summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dse.c
blob: 1be41275d111a85f746be439e1474488f31f3881 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/* Dead store elimination
   Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "basic-block.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "domwalk.h"
#include "flags.h"
#include "hashtab.h"
#include "sbitmap.h"

/* This file implements dead store elimination.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect dead stores.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead. 

   The single use of the store's virtual definition ensures that
   there are no intervening aliased loads and the requirement that
   the second load post dominate the first ensures that if the earlier
   store executes, then the later stores will execute before the function
   exits.

   It may help to think of this as first moving the earlier store to
   the point immediately before the later store.  Again, the single
   use of the virtual definition and the post-dominance relationship
   ensure that such movement would be safe.  Clearly if there are 
   back to back stores, then the second is redundant.

   Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
   may also help in understanding this code since it discusses the
   relationship between dead store and redundant load elimination.  In
   fact, they are the same transformation applied to different views of
   the CFG.  */
   

/* Given an aggregate, this records the parts of it which have been
   stored into.  */
struct aggregate_vardecl_d
{
  /* The aggregate.  */
  tree decl;

  /* Some aggregates are too big for us to handle or never get stored
     to as a whole.  If this field is TRUE, we don't care about this
     aggregate.  */
  bool ignore;

  /* Number of parts in the whole.  */
  unsigned nparts;
  
  /* A bitmap of parts of the aggregate that have been set.  If part N
     of an aggregate has been stored to, bit N should be on.  */
  sbitmap parts_set;
};

struct dse_global_data
{
  /* This is the global bitmap for store statements.

     Each statement has a unique ID.  When we encounter a store statement
     that we want to record, set the bit corresponding to the statement's
     unique ID in this bitmap.  */
  bitmap stores;

  /* A hash table containing the parts of an aggregate which have been
     stored to.  */
  htab_t aggregate_vardecl;
};

/* We allocate a bitmap-per-block for stores which are encountered
   during the scan of that block.  This allows us to restore the 
   global bitmap of stores when we finish processing a block.  */
struct dse_block_local_data
{
  bitmap stores;
};

/* Basic blocks of the potentially dead store and the following
   store, for memory_address_same.  */
struct address_walk_data
{
  basic_block store1_bb, store2_bb;
};

static bool gate_dse (void);
static unsigned int tree_ssa_dse (void);
static void dse_initialize_block_local_data (struct dom_walk_data *,
					     basic_block,
					     bool);
static void dse_optimize_stmt (struct dom_walk_data *,
			       basic_block,
			       block_stmt_iterator);
static void dse_record_phis (struct dom_walk_data *, basic_block);
static void dse_finalize_block (struct dom_walk_data *, basic_block);
static void record_voperand_set (bitmap, bitmap *, unsigned int);
static void dse_record_partial_aggregate_store (tree, struct dse_global_data *);

static unsigned max_stmt_uid;	/* Maximal uid of a statement.  Uids to phi
				   nodes are assigned using the versions of
				   ssa names they define.  */

/* Returns uid of statement STMT.  */

static unsigned
get_stmt_uid (tree stmt)
{
  if (TREE_CODE (stmt) == PHI_NODE)
    return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;

  return stmt_ann (stmt)->uid;
}

/* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed.  */

static void
record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
{
  /* Lazily allocate the bitmap.  Note that we do not get a notification
     when the block local data structures die, so we allocate the local
     bitmap backed by the GC system.  */
  if (*local == NULL)
    *local = BITMAP_GGC_ALLOC ();

  /* Set the bit in the local and global bitmaps.  */
  bitmap_set_bit (*local, uid);
  bitmap_set_bit (global, uid);
}

/* Initialize block local data structures.  */

static void
dse_initialize_block_local_data (struct dom_walk_data *walk_data,
				 basic_block bb ATTRIBUTE_UNUSED,
				 bool recycled)
{
  struct dse_block_local_data *bd
    = (struct dse_block_local_data *)
	VEC_last (void_p, walk_data->block_data_stack);

  /* If we are given a recycled block local data structure, ensure any
     bitmap associated with the block is cleared.  */
  if (recycled)
    {
      if (bd->stores)
	bitmap_clear (bd->stores);
    }
}

/* Helper function for memory_address_same via walk_tree.  Returns
   non-NULL if it finds an SSA_NAME which is part of the address,
   such that the definition of the SSA_NAME post-dominates the store
   we want to delete but not the store that we believe makes it
   redundant.  This indicates that the address may change between
   the two stores.  */

static tree
memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
		      void *data)
{
  struct address_walk_data *walk_data = (struct address_walk_data *) data;
  tree expr = *expr_p;
  tree def_stmt;
  basic_block def_bb;

  if (TREE_CODE (expr) != SSA_NAME)
    return NULL_TREE;

