summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-live.c
blob: a710c65d3b4384a0898ace62358fcc4ceb7c70f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
/* Liveness for SSA trees.
   Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
   Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "toplev.h"
#include "debug.h"
#include "flags.h"

#ifdef ENABLE_CHECKING
static void  verify_live_on_entry (tree_live_info_p);
#endif


/* VARMAP maintains a mapping from SSA version number to real variables.

   All SSA_NAMES are divided into partitions.  Initially each ssa_name is the
   only member of it's own partition.  Coalescing will attempt to group any
   ssa_names which occur in a copy or in a PHI node into the same partition.

   At the end of out-of-ssa, each partition becomes a "real" variable and is
   rewritten as a compiler variable.

   The var_map data structure is used to manage these partitions.  It allows
   partitions to be combined, and determines which partition belongs to what
   ssa_name or variable, and vice versa.  */


/* This routine will initialize the basevar fields of MAP.  */

static void
var_map_base_init (var_map map)
{
  int x, num_part, num;
  tree var;
  var_ann_t ann;
  
  num = 0;
  num_part = num_var_partitions (map);

  /* If a base table already exists, clear it, otherwise create it.  */
  if (map->partition_to_base_index != NULL)
    {
      free (map->partition_to_base_index);
      VEC_truncate (tree, map->basevars, 0);
    }
  else
    map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));

  map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);

  /* Build the base variable list, and point partitions at their bases.  */
  for (x = 0; x < num_part; x++)
    {
      var = partition_to_var (map, x);
      if (TREE_CODE (var) == SSA_NAME)
	 var = SSA_NAME_VAR (var);
      ann = var_ann (var);
      /* If base variable hasn't been seen, set it up.  */
      if (!ann->base_var_processed)
        {
	  ann->base_var_processed = 1;
	  VAR_ANN_BASE_INDEX (ann) = num++;
	  VEC_safe_push (tree, heap, map->basevars, var);
	}
      map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
    }

  map->num_basevars = num;

  /* Now clear the processed bit.  */
  for (x = 0; x < num; x++)
    {
       var = VEC_index (tree, map->basevars, x);
       var_ann (var)->base_var_processed = 0;
    }

#ifdef ENABLE_CHECKING
  for (x = 0; x < num_part; x++)
    {
      tree var2;
      var = SSA_NAME_VAR (partition_to_var (map, x));
      var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
      gcc_assert (var == var2);
    }
#endif
}


/* Remove the base table in MAP.  */

static void
var_map_base_fini (var_map map)
{
  /* Free the basevar info if it is present.  */
  if (map->partition_to_base_index != NULL)
    {
      VEC_free (tree, heap, map->basevars);
      free (map->partition_to_base_index);
      map->partition_to_base_index = NULL;
      map->num_basevars = 0;
    }
}
/* Create a variable partition map of SIZE, initialize and return it.  */

var_map
init_var_map (int size)
{
  var_map map;

  map = (var_map) xmalloc (sizeof (struct _var_map));
  map->var_partition = partition_new (size);

  map->partition_to_view = NULL;
  map->view_to_partition = NULL;
  map->num_partitions = size;
  map->partition_size = size;
  map->num_basevars = 0;
  map->partition_to_base_index = NULL;
  map->basevars = NULL;
  return map;
}


/* Free memory associated with MAP.  */

void
delete_var_map (var_map map)
{
  var_map_base_fini (map);
  partition_delete (map->var_partition);
  if (map->partition_to_view)
    free (map->partition_to_view);
  if (map->view_to_partition)
    free (map->view_to_partition);
  free (map);
}


/* This function will combine the partitions in MAP for VAR1 and VAR2.  It 
   Returns the partition which represents the new partition.  If the two 
   partitions cannot be combined, NO_PARTITION is returned.  */

int
var_union (var_map map, tree var1, tree var2)
{
  int p1, p2, p3;

  gcc_assert (TREE_CODE (var1) == SSA_NAME);
  gcc_assert (TREE_CODE (var2) == SSA_NAME);

  /* This is independent of partition_to_view. If partition_to_view is 
     on, then whichever one of these partitions is absorbed will never have a
     dereference into the partition_to_view array any more.  */

  p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
  p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));

  gcc_assert (p1 != NO_PARTITION);
  gcc_assert (p2 != NO_PARTITION);

  if (p1 == p2)
    p3 = p1;
  else
    p3 = partition_union (map->var_partition, p1, p2);

  if (map->partition_to_view)
    p3 = map->partition_to_view[p3];

  return p3;
}

 
/* Compress the partition numbers in MAP such that they fall in the range 
   0..(num_partitions-1) instead of wherever they turned out during
   the partitioning exercise.  This removes any references to unused
   partitions, thereby allowing bitmaps and other vectors to be much
   denser.  

