1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
|
/* Scalar Replacement of Aggregates (SRA) converts some structure
references into scalar references, exposing them to the scalar
optimizers.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
/* These RTL headers are needed for basic-block.h. */
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"
#include "bitmap.h"
#include "obstack.h"
#include "target.h"
/* expr.h is needed for MOVE_RATIO. */
#include "expr.h"
#include "params.h"
/* This object of this pass is to replace a non-addressable aggregate with a
set of independent variables. Most of the time, all of these variables
will be scalars. But a secondary objective is to break up larger
aggregates into smaller aggregates. In the process we may find that some
bits of the larger aggregate can be deleted as unreferenced.
This substitution is done globally. More localized substitutions would
be the purvey of a load-store motion pass.
The optimization proceeds in phases:
(1) Identify variables that have types that are candidates for
decomposition.
(2) Scan the function looking for the ways these variables are used.
In particular we're interested in the number of times a variable
(or member) is needed as a complete unit, and the number of times
a variable (or member) is copied.
(3) Based on the usage profile, instantiate substitution variables.
(4) Scan the function making replacements.
*/
/* True if this is the "early" pass, before inlining. */
static bool early_sra;
/* The set of todo flags to return from tree_sra. */
static unsigned int todoflags;
/* The set of aggregate variables that are candidates for scalarization. */
static bitmap sra_candidates;
/* Set of scalarizable PARM_DECLs that need copy-in operations at the
beginning of the function. */
static bitmap needs_copy_in;
/* Sets of bit pairs that cache type decomposition and instantiation. */
static bitmap sra_type_decomp_cache;
static bitmap sra_type_inst_cache;
/* One of these structures is created for each candidate aggregate and
each (accessed) member or group of members of such an aggregate. */
struct sra_elt
{
/* A tree of the elements. Used when we want to traverse everything. */
struct sra_elt *parent;
struct sra_elt *groups;
struct sra_elt *children;
struct sra_elt *sibling;
/* If this element is a root, then this is the VAR_DECL. If this is
a sub-element, this is some token used to identify the reference.
In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
of an ARRAY_REF, this is the (constant) index. In the case of an
ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
of a complex number, this is a zero or one. */
tree element;
/* The type of the element. */
tree type;
/* A VAR_DECL, for any sub-element we've decided to replace. */
tree replacement;
/* The number of times the element is referenced as a whole. I.e.
given "a.b.c", this would be incremented for C, but not for A or B. */
unsigned int n_uses;
/* The number of times the element is copied to or from another
scalarizable element. */
unsigned int n_copies;
/* True if TYPE is scalar. */
bool is_scalar;
/* True if this element is a group of members of its parent. */
bool is_group;
/* True if we saw something about this element that prevents scalarization,
such as non-constant indexing. */
bool cannot_scalarize;
/* True if we've decided that structure-to-structure assignment
should happen via memcpy and not per-element. */
bool use_block_copy;
/* True if everything under this element has been marked TREE_NO_WARNING. */
bool all_no_warning;
/* A flag for use with/after random access traversals. */
bool visited;
/* True if there is BIT_FIELD_REF on the lhs with a vector. */
bool is_vector_lhs;
/* 1 if the element is a field that is part of a block, 2 if the field
is the block itself, 0 if it's neither. */
char in_bitfld_block;
};
#define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
#define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
for ((CHILD) = (ELT)->is_group \
? next_child_for_group (NULL, (ELT)) \
: (ELT)->children; \
(CHILD); \
(CHILD) = (ELT)->is_group \
? next_child_for_group ((CHILD), (ELT)) \
: (CHILD)->sibling)
/* Helper function for above macro. Return next child in group. */
static struct sra_elt *
next_child_for_group (struct sra_elt *child, struct sra_elt *group)
{
gcc_assert (group->is_group);
/* Find the next child in the parent. */
if (child)
child = child->sibling;
else
child = group->parent->children;
/* Skip siblings that do not belong to the group. */
while (child)
{
tree g_elt = group->element;
if (TREE_CODE (g_elt) == RANGE_EXPR)
{
if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
&& !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
break;
}
else
gcc_unreachable ();
child = child->sibling;
}
return child;
}
/* Random access to the child of a parent is performed by hashing.
This prevents quadratic behavior, and allows SRA to function
reasonably on larger records. */
static htab_t sra_map;
/* All structures are allocated out of the following obstack. */
static struct obstack sra_obstack;
/* Debugging functions. */
static void dump_sra_elt_name (FILE *, struct sra_elt *);
extern void debug_sra_elt_name (struct sra_elt *);
/* Forward declarations. */
static tree generate_element_ref (struct sra_elt *);
static tree sra_build_assignment (tree dst, tree src);
static void mark_all_v_defs (tree list);
/* Return true if DECL is an SRA candidate. */
static bool
is_sra_candidate_decl (tree decl)
{
return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
}
/* Return true if TYPE is a scalar type. */
static bool
is_sra_scalar_type (tree type)
{
enum tree_code code = TREE_CODE (type);
return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
|| code == FIXED_POINT_TYPE
|| code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
|| code == POINTER_TYPE || code == OFFSET_TYPE
|| code == REFERENCE_TYPE);
}
/* Return true if TYPE can be decomposed into a set of independent variables.
Note that this doesn't imply that all elements of TYPE can be
instantiated, just that if we decide to break up the type into
separate pieces that it can be done. */
bool
sra_type_can_be_decomposed_p (tree type)
{
unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
tree t;
/* Avoid searching the same type twice. */
if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
return true;
if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
return false;
/* The type must have a definite nonzero size. */
if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|| integer_zerop (TYPE_SIZE (type)))
goto fail;
/* The type must be a non-union aggregate. */
switch (TREE_CODE (type))
{
case RECORD_TYPE:
{
bool saw_one_field = false;
for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
if (TREE_CODE (t) == FIELD_DECL)
{
/* Reject incorrectly represented bit fields. */
if (DECL_BIT_FIELD (t)
&& INTEGRAL_TYPE_P (TREE_TYPE (t))
&& (tree_low_cst (DECL_SIZE (t), 1)
!= TYPE_PRECISION (TREE_TYPE (t))))
goto fail;
saw_one_field = true;
}
/* Record types must have at least one field. */
if (!saw_one_field)
goto fail;
}
break;
case ARRAY_TYPE:
/* Array types must have a fixed lower and upper bound. */
t = TYPE_DOMAIN (type);
if (t == NULL)
goto fail;
if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
goto fail;
if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
goto fail;
break;
case COMPLEX_TYPE:
break;
default:
goto fail;
}
bitmap_set_bit (sra_type_decomp_cache, cache+0);
return true;
fail:
bitmap_set_bit (sra_type_decomp_cache, cache+1);
return false;
}
/* Return true if DECL can be decomposed into a set of independent
(though not necessarily scalar) variables. */
static bool
decl_can_be_decomposed_p (tree var)
{
/* Early out for scalars. */
if (is_sra_scalar_type (TREE_TYPE (var)))
return false;
/* The variable must not be aliased. */
if (!is_gimple_non_addressable (var))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Cannot scalarize variable ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, " because it must live in memory\n");
}
return false;
}
/* The variable must not be volatile. */
if (TREE_THIS_VOLATILE (var))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Cannot scalarize variable ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, " because it is declared volatile\n");
}
return false;
}
/* We must be able to decompose the variable's type. */
if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Cannot scalarize variable ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, " because its type cannot be decomposed\n");
}
return false;
}
/* HACK: if we decompose a va_list_type_node before inlining, then we'll
confuse tree-stdarg.c, and we won't be able to figure out which and
how many arguments are accessed. This really should be improved in
tree-stdarg.c, as the decomposition is truly a win. This could also
be fixed if the stdarg pass ran early, but this can't be done until
we've aliasing information early too. See PR 30791. */
if (early_sra
&& TYPE_MAIN_VARIANT (TREE_TYPE (var))
== TYPE_MAIN_VARIANT (va_list_type_node))
return false;
return true;
}
/* Return true if TYPE can be *completely* decomposed into scalars. */
static bool
type_can_instantiate_all_elements (tree type)
{
if (is_sra_scalar_type (type))
return true;
if (!sra_type_can_be_decomposed_p (type))
return false;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
{
unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
tree f;
if (bitmap_bit_p (sra_type_inst_cache, cache+0))
return true;
if (bitmap_bit_p (sra_type_inst_cache, cache+1))
return false;
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
{
bitmap_set_bit (sra_type_inst_cache, cache+1);
return false;
}
}
bitmap_set_bit (sra_type_inst_cache, cache+0);
return true;
}
case ARRAY_TYPE:
return type_can_instantiate_all_elements (TREE_TYPE (type));
case COMPLEX_TYPE:
return true;
default:
gcc_unreachable ();
}
}
/* Test whether ELT or some sub-element cannot be scalarized. */
static bool
can_completely_scalarize_p (struct sra_elt *elt)
{
struct sra_elt *c;
if (elt->cannot_scalarize)
return false;
for (c = elt->children; c; c = c->sibling)
if (!can_completely_scalarize_p (c))
return false;
for (c = elt->groups; c; c = c->sibling)
if (!can_completely_scalarize_p (c))
return false;
return true;
}
/* A simplified tree hashing algorithm that only handles the types of
trees we expect to find in sra_elt->element. */
static hashval_t
sra_hash_tree (tree t)
{
hashval_t h;
switch (TREE_CODE (t))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
h = DECL_UID (t);
break;
case INTEGER_CST:
h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
break;
case RANGE_EXPR:
h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
break;
case FIELD_DECL:
/* We can have types that are compatible, but have different member
lists, so we can't hash fields by ID. Use offsets instead. */
h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
break;
case BIT_FIELD_REF:
/* Don't take operand 0 into account, that's our parent. */
h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
break;
default:
gcc_unreachable ();
}
return h;
}
/* Hash function for type SRA_PAIR. */
static hashval_t
sra_elt_hash (const void *x)
{
const struct sra_elt *e = x;
const struct sra_elt *p;
hashval_t h;
h = sra_hash_tree (e->element);
/* Take into account everything except bitfield blocks back up the
chain. Given that chain lengths are rarely very long, this
should be acceptable. If we truly identify this as a performance
problem, it should work to hash the pointer value
"e->parent". */
for (p = e->parent; p ; p = p->parent)
if (!p->in_bitfld_block)
h = (h * 65521) ^ sra_hash_tree (p->element);
return h;
}
/* Equality function for type SRA_PAIR. */
static int
sra_elt_eq (const void *x, const void *y)
{
const struct sra_elt *a = x;
const struct sra_elt *b = y;
tree ae, be;
const struct sra_elt *ap = a->parent;
const struct sra_elt *bp = b->parent;
if (ap)
while (ap->in_bitfld_block)
ap = ap->parent;
if (bp)
while (bp->in_bitfld_block)
bp = bp->parent;
if (ap != bp)
return false;
ae = a->element;
be = b->element;
if (ae == be)
return true;
if (TREE_CODE (ae) != TREE_CODE (be))
return false;
switch (TREE_CODE (ae))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
/* These are all pointer unique. */
return false;
case INTEGER_CST:
/* Integers are not pointer unique, so compare their values. */
return tree_int_cst_equal (ae, be);
case RANGE_EXPR:
return
tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
&& tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
case FIELD_DECL:
/* Fields are unique within a record, but not between
compatible records. */
if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
return false;
return fields_compatible_p (ae, be);
case BIT_FIELD_REF:
return
tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
&& tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
default:
gcc_unreachable ();
}
}
/* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
may be null, in which case CHILD must be a DECL. */
static struct sra_elt *
lookup_element (struct sra_elt *parent, tree child, tree type,
enum insert_option insert)
{
struct sra_elt dummy;
struct sra_elt **slot;
struct sra_elt *elt;
if (parent)
dummy.parent = parent->is_group ? parent->parent : parent;
else
dummy.parent = NULL;
dummy.element = child;
slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
if (!slot && insert == NO_INSERT)
return NULL;
elt = *slot;
if (!elt && insert == INSERT)
{
*slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
memset (elt, 0, sizeof (*elt));
elt->parent = parent;
elt->element = child;
elt->type = type;
elt->is_scalar = is_sra_scalar_type (type);
if (parent)
{
if (IS_ELEMENT_FOR_GROUP (elt->element))
{
elt->is_group = true;
elt->sibling = parent->groups;
parent->groups = elt;
}
else
{
elt->sibling = parent->children;
parent->children = elt;
}
}
/* If this is a parameter, then if we want to scalarize, we have
one copy from the true function parameter. Count it now. */
if (TREE_CODE (child) == PARM_DECL)
{
elt->n_copies = 1;
bitmap_set_bit (needs_copy_in, DECL_UID (child));
}
}
return elt;
}
/* Create or return the SRA_ELT structure for EXPR if the expression
refers to a scalarizable variable. */
static struct sra_elt *
maybe_lookup_element_for_expr (tree expr)
{
struct sra_elt *elt;
tree child;
switch (TREE_CODE (expr))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
if (is_sra_candidate_decl (expr))
return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
return NULL;
case ARRAY_REF:
/* We can't scalarize variable array indices. */
if (in_array_bounds_p (expr))
child = TREE_OPERAND (expr, 1);
else
return NULL;
break;
case ARRAY_RANGE_REF:
/* We can't scalarize variable array indices. */
if (range_in_array_bounds_p (expr))
{
tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
child = build2 (RANGE_EXPR, integer_type_node,
TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
}
else
return NULL;
break;
case COMPONENT_REF:
{
tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
/* Don't look through unions. */
if (TREE_CODE (type) != RECORD_TYPE)
return NULL;
/* Neither through variable-sized records. */
if (TYPE_SIZE (type) == NULL_TREE
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
return NULL;
child = TREE_OPERAND (expr, 1);
}
break;
case REALPART_EXPR:
child = integer_zero_node;
break;
case IMAGPART_EXPR:
child = integer_one_node;
break;
default:
return NULL;
}
elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
if (elt)
return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
return NULL;
}
/* Functions to walk just enough of the tree to see all scalarizable
references, and categorize them. */
/* A set of callbacks for phases 2 and 4. They'll be invoked for the
various kinds of references seen. In all cases, *BSI is an iterator
pointing to the statement being processed. */
struct sra_walk_fns
{
/* Invoked when ELT is required as a unit. Note that ELT might refer to
a leaf node, in which case this is a simple scalar reference. *EXPR_P
points to the location of the expression. IS_OUTPUT is true if this
is a left-hand-side reference. USE_ALL is true if we saw something we
couldn't quite identify and had to force the use of the entire object. */
void (*use) (struct sra_elt *elt, tree *expr_p,
block_stmt_iterator *bsi, bool is_output, bool use_all);
/* Invoked when we have a copy between two scalarizable references. */
void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
block_stmt_iterator *bsi);
/* Invoked when ELT is initialized from a constant. VALUE may be NULL,
in which case it should be treated as an empty CONSTRUCTOR. */
void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
/* Invoked when we have a copy between one scalarizable reference ELT
and one non-scalarizable reference OTHER without side-effects.
IS_OUTPUT is true if ELT is on the left-hand side. */
void (*ldst) (struct sra_elt *elt, tree other,
block_stmt_iterator *bsi, bool is_output);
/* True during phase 2, false during phase 4. */
/* ??? This is a hack. */
bool initial_scan;
};
#ifdef ENABLE_CHECKING
/* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
static tree
sra_find_candidate_decl (tree *tp, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
enum tree_code code = TREE_CODE (t);
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
{
*walk_subtrees = 0;
if (is_sra_candidate_decl (t))
return t;
}
else if (TYPE_P (t))
*walk_subtrees = 0;
return NULL;
}
#endif
/* Walk most expressions looking for a scalarizable aggregate.
If we find one, invoke FNS->USE. */
static void
sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
const struct sra_walk_fns *fns)
{
tree expr = *expr_p;
tree inner = expr;
bool disable_scalarization = false;
bool use_all_p = false;
/* We're looking to collect a reference expression between EXPR and INNER,
such that INNER is a scalarizable decl and all other nodes through EXPR
are references that we can scalarize. If we come across something that
we can't scalarize, we reset EXPR. This has the effect of making it
appear that we're referring to the larger expression as a whole. */
while (1)
switch (TREE_CODE (inner))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
/* If there is a scalarizable decl at the bottom, then process it. */
if (is_sra_candidate_decl (inner))
{
struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
if (disable_scalarization)
elt->cannot_scalarize = true;
else
fns->use (elt, expr_p, bsi, is_output, use_all_p);
}
return;
case ARRAY_REF:
/* Non-constant index means any member may be accessed. Prevent the
expression from being scalarized. If we were to treat this as a
reference to the whole array, we can wind up with a single dynamic
index reference inside a loop being overridden by several constant
index references during loop setup. It's possible that this could
be avoided by using dynamic usage counts based on BB trip counts
(based on loop analysis or profiling), but that hardly seems worth
the effort. */
/* ??? Hack. Figure out how to push this into the scan routines
without duplicating too much code. */
if (!in_array_bounds_p (inner))
{
disable_scalarization = true;
goto use_all;
}
/* ??? Are we assured that non-constant bounds and stride will have
the same value everywhere? I don't think Fortran will... */
if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
goto use_all;
inner = TREE_OPERAND (inner, 0);
break;
case ARRAY_RANGE_REF:
if (!range_in_array_bounds_p (inner))
{
disable_scalarization = true;
goto use_all;
}
/* ??? See above non-constant bounds and stride . */
if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
goto use_all;
inner = TREE_OPERAND (inner, 0);
break;
case COMPONENT_REF:
{
tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
/* Don't look through unions. */
if (TREE_CODE (type) != RECORD_TYPE)
goto use_all;
/* Neither through variable-sized records. */
if (TYPE_SIZE (type) == NULL_TREE
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
goto use_all;
inner = TREE_OPERAND (inner, 0);
}
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
inner = TREE_OPERAND (inner, 0);
break;
case BIT_FIELD_REF:
/* A bit field reference to a specific vector is scalarized but for
ones for inputs need to be marked as used on the left hand size so
when we scalarize it, we can mark that variable as non renamable. */
if (is_output
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
{
struct sra_elt *elt
= maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
if (elt)
elt->is_vector_lhs = true;
}
/* A bit field reference (access to *multiple* fields simultaneously)
is not currently scalarized. Consider this an access to the full
outer element, to which walk_tree will bring us next. */
goto use_all;
case NOP_EXPR:
/* Similarly, a nop explicitly wants to look at an object in a
type other than the one we've scalarized. */
goto use_all;
case VIEW_CONVERT_EXPR:
/* Likewise for a view conversion, but with an additional twist:
it can be on the LHS and, in this case, an access to the full
outer element would mean a killing def. So we need to punt
if we haven't already a full access to the current element,
because we cannot pretend to have a killing def if we only
have a partial access at some level. */
if (is_output && !use_all_p && inner != expr)
disable_scalarization = true;
goto use_all;
case WITH_SIZE_EXPR:
/* This is a transparent wrapper. The entire inner expression really
is being used. */
goto use_all;
use_all:
expr_p = &TREE_OPERAND (inner, 0);
inner = expr = *expr_p;
use_all_p = true;
break;
default:
#ifdef ENABLE_CHECKING
/* Validate that we're not missing any references. */
gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
#endif
return;
}
}
/* Walk a TREE_LIST of values looking for scalarizable aggregates.
If we find one, invoke FNS->USE. */
static void
sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
const struct sra_walk_fns *fns)
{
tree op;
for (op = list; op ; op = TREE_CHAIN (op))
sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
}
/* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
If we find one, invoke FNS->USE. */
static void
sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
const struct sra_walk_fns *fns)
{
int i;
int nargs = call_expr_nargs (expr);
for (i = 0; i < nargs; i++)
sra_walk_expr (&CALL_EXPR_ARG (expr, i), bsi, false, fns);
}
/* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
aggregates. If we find one, invoke FNS->USE. */
static void
sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
const struct sra_walk_fns *fns)
{
sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
}
/* Walk a GIMPLE_MODIFY_STMT and categorize the assignment appropriately. */
static void
sra_walk_gimple_modify_stmt (tree expr, block_stmt_iterator *bsi,
const struct sra_walk_fns *fns)
{
struct sra_elt *lhs_elt, *rhs_elt;
tree lhs, rhs;
lhs = GIMPLE_STMT_OPERAND (expr, 0);
rhs = GIMPLE_STMT_OPERAND (expr, 1);
lhs_elt = maybe_lookup_element_for_expr (lhs);
rhs_elt = maybe_lookup_element_for_expr (rhs);
/* If both sides are scalarizable, this is a COPY operation. */
if (lhs_elt && rhs_elt)
{
fns->copy (lhs_elt, rhs_elt, bsi);
return;
}
/* If the RHS is scalarizable, handle it. There are only two cases. */
if (rhs_elt)
{
if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
fns->ldst (rhs_elt, lhs, bsi, false);
else
fns->use (rhs_elt, &GIMPLE_STMT_OPERAND (expr, 1), bsi, false, false);
}
/* If it isn't scalarizable, there may be scalarizable variables within, so
check for a call or else walk the RHS to see if we need to do any
copy-in operations. We need to do it before the LHS is scalarized so
that the statements get inserted in the proper place, before any
copy-out operations. */
else
{
tree call = get_call_expr_in (rhs);
if (call)
sra_walk_call_expr (call, bsi, fns);
else
sra_walk_expr (&GIMPLE_STMT_OPERAND (expr, 1), bsi, false, fns);
}
/* Likewise, handle the LHS being scalarizable. We have cases similar
to those above, but also want to handle RHS being constant. */
if (lhs_elt)
{
/* If this is an assignment from a constant, or constructor, then
we have access to all of the elements individually. Invoke INIT. */
if (TREE_CODE (rhs) == COMPLEX_EXPR
|| TREE_CODE (rhs) == COMPLEX_CST
|| TREE_CODE (rhs) == CONSTRUCTOR)
fns->init (lhs_elt, rhs, bsi);
/* If this is an assignment from read-only memory, treat this as if
we'd been passed the constructor directly. Invoke INIT. */
else if (TREE_CODE (rhs) == VAR_DECL
&& TREE_STATIC (rhs)
&& TREE_READONLY (rhs)
&& targetm.binds_local_p (rhs))
fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
/* If this is a copy from a non-scalarizable lvalue, invoke LDST.