  /* If we've found a default definition, then there's no problem.  Both
     stores will post-dominate it.  And def_bb will be NULL.  */
  if (SSA_NAME_IS_DEFAULT_DEF (expr))
    return NULL_TREE;

  def_stmt = SSA_NAME_DEF_STMT (expr);
  def_bb = bb_for_stmt (def_stmt);

  /* DEF_STMT must dominate both stores.  So if it is in the same
     basic block as one, it does not post-dominate that store.  */
  if (walk_data->store1_bb != def_bb
      && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
    {
      if (walk_data->store2_bb == def_bb
	  || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
			      def_bb))
	/* Return non-NULL to stop the walk.  */
	return def_stmt;
    }

  return NULL_TREE;
}

/* Return TRUE if the destination memory address in STORE1 and STORE2
   might be modified after STORE1, before control reaches STORE2.  */

static bool
memory_address_same (tree store1, tree store2)
{
  struct address_walk_data walk_data;

  walk_data.store1_bb = bb_for_stmt (store1);
  walk_data.store2_bb = bb_for_stmt (store2);

  return (walk_tree (&GIMPLE_STMT_OPERAND (store1, 0), memory_ssa_name_same,
		     &walk_data, NULL)
	  == NULL);
}

/* Return the use stmt for the lhs of STMT following the virtual
   def-use chains.  Returns the MODIFY_EXPR stmt which lhs is equal to
   the lhs of STMT or NULL_TREE if no such stmt can be found.  */
static tree 
get_use_of_stmt_lhs (tree stmt,
		     use_operand_p * first_use_p,
		     use_operand_p * use_p, tree * use_stmt)
{
  tree usevar, lhs;
  def_operand_p def_p;

  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
    return NULL_TREE;

  lhs = GIMPLE_STMT_OPERAND (stmt, 0);

  /* The stmt must have a single VDEF.  */
  def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_VDEF);
  if (def_p == NULL_DEF_OPERAND_P)
    return NULL_TREE;

  if (!has_single_use (DEF_FROM_PTR (def_p)))
    return NULL_TREE;
  /* Get the immediate use of the def.  */
  single_imm_use (DEF_FROM_PTR (def_p), use_p, use_stmt);
  gcc_assert (*use_p != NULL_USE_OPERAND_P);
  first_use_p = use_p;
  if (TREE_CODE (*use_stmt) != GIMPLE_MODIFY_STMT)
    return NULL_TREE;

  do
    {
      /* Look at the use stmt and see if it's LHS matches
         stmt's lhs SSA_NAME.  */
      def_p = SINGLE_SSA_DEF_OPERAND (*use_stmt, SSA_OP_VDEF);
      if (def_p == NULL_DEF_OPERAND_P)
	return NULL_TREE;

      usevar = GIMPLE_STMT_OPERAND (*use_stmt, 0);
      if (operand_equal_p (usevar, lhs, 0))
	return *use_stmt;

      if (!has_single_use (DEF_FROM_PTR (def_p)))
	return NULL_TREE;
      single_imm_use (DEF_FROM_PTR (def_p), use_p, use_stmt);
      gcc_assert (*use_p != NULL_USE_OPERAND_P);
      if (TREE_CODE (*use_stmt) != GIMPLE_MODIFY_STMT)
	return NULL_TREE;
    }
  while (1);

  return NULL_TREE;
}

/* A helper of dse_optimize_stmt.
   Given a GIMPLE_MODIFY_STMT in STMT, check that each VDEF has one
   use, and that one use is another VDEF clobbering the first one.