   This is implemented such that compaction doesn't affect partitioning.
   Ie., once partitions are created and possibly merged, running one
   or more different kind of compaction will not affect the partitions
   themselves.  Their index might change, but all the same variables will
   still be members of the same partition group.  This allows work on reduced
   sets, and no loss of information when a larger set is later desired.

   In particular, coalescing can work on partitions which have 2 or more
   definitions, and then 'recompact' later to include all the single
   definitions for assignment to program variables.  */


/* Set MAP back to the initial state of having no partition view.  Return a 
   bitmap which has a bit set for each partition number which is in use in the 
   varmap.  */

static bitmap
partition_view_init (var_map map)
{
  bitmap used;
  int tmp;
  unsigned int x;

  used = BITMAP_ALLOC (NULL);

  /* Already in a view? Abandon the old one.  */
  if (map->partition_to_view)
    {
      free (map->partition_to_view);
      map->partition_to_view = NULL;
    }
  if (map->view_to_partition)
    {
      free (map->view_to_partition);
      map->view_to_partition = NULL;
    }

  /* Find out which partitions are actually referenced.  */
  for (x = 0; x < map->partition_size; x++)
    {
      tmp = partition_find (map->var_partition, x);
      if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
	  && (!has_zero_uses (ssa_name (tmp))
	      || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
	bitmap_set_bit (used, tmp);
    }

  map->num_partitions = map->partition_size;
  return used;
}


/* This routine will finalize the view data for MAP based on the partitions
   set in SELECTED.  This is either the same bitmap returned from 
   partition_view_init, or a trimmed down version if some of those partitions
   were not desired in this view.  SELECTED is freed before returning.  */

static void 
partition_view_fini (var_map map, bitmap selected)
{
  bitmap_iterator bi;
  unsigned count, i, x, limit;

  gcc_assert (selected);

  count = bitmap_count_bits (selected);
  limit = map->partition_size;

  /* If its a one-to-one ratio, we don't need any view compaction.  */
  if (count < limit)
    {
      map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
      memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
      map->view_to_partition = (int *)xmalloc (count * sizeof (int));

      i = 0;
      /* Give each selected partition an index.  */
      EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
	{
	  map->partition_to_view[x] = i;
	  map->view_to_partition[i] = x;
	  i++;
	}
      gcc_assert (i == count);
      map->num_partitions = i;
    }

  BITMAP_FREE (selected);
}


/* Create a partition view which includes all the used partitions in MAP.  If 
   WANT_BASES is true, create the base variable map as well.  */

extern void
partition_view_normal (var_map map, bool want_bases)
{
  bitmap used;

  used = partition_view_init (map);
  partition_view_fini (map, used);

  if (want_bases)
    var_map_base_init (map);
  else
    var_map_base_fini (map);
}


/* Create a partition view in MAP which includes just partitions which occur in 
   the bitmap ONLY. If WANT_BASES is true, create the base variable map 
   as well.  */

extern void
partition_view_bitmap (var_map map, bitmap only, bool want_bases)
{
  bitmap used;
  bitmap new_partitions = BITMAP_ALLOC (NULL);
  unsigned x, p;
  bitmap_iterator bi;

  used = partition_view_init (map);
  EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
    {
      p = partition_find (map->var_partition, x);
      gcc_assert (bitmap_bit_p (used, p));
      bitmap_set_bit (new_partitions, p);
    }
  partition_view_fini (map, new_partitions);

  BITMAP_FREE (used);
  if (want_bases)
    var_map_base_init (map);
  else
    var_map_base_fini (map);
}


static inline void mark_all_vars_used (tree *, void *data);

/* Helper function for mark_all_vars_used, called via walk_tree.  */

static tree
mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
{
  tree t = *tp;
  enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
  tree b;

  if (TREE_CODE (t) == SSA_NAME)
    t = SSA_NAME_VAR (t);

  if (IS_EXPR_CODE_CLASS (c)
      && (b = TREE_BLOCK (t)) != NULL)
    TREE_USED (b) = true;

  /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
     fields that do not contain vars.  */
  if (TREE_CODE (t) == TARGET_MEM_REF)
    {
      mark_all_vars_used (&TMR_SYMBOL (t), data);
      mark_all_vars_used (&TMR_BASE (t), data);
      mark_all_vars_used (&TMR_INDEX (t), data);
      *walk_subtrees = 0;
      return NULL;
    }

