1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
|
/* Liveness for SSA trees.
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "basic-block.h"
#include "function.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "varray.h"
#include "timevar.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "errors.h"
static void live_worklist (tree_live_info_p, varray_type, int);
static tree_live_info_p new_tree_live_info (var_map);
static inline void set_if_valid (var_map, bitmap, tree);
static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
tree, basic_block);
static inline void register_ssa_partition (var_map, tree, bool);
static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
var_map, bitmap, tree);
static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
/* This is where the mapping from SSA version number to real storage variable
is tracked.
All SSA versions of the same variable may not ultimately be mapped back to
the same real variable. In that instance, we need to detect the live
range overlap, and give one of the variable new storage. The vector
'partition_to_var' tracks which partition maps to which variable.
Given a VAR, it is sometimes desirable to know which partition that VAR
represents. There is an additional field in the variable annotation to
track that information. */
/* Create a variable partition map of SIZE, initialize and return it. */
var_map
init_var_map (int size)
{
var_map map;
map = (var_map) xmalloc (sizeof (struct _var_map));
map->var_partition = partition_new (size);
map->partition_to_var
= (tree *)xmalloc (size * sizeof (tree));
memset (map->partition_to_var, 0, size * sizeof (tree));
map->partition_to_compact = NULL;
map->compact_to_partition = NULL;
map->num_partitions = size;
map->partition_size = size;
map->ref_count = NULL;
return map;
}
/* Free memory associated with MAP. */
void
delete_var_map (var_map map)
{
free (map->partition_to_var);
partition_delete (map->var_partition);
if (map->partition_to_compact)
free (map->partition_to_compact);
if (map->compact_to_partition)
free (map->compact_to_partition);
if (map->ref_count)
free (map->ref_count);
free (map);
}
/* This function will combine the partitions in MAP for VAR1 and VAR2. It
Returns the partition which represents the new partition. If the two
partitions cannot be combined, NO_PARTITION is returned. */
int
var_union (var_map map, tree var1, tree var2)
{
int p1, p2, p3;
tree root_var = NULL_TREE;
tree other_var = NULL_TREE;
/* This is independent of partition_to_compact. If partition_to_compact is
on, then whichever one of these partitions is absorbed will never have a
dereference into the partition_to_compact array any more. */
if (TREE_CODE (var1) == SSA_NAME)
p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
else
{
p1 = var_to_partition (map, var1);
if (map->compact_to_partition)
p1 = map->compact_to_partition[p1];
root_var = var1;
}
if (TREE_CODE (var2) == SSA_NAME)
p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
else
{
p2 = var_to_partition (map, var2);
if (map->compact_to_partition)
p2 = map->compact_to_partition[p2];
/* If there is no root_var set, or it's not a user variable, set the
root_var to this one. */
if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
{
other_var = root_var;
root_var = var2;
}
else
other_var = var2;
}
gcc_assert (p1 != NO_PARTITION);
gcc_assert (p2 != NO_PARTITION);
if (p1 == p2)
p3 = p1;
else
p3 = partition_union (map->var_partition, p1, p2);
if (map->partition_to_compact)
p3 = map->partition_to_compact[p3];
if (root_var)
change_partition_var (map, root_var, p3);
if (other_var)
change_partition_var (map, other_var, p3);
return p3;
}
/* Compress the partition numbers in MAP such that they fall in the range
0..(num_partitions-1) instead of wherever they turned out during
the partitioning exercise. This removes any references to unused
partitions, thereby allowing bitmaps and other vectors to be much
denser. Compression type is controlled by FLAGS.
This is implemented such that compaction doesn't affect partitioning.
Ie., once partitions are created and possibly merged, running one
or more different kind of compaction will not affect the partitions
themselves. Their index might change, but all the same variables will
still be members of the same partition group. This allows work on reduced
sets, and no loss of information when a larger set is later desired.