   Return TRUE if the above conditions are met, otherwise FALSE.  */

static bool
dse_possible_dead_store_p (tree stmt,
			   use_operand_p *first_use_p,
			   use_operand_p *use_p,
			   tree *use_stmt,
			   struct dse_global_data *dse_gd,
			   struct dse_block_local_data *bd)
{
  ssa_op_iter op_iter;
  bool fail = false;
  def_operand_p var1;
  vuse_vec_p vv;
  tree defvar = NULL_TREE, temp;
  tree prev_defvar = NULL_TREE;
  stmt_ann_t ann = stmt_ann (stmt);

  /* We want to verify that each virtual definition in STMT has
     precisely one use and that all the virtual definitions are
     used by the same single statement.  When complete, we
     want USE_STMT to refer to the one statement which uses
     all of the virtual definitions from STMT.  */
  *use_stmt = NULL;
  FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
    {
      defvar = DEF_FROM_PTR (var1);

      /* If this virtual def does not have precisely one use, then
	 we will not be able to eliminate STMT.  */
      if (!has_single_use (defvar))
	{
	  fail = true;
	  break;
	}

      /* Get the one and only immediate use of DEFVAR.  */
      single_imm_use (defvar, use_p, &temp);
      gcc_assert (*use_p != NULL_USE_OPERAND_P);
      *first_use_p = *use_p;

      /* In the case of memory partitions, we may get:

	   # MPT.764_162 = VDEF <MPT.764_161(D)>
	   x = {};
	   # MPT.764_167 = VDEF <MPT.764_162>
	   y = {};

	   So we must make sure we're talking about the same LHS.
      */
      if (TREE_CODE (temp) == GIMPLE_MODIFY_STMT)
	{
	  tree base1 = get_base_address (GIMPLE_STMT_OPERAND (stmt, 0));
	  tree base2 =  get_base_address (GIMPLE_STMT_OPERAND (temp, 0));

	  while (base1 && INDIRECT_REF_P (base1))
	    base1 = TREE_OPERAND (base1, 0);
	  while (base2 && INDIRECT_REF_P (base2))
	    base2 = TREE_OPERAND (base2, 0);

	  if (base1 != base2)
	    {
	      fail = true;
	      break;
	    }
	}

      /* If the immediate use of DEF_VAR is not the same as the
	 previously find immediate uses, then we will not be able
	 to eliminate STMT.  */
      if (*use_stmt == NULL)
	{
	  *use_stmt = temp;
	  prev_defvar = defvar;
	}
      else if (temp != *use_stmt)
	{
	  /* The immediate use and the previously found immediate use
	     must be the same, except... if they're uses of different
	     parts of the whole.  */
	  if (TREE_CODE (defvar) == SSA_NAME
	      && TREE_CODE (SSA_NAME_VAR (defvar)) == STRUCT_FIELD_TAG
	      && TREE_CODE (prev_defvar) == SSA_NAME
	      && TREE_CODE (SSA_NAME_VAR (prev_defvar)) == STRUCT_FIELD_TAG
	      && (SFT_PARENT_VAR (SSA_NAME_VAR (defvar))
		  == SFT_PARENT_VAR (SSA_NAME_VAR (prev_defvar))))
	    ;
	  else
	    {
	      fail = true;
	      break;
	    }
	}
    }

  if (fail)
    {
      record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
      dse_record_partial_aggregate_store (stmt, dse_gd);
      return false;
    }

  /* Skip through any PHI nodes we have already seen if the PHI
     represents the only use of this store.

     Note this does not handle the case where the store has
     multiple VDEFs which all reach a set of PHI nodes in the same block.  */
  while (*use_p != NULL_USE_OPERAND_P
	 && TREE_CODE (*use_stmt) == PHI_NODE
	 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (*use_stmt)))
    {
      /* A PHI node can both define and use the same SSA_NAME if
	 the PHI is at the top of a loop and the PHI_RESULT is
	 a loop invariant and copies have not been fully propagated.

	 The safe thing to do is exit assuming no optimization is
	 possible.  */
      if (SSA_NAME_DEF_STMT (PHI_RESULT (*use_stmt)) == *use_stmt)
	return false;

      /* Skip past this PHI and loop again in case we had a PHI
	 chain.  */
      single_imm_use (PHI_RESULT (*use_stmt), use_p, use_stmt);
    }

  return true;
}


/* Given a DECL, return its AGGREGATE_VARDECL_D entry.  If no entry is
   found and INSERT is TRUE, add a new entry.  */

static struct aggregate_vardecl_d *
get_aggregate_vardecl (tree decl, struct dse_global_data *dse_gd, bool insert)
{
  struct aggregate_vardecl_d av, *av_p;
  void **slot;

  av.decl = decl;
  slot = htab_find_slot (dse_gd->aggregate_vardecl, &av, insert ? INSERT : NO_INSERT);


  /* Not found, and we don't want to insert.  */
  if (slot == NULL)
    return NULL;

  /* Create new entry.  */
  if (*slot == NULL)
    {
      av_p = XNEW (struct aggregate_vardecl_d);
      av_p->decl = decl;

