1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
/* Data references and dependences detectors.
Copyright (C) 2003-2013 Free Software Foundation, Inc.
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_TREE_DATA_REF_H
#define GCC_TREE_DATA_REF_H
#include "graphds.h"
#include "omega.h"
#include "tree-chrec.h"
/*
innermost_loop_behavior describes the evolution of the address of the memory
reference in the innermost enclosing loop. The address is expressed as
BASE + STEP * # of iteration, and base is further decomposed as the base
pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
constant offset (INIT). Examples, in loop nest
for (i = 0; i < 100; i++)
for (j = 3; j < 100; j++)
Example 1 Example 2
data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
innermost_loop_behavior
base_address &a p
offset i * D_i x
init 3 * D_j + offsetof (b) 28
step D_j 4
*/
struct innermost_loop_behavior
{
tree base_address;
tree offset;
tree init;
tree step;
/* Alignment information. ALIGNED_TO is set to the largest power of two
that divides OFFSET. */
tree aligned_to;
};
/* Describes the evolutions of indices of the memory reference. The indices
are indices of the ARRAY_REFs, indexes in artificial dimensions
added for member selection of records and the operands of MEM_REFs.
BASE_OBJECT is the part of the reference that is loop-invariant
(note that this reference does not have to cover the whole object
being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
not recommended to use BASE_OBJECT in any code generation).
For the examples above,
base_object: a *(p + x + 4B * j_0)
indices: {j_0, +, 1}_2 {16, +, 4}_2
4
{i_0, +, 1}_1
{j_0, +, 1}_2
*/
struct indices
{
/* The object. */
tree base_object;
/* A list of chrecs. Access functions of the indices. */
vec<tree> access_fns;
/* Whether BASE_OBJECT is an access representing the whole object
or whether the access could not be constrained. */
bool unconstrained_base;
};
struct dr_alias
{
/* The alias information that should be used for new pointers to this
location. */
struct ptr_info_def *ptr_info;
};
/* An integer vector. A vector formally consists of an element of a vector
space. A vector space is a set that is closed under vector addition
and scalar multiplication. In this vector space, an element is a list of
integers. */
typedef int *lambda_vector;
/* An integer matrix. A matrix consists of m vectors of length n (IE
all vectors are the same length). */
typedef lambda_vector *lambda_matrix;
/* Each vector of the access matrix represents a linear access
function for a subscript. First elements correspond to the
leftmost indices, ie. for a[i][j] the first vector corresponds to
the subscript in "i". The elements of a vector are relative to
the loop nests in which the data reference is considered,
i.e. the vector is relative to the SCoP that provides the context
in which this data reference occurs.
For example, in
| loop_1
| loop_2
| a[i+3][2*j+n-1]
if "i" varies in loop_1 and "j" varies in loop_2, the access
matrix with respect to the loop nest {loop_1, loop_2} is:
| loop_1 loop_2 param_n cst
| 1 0 0 3
| 0 2 1 -1
whereas the access matrix with respect to loop_2 considers "i" as
a parameter:
| loop_2 param_i param_n cst
| 0 1 0 3
| 2 0 1 -1
*/
struct access_matrix
{
vec<loop_p> loop_nest;
int nb_induction_vars;
vec<tree> parameters;
vec<lambda_vector, va_gc> *matrix;
};
#define AM_LOOP_NEST(M) (M)->loop_nest
#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
#define AM_PARAMETERS(M) (M)->parameters
#define AM_MATRIX(M) (M)->matrix
#define AM_NB_PARAMETERS(M) (AM_PARAMETERS (M)).length ()
#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
/* Return the column in the access matrix of LOOP_NUM. */
static inline int
am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
{
int i;
loop_p l;
for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
if (l->num == loop_num)
return i;
gcc_unreachable ();
}
struct data_reference
{
/* A pointer to the statement that contains this DR. */
gimple stmt;
/* A pointer to the memory reference. */
tree ref;
/* Auxiliary info specific to a pass. */
void *aux;
/* True when the data reference is in RHS of a stmt. */
bool is_read;
/* Behavior of the memory reference in the innermost loop. */
struct innermost_loop_behavior innermost;
/* Subscripts of this data reference. */
struct indices indices;
/* Alias information for the data reference. */
struct dr_alias alias;
/* Matrix representation for the data access functions. */
struct access_matrix *access_matrix;
};
#define DR_STMT(DR) (DR)->stmt
#define DR_REF(DR) (DR)->ref
#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
#define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
#define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
#define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
#define DR_IS_READ(DR) (DR)->is_read
#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
#define DR_OFFSET(DR) (DR)->innermost.offset
#define DR_INIT(DR) (DR)->innermost.init
#define DR_STEP(DR) (DR)->innermost.step
#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
typedef struct data_reference *data_reference_p;
enum data_dependence_direction {
dir_positive,
dir_negative,
dir_equal,
dir_positive_or_negative,
dir_positive_or_equal,
dir_negative_or_equal,
dir_star,
dir_independent
};
/* The description of the grid of iterations that overlap. At most
two loops are considered at the same time just now, hence at most
two functions are needed. For each of the functions, we store
the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
where x, y, ... are variables. */
#define MAX_DIM 2
/* Special values of N. */
#define NO_DEPENDENCE 0
#define NOT_KNOWN (MAX_DIM + 1)
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
typedef vec<tree> affine_fn;
typedef struct
{
unsigned n;
affine_fn fns[MAX_DIM];
} conflict_function;
/* What is a subscript? Given two array accesses a subscript is the
tuple composed of the access functions for a given dimension.