In particular, coalescing can work on partitions which have 2 or more
definitions, and then 'recompact' later to include all the single
definitions for assignment to program variables. */
void
compact_var_map (var_map map, int flags)
{
sbitmap used;
int x, limit, count, tmp, root, root_i;
tree var;
root_var_p rv = NULL;
limit = map->partition_size;
used = sbitmap_alloc (limit);
sbitmap_zero (used);
/* Already compressed? Abandon the old one. */
if (map->partition_to_compact)
{
free (map->partition_to_compact);
map->partition_to_compact = NULL;
}
if (map->compact_to_partition)
{
free (map->compact_to_partition);
map->compact_to_partition = NULL;
}
map->num_partitions = map->partition_size;
if (flags & VARMAP_NO_SINGLE_DEFS)
rv = root_var_init (map);
map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
/* Find out which partitions are actually referenced. */
count = 0;
for (x = 0; x < limit; x++)
{
tmp = partition_find (map->var_partition, x);
if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
{
/* It is referenced, check to see if there is more than one version
in the root_var table, if one is available. */
if (rv)
{
root = root_var_find (rv, tmp);
root_i = root_var_first_partition (rv, root);
/* If there is only one, don't include this in the compaction. */
if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
continue;
}
SET_BIT (used, tmp);
count++;
}
}
/* Build a compacted partitioning. */
if (count != limit)
{
map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
count = 0;
/* SSA renaming begins at 1, so skip 0 when compacting. */
EXECUTE_IF_SET_IN_SBITMAP (used, 1, x,
{
map->partition_to_compact[x] = count;
map->compact_to_partition[count] = x;
var = map->partition_to_var[x];
if (TREE_CODE (var) != SSA_NAME)
change_partition_var (map, var, count);
count++;
});
}
else
{
free (map->partition_to_compact);
map->partition_to_compact = NULL;
}
map->num_partitions = count;
if (rv)
root_var_delete (rv);
sbitmap_free (used);
}
/* This function is used to change the representative variable in MAP for VAR's
partition from an SSA_NAME variable to a regular variable. This allows
partitions to be mapped back to real variables. */
void
change_partition_var (var_map map, tree var, int part)
{
var_ann_t ann;
gcc_assert (TREE_CODE (var) != SSA_NAME);
ann = var_ann (var);
ann->out_of_ssa_tag = 1;
VAR_ANN_PARTITION (ann) = part;
if (map->compact_to_partition)
map->partition_to_var[map->compact_to_partition[part]] = var;
}
/* Helper function for mark_all_vars_used, called via walk_tree. */
static tree
mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
/* Only need to mark VAR_DECLS; parameters and return results are not
eliminated as unused. */
if (TREE_CODE (t) == VAR_DECL)
set_is_used (t);
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
eliminated during the tree->rtl conversion process. */
static inline void
mark_all_vars_used (tree *expr_p)
{
walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
}
/* This function looks through the program and uses FLAGS to determine what
SSA versioned variables are given entries in a new partition table. This
new partition map is returned. */
var_map
create_ssa_var_map (int flags)
{
block_stmt_iterator bsi;
basic_block bb;
tree dest, use;
tree stmt;
stmt_ann_t ann;
var_map map;
ssa_op_iter iter;
#ifdef ENABLE_CHECKING
sbitmap used_in_real_ops;
sbitmap used_in_virtual_ops;
#endif
map = init_var_map (num_ssa_names + 1);
#ifdef ENABLE_CHECKING
used_in_real_ops = sbitmap_alloc (num_referenced_vars);
sbitmap_zero (used_in_real_ops);
used_in_virtual_ops = sbitmap_alloc (num_referenced_vars);
sbitmap_zero (used_in_virtual_ops);
#endif
if (flags & SSA_VAR_MAP_REF_COUNT)
{
map->ref_count
= (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
}
FOR_EACH_BB (bb)
{
tree phi, arg;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
int i;
register_ssa_partition (map, PHI_RESULT (phi), false);
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) == SSA_NAME)
register_ssa_partition (map, arg, true);
mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
}
}
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
/* Register USE and DEF operands in each statement. */
FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
{
register_ssa_partition (map, use, true);
#ifdef ENABLE_CHECKING
SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (use))->uid);
#endif
}
FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
{
register_ssa_partition (map, dest, false);
#ifdef ENABLE_CHECKING
SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (dest))->uid);
#endif
}
#ifdef ENABLE_CHECKING
/* Validate that virtual ops don't get used in funny ways. */
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
{
SET_BIT (used_in_virtual_ops, var_ann (SSA_NAME_VAR (use))->uid);
}
#endif /* ENABLE_CHECKING */
mark_all_vars_used (bsi_stmt_ptr (bsi));
}
}
#if defined ENABLE_CHECKING
{
unsigned i;
sbitmap both = sbitmap_alloc (num_referenced_vars);
sbitmap_a_and_b (both, used_in_real_ops, used_in_virtual_ops);
if (sbitmap_first_set_bit (both) >= 0)
{
EXECUTE_IF_SET_IN_SBITMAP (both, 0, i,
fprintf (stderr, "Variable %s used in real and virtual operands\n",
get_name (referenced_var (i))));
internal_error ("SSA corruption");
}
sbitmap_free (used_in_real_ops);
sbitmap_free (used_in_virtual_ops);
sbitmap_free (both);
}
#endif
return map;
}
/* Allocate and return a new live range information object base on MAP. */