      /* Record how many parts the whole has.  */
      if (TREE_CODE (TREE_TYPE (decl)) == COMPLEX_TYPE)
	av_p->nparts = 2;
      else if (TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
	{
	  tree fields;

	  /* Count the number of fields.  */
	  fields = TYPE_FIELDS (TREE_TYPE (decl));
	  av_p->nparts = 0;
	  while (fields)
	    {
	      av_p->nparts++;
	      fields = TREE_CHAIN (fields);
	    }
	}
      else
	abort ();

      av_p->ignore = true;
      av_p->parts_set = sbitmap_alloc (HOST_BITS_PER_LONG);
      sbitmap_zero (av_p->parts_set);
      *slot = av_p;
    }
  else
    av_p = (struct aggregate_vardecl_d *) *slot;

  return av_p;
}


/* If STMT is a partial store into an aggregate, record which part got set.  */

static void
dse_record_partial_aggregate_store (tree stmt, struct dse_global_data *dse_gd)
{
  tree lhs, decl;
  enum tree_code code;
  struct aggregate_vardecl_d *av_p;
  int part;

  gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);

  lhs = GIMPLE_STMT_OPERAND (stmt, 0);
  code = TREE_CODE (lhs);
  if (code != IMAGPART_EXPR
      && code != REALPART_EXPR
      && code != COMPONENT_REF)
    return;
  decl = TREE_OPERAND (lhs, 0);
  /* Early bail on things like nested COMPONENT_REFs.  */
  if (TREE_CODE (decl) != VAR_DECL)
    return;
  /* Early bail on unions.  */
  if (code == COMPONENT_REF
      && TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) != RECORD_TYPE)
    return;
  
  av_p = get_aggregate_vardecl (decl, dse_gd, /*insert=*/false);
  /* Run away, this isn't an aggregate we care about.  */
  if (!av_p || av_p->ignore)
    return;

  switch (code)
    {
    case IMAGPART_EXPR:
      part = 0;
      break;
    case REALPART_EXPR:
      part = 1;
      break;
    case COMPONENT_REF:
      {
	tree orig_field, fields;
	tree record_type = TREE_TYPE (TREE_OPERAND (lhs, 0));

	/* Get FIELD_DECL.  */
	orig_field = TREE_OPERAND (lhs, 1);

	/* FIXME: Eeech, do this more efficiently.  Perhaps
	   calculate bit/byte offsets.  */
	part = -1;
	fields = TYPE_FIELDS (record_type);
	while (fields)
	  {
	    ++part;
	    if (fields == orig_field)
	      break;
	    fields = TREE_CHAIN (fields);
	  }
	gcc_assert (part >= 0);
      }
      break;
    default:
      return;
    }

  /* Record which part was set.  */
  SET_BIT (av_p->parts_set, part);
}


/* Return TRUE if all parts in an AGGREGATE_VARDECL have been set.  */

static inline bool
dse_whole_aggregate_clobbered_p (struct aggregate_vardecl_d *av_p)
{
  unsigned int i;
  sbitmap_iterator sbi;
  int nbits_set = 0;

  /* Count the number of partial stores (bits set).  */
  EXECUTE_IF_SET_IN_SBITMAP (av_p->parts_set, 0, i, sbi)
    nbits_set++;
  return ((unsigned) nbits_set == av_p->nparts);
}


/* Return TRUE if STMT is a store into a whole aggregate whose parts we
   have already seen and recorded.  */

static bool
dse_partial_kill_p (tree stmt, struct dse_global_data *dse_gd)
{
  tree decl;
  struct aggregate_vardecl_d *av_p;

  /* Make sure this is a store into the whole.  */
  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
    {
      enum tree_code code;

      decl = GIMPLE_STMT_OPERAND (stmt, 0);
      code = TREE_CODE (TREE_TYPE (decl));

      if (code != COMPLEX_TYPE && code != RECORD_TYPE)
	return false;

      if (TREE_CODE (decl) != VAR_DECL)
	return false;
    }
  else
    return false;

  av_p = get_aggregate_vardecl (decl, dse_gd, /*insert=*/false);
  gcc_assert (av_p != NULL);

  return dse_whole_aggregate_clobbered_p (av_p);
}


/* Attempt to eliminate dead stores in the statement referenced by BSI.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect dead stores.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead.  */

static void
dse_optimize_stmt (struct dom_walk_data *walk_data,
		   basic_block bb ATTRIBUTE_UNUSED,
		   block_stmt_iterator bsi)
{
  struct dse_block_local_data *bd
    = (struct dse_block_local_data *)
	VEC_last (void_p, walk_data->block_data_stack);
  struct dse_global_data *dse_gd
    = (struct dse_global_data *) walk_data->global_data;
  tree stmt = bsi_stmt (bsi);
  stmt_ann_t ann = stmt_ann (stmt);