The lvalue requirement prevents us from trying to directly scalarize
the result of a function call. Which would result in trying to call
the function multiple times, and other evil things. */
else if (!lhs_elt->is_scalar
&& !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
fns->ldst (lhs_elt, rhs, bsi, true);
/* Otherwise we're being used in some context that requires the
aggregate to be seen as a whole. Invoke USE. */
else
fns->use (lhs_elt, &GIMPLE_STMT_OPERAND (expr, 0), bsi, true, false);
}
/* Similarly to above, LHS_ELT being null only means that the LHS as a
whole is not a scalarizable reference. There may be occurrences of
scalarizable variables within, which implies a USE. */
else
sra_walk_expr (&GIMPLE_STMT_OPERAND (expr, 0), bsi, true, fns);
}
/* Entry point to the walk functions. Search the entire function,
invoking the callbacks in FNS on each of the references to
scalarizable variables. */
static void
sra_walk_function (const struct sra_walk_fns *fns)
{
basic_block bb;
block_stmt_iterator si, ni;
/* ??? Phase 4 could derive some benefit to walking the function in
dominator tree order. */
FOR_EACH_BB (bb)
for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
{
tree stmt, t;
stmt_ann_t ann;
stmt = bsi_stmt (si);
ann = stmt_ann (stmt);
ni = si;
bsi_next (&ni);
/* If the statement has no virtual operands, then it doesn't
make any structure references that we care about. */
if (gimple_aliases_computed_p (cfun)
&& ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
continue;
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
/* If we have "return <retval>" then the return value is
already exposed for our pleasure. Walk it as a USE to
force all the components back in place for the return.
If we have an embedded assignment, then <retval> is of
a type that gets returned in registers in this ABI, and
we do not wish to extend their lifetimes. Treat this
as a USE of the variable on the RHS of this assignment. */
t = TREE_OPERAND (stmt, 0);
if (t == NULL_TREE)
;
else if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
sra_walk_expr (&GIMPLE_STMT_OPERAND (t, 1), &si, false, fns);
else
sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
break;
case GIMPLE_MODIFY_STMT:
sra_walk_gimple_modify_stmt (stmt, &si, fns);
break;
case CALL_EXPR:
sra_walk_call_expr (stmt, &si, fns);
break;
case ASM_EXPR:
sra_walk_asm_expr (stmt, &si, fns);
break;
default:
break;
}
}
}
/* Phase One: Scan all referenced variables in the program looking for
structures that could be decomposed. */
static bool
find_candidates_for_sra (void)
{
bool any_set = false;
tree var;
referenced_var_iterator rvi;
FOR_EACH_REFERENCED_VAR (var, rvi)
{
if (decl_can_be_decomposed_p (var))
{
bitmap_set_bit (sra_candidates, DECL_UID (var));
any_set = true;
}
}
return any_set;
}
/* Phase Two: Scan all references to scalarizable variables. Count the
number of times they are used or copied respectively. */
/* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
considered a copy, because we can decompose the reference such that
the sub-elements needn't be contiguous. */
static void
scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
{
elt->n_uses += 1;
}
static void
scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
lhs_elt->n_copies += 1;
rhs_elt->n_copies += 1;
}
static void
scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
lhs_elt->n_copies += 1;
}
static void
scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
bool is_output ATTRIBUTE_UNUSED)
{
elt->n_copies += 1;
}
/* Dump the values we collected during the scanning phase. */
static void
scan_dump (struct sra_elt *elt)
{
struct sra_elt *c;
dump_sra_elt_name (dump_file, elt);
fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
for (c = elt->children; c ; c = c->sibling)
scan_dump (c);
for (c = elt->groups; c ; c = c->sibling)
scan_dump (c);
}
/* Entry point to phase 2. Scan the entire function, building up
scalarization data structures, recording copies and uses. */
static void
scan_function (void)
{
static const struct sra_walk_fns fns = {
scan_use, scan_copy, scan_init, scan_ldst, true
};
bitmap_iterator bi;
sra_walk_function (&fns);
if (dump_file && (dump_flags & TDF_DETAILS))
{
unsigned i;
fputs ("\nScan results:\n", dump_file);
EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
{
tree var = referenced_var (i);
struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
if (elt)
scan_dump (elt);
}
fputc ('\n', dump_file);
}
}
/* Phase Three: Make decisions about which variables to scalarize, if any.
All elements to be scalarized have replacement variables made for them. */
/* A subroutine of build_element_name. Recursively build the element
name on the obstack. */
static void
build_element_name_1 (struct sra_elt *elt)
{
tree t;
char buffer[32];
if (elt->parent)
{
build_element_name_1 (elt->parent);
obstack_1grow (&sra_obstack, '$');
if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
{
if (elt->element == integer_zero_node)
obstack_grow (&sra_obstack, "real", 4);
else
obstack_grow (&sra_obstack, "imag", 4);
return;
}
}
t = elt->element;
if (TREE_CODE (t) == INTEGER_CST)
{
/* ??? Eh. Don't bother doing double-wide printing. */
sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
obstack_grow (&sra_obstack, buffer, strlen (buffer));
}
else if (TREE_CODE (t) == BIT_FIELD_REF)
{
sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
tree_low_cst (TREE_OPERAND (t, 2), 1));
obstack_grow (&sra_obstack, buffer, strlen (buffer));
sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
tree_low_cst (TREE_OPERAND (t, 1), 1));
obstack_grow (&sra_obstack, buffer, strlen (buffer));
}
else
{
tree name = DECL_NAME (t);
if (name)
obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
IDENTIFIER_LENGTH (name));
else
{
sprintf (buffer, "D%u", DECL_UID (t));
obstack_grow (&sra_obstack, buffer, strlen (buffer));
}
}
}
/* Construct a pretty variable name for an element's replacement variable.
The name is built on the obstack. */
static char *
build_element_name (struct sra_elt *elt)
{
build_element_name_1 (elt);
obstack_1grow (&sra_obstack, '\0');
return XOBFINISH (&sra_obstack, char *);
}
/* Instantiate an element as an independent variable. */
static void
instantiate_element (struct sra_elt *elt)
{
struct sra_elt *base_elt;
tree var, base;
bool nowarn = TREE_NO_WARNING (elt->element);
for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
if (!nowarn)
nowarn = TREE_NO_WARNING (base_elt->parent->element);
base = base_elt->element;
elt->replacement = var = make_rename_temp (elt->type, "SR");
if (DECL_P (elt->element)
&& !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
{
DECL_SIZE (var) = DECL_SIZE (elt->element);
DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
elt->in_bitfld_block = 1;
elt->replacement = build3 (BIT_FIELD_REF, elt->type, var,
DECL_SIZE (var),
BYTES_BIG_ENDIAN
? size_binop (MINUS_EXPR,
TYPE_SIZE (elt->type),
DECL_SIZE (var))
: bitsize_int (0));
}
/* For vectors, if used on the left hand side with BIT_FIELD_REF,
they are not a gimple register. */
if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
DECL_GIMPLE_REG_P (var) = 0;
DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
DECL_ARTIFICIAL (var) = 1;
if (TREE_THIS_VOLATILE (elt->type))
{
TREE_THIS_VOLATILE (var) = 1;
TREE_SIDE_EFFECTS (var) = 1;
}
if (DECL_NAME (base) && !DECL_IGNORED_P (base))
{
char *pretty_name = build_element_name (elt);
DECL_NAME (var) = get_identifier (pretty_name);
obstack_free (&sra_obstack, pretty_name);
SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
DECL_DEBUG_EXPR_IS_FROM (var) = 1;
DECL_IGNORED_P (var) = 0;
TREE_NO_WARNING (var) = nowarn;
}
else
{
DECL_IGNORED_P (var) = 1;
/* ??? We can't generate any warning that would be meaningful. */
TREE_NO_WARNING (var) = 1;
}
/* Zero-initialize bit-field scalarization variables, to avoid
triggering undefined behavior. */
if (TREE_CODE (elt->element) == BIT_FIELD_REF
|| (var != elt->replacement
&& TREE_CODE (elt->replacement) == BIT_FIELD_REF))
{
tree init = sra_build_assignment (var, fold_convert (TREE_TYPE (var),
integer_zero_node));
insert_edge_copies (init, ENTRY_BLOCK_PTR);
mark_all_v_defs (init);
}
if (dump_file)
{
fputs (" ", dump_file);
dump_sra_elt_name (dump_file, elt);
fputs (" -> ", dump_file);
print_generic_expr (dump_file, var, dump_flags);
fputc ('\n', dump_file);
}
}
/* Make one pass across an element tree deciding whether or not it's
profitable to instantiate individual leaf scalars.
PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
fields all the way up the tree. */
static void
decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
unsigned int parent_copies)
{
if (dump_file && !elt->parent)
{
fputs ("Initial instantiation for ", dump_file);
dump_sra_elt_name (dump_file, elt);
fputc ('\n', dump_file);
}
if (elt->cannot_scalarize)
return;
if (elt->is_scalar)
{
/* The decision is simple: instantiate if we're used more frequently
than the parent needs to be seen as a complete unit. */
if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
instantiate_element (elt);
}
else
{
struct sra_elt *c, *group;
unsigned int this_uses = elt->n_uses + parent_uses;
unsigned int this_copies = elt->n_copies + parent_copies;
/* Consider groups of sub-elements as weighing in favour of
instantiation whatever their size. */
for (group = elt->groups; group ; group = group->sibling)
FOR_EACH_ACTUAL_CHILD (c, group)
{
c->n_uses += group->n_uses;
c->n_copies += group->n_copies;
}
for (c = elt->children; c ; c = c->sibling)
decide_instantiation_1 (c, this_uses, this_copies);
}
}
/* Compute the size and number of all instantiated elements below ELT.
We will only care about this if the size of the complete structure
fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
static unsigned int
sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
{
if (elt->replacement)
{
*sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
return 1;
}
else
{
struct sra_elt *c;
unsigned int count = 0;
for (c = elt->children; c ; c = c->sibling)
count += sum_instantiated_sizes (c, sizep);
return count;
}
}
/* Instantiate fields in ELT->TYPE that are not currently present as
children of ELT. */
static void instantiate_missing_elements (struct sra_elt *elt);
static struct sra_elt *
instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
{
struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
if (sub->is_scalar)
{
if (sub->replacement == NULL)
instantiate_element (sub);
}
else
instantiate_missing_elements (sub);
return sub;
}
/* Obtain the canonical type for field F of ELEMENT. */
static tree
canon_type_for_field (tree f, tree element)
{
tree field_type = TREE_TYPE (f);
/* canonicalize_component_ref() unwidens some bit-field types (not
marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
may introduce type mismatches. */
if (INTEGRAL_TYPE_P (field_type)
&& DECL_MODE (f) != TYPE_MODE (field_type))
field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
field_type,
element,
f, NULL_TREE),
NULL_TREE));
return field_type;
}
/* Look for adjacent fields of ELT starting at F that we'd like to
scalarize as a single variable. Return the last field of the
group. */
static tree
try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
{
int count;
unsigned HOST_WIDE_INT align, bit, size, alchk;
enum machine_mode mode;
tree first = f, prev;
tree type, var;
struct sra_elt *block;
/* Point fields are typically best handled as standalone entities. */
if (POINTER_TYPE_P (TREE_TYPE (f)))
return f;
if (!is_sra_scalar_type (TREE_TYPE (f))
|| !host_integerp (DECL_FIELD_OFFSET (f), 1)
|| !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
|| !host_integerp (DECL_SIZE (f), 1)
|| lookup_element (elt, f, NULL, NO_INSERT))
return f;
block = elt;
/* For complex and array objects, there are going to be integer
literals as child elements. In this case, we can't just take the
alignment and mode of the decl, so we instead rely on the element
type.