static tree_live_info_p
new_tree_live_info (var_map map)
{
tree_live_info_p live;
int x;
live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
live->map = map;
live->num_blocks = last_basic_block;
live->global = BITMAP_XMALLOC ();
live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
for (x = 0; x < num_var_partitions (map); x++)
live->livein[x] = BITMAP_XMALLOC ();
/* liveout is deferred until it is actually requested. */
live->liveout = NULL;
return live;
}
/* Free storage for live range info object LIVE. */
void
delete_tree_live_info (tree_live_info_p live)
{
int x;
if (live->liveout)
{
for (x = live->num_blocks - 1; x >= 0; x--)
BITMAP_XFREE (live->liveout[x]);
free (live->liveout);
}
if (live->livein)
{
for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
BITMAP_XFREE (live->livein[x]);
free (live->livein);
}
if (live->global)
BITMAP_XFREE (live->global);
free (live);
}
/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
for partition I. STACK is a varray used for temporary memory which is
passed in rather than being allocated on every call. */
static void
live_worklist (tree_live_info_p live, varray_type stack, int i)
{
int b;
tree var;
basic_block def_bb = NULL;
edge e;
var_map map = live->map;
var = partition_to_var (map, i);
if (SSA_NAME_DEF_STMT (var))
def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b,
{
VARRAY_PUSH_INT (stack, b);
});
while (VARRAY_ACTIVE_SIZE (stack) > 0)
{
b = VARRAY_TOP_INT (stack);
VARRAY_POP (stack);
for (e = BASIC_BLOCK (b)->pred; e; e = e->pred_next)
if (e->src != ENTRY_BLOCK_PTR)
{
/* Its not live on entry to the block its defined in. */
if (e->src == def_bb)
continue;
if (!bitmap_bit_p (live->livein[i], e->src->index))
{
bitmap_set_bit (live->livein[i], e->src->index);
VARRAY_PUSH_INT (stack, e->src->index);
}
}
}
}
/* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
static inline void
set_if_valid (var_map map, bitmap vec, tree var)
{
int p = var_to_partition (map, var);
if (p != NO_PARTITION)
bitmap_set_bit (vec, p);
}
/* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
global bit for it in the LIVE object. BB is the block being processed. */
static inline void
add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
tree var, basic_block bb)
{
int p = var_to_partition (live->map, var);
if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
return;
if (!bitmap_bit_p (def_vec, p))
{
bitmap_set_bit (live->livein[p], bb->index);
bitmap_set_bit (live->global, p);
}
}
/* Given partition map MAP, calculate all the live on entry bitmaps for
each basic block. Return a live info object. */
tree_live_info_p
calculate_live_on_entry (var_map map)
{
tree_live_info_p live;
int i;
basic_block bb;
bitmap saw_def;
tree phi, var, stmt;
tree op;
edge e;
varray_type stack;
block_stmt_iterator bsi;
stmt_ann_t ann;
ssa_op_iter iter;
#ifdef ENABLE_CHECKING
int num;
#endif
saw_def = BITMAP_XMALLOC ();
live = new_tree_live_info (map);
FOR_EACH_BB (bb)
{
bitmap_clear (saw_def);
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
var = PHI_ARG_DEF (phi, i);
if (!phi_ssa_name_p (var))
continue;
stmt = SSA_NAME_DEF_STMT (var);
e = PHI_ARG_EDGE (phi, i);
/* Any uses in PHIs which either don't have def's or are not
defined in the block from which the def comes, will be live
on entry to that block. */
if (!stmt || e->src != bb_for_stmt (stmt))
add_livein_if_notdef (live, saw_def, var, e->src);
}
}
/* Don't mark PHI results as defined until all the PHI nodes have
been processed. If the PHI sequence is:
a_3 = PHI <a_1, a_2>
b_3 = PHI <b_1, a_3>
The a_3 referred to in b_3's PHI node is the one incoming on the
edge, *not* the PHI node just seen. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
var = PHI_RESULT (phi);
set_if_valid (map, saw_def, var);
}
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
{
add_livein_if_notdef (live, saw_def, op, bb);
}
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
{
set_if_valid (map, saw_def, op);
}
}
}
VARRAY_INT_INIT (stack, last_basic_block, "stack");
EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i,
{
live_worklist (live, stack, i);
});
#ifdef ENABLE_CHECKING
/* Check for live on entry partitions and report those with a DEF in
the program. This will typically mean an optimization has done
something wrong. */
bb = ENTRY_BLOCK_PTR;
num = 0;
for (e = bb->succ; e; e = e->succ_next)
{
int entry_block = e->dest->index;
if (e->dest == EXIT_BLOCK_PTR)
continue;
for (i = 0; i < num_var_partitions (map); i++)
{
basic_block tmp;
tree d;
var = partition_to_var (map, i);
stmt = SSA_NAME_DEF_STMT (var);
tmp = bb_for_stmt (stmt);
d = default_def (SSA_NAME_VAR (var));
if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
{
if (!IS_EMPTY_STMT (stmt))
{
num++;
print_generic_expr (stderr, var, TDF_SLIM);
fprintf (stderr, " is defined ");
if (tmp)
fprintf (stderr, " in BB%d, ", tmp->index);
fprintf (stderr, "by:\n");
print_generic_expr (stderr, stmt, TDF_SLIM);
fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
entry_block);
fprintf (stderr, " So it appears to have multiple defs.\n");
}
else
{
if (d != var)
{
num++;
print_generic_expr (stderr, var, TDF_SLIM);
fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
if (d)
{
fprintf (stderr, " but is not the default def of ");
print_generic_expr (stderr, d, TDF_SLIM);
fprintf (stderr, "\n");
}
else
fprintf (stderr, " and there is no default def.\n");
}