  /* If this statement has no virtual defs, then there is nothing
     to do.  */
  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
    return;

  /* We know we have virtual definitions.  If this is a GIMPLE_MODIFY_STMT
     that's not also a function call, then record it into our table.  */
  if (get_call_expr_in (stmt))
    return;

  if (ann->has_volatile_ops)
    return;

  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
    {
      use_operand_p first_use_p = NULL_USE_OPERAND_P;
      use_operand_p use_p = NULL;
      tree use_stmt;

      if (!dse_possible_dead_store_p (stmt, &first_use_p, &use_p, &use_stmt,
				      dse_gd, bd))
	return;

      /* If this is a partial store into an aggregate, record it.  */
      dse_record_partial_aggregate_store (stmt, dse_gd);

      if (use_p != NULL_USE_OPERAND_P
          && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
          && (!operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
                                GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
              && !dse_partial_kill_p (stmt, dse_gd))
          && memory_address_same (stmt, use_stmt))
        {
          /* If we have precisely one immediate use at this point, but
             the stores are not to the same memory location then walk the
             virtual def-use chain to get the stmt which stores to that same
             memory location.  */
          if (get_use_of_stmt_lhs (stmt, &first_use_p, &use_p, &use_stmt) ==
              NULL_TREE)
            {
              record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
              return;
            }
        }

      /* If we have precisely one immediate use at this point and the
	 stores are to the same memory location or there is a chain of
	 virtual uses from stmt and the stmt which stores to that same
	 memory location, then we may have found redundant store.  */
      if (use_p != NULL_USE_OPERAND_P
	  && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
	  && (operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
			       GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
	      || dse_partial_kill_p (stmt, dse_gd))
	  && memory_address_same (stmt, use_stmt))
	{
	  ssa_op_iter op_iter;
	  def_operand_p var1;
	  vuse_vec_p vv;
	  tree stmt_lhs;

	  if (dump_file && (dump_flags & TDF_DETAILS))
            {
              fprintf (dump_file, "  Deleted dead store '");
              print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
              fprintf (dump_file, "'\n");
            }

	  /* Then we need to fix the operand of the consuming stmt.  */
	  stmt_lhs = USE_FROM_PTR (first_use_p);
	  FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
	    {
	      tree usevar, temp;

	      single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
	      gcc_assert (VUSE_VECT_NUM_ELEM (*vv) == 1);
	      usevar = VUSE_ELEMENT_VAR (*vv, 0);
	      SET_USE (use_p, usevar);

	      /* Make sure we propagate the ABNORMAL bit setting.  */
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (stmt_lhs))
		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
	    }

	  /* Remove the dead store.  */
	  bsi_remove (&bsi, true);

	  /* And release any SSA_NAMEs set in this statement back to the
	     SSA_NAME manager.  */
	  release_defs (stmt);
	}

      record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
    }
}

/* Record that we have seen the PHIs at the start of BB which correspond
   to virtual operands.  */
static void
dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
{
  struct dse_block_local_data *bd
    = (struct dse_block_local_data *)
	VEC_last (void_p, walk_data->block_data_stack);
  struct dse_global_data *dse_gd
    = (struct dse_global_data *) walk_data->global_data;
  tree phi;

  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    if (!is_gimple_reg (PHI_RESULT (phi)))
      record_voperand_set (dse_gd->stores,
			   &bd->stores,
			   get_stmt_uid (phi));
}

static void
dse_finalize_block (struct dom_walk_data *walk_data,
		    basic_block bb ATTRIBUTE_UNUSED)
{
  struct dse_block_local_data *bd
    = (struct dse_block_local_data *)
	VEC_last (void_p, walk_data->block_data_stack);
  struct dse_global_data *dse_gd
    = (struct dse_global_data *) walk_data->global_data;
  bitmap stores = dse_gd->stores;
  unsigned int i;
  bitmap_iterator bi;

  /* Unwind the stores noted in this basic block.  */
  if (bd->stores)
    EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
      {
	bitmap_clear_bit (stores, i);
      }
}