??? We could try to infer additional alignment from the full
object declaration and the location of the sub-elements we're
accessing. */
for (count = 0; !DECL_P (block->element); count++)
block = block->parent;
align = DECL_ALIGN (block->element);
alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
if (count)
{
type = TREE_TYPE (block->element);
while (count--)
type = TREE_TYPE (type);
align = TYPE_ALIGN (type);
alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
}
if (align < alchk)
align = alchk;
/* Coalescing wider fields is probably pointless and
inefficient. */
if (align > BITS_PER_WORD)
align = BITS_PER_WORD;
bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
+ tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
size = tree_low_cst (DECL_SIZE (f), 1);
alchk = align - 1;
alchk = ~alchk;
if ((bit & alchk) != ((bit + size - 1) & alchk))
return f;
/* Find adjacent fields in the same alignment word. */
for (prev = f, f = TREE_CHAIN (f);
f && TREE_CODE (f) == FIELD_DECL
&& is_sra_scalar_type (TREE_TYPE (f))
&& host_integerp (DECL_FIELD_OFFSET (f), 1)
&& host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
&& host_integerp (DECL_SIZE (f), 1)
&& !lookup_element (elt, f, NULL, NO_INSERT);
prev = f, f = TREE_CHAIN (f))
{
unsigned HOST_WIDE_INT nbit, nsize;
nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
+ tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
nsize = tree_low_cst (DECL_SIZE (f), 1);
if (bit + size == nbit)
{
if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
{
/* If we're at an alignment boundary, don't bother
growing alignment such that we can include this next
field. */
if ((nbit & alchk)
|| GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
break;
align = GET_MODE_BITSIZE (DECL_MODE (f));
alchk = align - 1;
alchk = ~alchk;
if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
break;
}
size += nsize;
}
else if (nbit + nsize == bit)
{
if ((nbit & alchk) != ((bit + size - 1) & alchk))
{
if ((bit & alchk)
|| GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
break;
align = GET_MODE_BITSIZE (DECL_MODE (f));
alchk = align - 1;
alchk = ~alchk;
if ((nbit & alchk) != ((bit + size - 1) & alchk))
break;
}
bit = nbit;
size += nsize;
}
else
break;
}
f = prev;
if (f == first)
return f;
gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
/* Try to widen the bit range so as to cover padding bits as well. */
if ((bit & ~alchk) || size != align)
{
unsigned HOST_WIDE_INT mbit = bit & alchk;
unsigned HOST_WIDE_INT msize = align;
for (f = TYPE_FIELDS (elt->type);
f; f = TREE_CHAIN (f))
{
unsigned HOST_WIDE_INT fbit, fsize;
/* Skip the fields from first to prev. */
if (f == first)
{
f = prev;
continue;
}
if (!(TREE_CODE (f) == FIELD_DECL
&& host_integerp (DECL_FIELD_OFFSET (f), 1)
&& host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
continue;
fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
+ tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
/* If we're past the selected word, we're fine. */
if ((bit & alchk) < (fbit & alchk))
continue;
if (host_integerp (DECL_SIZE (f), 1))
fsize = tree_low_cst (DECL_SIZE (f), 1);
else
/* Assume a variable-sized field takes up all space till
the end of the word. ??? Endianness issues? */
fsize = align - (fbit & alchk);
if ((fbit & alchk) < (bit & alchk))
{
/* A large field might start at a previous word and
extend into the selected word. Exclude those
bits. ??? Endianness issues? */
HOST_WIDE_INT diff = fbit + fsize - mbit;
if (diff <= 0)
continue;
mbit += diff;
msize -= diff;
}
else
{
/* Non-overlapping, great. */
if (fbit + fsize <= mbit
|| mbit + msize <= fbit)
continue;
if (fbit <= mbit)
{
unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
mbit += diff;
msize -= diff;
}
else if (fbit > mbit)
msize -= (mbit + msize - fbit);
else
gcc_unreachable ();
}
}
bit = mbit;
size = msize;
}
/* Now we know the bit range we're interested in. Find the smallest
machine mode we can use to access it. */
for (mode = smallest_mode_for_size (size, MODE_INT);
;
mode = GET_MODE_WIDER_MODE (mode))
{
gcc_assert (mode != VOIDmode);
alchk = GET_MODE_PRECISION (mode) - 1;
alchk = ~alchk;
if ((bit & alchk) == ((bit + size - 1) & alchk))
break;
}
gcc_assert (~alchk < align);
/* Create the field group as a single variable. */
/* We used to create a type for the mode above, but size turns
to be out not of mode-size. As we need a matching type
to build a BIT_FIELD_REF, use a nonstandard integer type as
fallback. */
type = lang_hooks.types.type_for_size (size, 1);
if (!type || TYPE_PRECISION (type) != size)
type = build_nonstandard_integer_type (size, 1);
gcc_assert (type);
var = build3 (BIT_FIELD_REF, type, NULL_TREE,
bitsize_int (size),
bitsize_int (bit));
block = instantiate_missing_elements_1 (elt, var, type);
gcc_assert (block && block->is_scalar);
var = block->replacement;
if ((bit & ~alchk)
|| (HOST_WIDE_INT)size != tree_low_cst (DECL_SIZE (var), 1))
{
block->replacement = build3 (BIT_FIELD_REF,
TREE_TYPE (block->element), var,
bitsize_int (size),
bitsize_int (bit & ~alchk));
}
block->in_bitfld_block = 2;
/* Add the member fields to the group, such that they access
portions of the group variable. */
for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
{
tree field_type = canon_type_for_field (f, elt->element);
struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
gcc_assert (fld && fld->is_scalar && !fld->replacement);
fld->replacement = build3 (BIT_FIELD_REF, field_type, var,
DECL_SIZE (f),
bitsize_int
((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
* BITS_PER_UNIT
+ (TREE_INT_CST_LOW
(DECL_FIELD_BIT_OFFSET (f))))
& ~alchk));
fld->in_bitfld_block = 1;
}
return prev;
}
static void
instantiate_missing_elements (struct sra_elt *elt)
{
tree type = elt->type;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
{
tree f;
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
tree last = try_instantiate_multiple_fields (elt, f);
if (last != f)
{
f = last;
continue;
}
instantiate_missing_elements_1 (elt, f,
canon_type_for_field
(f, elt->element));
}
break;
}
case ARRAY_TYPE:
{
tree i, max, subtype;
i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
subtype = TREE_TYPE (type);
while (1)
{
instantiate_missing_elements_1 (elt, i, subtype);
if (tree_int_cst_equal (i, max))
break;
i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
}
break;
}
case COMPLEX_TYPE:
type = TREE_TYPE (type);
instantiate_missing_elements_1 (elt, integer_zero_node, type);
instantiate_missing_elements_1 (elt, integer_one_node, type);
break;
default:
gcc_unreachable ();
}
}
/* Return true if there is only one non aggregate field in the record, TYPE.
Return false otherwise. */
static bool
single_scalar_field_in_record_p (tree type)
{
int num_fields = 0;
tree field;
if (TREE_CODE (type) != RECORD_TYPE)
return false;
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
num_fields++;
if (num_fields == 2)
return false;
if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
return false;
}
return true;
}
/* Make one pass across an element tree deciding whether to perform block
or element copies. If we decide on element copies, instantiate all
elements. Return true if there are any instantiated sub-elements. */
static bool
decide_block_copy (struct sra_elt *elt)
{
struct sra_elt *c;
bool any_inst;
/* We shouldn't be invoked on groups of sub-elements as they must
behave like their parent as far as block copy is concerned. */
gcc_assert (!elt->is_group);
/* If scalarization is disabled, respect it. */
if (elt->cannot_scalarize)
{
elt->use_block_copy = 1;
if (dump_file)
{
fputs ("Scalarization disabled for ", dump_file);
dump_sra_elt_name (dump_file, elt);
fputc ('\n', dump_file);
}
/* Disable scalarization of sub-elements */
for (c = elt->children; c; c = c->sibling)
{
c->cannot_scalarize = 1;
decide_block_copy (c);
}
/* Groups behave like their parent. */
for (c = elt->groups; c; c = c->sibling)
{
c->cannot_scalarize = 1;
c->use_block_copy = 1;
}
return false;
}
/* Don't decide if we've no uses and no groups. */
if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
;
else if (!elt->is_scalar)
{
tree size_tree = TYPE_SIZE_UNIT (elt->type);
bool use_block_copy = true;
/* Tradeoffs for COMPLEX types pretty much always make it better
to go ahead and split the components. */
if (TREE_CODE (elt->type) == COMPLEX_TYPE)
use_block_copy = false;
/* Don't bother trying to figure out the rest if the structure is
so large we can't do easy arithmetic. This also forces block
copies for variable sized structures. */
else if (host_integerp (size_tree, 1))
{
unsigned HOST_WIDE_INT full_size, inst_size = 0;
unsigned int max_size, max_count, inst_count, full_count;
/* If the sra-max-structure-size parameter is 0, then the
user has not overridden the parameter and we can choose a
sensible default. */
max_size = SRA_MAX_STRUCTURE_SIZE
? SRA_MAX_STRUCTURE_SIZE
: MOVE_RATIO * UNITS_PER_WORD;
max_count = SRA_MAX_STRUCTURE_COUNT
? SRA_MAX_STRUCTURE_COUNT
: MOVE_RATIO;
full_size = tree_low_cst (size_tree, 1);
full_count = count_type_elements (elt->type, false);
inst_count = sum_instantiated_sizes (elt, &inst_size);
/* If there is only one scalar field in the record, don't block copy. */
if (single_scalar_field_in_record_p (elt->type))
use_block_copy = false;
/* ??? What to do here. If there are two fields, and we've only
instantiated one, then instantiating the other is clearly a win.