}
}
else
if (d == var)
{
/* The only way this var shouldn't be marked live on entry is
if it occurs in a PHI argument of the block. */
int z, ok = 0;
for (phi = phi_nodes (e->dest);
phi && !ok;
phi = PHI_CHAIN (phi))
{
for (z = 0; z < PHI_NUM_ARGS (phi); z++)
if (var == PHI_ARG_DEF (phi, z))
{
ok = 1;
break;
}
}
if (ok)
continue;
num++;
print_generic_expr (stderr, var, TDF_SLIM);
fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
entry_block);
fprintf (stderr, "but it is a default def so it should be.\n");
}
}
}
gcc_assert (num <= 0);
#endif
BITMAP_XFREE (saw_def);
return live;
}
/* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
void
calculate_live_on_exit (tree_live_info_p liveinfo)
{
unsigned b;
int i, x;
bitmap *on_exit;
basic_block bb;
edge e;
tree t, phi;
bitmap on_entry;
var_map map = liveinfo->map;
on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
for (x = 0; x < last_basic_block; x++)
on_exit[x] = BITMAP_XMALLOC ();
/* Set all the live-on-exit bits for uses in PHIs. */
FOR_EACH_BB (bb)
{
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
t = PHI_ARG_DEF (phi, i);
e = PHI_ARG_EDGE (phi, i);
if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
continue;
set_if_valid (map, on_exit[e->src->index], t);
}
}
/* Set live on exit for all predecessors of live on entry's. */
for (i = 0; i < num_var_partitions (map); i++)
{
on_entry = live_entry_blocks (liveinfo, i);
EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b,
{
for (e = BASIC_BLOCK(b)->pred; e; e = e->pred_next)
if (e->src != ENTRY_BLOCK_PTR)
bitmap_set_bit (on_exit[e->src->index], i);
});
}
liveinfo->liveout = on_exit;
}
/* Initialize a tree_partition_associator object using MAP. */
tpa_p
tpa_init (var_map map)
{
tpa_p tpa;
int num_partitions = num_var_partitions (map);
int x;
if (num_partitions == 0)
return NULL;
tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
tpa->num_trees = 0;
tpa->uncompressed_num = -1;
tpa->map = map;
tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
x = MAX (40, (num_partitions / 20));
VARRAY_TREE_INIT (tpa->trees, x, "trees");
VARRAY_INT_INIT (tpa->first_partition, x, "first_partition");
return tpa;
}
/* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
void
tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
{
int i;
i = tpa_first_partition (tpa, tree_index);
if (i == partition_index)
{
VARRAY_INT (tpa->first_partition, tree_index) = tpa->next_partition[i];
}
else
{
for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
{
if (tpa->next_partition[i] == partition_index)
{
tpa->next_partition[i] = tpa->next_partition[partition_index];
break;
}
}
}
}
/* Free the memory used by tree_partition_associator object TPA. */
void
tpa_delete (tpa_p tpa)
{
if (!tpa)
return;
free (tpa->partition_to_tree_map);
free (tpa->next_partition);
free (tpa);
}
/* This function will remove any tree entries from TPA which have only a single
element. This will help keep the size of the conflict graph down. The
function returns the number of remaining tree lists. */
int
tpa_compact (tpa_p tpa)
{
int last, x, y, first, swap_i;
tree swap_t;
/* Find the last list which has more than 1 partition. */
for (last = tpa->num_trees - 1; last > 0; last--)
{
first = tpa_first_partition (tpa, last);
if (tpa_next_partition (tpa, first) != NO_PARTITION)
break;
}
x = 0;
while (x < last)
{
first = tpa_first_partition (tpa, x);
/* If there is not more than one partition, swap with the current end
of the tree list. */
if (tpa_next_partition (tpa, first) == NO_PARTITION)
{
swap_t = VARRAY_TREE (tpa->trees, last);
swap_i = VARRAY_INT (tpa->first_partition, last);
/* Update the last entry. Since it is known to only have one
partition, there is nothing else to update. */
VARRAY_TREE (tpa->trees, last) = VARRAY_TREE (tpa->trees, x);
VARRAY_INT (tpa->first_partition, last)
= VARRAY_INT (tpa->first_partition, x);
tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
/* Since this list is known to have more than one partition, update
the list owner entries. */
VARRAY_TREE (tpa->trees, x) = swap_t;
VARRAY_INT (tpa->first_partition, x) = swap_i;
for (y = tpa_first_partition (tpa, x);
y != NO_PARTITION;
y = tpa_next_partition (tpa, y))
tpa->partition_to_tree_map[y] = x;
/* Ensure last is a list with more than one partition. */
last--;
for (; last > x; last--)
{
first = tpa_first_partition (tpa, last);
if (tpa_next_partition (tpa, first) != NO_PARTITION)
break;
}
}
x++;
}
first = tpa_first_partition (tpa, x);
if (tpa_next_partition (tpa, first) != NO_PARTITION)
x++;
tpa->uncompressed_num = tpa->num_trees;
tpa->num_trees = x;
return last;
}
/* Initialize a root_var object with SSA partitions from MAP which are based
on each root variable. */
root_var_p
root_var_init (var_map map)
{
root_var_p rv;
int num_partitions = num_var_partitions (map);
int x, p;
tree t;
var_ann_t ann;
sbitmap seen;
rv = tpa_init (map);
if (!rv)
return NULL;
seen = sbitmap_alloc (num_partitions);
sbitmap_zero (seen);
/* Start at the end and work towards the front. This will provide a list
that is ordered from smallest to largest. */
for (x = num_partitions - 1; x >= 0; x--)
{
t = partition_to_var (map, x);
/* The var map may not be compacted yet, so check for NULL. */
if (!t)
continue;
p = var_to_partition (map, t);
gcc_assert (p != NO_PARTITION);
/* Make sure we only put coalesced partitions into the list once. */
if (TEST_BIT (seen, p))
continue;
SET_BIT (seen, p);