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
are stored in the data_dependence_relation structure under the form
of an array of subscripts. */
struct subscript
{
/* A description of the iterations for which the elements are
accessed twice. */
conflict_function *conflicting_iterations_in_a;
conflict_function *conflicting_iterations_in_b;
/* This field stores the information about the iteration domain
validity of the dependence relation. */
tree last_conflict;
/* Distance from the iteration that access a conflicting element in
A to the iteration that access this same conflicting element in
B. The distance is a tree scalar expression, i.e. a constant or a
symbolic expression, but certainly not a chrec function. */
tree distance;
};
typedef struct subscript *subscript_p;
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
#define SUB_DISTANCE(SUB) SUB->distance
/* A data_dependence_relation represents a relation between two
data_references A and B. */
struct data_dependence_relation
{
struct data_reference *a;
struct data_reference *b;
/* A "yes/no/maybe" field for the dependence relation:
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
relation between A and B, and the description of this relation
is given in the SUBSCRIPTS array,
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
SUBSCRIPTS is empty,
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
but the analyzer cannot be more specific. */
tree are_dependent;
/* For each subscript in the dependence test, there is an element in
this array. This is the attribute that labels the edge A->B of
the data_dependence_relation. */
vec<subscript_p> subscripts;
/* The analyzed loop nest. */
vec<loop_p> loop_nest;
/* The classic direction vector. */
vec<lambda_vector> dir_vects;
/* The classic distance vector. */
vec<lambda_vector> dist_vects;
/* An index in loop_nest for the innermost loop that varies for
this data dependence relation. */
unsigned inner_loop;
/* Is the dependence reversed with respect to the lexicographic order? */
bool reversed_p;
/* When the dependence relation is affine, it can be represented by
a distance vector. */
bool affine_p;
/* Set to true when the dependence relation is on the same data
access. */
bool self_reference_p;
};
typedef struct data_dependence_relation *ddr_p;
#define DDR_A(DDR) DDR->a
#define DDR_B(DDR) DDR->b
#define DDR_AFFINE_P(DDR) DDR->affine_p
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
/* The size of the direction/distance vectors: the number of loops in
the loop nest. */
#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
#define DDR_NUM_DIST_VECTS(DDR) \
(DDR_DIST_VECTS (DDR).length ())
#define DDR_NUM_DIR_VECTS(DDR) \
(DDR_DIR_VECTS (DDR).length ())
#define DDR_DIR_VECT(DDR, I) \
DDR_DIR_VECTS (DDR)[I]
#define DDR_DIST_VECT(DDR, I) \
DDR_DIST_VECTS (DDR)[I]
#define DDR_REVERSED_P(DDR) DDR->reversed_p
bool dr_analyze_innermost (struct data_reference *, struct loop *);
extern bool compute_data_dependences_for_loop (struct loop *, bool,
vec<loop_p> *,
vec<data_reference_p> *,
vec<ddr_p> *);
extern bool compute_data_dependences_for_bb (basic_block, bool,
vec<data_reference_p> *,
vec<ddr_p> *);
extern void debug_ddrs (vec<ddr_p> );
extern void dump_data_reference (FILE *, struct data_reference *);
extern void debug (data_reference &ref);
extern void debug (data_reference *ptr);
extern void debug_data_reference (struct data_reference *);
extern void debug_data_references (vec<data_reference_p> );
extern void debug (vec<data_reference_p> &ref);
extern void debug (vec<data_reference_p> *ptr);
extern void debug_data_dependence_relation (struct data_dependence_relation *);
extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
extern void debug (vec<ddr_p> &ref);
extern void debug (vec<ddr_p> *ptr);
extern void debug_data_dependence_relations (vec<ddr_p> );
extern void free_dependence_relation (struct data_dependence_relation *);
extern void free_dependence_relations (vec<ddr_p> );
extern void free_data_ref (data_reference_p);
extern void free_data_refs (vec<data_reference_p> );
extern bool find_data_references_in_stmt (struct loop *, gimple,
vec<data_reference_p> *);
extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
vec<data_reference_p> *);
tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
extern bool find_loop_nest (struct loop *, vec<loop_p> *);
extern struct data_dependence_relation *initialize_data_dependence_relation
(struct data_reference *, struct data_reference *, vec<loop_p>);
extern void compute_affine_dependence (struct data_dependence_relation *,
loop_p);
extern void compute_self_dependence (struct data_dependence_relation *);
extern bool compute_all_dependences (vec<data_reference_p> ,
vec<ddr_p> *,
vec<loop_p>, bool);
extern tree find_data_references_in_bb (struct loop *, basic_block,
vec<data_reference_p> *);
extern bool dr_may_alias_p (const struct data_reference *,
const struct data_reference *, bool);