If there are a large number of fields then the size of the copy
is much more of a factor. */
/* If the structure is small, and we've made copies, go ahead
and instantiate, hoping that the copies will go away. */
if (full_size <= max_size
&& (full_count - inst_count) <= max_count
&& elt->n_copies > elt->n_uses)
use_block_copy = false;
else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
&& inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
use_block_copy = false;
/* In order to avoid block copy, we have to be able to instantiate
all elements of the type. See if this is possible. */
if (!use_block_copy
&& (!can_completely_scalarize_p (elt)
|| !type_can_instantiate_all_elements (elt->type)))
use_block_copy = true;
}
elt->use_block_copy = use_block_copy;
/* Groups behave like their parent. */
for (c = elt->groups; c; c = c->sibling)
c->use_block_copy = use_block_copy;
if (dump_file)
{
fprintf (dump_file, "Using %s for ",
use_block_copy ? "block-copy" : "element-copy");
dump_sra_elt_name (dump_file, elt);
fputc ('\n', dump_file);
}
if (!use_block_copy)
{
instantiate_missing_elements (elt);
return true;
}
}
any_inst = elt->replacement != NULL;
for (c = elt->children; c ; c = c->sibling)
any_inst |= decide_block_copy (c);
return any_inst;
}
/* Entry point to phase 3. Instantiate scalar replacement variables. */
static void
decide_instantiations (void)
{
unsigned int i;
bool cleared_any;
bitmap_head done_head;
bitmap_iterator bi;
/* We cannot clear bits from a bitmap we're iterating over,
so save up all the bits to clear until the end. */
bitmap_initialize (&done_head, &bitmap_default_obstack);
cleared_any = false;
EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
{
tree var = referenced_var (i);
struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
if (elt)
{
decide_instantiation_1 (elt, 0, 0);
if (!decide_block_copy (elt))
elt = NULL;
}
if (!elt)
{
bitmap_set_bit (&done_head, i);
cleared_any = true;
}
}
if (cleared_any)
{
bitmap_and_compl_into (sra_candidates, &done_head);
bitmap_and_compl_into (needs_copy_in, &done_head);
}
bitmap_clear (&done_head);
mark_set_for_renaming (sra_candidates);
if (dump_file)
fputc ('\n', dump_file);
}
/* Phase Four: Update the function to match the replacements created. */
/* Mark all the variables in VDEF/VUSE operators for STMT for
renaming. This becomes necessary when we modify all of a
non-scalar. */
static void
mark_all_v_defs_1 (tree stmt)
{
tree sym;
ssa_op_iter iter;
update_stmt_if_modified (stmt);
FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
{
if (TREE_CODE (sym) == SSA_NAME)
sym = SSA_NAME_VAR (sym);
mark_sym_for_renaming (sym);
}
}
/* Mark all the variables in virtual operands in all the statements in
LIST for renaming. */
static void
mark_all_v_defs (tree list)
{
if (TREE_CODE (list) != STATEMENT_LIST)
mark_all_v_defs_1 (list);
else
{
tree_stmt_iterator i;
for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
mark_all_v_defs_1 (tsi_stmt (i));
}
}
/* Mark every replacement under ELT with TREE_NO_WARNING. */
static void
mark_no_warning (struct sra_elt *elt)
{
if (!elt->all_no_warning)
{
if (elt->replacement)
TREE_NO_WARNING (elt->replacement) = 1;
else
{
struct sra_elt *c;
FOR_EACH_ACTUAL_CHILD (c, elt)
mark_no_warning (c);
}
elt->all_no_warning = true;
}
}
/* Build a single level component reference to ELT rooted at BASE. */
static tree
generate_one_element_ref (struct sra_elt *elt, tree base)
{
switch (TREE_CODE (TREE_TYPE (base)))
{
case RECORD_TYPE:
{
tree field = elt->element;
/* We can't test elt->in_bitfld_block here because, when this is
called from instantiate_element, we haven't set this field
yet. */
if (TREE_CODE (field) == BIT_FIELD_REF)
{
tree ret = unshare_expr (field);
TREE_OPERAND (ret, 0) = base;
return ret;
}
/* Watch out for compatible records with differing field lists. */
if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
field = find_compatible_field (TREE_TYPE (base), field);
return build3 (COMPONENT_REF, elt->type, base, field, NULL);
}
case ARRAY_TYPE:
if (TREE_CODE (elt->element) == RANGE_EXPR)
return build4 (ARRAY_RANGE_REF, elt->type, base,
TREE_OPERAND (elt->element, 0), NULL, NULL);
else
return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
case COMPLEX_TYPE:
if (elt->element == integer_zero_node)
return build1 (REALPART_EXPR, elt->type, base);
else
return build1 (IMAGPART_EXPR, elt->type, base);
default:
gcc_unreachable ();
}
}
/* Build a full component reference to ELT rooted at its native variable. */
static tree
generate_element_ref (struct sra_elt *elt)
{
if (elt->parent)
return generate_one_element_ref (elt, generate_element_ref (elt->parent));
else
return elt->element;
}
/* Return true if BF is a bit-field that we can handle like a scalar. */
static bool
scalar_bitfield_p (tree bf)
{
return (TREE_CODE (bf) == BIT_FIELD_REF
&& (is_gimple_reg (TREE_OPERAND (bf, 0))
|| (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
&& (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
|| (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
(TREE_OPERAND (bf, 0))))
<= BITS_PER_WORD)))));
}
/* Create an assignment statement from SRC to DST. */
static tree
sra_build_assignment (tree dst, tree src)
{
/* Turning BIT_FIELD_REFs into bit operations enables other passes
to do a much better job at optimizing the code.
From dst = BIT_FIELD_REF <var, sz, off> we produce
SR.1 = (scalar type) var;
SR.2 = SR.1 >> off;
SR.3 = SR.2 & ((1 << sz) - 1);
... possible sign extension of SR.3 ...
dst = (destination type) SR.3;
*/
if (scalar_bitfield_p (src))
{
tree var, shift, width;
tree utype, stype, stmp, utmp, dtmp;
tree list, stmt;
bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
var = TREE_OPERAND (src, 0);
width = TREE_OPERAND (src, 1);
/* The offset needs to be adjusted to a right shift quantity
depending on the endianness. */
if (BYTES_BIG_ENDIAN)
{
tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
}
else
shift = TREE_OPERAND (src, 2);
/* In weird cases we have non-integral types for the source or
destination object.
??? For unknown reasons we also want an unsigned scalar type. */
stype = TREE_TYPE (var);
if (!INTEGRAL_TYPE_P (stype))
stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
(TYPE_SIZE (stype)), 1);
else if (!TYPE_UNSIGNED (stype))
stype = unsigned_type_for (stype);
utype = TREE_TYPE (dst);
if (!INTEGRAL_TYPE_P (utype))
utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
(TYPE_SIZE (utype)), 1);
else if (!TYPE_UNSIGNED (utype))
utype = unsigned_type_for (utype);
list = NULL;
stmp = make_rename_temp (stype, "SR");
/* Convert the base var of the BIT_FIELD_REF to the scalar type
we use for computation if we cannot use it directly. */
if (!useless_type_conversion_p (stype, TREE_TYPE (var)))
{
if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
stmt = build_gimple_modify_stmt (stmp,
fold_convert (stype, var));
else
stmt = build_gimple_modify_stmt (stmp,
fold_build1 (VIEW_CONVERT_EXPR,
stype, var));
append_to_statement_list (stmt, &list);
var = stmp;
}
if (!integer_zerop (shift))
{
stmt = build_gimple_modify_stmt (stmp,
fold_build2 (RSHIFT_EXPR, stype,
var, shift));
append_to_statement_list (stmt, &list);
var = stmp;
}
/* If we need a masking operation, produce one. */
if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
unsignedp = true;
else
{
tree one = build_int_cst_wide (stype, 1, 0);
tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
mask = int_const_binop (MINUS_EXPR, mask, one, 0);
stmt = build_gimple_modify_stmt (stmp,
fold_build2 (BIT_AND_EXPR, stype,
var, mask));
append_to_statement_list (stmt, &list);
var = stmp;
}
/* After shifting and masking, convert to the target type. */
utmp = stmp;
if (!useless_type_conversion_p (utype, stype))
{
utmp = make_rename_temp (utype, "SR");
stmt = build_gimple_modify_stmt (utmp, fold_convert (utype, var));
append_to_statement_list (stmt, &list);
var = utmp;
}
/* Perform sign extension, if required.
??? This should never be necessary. */
if (!unsignedp)
{
tree signbit = int_const_binop (LSHIFT_EXPR,
build_int_cst_wide (utype, 1, 0),
size_binop (MINUS_EXPR, width,
bitsize_int (1)), 0);
stmt = build_gimple_modify_stmt (utmp,
fold_build2 (BIT_XOR_EXPR, utype,
var, signbit));
append_to_statement_list (stmt, &list);
stmt = build_gimple_modify_stmt (utmp,
fold_build2 (MINUS_EXPR, utype,
utmp, signbit));
append_to_statement_list (stmt, &list);
var = utmp;
}
/* Finally, move and convert to the destination. */
if (!useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (var)))
{
if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
var = fold_convert (TREE_TYPE (dst), var);
else
var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
/* If the destination is not a register the conversion needs
to be a separate statement. */
if (!is_gimple_reg (dst))
{
dtmp = make_rename_temp (TREE_TYPE (dst), "SR");
stmt = build_gimple_modify_stmt (dtmp, var);
append_to_statement_list (stmt, &list);
var = dtmp;
}
}
stmt = build_gimple_modify_stmt (dst, var);
append_to_statement_list (stmt, &list);
return list;
}
/* It was hoped that we could perform some type sanity checking
here, but since front-ends can emit accesses of fields in types
different from their nominal types and copy structures containing
them as a whole, we'd have to handle such differences here.
Since such accesses under different types require compatibility
anyway, there's little point in making tests and/or adding
conversions to ensure the types of src and dst are the same.
So we just assume type differences at this point are ok.