if (TREE_CODE (t) == SSA_NAME)
t = SSA_NAME_VAR (t);
ann = var_ann (t);
if (ann->root_var_processed)
{
rv->next_partition[p] = VARRAY_INT (rv->first_partition,
VAR_ANN_ROOT_INDEX (ann));
VARRAY_INT (rv->first_partition, VAR_ANN_ROOT_INDEX (ann)) = p;
}
else
{
ann->root_var_processed = 1;
VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
VARRAY_PUSH_TREE (rv->trees, t);
VARRAY_PUSH_INT (rv->first_partition, p);
}
rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
}
/* Reset the out_of_ssa_tag flag on each variable for later use. */
for (x = 0; x < rv->num_trees; x++)
{
t = VARRAY_TREE (rv->trees, x);
var_ann (t)->root_var_processed = 0;
}
sbitmap_free (seen);
return rv;
}
/* Initialize a type_var structure which associates all the partitions in MAP
of the same type to the type node's index. Volatiles are ignored. */
type_var_p
type_var_init (var_map map)
{
type_var_p tv;
int x, y, p;
int num_partitions = num_var_partitions (map);
tree t;
sbitmap seen;
seen = sbitmap_alloc (num_partitions);
sbitmap_zero (seen);
tv = tpa_init (map);
if (!tv)
return NULL;
for (x = num_partitions - 1; x >= 0; x--)
{
t = partition_to_var (map, x);
/* Disallow coalescing of these types of variables. */
if (!t
|| TREE_THIS_VOLATILE (t)
|| TREE_CODE (t) == RESULT_DECL
|| TREE_CODE (t) == PARM_DECL
|| (DECL_P (t)
&& (DECL_REGISTER (t)
|| !DECL_IGNORED_P (t)
|| DECL_RTL_SET_P (t))))
continue;
p = var_to_partition (map, t);
gcc_assert (p != NO_PARTITION);
/* If partitions have been coalesced, only add the representative
for the partition to the list once. */
if (TEST_BIT (seen, p))
continue;
SET_BIT (seen, p);
t = TREE_TYPE (t);
/* Find the list for this type. */
for (y = 0; y < tv->num_trees; y++)
if (t == VARRAY_TREE (tv->trees, y))
break;
if (y == tv->num_trees)
{
tv->num_trees++;
VARRAY_PUSH_TREE (tv->trees, t);
VARRAY_PUSH_INT (tv->first_partition, p);
}
else
{
tv->next_partition[p] = VARRAY_INT (tv->first_partition, y);
VARRAY_INT (tv->first_partition, y) = p;
}
tv->partition_to_tree_map[p] = y;
}
sbitmap_free (seen);
return tv;
}
/* Create a new coalesce list object from MAP and return it. */
coalesce_list_p
create_coalesce_list (var_map map)
{
coalesce_list_p list;
list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
list->map = map;
list->add_mode = true;
list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
sizeof (struct partition_pair_d));
return list;
}
/* Delete coalesce list CL. */
void
delete_coalesce_list (coalesce_list_p cl)
{
free (cl->list);
free (cl);
}
/* Find a matching coalesce pair object in CL for partitions P1 and P2. If
one isn't found, return NULL if CREATE is false, otherwise create a new
coalesce pair object and return it. */
static partition_pair_p
find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
{
partition_pair_p node, tmp;
int s;
/* Normalize so that p1 is the smaller value. */
if (p2 < p1)
{
s = p1;
p1 = p2;
p2 = s;
}
tmp = NULL;
/* The list is sorted such that if we find a value greater than p2,
p2 is not in the list. */
for (node = cl->list[p1]; node; node = node->next)
{
if (node->second_partition == p2)
return node;
else
if (node->second_partition > p2)
break;
tmp = node;
}
if (!create)
return NULL;
node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
node->first_partition = p1;
node->second_partition = p2;
node->cost = 0;
if (tmp != NULL)
{
node->next = tmp->next;
tmp->next = node;
}
else
{
/* This is now the first node in the list. */
node->next = cl->list[p1];
cl->list[p1] = node;
}
return node;
}
/* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
void
add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
{
partition_pair_p node;
gcc_assert (cl->add_mode);
if (p1 == p2)
return;
node = find_partition_pair (cl, p1, p2, true);
node->cost += value;
}
/* Comparison function to allow qsort to sort P1 and P2 in descending order. */
static
int compare_pairs (const void *p1, const void *p2)
{
return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
}
/* Prepare CL for removal of preferred pairs. When finished, list element
0 has all the coalesce pairs, sorted in order from most important coalesce
to least important. */
void
sort_coalesce_list (coalesce_list_p cl)
{
int x, num, count;
partition_pair_p chain, p;
partition_pair_p *list;
gcc_assert (cl->add_mode);
cl->add_mode = false;
/* Compact the array of lists to a single list, and count the elements. */
num = 0;
chain = NULL;
for (x = 0; x < num_var_partitions (cl->map); x++)
if (cl->list[x] != NULL)
{
for (p = cl->list[x]; p->next != NULL; p = p->next)
num++;
num++;
p->next = chain;
chain = cl->list[x];
cl->list[x] = NULL;
}
/* Only call qsort if there are more than 2 items. */
if (num > 2)
{
list = xmalloc (sizeof (partition_pair_p) * num);
count = 0;
for (p = chain; p != NULL; p = p->next)
list[count++] = p;
gcc_assert (count == num);
qsort (list, count, sizeof (partition_pair_p), compare_pairs);
p = list[0];
for (x = 1; x < num; x++)
{
p->next = list[x];
p = list[x];
}
p->next = NULL;
cl->list[0] = list[0];
free (list);
}
else
{
cl->list[0] = chain;
if (num == 2)
{
/* Simply swap the two elements if they are in the wrong order. */
if (chain->cost < chain->next->cost)
{
cl->list[0] = chain->next;
cl->list[0]->next = chain;
chain->next = NULL;
}
}
}
}
/* Retrieve the best remaining pair to coalesce from CL. Returns the 2
partitions via P1 and P2. Their calculated cost is returned by the function.