extern bool dr_equal_offsets_p (struct data_reference *,
struct data_reference *);
extern void tree_check_data_deps (void);
/* Return true when the base objects of data references A and B are
the same memory object. */
static inline bool
same_data_refs_base_objects (data_reference_p a, data_reference_p b)
{
return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
&& operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
}
/* Return true when the data references A and B are accessing the same
memory object with the same access functions. */
static inline bool
same_data_refs (data_reference_p a, data_reference_p b)
{
unsigned int i;
/* The references are exactly the same. */
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
return true;
if (!same_data_refs_base_objects (a, b))
return false;
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
return false;
return true;
}
/* Return true when the DDR contains two data references that have the
same access functions. */
static inline bool
same_access_functions (const struct data_dependence_relation *ddr)
{
unsigned i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
DR_ACCESS_FN (DDR_B (ddr), i)))
return false;
return true;
}
/* Return true when DDR is an anti-dependence relation. */
static inline bool
ddr_is_anti_dependent (ddr_p ddr)
{
return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
&& DR_IS_READ (DDR_A (ddr))
&& DR_IS_WRITE (DDR_B (ddr))
&& !same_access_functions (ddr));
}
/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
static inline bool
ddrs_have_anti_deps (vec<ddr_p> dependence_relations)
{
unsigned i;
ddr_p ddr;
for (i = 0; dependence_relations.iterate (i, &ddr); i++)
if (ddr_is_anti_dependent (ddr))
return true;
return false;
}
/* Returns true when all the dependences are computable. */
inline bool
known_dependences_p (vec<ddr_p> dependence_relations)
{
ddr_p ddr;
unsigned int i;
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
return true;
}
/* Returns the dependence level for a vector DIST of size LENGTH.
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
to the sequence of statements, not carried by any loop. */
static inline unsigned
dependence_level (lambda_vector dist_vect, int length)
{
int i;
for (i = 0; i < length; i++)
if (dist_vect[i] != 0)
return i + 1;
return 0;
}
/* Return the dependence level for the DDR relation. */
static inline unsigned
ddr_dependence_level (ddr_p ddr)
{
unsigned vector;
unsigned level = 0;
if (DDR_DIST_VECTS (ddr).exists ())
level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
DDR_NB_LOOPS (ddr)));
return level;
}
/* Return the index of the variable VAR in the LOOP_NEST array. */
static inline int
index_in_loop_nest (int var, vec<loop_p> loop_nest)
{
struct loop *loopi;
int var_index;
for (var_index = 0; loop_nest.iterate (var_index, &loopi);
var_index++)
if (loopi->num == var)
break;
return var_index;
}
/* Returns true when the data reference DR the form "A[i] = ..."
with a stride equal to its unit type size. */
static inline bool
adjacent_dr_p (struct data_reference *dr)
{
/* If this is a bitfield store bail out. */
if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
return false;
if (!DR_STEP (dr)
|| TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
return false;
return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
DR_STEP (dr)),
TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
}
void split_constant_offset (tree , tree *, tree *);
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
static inline int
lambda_vector_gcd (lambda_vector vector, int size)
{
int i;
int gcd1 = 0;
if (size > 0)
{
gcd1 = vector[0];
for (i = 1; i < size; i++)
gcd1 = gcd (gcd1, vector[i]);
}
return gcd1;
}
/* Allocate a new vector of given SIZE. */
static inline lambda_vector
lambda_vector_new (int size)
{
return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
}
/* Clear out vector VEC1 of length SIZE. */
static inline void
lambda_vector_clear (lambda_vector vec1, int size)
{
memset (vec1, 0, size * sizeof (*vec1));
}
/* Returns true when the vector V is lexicographically positive, in
other words, when the first nonzero element is positive. */
static inline bool
lambda_vector_lexico_pos (lambda_vector v,
unsigned n)
{
unsigned i;
for (i = 0; i < n; i++)
{
if (v[i] == 0)
continue;
if (v[i] < 0)
return false;
if (v[i] > 0)
return true;
}
return true;
}
/* Return true if vector VEC1 of length SIZE is the zero vector. */
static inline bool
lambda_vector_zerop (lambda_vector vec1, int size)
{
int i;
for (i = 0; i < size; i++)
if (vec1[i] != 0)
return false;
return true;
}
/* Allocate a matrix of M rows x N cols. */
static inline lambda_matrix
lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
{
lambda_matrix mat;
int i;
mat = (lambda_matrix) obstack_alloc (lambda_obstack,
sizeof (lambda_vector *) * m);
for (i = 0; i < m; i++)
mat[i] = lambda_vector_new (n);
return mat;
}
#endif /* GCC_TREE_DATA_REF_H */
|