
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MULT_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
case SSA_NAME:
case NON_LVALUE_EXPR:
case BIT_NOT_EXPR:
CASE_CONVERT:
return true;
default:
return false;
}
}
/* Return true when SCEV is a linear expression. Linear expressions
can contain additions, substractions and multiplications.
Multiplications are restricted to constant scaling: "cst * x". */
bool
scev_is_linear_expression (tree scev)
{
if (scev == NULL
|| !operator_is_linear (scev))
return false;
if (TREE_CODE (scev) == MULT_EXPR)
return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
&& tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
if (TREE_CODE (scev) == POLYNOMIAL_CHREC
&& !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
return false;
switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
{
case 3:
return scev_is_linear_expression (TREE_OPERAND (scev, 0))
&& scev_is_linear_expression (TREE_OPERAND (scev, 1))
&& scev_is_linear_expression (TREE_OPERAND (scev, 2));
case 2:
return scev_is_linear_expression (TREE_OPERAND (scev, 0))
&& scev_is_linear_expression (TREE_OPERAND (scev, 1));
case 1:
return scev_is_linear_expression (TREE_OPERAND (scev, 0));
case 0:
return true;
default:
return false;
}
}
/* Determines whether the expression CHREC contains only interger consts
in the right parts. */
bool
evolution_function_right_is_integer_cst (const_tree chrec)
{
if (chrec == NULL_TREE)
return false;
switch (TREE_CODE (chrec))
{
case INTEGER_CST:
return true;
case POLYNOMIAL_CHREC:
return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
&& (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
|| evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
CASE_CONVERT:
return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
default:
return false;
}
}
|