NO_BEST_COALESCE is returned if the coalesce list is empty. */
int
pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
{
partition_pair_p node;
int ret;
gcc_assert (!cl->add_mode);
node = cl->list[0];
if (!node)
return NO_BEST_COALESCE;
cl->list[0] = node->next;
*p1 = node->first_partition;
*p2 = node->second_partition;
ret = node->cost;
free (node);
return ret;
}
/* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
VAR and any other live partitions in VEC which are associated via TPA.
Reset the live bit in VEC. */
static inline void
add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
var_map map, bitmap vec, tree var)
{
int p, y, first;
p = var_to_partition (map, var);
if (p != NO_PARTITION)
{
bitmap_clear_bit (vec, p);
first = tpa_find_tree (tpa, p);
/* If find returns nothing, this object isn't interesting. */
if (first == TPA_NONE)
return;
/* Only add interferences between objects in the same list. */
for (y = tpa_first_partition (tpa, first);
y != TPA_NONE;
y = tpa_next_partition (tpa, y))
{
if (bitmap_bit_p (vec, y))
conflict_graph_add (graph, p, y);
}
}
}
/* Return a conflict graph for the information contained in LIVE_INFO. Only
conflicts between items in the same TPA list are added. If optional
coalesce list CL is passed in, any copies encountered are added. */
conflict_graph
build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
coalesce_list_p cl)
{
conflict_graph graph;
var_map map;
bitmap live;
int x, y, i;
basic_block bb;
varray_type partition_link, tpa_to_clear, tpa_nodes;
unsigned l;
ssa_op_iter iter;
map = live_var_map (liveinfo);
graph = conflict_graph_new (num_var_partitions (map));
if (tpa_num_trees (tpa) == 0)
return graph;
live = BITMAP_XMALLOC ();
VARRAY_INT_INIT (partition_link, num_var_partitions (map) + 1, "part_link");
VARRAY_INT_INIT (tpa_nodes, tpa_num_trees (tpa), "tpa nodes");
VARRAY_INT_INIT (tpa_to_clear, 50, "tpa to clear");
FOR_EACH_BB (bb)
{
block_stmt_iterator bsi;
tree phi;
/* Start with live on exit temporaries. */
bitmap_copy (live, live_on_exit (liveinfo, bb));
for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
{
bool is_a_copy = false;
tree stmt = bsi_stmt (bsi);
stmt_ann_t ann;
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
/* A copy between 2 partitions does not introduce an interference
by itself. If they did, you would never be able to coalesce
two things which are copied. If the two variables really do
conflict, they will conflict elsewhere in the program.
This is handled specially here since we may also be interested
in copies between real variables and SSA_NAME variables. We may
be interested in trying to coalesce SSA_NAME variables with
root variables in some cases. */
if (TREE_CODE (stmt) == MODIFY_EXPR)
{
tree lhs = TREE_OPERAND (stmt, 0);
tree rhs = TREE_OPERAND (stmt, 1);
int p1, p2;
int bit;
if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
p1 = var_to_partition (map, lhs);
else
p1 = NO_PARTITION;
if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
p2 = var_to_partition (map, rhs);
else
p2 = NO_PARTITION;
if (p1 != NO_PARTITION && p2 != NO_PARTITION)
{
is_a_copy = true;
bit = bitmap_bit_p (live, p2);
/* If the RHS is live, make it not live while we add
the conflicts, then make it live again. */
if (bit)
bitmap_clear_bit (live, p2);
add_conflicts_if_valid (tpa, graph, map, live, lhs);
if (bit)
bitmap_set_bit (live, p2);
if (cl)
add_coalesce (cl, p1, p2, 1);
set_if_valid (map, live, rhs);
}
}
if (!is_a_copy)
{
tree var;
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
{
add_conflicts_if_valid (tpa, graph, map, live, var);
}
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
{
set_if_valid (map, live, var);
}
}
}
/* If result of a PHI is unused, then the loops over the statements
will not record any conflicts. However, since the PHI node is
going to be translated out of SSA form we must record a conflict
between the result of the PHI and any variables with are live.