The only exception we make here are pointer types, which can be different
in e.g. structurally equal, but non-identical RECORD_TYPEs. */
if (POINTER_TYPE_P (TREE_TYPE (dst))
&& !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
src = fold_convert (TREE_TYPE (dst), src);
return build_gimple_modify_stmt (dst, src);
}
/* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
takes care of assignments, but we must create copies for uses. */
#define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
/* Emit an assignment from SRC to DST, but if DST is a scalarizable
BIT_FIELD_REF, turn it into bit operations. */
static tree
sra_build_bf_assignment (tree dst, tree src)
{
tree var, type, utype, tmp, tmp2, tmp3;
tree list, stmt;
tree cst, cst2, mask;
tree minshift, maxshift;
if (TREE_CODE (dst) != BIT_FIELD_REF)
return sra_build_assignment (dst, src);
var = TREE_OPERAND (dst, 0);
if (!scalar_bitfield_p (dst))
return sra_build_assignment (REPLDUP (dst), src);
list = NULL;
cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
cst2 = size_binop (PLUS_EXPR,
fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
cst);
if (BYTES_BIG_ENDIAN)
{
maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
}
else
{
maxshift = cst2;
minshift = cst;
}
type = TREE_TYPE (var);
if (!INTEGRAL_TYPE_P (type))
type = lang_hooks.types.type_for_size
(TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
if (TYPE_UNSIGNED (type))
utype = type;
else
utype = unsigned_type_for (type);
mask = build_int_cst_wide (utype, 1, 0);
if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
cst = build_int_cst_wide (utype, 0, 0);
else
cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
if (integer_zerop (minshift))
cst2 = mask;
else
cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
&& !integer_zerop (mask))
{
tmp = var;
if (!is_gimple_variable (tmp))
tmp = unshare_expr (var);
tmp2 = make_rename_temp (utype, "SR");
if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
stmt = build_gimple_modify_stmt (tmp2, fold_convert (utype, tmp));
else
stmt = build_gimple_modify_stmt (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
utype, tmp));
append_to_statement_list (stmt, &list);
}
else
tmp2 = var;
if (!integer_zerop (mask))
{
tmp = make_rename_temp (utype, "SR");
stmt = build_gimple_modify_stmt (tmp,
fold_build2 (BIT_AND_EXPR, utype,
tmp2, mask));
append_to_statement_list (stmt, &list);
}
else
tmp = mask;
if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
tmp2 = src;
else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
{
tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
stmt = sra_build_assignment (tmp2, src);
append_to_statement_list (stmt, &list);
}
else
{
tmp2 = make_rename_temp
(lang_hooks.types.type_for_size
(TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
1), "SR");
stmt = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
TREE_TYPE (tmp2), src));
append_to_statement_list (stmt, &list);
}
if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
{
tree ut = unsigned_type_for (TREE_TYPE (tmp2));
tmp3 = make_rename_temp (ut, "SR");
tmp2 = fold_convert (ut, tmp2);
stmt = sra_build_assignment (tmp3, tmp2);
append_to_statement_list (stmt, &list);
tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
tmp2 = fold_convert (ut, tmp2);
tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
if (tmp3 != tmp2)
{
tmp3 = make_rename_temp (ut, "SR");
stmt = sra_build_assignment (tmp3, tmp2);
append_to_statement_list (stmt, &list);
}
tmp2 = tmp3;
}
if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
{
tmp3 = make_rename_temp (utype, "SR");
tmp2 = fold_convert (utype, tmp2);
stmt = sra_build_assignment (tmp3, tmp2);
append_to_statement_list (stmt, &list);
tmp2 = tmp3;
}
if (!integer_zerop (minshift))
{
tmp3 = make_rename_temp (utype, "SR");
stmt = build_gimple_modify_stmt (tmp3,
fold_build2 (LSHIFT_EXPR, utype,
tmp2, minshift));
append_to_statement_list (stmt, &list);
tmp2 = tmp3;
}
if (utype != TREE_TYPE (var))
tmp3 = make_rename_temp (utype, "SR");
else
tmp3 = var;
stmt = build_gimple_modify_stmt (tmp3,
fold_build2 (BIT_IOR_EXPR, utype,
tmp, tmp2));
append_to_statement_list (stmt, &list);
if (tmp3 != var)
{
if (TREE_TYPE (var) == type)
stmt = build_gimple_modify_stmt (var,
fold_convert (type, tmp3));
else
stmt = build_gimple_modify_stmt (var,
fold_build1 (VIEW_CONVERT_EXPR,
TREE_TYPE (var), tmp3));
append_to_statement_list (stmt, &list);
}
return list;
}
/* Expand an assignment of SRC to the scalarized representation of
ELT. If it is a field group, try to widen the assignment to cover
the full variable. */
static tree
sra_build_elt_assignment (struct sra_elt *elt, tree src)
{
tree dst = elt->replacement;
tree var, tmp, cst, cst2, list, stmt;
if (TREE_CODE (dst) != BIT_FIELD_REF
|| !elt->in_bitfld_block)
return sra_build_assignment (REPLDUP (dst), src);
var = TREE_OPERAND (dst, 0);
/* Try to widen the assignment to the entire variable.
We need the source to be a BIT_FIELD_REF as well, such that, for
BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
by design, conditions are met such that we can turn it into
d = BIT_FIELD_REF<s,dw,sp-dp>. */
if (elt->in_bitfld_block == 2
&& TREE_CODE (src) == BIT_FIELD_REF)
{
tmp = src;
cst = TYPE_SIZE (TREE_TYPE (var));
cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
TREE_OPERAND (dst, 2));
src = TREE_OPERAND (src, 0);
/* Avoid full-width bit-fields. */
if (integer_zerop (cst2)
&& tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
{
if (INTEGRAL_TYPE_P (TREE_TYPE (src))
&& !TYPE_UNSIGNED (TREE_TYPE (src)))
src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
/* If a single conversion won't do, we'll need a statement
list. */
if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
!= TYPE_MAIN_VARIANT (TREE_TYPE (src)))
{
list = NULL;
if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
src = fold_build1 (VIEW_CONVERT_EXPR,
lang_hooks.types.type_for_size
(TREE_INT_CST_LOW
(TYPE_SIZE (TREE_TYPE (src))),
1), src);
gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
tmp = make_rename_temp (TREE_TYPE (src), "SR");
stmt = build_gimple_modify_stmt (tmp, src);
append_to_statement_list (stmt, &list);
stmt = sra_build_assignment (var,
fold_convert (TREE_TYPE (var),
tmp));
append_to_statement_list (stmt, &list);
return list;
}
src = fold_convert (TREE_TYPE (var), src);
}
else
{
src = fold_convert (TREE_TYPE (var), tmp);
}
return sra_build_assignment (var, src);
}
return sra_build_bf_assignment (dst, src);
}
/* Generate a set of assignment statements in *LIST_P to copy all
instantiated elements under ELT to or from the equivalent structure
rooted at EXPR. COPY_OUT controls the direction of the copy, with
true meaning to copy out of EXPR into ELT. */
static void
generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
tree *list_p)
{
struct sra_elt *c;
tree t;
if (!copy_out && TREE_CODE (expr) == SSA_NAME
&& TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
{
tree r, i;
c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
r = c->replacement;
c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
i = c->replacement;
t = build2 (COMPLEX_EXPR, elt->type, r, i);
t = sra_build_bf_assignment (expr, t);
SSA_NAME_DEF_STMT (expr) = t;
append_to_statement_list (t, list_p);
}
else if (elt->replacement)
{
if (copy_out)
t = sra_build_elt_assignment (elt, expr);
else
t = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
append_to_statement_list (t, list_p);
}
else
{
FOR_EACH_ACTUAL_CHILD (c, elt)
{
t = generate_one_element_ref (c, unshare_expr (expr));
generate_copy_inout (c, copy_out, t, list_p);
}
}
}
/* Generate a set of assignment statements in *LIST_P to copy all instantiated
elements under SRC to their counterparts under DST. There must be a 1-1
correspondence of instantiated elements. */
static void
generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
{
struct sra_elt *dc, *sc;
FOR_EACH_ACTUAL_CHILD (dc, dst)
{
sc = lookup_element (src, dc->element, NULL, NO_INSERT);
if (!sc && dc->in_bitfld_block == 2)
{
struct sra_elt *dcs;
FOR_EACH_ACTUAL_CHILD (dcs, dc)
{
sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
gcc_assert (sc);
generate_element_copy (dcs, sc, list_p);
}
continue;
}
/* If DST and SRC are structs with the same elements, but do not have
the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
will fail. Try harder by finding the corresponding FIELD_DECL
in SRC. */
if (!sc)
{
tree f;
gcc_assert (useless_type_conversion_p (dst->type, src->type));
gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
if (simple_cst_equal (DECL_FIELD_OFFSET (f),
DECL_FIELD_OFFSET (dc->element)) > 0
&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
DECL_FIELD_BIT_OFFSET (dc->element)) > 0
&& simple_cst_equal (DECL_SIZE (f),
DECL_SIZE (dc->element)) > 0
&& (useless_type_conversion_p (TREE_TYPE (dc->element),
TREE_TYPE (f))
|| (POINTER_TYPE_P (TREE_TYPE (dc->element))
&& POINTER_TYPE_P (TREE_TYPE (f)))))
break;
gcc_assert (f != NULL_TREE);
sc = lookup_element (src, f, NULL, NO_INSERT);
}
generate_element_copy (dc, sc, list_p);
}
if (dst->replacement)
{
tree t;
gcc_assert (src->replacement);
t = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
append_to_statement_list (t, list_p);
}
}
/* Generate a set of assignment statements in *LIST_P to zero all instantiated
elements under ELT. In addition, do not assign to elements that have been
marked VISITED but do reset the visited flag; this allows easy coordination
with generate_element_init. */
static void
generate_element_zero (struct sra_elt *elt, tree *list_p)
{
struct sra_elt *c;
if (elt->visited)
{
elt->visited = false;
return;
}
if (!elt->in_bitfld_block)
FOR_EACH_ACTUAL_CHILD (c, elt)
generate_element_zero (c, list_p);
if (elt->replacement)
{
tree t;
gcc_assert (elt->is_scalar);
t = fold_convert (elt->type, integer_zero_node);
t = sra_build_elt_assignment (elt, t);
append_to_statement_list (t, list_p);
}
}
/* Generate an assignment VAR = INIT, where INIT may need gimplification.