/* Hashing and equality functions for AGGREGATE_VARDECL.  */

static hashval_t
aggregate_vardecl_hash (const void *p)
{
  return htab_hash_pointer
    ((const void *)((const struct aggregate_vardecl_d *)p)->decl);
}

static int
aggregate_vardecl_eq (const void *p1, const void *p2)
{
  return ((const struct aggregate_vardecl_d *)p1)->decl
    == ((const struct aggregate_vardecl_d *)p2)->decl;
}


/* Free memory allocated by one entry in AGGREGATE_VARDECL.  */

static void
aggregate_vardecl_free (void *p)
{
  struct aggregate_vardecl_d *entry = (struct aggregate_vardecl_d *) p;
  sbitmap_free (entry->parts_set);
  free (entry);
}


/* Return true if STMT is a store into an entire aggregate.  */

static bool
aggregate_whole_store_p (tree stmt)
{
  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
    {
      tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
      enum tree_code code = TREE_CODE (TREE_TYPE (lhs));

      if (code == COMPLEX_TYPE || code == RECORD_TYPE)
	return true;
    }
  return false;
}


/* Main entry point.  */

static unsigned int
tree_ssa_dse (void)
{
  struct dom_walk_data walk_data;
  struct dse_global_data dse_gd;
  basic_block bb;

  dse_gd.aggregate_vardecl = 
    htab_create (37, aggregate_vardecl_hash,
		 aggregate_vardecl_eq, aggregate_vardecl_free);

  max_stmt_uid = 0;
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator bsi;

      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt = bsi_stmt (bsi);

	  /* Record aggregates which have been stored into as a whole.  */
	  if (aggregate_whole_store_p (stmt))
	    {
	      tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
	      if (TREE_CODE (lhs) == VAR_DECL)
		{
		  struct aggregate_vardecl_d *av_p;

		  av_p = get_aggregate_vardecl (lhs, &dse_gd, /*insert=*/true);
		  av_p->ignore = false;

		  /* Ignore aggregates with too many parts.  */
		  if (av_p->nparts > HOST_BITS_PER_LONG)
		    av_p->ignore = true;
		}
	    }

	  /* Create a UID for each statement in the function.
	     Ordering of the UIDs is not important for this pass.  */
	  stmt_ann (stmt)->uid = max_stmt_uid++;
	}
    }

  /* We might consider making this a property of each pass so that it
     can be [re]computed on an as-needed basis.  Particularly since
     this pass could be seen as an extension of DCE which needs post
     dominators.  */
  calculate_dominance_info (CDI_POST_DOMINATORS);

  /* Dead store elimination is fundamentally a walk of the post-dominator
     tree and a backwards walk of statements within each block.  */
  walk_data.walk_stmts_backward = true;
  walk_data.dom_direction = CDI_POST_DOMINATORS;
  walk_data.initialize_block_local_data = dse_initialize_block_local_data;
  walk_data.before_dom_children_before_stmts = NULL;
  walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
  walk_data.before_dom_children_after_stmts = dse_record_phis;
  walk_data.after_dom_children_before_stmts = NULL;
  walk_data.after_dom_children_walk_stmts = NULL;
  walk_data.after_dom_children_after_stmts = dse_finalize_block;
  walk_data.interesting_blocks = NULL;

  walk_data.block_local_data_size = sizeof (struct dse_block_local_data);

  /* This is the main hash table for the dead store elimination pass.  */
  dse_gd.stores = BITMAP_ALLOC (NULL);

  walk_data.global_data = &dse_gd;

  /* Initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  /* Recursively walk the dominator tree.  */
  walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);

  /* Finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* Release unneeded data.  */
  BITMAP_FREE (dse_gd.stores);
  htab_delete (dse_gd.aggregate_vardecl);

  /* For now, just wipe the post-dominator information.  */
  free_dominance_info (CDI_POST_DOMINATORS);
  return 0;
}

static bool
gate_dse (void)
{
  return flag_tree_dse != 0;
}

struct tree_opt_pass pass_dse = {
  "dse",			/* name */
  gate_dse,			/* gate */
  tree_ssa_dse,			/* execute */
  NULL,				/* sub */
  NULL,				/* next */
  0,				/* static_pass_number */
  TV_TREE_DSE,			/* tv_id */
  PROP_cfg
    | PROP_ssa
    | PROP_alias,		/* properties_required */
  0,				/* properties_provided */
  0,				/* properties_destroyed */
  0,				/* todo_flags_start */
  TODO_dump_func
    | TODO_ggc_collect
    | TODO_verify_ssa,		/* todo_flags_finish */
  0				/* letter */
};