Otherwise the out-of-ssa translation may create incorrect code. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree result = PHI_RESULT (phi);
int p = var_to_partition (map, result);
if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
add_conflicts_if_valid (tpa, graph, map, live, result);
}
/* Anything which is still live at this point interferes.
In order to implement this efficiently, only conflicts between
partitions which have the same TPA root need be added.
TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
entry points to an index into 'partition_link', which then indexes
into itself forming a linked list of partitions sharing a tpa root
which have been seen as live up to this point. Since partitions start
at index zero, all entries in partition_link are (partition + 1).
Conflicts are added between the current partition and any already seen.
tpa_clear contains all the tpa_roots processed, and these are the only
entries which need to be zero'd out for a clean restart. */
EXECUTE_IF_SET_IN_BITMAP (live, 0, x,
{
i = tpa_find_tree (tpa, x);
if (i != TPA_NONE)
{
int start = VARRAY_INT (tpa_nodes, i);
/* If start is 0, a new root reference list is being started.
Register it to be cleared. */
if (!start)
VARRAY_PUSH_INT (tpa_to_clear, i);
/* Add interferences to other tpa members seen. */
for (y = start; y != 0; y = VARRAY_INT (partition_link, y))
conflict_graph_add (graph, x, y - 1);
VARRAY_INT (tpa_nodes, i) = x + 1;
VARRAY_INT (partition_link, x + 1) = start;
}
});
/* Now clear the used tpa root references. */
for (l = 0; l < VARRAY_ACTIVE_SIZE (tpa_to_clear); l++)
VARRAY_INT (tpa_nodes, VARRAY_INT (tpa_to_clear, l)) = 0;
VARRAY_POP_ALL (tpa_to_clear);
}
BITMAP_XFREE (live);
return graph;
}
/* This routine will attempt to coalesce the elements in TPA subject to the
conflicts found in GRAPH. If optional coalesce_list CL is provided,
only coalesces specified within the coalesce list are attempted. Otherwise
an attempt is made to coalesce as many partitions within each TPA grouping
as possible. If DEBUG is provided, debug output will be sent there. */
void
coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
coalesce_list_p cl, FILE *debug)
{
int x, y, z, w;
tree var, tmp;
/* Attempt to coalesce any items in a coalesce list. */
if (cl)
{
while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
{
if (debug)
{
fprintf (debug, "Coalesce list: (%d)", x);
print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
fprintf (debug, " & (%d)", y);
print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
}
w = tpa_find_tree (tpa, x);
z = tpa_find_tree (tpa, y);
if (w != z || w == TPA_NONE || z == TPA_NONE)
{
if (debug)
{
if (w != z)
fprintf (debug, ": Fail, Non-matching TPA's\n");
if (w == TPA_NONE)
fprintf (debug, ": Fail %d non TPA.\n", x);
else
fprintf (debug, ": Fail %d non TPA.\n", y);
}
continue;
}
var = partition_to_var (map, x);
tmp = partition_to_var (map, y);
x = var_to_partition (map, var);
y = var_to_partition (map, tmp);
if (debug)
fprintf (debug, " [map: %d, %d] ", x, y);
if (x == y)
{
if (debug)
fprintf (debug, ": Already Coalesced.\n");
continue;
}
if (!conflict_graph_conflict_p (graph, x, y))
{
z = var_union (map, var, tmp);
if (z == NO_PARTITION)
{
if (debug)
fprintf (debug, ": Unable to perform partition union.\n");
continue;
}
/* z is the new combined partition. We need to remove the other
partition from the list. Set x to be that other partition. */
if (z == x)
{
conflict_graph_merge_regs (graph, x, y);
w = tpa_find_tree (tpa, y);
tpa_remove_partition (tpa, w, y);
}
else
{
conflict_graph_merge_regs (graph, y, x);
w = tpa_find_tree (tpa, x);
tpa_remove_partition (tpa, w, x);
}
if (debug)
fprintf (debug, ": Success -> %d\n", z);
}
else
if (debug)
fprintf (debug, ": Fail due to conflict\n");
}
/* If using a coalesce list, don't try to coalesce anything else. */
return;
}
for (x = 0; x < tpa_num_trees (tpa); x++)
{
while (tpa_first_partition (tpa, x) != TPA_NONE)
{
int p1, p2;
/* Coalesce first partition with anything that doesn't conflict. */
y = tpa_first_partition (tpa, x);
tpa_remove_partition (tpa, x, y);
var = partition_to_var (map, y);
/* p1 is the partition representative to which y belongs. */
p1 = var_to_partition (map, var);
for (z = tpa_next_partition (tpa, y);
z != TPA_NONE;
z = tpa_next_partition (tpa, z))
{
tmp = partition_to_var (map, z);
/* p2 is the partition representative to which z belongs. */
p2 = var_to_partition (map, tmp);
if (debug)
{
fprintf (debug, "Coalesce : ");