Add the result to *LIST_P. */
static void
generate_one_element_init (struct sra_elt *elt, tree init, tree *list_p)
{
/* The replacement can be almost arbitrarily complex. Gimplify. */
tree stmt = sra_build_elt_assignment (elt, init);
gimplify_and_add (stmt, list_p);
}
/* Generate a set of assignment statements in *LIST_P to set all instantiated
elements under ELT with the contents of the initializer INIT. In addition,
mark all assigned elements VISITED; this allows easy coordination with
generate_element_zero. Return false if we found a case we couldn't
handle. */
static bool
generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
{
bool result = true;
enum tree_code init_code;
struct sra_elt *sub;
tree t;
unsigned HOST_WIDE_INT idx;
tree value, purpose;
/* We can be passed DECL_INITIAL of a static variable. It might have a
conversion, which we strip off here. */
STRIP_USELESS_TYPE_CONVERSION (init);
init_code = TREE_CODE (init);
if (elt->is_scalar)
{
if (elt->replacement)
{
generate_one_element_init (elt, init, list_p);
elt->visited = true;
}
return result;
}
switch (init_code)
{
case COMPLEX_CST:
case COMPLEX_EXPR:
FOR_EACH_ACTUAL_CHILD (sub, elt)
{
if (sub->element == integer_zero_node)
t = (init_code == COMPLEX_EXPR
? TREE_OPERAND (init, 0) : TREE_REALPART (init));
else
t = (init_code == COMPLEX_EXPR
? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
result &= generate_element_init_1 (sub, t, list_p);
}
break;
case CONSTRUCTOR:
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
{
if (TREE_CODE (purpose) == RANGE_EXPR)
{
tree lower = TREE_OPERAND (purpose, 0);
tree upper = TREE_OPERAND (purpose, 1);
while (1)
{
sub = lookup_element (elt, lower, NULL, NO_INSERT);
if (sub != NULL)
result &= generate_element_init_1 (sub, value, list_p);
if (tree_int_cst_equal (lower, upper))
break;
lower = int_const_binop (PLUS_EXPR, lower,
integer_one_node, true);
}
}
else
{
sub = lookup_element (elt, purpose, NULL, NO_INSERT);
if (sub != NULL)
result &= generate_element_init_1 (sub, value, list_p);
}
}
break;
default:
elt->visited = true;
result = false;
}
return result;
}
/* A wrapper function for generate_element_init_1 that handles cleanup after
gimplification. */
static bool
generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
{
bool ret;
push_gimplify_context ();
ret = generate_element_init_1 (elt, init, list_p);
pop_gimplify_context (NULL);
/* The replacement can expose previously unreferenced variables. */
if (ret && *list_p)
{
tree_stmt_iterator i;
for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
find_new_referenced_vars (tsi_stmt_ptr (i));
}
return ret;
}
/* Insert STMT on all the outgoing edges out of BB. Note that if BB
has more than one edge, STMT will be replicated for each edge. Also,
abnormal edges will be ignored. */
void
insert_edge_copies (tree stmt, basic_block bb)
{
edge e;
edge_iterator ei;
bool first_copy;
first_copy = true;
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* We don't need to insert copies on abnormal edges. The
value of the scalar replacement is not guaranteed to
be valid through an abnormal edge. */
if (!(e->flags & EDGE_ABNORMAL))
{
if (first_copy)
{
bsi_insert_on_edge (e, stmt);
first_copy = false;
}
else
bsi_insert_on_edge (e, unsave_expr_now (stmt));
}
}
}
/* Helper function to insert LIST before BSI, and set up line number info. */
void
sra_insert_before (block_stmt_iterator *bsi, tree list)
{
tree stmt = bsi_stmt (*bsi);
if (EXPR_HAS_LOCATION (stmt))
annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
bsi_insert_before (bsi, list, BSI_SAME_STMT);
}
/* Similarly, but insert after BSI. Handles insertion onto edges as well. */
void
sra_insert_after (block_stmt_iterator *bsi, tree list)
{
tree stmt = bsi_stmt (*bsi);
if (EXPR_HAS_LOCATION (stmt))
annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
if (stmt_ends_bb_p (stmt))
insert_edge_copies (list, bsi->bb);
else
bsi_insert_after (bsi, list, BSI_SAME_STMT);
}
/* Similarly, but replace the statement at BSI. */
static void
sra_replace (block_stmt_iterator *bsi, tree list)
{
sra_insert_before (bsi, list);
bsi_remove (bsi, false);
if (bsi_end_p (*bsi))
*bsi = bsi_last (bsi->bb);
else
bsi_prev (bsi);
}
/* Data structure that bitfield_overlaps_p fills in with information
about the element passed in and how much of it overlaps with the
bit-range passed it to. */
struct bitfield_overlap_info
{
/* The bit-length of an element. */
tree field_len;
/* The bit-position of the element in its parent. */
tree field_pos;
/* The number of bits of the element that overlap with the incoming
bit range. */
tree overlap_len;
/* The first bit of the element that overlaps with the incoming bit
range. */
tree overlap_pos;
};
/* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
expression (referenced as BF below) accesses any of the bits in FLD,
false if it doesn't. If DATA is non-null, its field_len and
field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
field_len, field_pos> (referenced as BFLD below) represents the
entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
overlap_pos> represents the portion of the entire field that
overlaps with BF. */
static bool
bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
struct bitfield_overlap_info *data)
{
tree flen, fpos;
bool ret;
if (TREE_CODE (fld->element) == FIELD_DECL)
{
flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
}
else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
{
flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
}
else if (TREE_CODE (fld->element) == INTEGER_CST)
{
flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
fpos = fold_convert (bitsizetype, fld->element);
fpos = size_binop (MULT_EXPR, flen, fpos);
}
else
gcc_unreachable ();
gcc_assert (host_integerp (blen, 1)
&& host_integerp (bpos, 1)
&& host_integerp (flen, 1)
&& host_integerp (fpos, 1));
ret = ((!tree_int_cst_lt (fpos, bpos)
&& tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
blen))
|| (!tree_int_cst_lt (bpos, fpos)
&& tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
flen)));
if (!ret)
return ret;
if (data)
{
tree bend, fend;
data->field_len = flen;
data->field_pos = fpos;
fend = size_binop (PLUS_EXPR, fpos, flen);
bend = size_binop (PLUS_EXPR, bpos, blen);
if (tree_int_cst_lt (bend, fend))
data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
else
data->overlap_len = NULL;
if (tree_int_cst_lt (fpos, bpos))
{
data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
data->overlap_len = size_binop (MINUS_EXPR,
data->overlap_len
? data->overlap_len
: data->field_len,
data->overlap_pos);
}
else
data->overlap_pos = NULL;
}
return ret;
}
/* Add to LISTP a sequence of statements that copies BLEN bits between
VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
and at bit BPOS of ELT. The direction of the copy is given by
TO_VAR. */
static void
sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
tree *listp, tree blen, tree bpos,
struct sra_elt *elt)
{
struct sra_elt *fld;
struct bitfield_overlap_info flp;
FOR_EACH_ACTUAL_CHILD (fld, elt)
{
tree flen, fpos;
if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
continue;
flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
if (fld->replacement)
{
tree infld, invar, st, type;
infld = fld->replacement;
type = TREE_TYPE (infld);
if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
type = lang_hooks.types.type_for_size (TREE_INT_CST_LOW (flen), 1);
else
type = unsigned_type_for (type);
if (TREE_CODE (infld) == BIT_FIELD_REF)
{
fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
infld = TREE_OPERAND (infld, 0);
}
else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
&& !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
DECL_SIZE (fld->element)))
{
fpos = size_binop (PLUS_EXPR, fpos,
TYPE_SIZE (TREE_TYPE (infld)));
fpos = size_binop (MINUS_EXPR, fpos,
DECL_SIZE (fld->element));
}
infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
if (flp.overlap_pos)
invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
invar = size_binop (PLUS_EXPR, invar, vpos);
invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
if (to_var)
st = sra_build_bf_assignment (invar, infld);
else
st = sra_build_bf_assignment (infld, invar);
append_to_statement_list (st, listp);
}
else
{
tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
sub = size_binop (PLUS_EXPR, vpos, sub);
if (flp.overlap_pos)
sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
sra_explode_bitfield_assignment (var, sub, to_var, listp,
flen, fpos, fld);
}
}
}
/* Add to LISTBEFOREP statements that copy scalarized members of ELT
that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
into the full variable, and to LISTAFTERP, if non-NULL, statements
that copy the (presumably modified) overlapping portions of the
full variable back to the scalarized variables. */
static void
sra_sync_for_bitfield_assignment (tree *listbeforep, tree *listafterp,
tree blen, tree bpos,
struct sra_elt *elt)
{
struct sra_elt *fld;
struct bitfield_overlap_info flp;
FOR_EACH_ACTUAL_CHILD (fld, elt)
if (bitfield_overlaps_p (blen, bpos, fld, &flp))
{
if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
{
generate_copy_inout (fld, false, generate_element_ref (fld),
listbeforep);
mark_no_warning (fld);
if (listafterp)
generate_copy_inout (fld, true, generate_element_ref (fld),
listafterp);
}
else
{
tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
sra_sync_for_bitfield_assignment (listbeforep, listafterp,
flen, fpos, fld);
}
}
}
/* Scalarize a USE. To recap, this is either a simple reference to ELT,
if elt is scalar, or some occurrence of ELT that requires a complete
aggregate. IS_OUTPUT is true if ELT is being modified. */
static void
scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
bool is_output, bool use_all)
{
tree stmt = bsi_stmt (*bsi);
tree bfexpr;
if (elt->replacement)
{
tree replacement = elt->replacement;
/* If we have a replacement, then updating the reference is as
simple as modifying the existing statement in place. */
if (is_output
&& TREE_CODE (elt->replacement) == BIT_FIELD_REF
&& is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
&& TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& &GIMPLE_STMT_OPERAND (stmt, 0) == expr_p)
{
tree newstmt = sra_build_elt_assignment
(elt, GIMPLE_STMT_OPERAND (stmt, 1));
if (TREE_CODE (newstmt) != STATEMENT_LIST)
{
tree list = NULL;
append_to_statement_list (newstmt, &list);
newstmt = list;
}
sra_replace (bsi, newstmt);
return;
}
else if (!is_output
&& TREE_CODE (elt->replacement) == BIT_FIELD_REF
&& TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& &GIMPLE_STMT_OPERAND (stmt, 1) == expr_p)
{
tree tmp = make_rename_temp
(TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0)), "SR");
tree newstmt = sra_build_assignment (tmp, REPLDUP (elt->replacement));
if (TREE_CODE (newstmt) != STATEMENT_LIST)
{
tree list = NULL;
append_to_statement_list (newstmt, &list);
newstmt = list;
}
sra_insert_before (bsi, newstmt);
replacement = tmp;
}
if (is_output)
mark_all_v_defs (stmt);
*expr_p = REPLDUP (replacement);
update_stmt (stmt);
}
else if (use_all && is_output
&& TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (bfexpr
= GIMPLE_STMT_OPERAND (stmt, 0)) == BIT_FIELD_REF
&& &TREE_OPERAND (bfexpr, 0) == expr_p
&& INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
&& TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
{
tree listbefore = NULL, listafter = NULL;
tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
bool update = false;
if (!elt->use_block_copy)
{
tree type = TREE_TYPE (bfexpr);
tree var = make_rename_temp (type, "SR"), tmp, st, vpos;
GIMPLE_STMT_OPERAND (stmt, 0) = var;
update = true;
if (!TYPE_UNSIGNED (type))
{
type = unsigned_type_for (type);
tmp = make_rename_temp (type, "SR");
st = build_gimple_modify_stmt (tmp,
fold_convert (type, var));
append_to_statement_list (st, &listafter);
var = tmp;
}
/* If VAR is wider than BLEN bits, it is padded at the
most-significant end. We want to set VPOS such that
<BIT_FIELD_REF VAR BLEN VPOS> would refer to the
least-significant BLEN bits of VAR. */
if (BYTES_BIG_ENDIAN)
vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
else
vpos = bitsize_int (0);
sra_explode_bitfield_assignment
(var, vpos, false, &listafter, blen, bpos, elt);
}
else
sra_sync_for_bitfield_assignment
(&listbefore, &listafter, blen, bpos, elt);
if (listbefore)
{
mark_all_v_defs (listbefore);
sra_insert_before (bsi, listbefore);
}
if (listafter)
{
mark_all_v_defs (listafter);
sra_insert_after (bsi, listafter);
}
if (update)
update_stmt (stmt);
}
else if (use_all && !is_output
&& TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (bfexpr
= GIMPLE_STMT_OPERAND (stmt, 1)) == BIT_FIELD_REF
&& &TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 0) == expr_p
&& INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
&& TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
{
tree list = NULL;
tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
bool update = false;
if (!elt->use_block_copy)
{
tree type = TREE_TYPE (bfexpr);
tree var, vpos;
if (!TYPE_UNSIGNED (type))
type = unsigned_type_for (type);
var = make_rename_temp (type, "SR");
append_to_statement_list (build_gimple_modify_stmt
(var, build_int_cst_wide (type, 0, 0)),
&list);
/* If VAR is wider than BLEN bits, it is padded at the
most-significant end. We want to set VPOS such that
<BIT_FIELD_REF VAR BLEN VPOS> would refer to the
least-significant BLEN bits of VAR. */
if (BYTES_BIG_ENDIAN)
vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
else
vpos = bitsize_int (0);
sra_explode_bitfield_assignment
(var, vpos, true, &list, blen, bpos, elt);
GIMPLE_STMT_OPERAND (stmt, 1) = var;
update = true;
}
else
sra_sync_for_bitfield_assignment
(&list, NULL, blen, bpos, elt);
if (list)
{
mark_all_v_defs (list);
sra_insert_before (bsi, list);
}
if (update)
update_stmt (stmt);
}
else
{
tree list = NULL;
/* Otherwise we need some copies. If ELT is being read, then we
want to store all (modified) sub-elements back into the
structure before the reference takes place. If ELT is being
written, then we want to load the changed values back into
our shadow variables. */
/* ??? We don't check modified for reads, we just always write all of
the values. We should be able to record the SSA number of the VOP
for which the values were last read. If that number matches the
SSA number of the VOP in the current statement, then we needn't
emit an assignment. This would also eliminate double writes when
a structure is passed as more than one argument to a function call.