print_generic_expr (debug, var, TDF_SLIM);
fprintf (debug, " &");
print_generic_expr (debug, tmp, TDF_SLIM);
fprintf (debug, " (%d ,%d)", p1, p2);
}
/* If partitions are already merged, don't check for conflict. */
if (tmp == var)
{
tpa_remove_partition (tpa, x, z);
if (debug)
fprintf (debug, ": Already coalesced\n");
}
else
if (!conflict_graph_conflict_p (graph, p1, p2))
{
int v;
if (tpa_find_tree (tpa, y) == TPA_NONE
|| tpa_find_tree (tpa, z) == TPA_NONE)
{
if (debug)
fprintf (debug, ": Fail non-TPA member\n");
continue;
}
if ((v = var_union (map, var, tmp)) == NO_PARTITION)
{
if (debug)
fprintf (debug, ": Fail cannot combine partitions\n");
continue;
}
tpa_remove_partition (tpa, x, z);
if (v == p1)
conflict_graph_merge_regs (graph, v, z);
else
{
/* Update the first partition's representative. */
conflict_graph_merge_regs (graph, v, y);
p1 = v;
}
/* The root variable of the partition may be changed
now. */
var = partition_to_var (map, p1);
if (debug)
fprintf (debug, ": Success -> %d\n", v);
}
else
if (debug)
fprintf (debug, ": Fail, Conflict\n");
}
}
}
}
/* Send debug info for coalesce list CL to file F. */
void
dump_coalesce_list (FILE *f, coalesce_list_p cl)
{
partition_pair_p node;
int x, num;
tree var;
if (cl->add_mode)
{
fprintf (f, "Coalesce List:\n");
num = num_var_partitions (cl->map);
for (x = 0; x < num; x++)
{
node = cl->list[x];
if (node)
{
fprintf (f, "[");
print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
fprintf (f, "] - ");
for ( ; node; node = node->next)
{
var = partition_to_var (cl->map, node->second_partition);
print_generic_expr (f, var, TDF_SLIM);
fprintf (f, "(%1d), ", node->cost);
}
fprintf (f, "\n");
}
}
}
else
{
fprintf (f, "Sorted Coalesce list:\n");
for (node = cl->list[0]; node; node = node->next)
{
fprintf (f, "(%d) ", node->cost);
var = partition_to_var (cl->map, node->first_partition);
print_generic_expr (f, var, TDF_SLIM);
fprintf (f, " : ");
var = partition_to_var (cl->map, node->second_partition);
print_generic_expr (f, var, TDF_SLIM);
fprintf (f, "\n");
}
}
}
/* Output tree_partition_associator object TPA to file F.. */
void
tpa_dump (FILE *f, tpa_p tpa)
{
int x, i;
if (!tpa)
return;
for (x = 0; x < tpa_num_trees (tpa); x++)
{
print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
fprintf (f, " : (");
for (i = tpa_first_partition (tpa, x);
i != TPA_NONE;
i = tpa_next_partition (tpa, i))
{
fprintf (f, "(%d)",i);
print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
fprintf (f, " ");
#ifdef ENABLE_CHECKING
if (tpa_find_tree (tpa, i) != x)
fprintf (f, "**find tree incorrectly set** ");
#endif
}
fprintf (f, ")\n");
}
fflush (f);
}
/* Output partition map MAP to file F. */
void
dump_var_map (FILE *f, var_map map)
{
int t;
unsigned x, y;
int p;
fprintf (f, "\nPartition map \n\n");
for (x = 0; x < map->num_partitions; x++)
{
if (map->compact_to_partition != NULL)
p = map->compact_to_partition[x];
else
p = x;
if (map->partition_to_var[p] == NULL_TREE)
continue;
t = 0;
for (y = 1; y < num_ssa_names; y++)
{
p = partition_find (map->var_partition, y);
if (map->partition_to_compact)
p = map->partition_to_compact[p];
if (p == (int)x)
{
if (t++ == 0)
{
fprintf(f, "Partition %d (", x);
print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
fprintf (f, " - ");
}
fprintf (f, "%d ", y);
}
}
if (t != 0)
fprintf (f, ")\n");
}
fprintf (f, "\n");
}
/* Output live range info LIVE to file F, controlled by FLAG. */
void
dump_live_info (FILE *f, tree_live_info_p live, int flag)
{
basic_block bb;
int i;
var_map map = live->map;
if ((flag & LIVEDUMP_ENTRY) && live->livein)
{
FOR_EACH_BB (bb)
{
fprintf (f, "\nLive on entry to BB%d : ", bb->index);
for (i = 0; i < num_var_partitions (map); i++)
{
if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
{
print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
fprintf (f, " ");
}
}
fprintf (f, "\n");
}
}
if ((flag & LIVEDUMP_EXIT) && live->liveout)
{
FOR_EACH_BB (bb)
{
fprintf (f, "\nLive on exit from BB%d : ", bb->index);
EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i,
{
print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
fprintf (f, " ");
});
fprintf (f, "\n");
}
}
}
#ifdef ENABLE_CHECKING
void
register_ssa_partition_check (tree ssa_var)
{
gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
{
fprintf (stderr, "Illegally registering a virtual SSA name :");
print_generic_expr (stderr, ssa_var, TDF_SLIM);
fprintf (stderr, " in the SSA->Normal phase.\n");
internal_error ("SSA corruption");
}
}
#endif
|