This optimization would be most effective if sra_walk_function
processed the blocks in dominator order. */
generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
if (list == NULL)
return;
mark_all_v_defs (list);
if (is_output)
sra_insert_after (bsi, list);
else
{
sra_insert_before (bsi, list);
if (use_all)
mark_no_warning (elt);
}
}
}
/* Scalarize a COPY. To recap, this is an assignment statement between
two scalarizable references, LHS_ELT and RHS_ELT. */
static void
scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
block_stmt_iterator *bsi)
{
tree list, stmt;
if (lhs_elt->replacement && rhs_elt->replacement)
{
/* If we have two scalar operands, modify the existing statement. */
stmt = bsi_stmt (*bsi);
/* See the commentary in sra_walk_function concerning
RETURN_EXPR, and why we should never see one here. */
gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
GIMPLE_STMT_OPERAND (stmt, 0) = lhs_elt->replacement;
GIMPLE_STMT_OPERAND (stmt, 1) = REPLDUP (rhs_elt->replacement);
update_stmt (stmt);
}
else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
{
/* If either side requires a block copy, then sync the RHS back
to the original structure, leave the original assignment
statement (which will perform the block copy), then load the
LHS values out of its now-updated original structure. */
/* ??? Could perform a modified pair-wise element copy. That
would at least allow those elements that are instantiated in
both structures to be optimized well. */
list = NULL;
generate_copy_inout (rhs_elt, false,
generate_element_ref (rhs_elt), &list);
if (list)
{
mark_all_v_defs (list);
sra_insert_before (bsi, list);
}
list = NULL;
generate_copy_inout (lhs_elt, true,
generate_element_ref (lhs_elt), &list);
if (list)
{
mark_all_v_defs (list);
sra_insert_after (bsi, list);
}
}
else
{
/* Otherwise both sides must be fully instantiated. In which
case perform pair-wise element assignments and replace the
original block copy statement. */
stmt = bsi_stmt (*bsi);
mark_all_v_defs (stmt);
list = NULL;
generate_element_copy (lhs_elt, rhs_elt, &list);
gcc_assert (list);
mark_all_v_defs (list);
sra_replace (bsi, list);
}
}
/* Scalarize an INIT. To recap, this is an assignment to a scalarizable
reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
CONSTRUCTOR. */
static void
scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
{
bool result = true;
tree list = NULL, init_list = NULL;
/* Generate initialization statements for all members extant in the RHS. */
if (rhs)
{
/* Unshare the expression just in case this is from a decl's initial. */
rhs = unshare_expr (rhs);
result = generate_element_init (lhs_elt, rhs, &init_list);
}
/* CONSTRUCTOR is defined such that any member not mentioned is assigned
a zero value. Initialize the rest of the instantiated elements. */
generate_element_zero (lhs_elt, &list);
append_to_statement_list (init_list, &list);
if (!result)
{
/* If we failed to convert the entire initializer, then we must
leave the structure assignment in place and must load values
from the structure into the slots for which we did not find
constants. The easiest way to do this is to generate a complete
copy-out, and then follow that with the constant assignments
that we were able to build. DCE will clean things up. */
tree list0 = NULL;
generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
&list0);
append_to_statement_list (list, &list0);
list = list0;
}
if (lhs_elt->use_block_copy || !result)
{
/* Since LHS is not fully instantiated, we must leave the structure
assignment in place. Treating this case differently from a USE
exposes constants to later optimizations. */
if (list)
{
mark_all_v_defs (list);
sra_insert_after (bsi, list);
}
}
else
{
/* The LHS is fully instantiated. The list of initializations
replaces the original structure assignment. */
gcc_assert (list);
mark_all_v_defs (bsi_stmt (*bsi));
mark_all_v_defs (list);
sra_replace (bsi, list);
}
}
/* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
on all INDIRECT_REFs. */
static tree
mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (TREE_CODE (t) == INDIRECT_REF)
{
TREE_THIS_NOTRAP (t) = 1;
*walk_subtrees = 0;
}
else if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
/* Scalarize a LDST. To recap, this is an assignment between one scalarizable
reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
if ELT is on the left-hand side. */
static void
scalarize_ldst (struct sra_elt *elt, tree other,
block_stmt_iterator *bsi, bool is_output)
{
/* Shouldn't have gotten called for a scalar. */
gcc_assert (!elt->replacement);
if (elt->use_block_copy)
{
/* Since ELT is not fully instantiated, we have to leave the
block copy in place. Treat this as a USE. */
scalarize_use (elt, NULL, bsi, is_output, false);
}
else
{
/* The interesting case is when ELT is fully instantiated. In this
case we can have each element stored/loaded directly to/from the
corresponding slot in OTHER. This avoids a block copy. */
tree list = NULL, stmt = bsi_stmt (*bsi);
mark_all_v_defs (stmt);
generate_copy_inout (elt, is_output, other, &list);
gcc_assert (list);
mark_all_v_defs (list);
/* Preserve EH semantics. */
if (stmt_ends_bb_p (stmt))
{
tree_stmt_iterator tsi;
tree first, blist = NULL;
bool thr = tree_could_throw_p (stmt);
/* If the last statement of this BB created an EH edge
before scalarization, we have to locate the first
statement that can throw in the new statement list and
use that as the last statement of this BB, such that EH
semantics is preserved. All statements up to this one
are added to the same BB. All other statements in the
list will be added to normal outgoing edges of the same
BB. If they access any memory, it's the same memory, so
we can assume they won't throw. */
tsi = tsi_start (list);
for (first = tsi_stmt (tsi);
thr && !tsi_end_p (tsi) && !tree_could_throw_p (first);
first = tsi_stmt (tsi))
{
tsi_delink (&tsi);
append_to_statement_list (first, &blist);
}
/* Extract the first remaining statement from LIST, this is
the EH statement if there is one. */
tsi_delink (&tsi);
if (blist)
sra_insert_before (bsi, blist);
/* Replace the old statement with this new representative. */
bsi_replace (bsi, first, true);
if (!tsi_end_p (tsi))
{
/* If any reference would trap, then they all would. And more
to the point, the first would. Therefore none of the rest
will trap since the first didn't. Indicate this by
iterating over the remaining statements and set
TREE_THIS_NOTRAP in all INDIRECT_REFs. */
do
{
walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
tsi_next (&tsi);
}
while (!tsi_end_p (tsi));
insert_edge_copies (list, bsi->bb);
}
}
else
sra_replace (bsi, list);
}
}
/* Generate initializations for all scalarizable parameters. */
static void
scalarize_parms (void)
{
tree list = NULL;
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
{
tree var = referenced_var (i);
struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
generate_copy_inout (elt, true, var, &list);
}
if (list)
{
insert_edge_copies (list, ENTRY_BLOCK_PTR);
mark_all_v_defs (list);
}
}
/* Entry point to phase 4. Update the function to match replacements. */
static void
scalarize_function (void)
{
static const struct sra_walk_fns fns = {
scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
};
sra_walk_function (&fns);
scalarize_parms ();
bsi_commit_edge_inserts ();
}
/* Debug helper function. Print ELT in a nice human-readable format. */
static void
dump_sra_elt_name (FILE *f, struct sra_elt *elt)
{
if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
{
fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
dump_sra_elt_name (f, elt->parent);
}
else
{
if (elt->parent)
dump_sra_elt_name (f, elt->parent);
if (DECL_P (elt->element))
{
if (TREE_CODE (elt->element) == FIELD_DECL)
fputc ('.', f);
print_generic_expr (f, elt->element, dump_flags);
}
else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
else if (TREE_CODE (elt->element) == RANGE_EXPR)
fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
else
fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
TREE_INT_CST_LOW (elt->element));
}
}
/* Likewise, but callable from the debugger. */
void
debug_sra_elt_name (struct sra_elt *elt)
{
dump_sra_elt_name (stderr, elt);
fputc ('\n', stderr);
}
void
sra_init_cache (void)
{
if (sra_type_decomp_cache)
return;
sra_type_decomp_cache = BITMAP_ALLOC (NULL);
sra_type_inst_cache = BITMAP_ALLOC (NULL);
}
/* Main entry point. */
static unsigned int
tree_sra (void)
{
/* Initialize local variables. */
todoflags = 0;
gcc_obstack_init (&sra_obstack);
sra_candidates = BITMAP_ALLOC (NULL);
needs_copy_in = BITMAP_ALLOC (NULL);
sra_init_cache ();
sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
/* Scan. If we find anything, instantiate and scalarize. */
if (find_candidates_for_sra ())
{
scan_function ();
decide_instantiations ();
scalarize_function ();
if (!bitmap_empty_p (sra_candidates))
todoflags |= TODO_rebuild_alias;
}
/* Free allocated memory. */
htab_delete (sra_map);
sra_map = NULL;
BITMAP_FREE (sra_candidates);
BITMAP_FREE (needs_copy_in);
BITMAP_FREE (sra_type_decomp_cache);
BITMAP_FREE (sra_type_inst_cache);
obstack_free (&sra_obstack, NULL);
return todoflags;
}
static unsigned int
tree_sra_early (void)
{
unsigned int ret;
early_sra = true;
ret = tree_sra ();
early_sra = false;
return ret & ~TODO_rebuild_alias;
}
static bool
gate_sra (void)
{
return flag_tree_sra != 0;
}
struct gimple_opt_pass pass_sra_early =
{
{
GIMPLE_PASS,
"esra", /* name */
gate_sra, /* gate */
tree_sra_early, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SRA, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func
| TODO_update_ssa
| TODO_ggc_collect
| TODO_verify_ssa /* todo_flags_finish */
}
};
struct gimple_opt_pass pass_sra =
{
{
GIMPLE_PASS,
"sra", /* name */
gate_sra, /* gate */
tree_sra, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SRA, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func
| TODO_update_ssa
| TODO_ggc_collect
| TODO_verify_ssa /* todo_flags_finish */
}
};
|