  /* Only need to mark VAR_DECLS; parameters and return results are not
     eliminated as unused.  */
  if (TREE_CODE (t) == VAR_DECL)
    {
      if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
	{
	  bitmap_clear_bit ((bitmap) data, DECL_UID (t));
	  mark_all_vars_used (&DECL_INITIAL (t), data);
	}
      set_is_used (t);
    }

  if (IS_TYPE_OR_DECL_P (t))
    *walk_subtrees = 0;

  return NULL;
}

/* Mark the scope block SCOPE and its subblocks unused when they can be
   possibly eliminated if dead.  */

static void
mark_scope_block_unused (tree scope)
{
  tree t;
  TREE_USED (scope) = false;
  if (!(*debug_hooks->ignore_block) (scope))
    TREE_USED (scope) = true;
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
    mark_scope_block_unused (t);
}

/* Look if the block is dead (by possibly eliminating its dead subblocks)
   and return true if so.  
   Block is declared dead if:
     1) No statements are associated with it.
     2) Declares no live variables
     3) All subblocks are dead
	or there is precisely one subblocks and the block
	has same abstract origin as outer block and declares
	no variables, so it is pure wrapper.
   When we are not outputting full debug info, we also eliminate dead variables
   out of scope blocks to let them to be recycled by GGC and to save copying work
   done by the inliner.  */

static bool
remove_unused_scope_block_p (tree scope)
{
  tree *t, *next;
  bool unused = !TREE_USED (scope);
  var_ann_t ann;
  int nsubblocks = 0;

  for (t = &BLOCK_VARS (scope); *t; t = next)
    {
      next = &TREE_CHAIN (*t);

      /* Debug info of nested function refers to the block of the
	 function.  We might stil call it even if all statements
	 of function it was nested into was elliminated.
	 
	 TODO: We can actually look into cgraph to see if function
	 will be output to file.  */
      if (TREE_CODE (*t) == FUNCTION_DECL)
	unused = false;

      /* If a decl has a value expr, we need to instantiate it
	 regardless of debug info generation, to avoid codegen
	 differences in memory overlap tests.  update_equiv_regs() may
	 indirectly call validate_equiv_mem() to test whether a
	 SET_DEST overlaps with others, and if the value expr changes
	 by virtual register instantiation, we may get end up with
	 different results.  */
      else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
	unused = false;

      /* Remove everything we don't generate debug info for.  */
      else if (DECL_IGNORED_P (*t))
	{
	  *t = TREE_CHAIN (*t);
	  next = t;
	}

      /* When we are outputting debug info, we usually want to output
	 info about optimized-out variables in the scope blocks.
	 Exception are the scope blocks not containing any instructions
	 at all so user can't get into the scopes at first place.  */
      else if ((ann = var_ann (*t)) != NULL
		&& ann->used)
	unused = false;

      /* When we are not doing full debug info, we however can keep around
	 only the used variables for cfgexpand's memory packing saving quite
	 a lot of memory.  

	 For sake of -g3, we keep around those vars but we don't count this as
	 use of block, so innermost block with no used vars and no instructions
	 can be considered dead.  We only want to keep around blocks user can
	 breakpoint into and ask about value of optimized out variables. 

	 Similarly we need to keep around types at least until all variables of
	 all nested blocks are gone.  We track no information on whether given
	 type is used or not.  */

      else if (debug_info_level == DINFO_LEVEL_NORMAL
	       || debug_info_level == DINFO_LEVEL_VERBOSE
	       /* Removing declarations before inlining is going to affect
		  DECL_UID that in turn is going to affect hashtables and
		  code generation.  */
	       || !cfun->after_inlining)
	;
      else
	{
	  *t = TREE_CHAIN (*t);
	  next = t;
	}
    }

  for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
    if (remove_unused_scope_block_p (*t))
      {
	if (BLOCK_SUBBLOCKS (*t))
	  {
	    tree next = BLOCK_CHAIN (*t);
	    tree supercontext = BLOCK_SUPERCONTEXT (*t);

	    *t = BLOCK_SUBBLOCKS (*t);
	    while (BLOCK_CHAIN (*t))
	      {
	        BLOCK_SUPERCONTEXT (*t) = supercontext;
	        t = &BLOCK_CHAIN (*t);
	      }
	    BLOCK_CHAIN (*t) = next;
	    BLOCK_SUPERCONTEXT (*t) = supercontext;
	    t = &BLOCK_CHAIN (*t);
	    nsubblocks ++;
	  }
	else
	  *t = BLOCK_CHAIN (*t);
      }
    else
      {
        t = &BLOCK_CHAIN (*t);
	nsubblocks ++;
      }


   if (!unused)
     ;
   /* Outer scope is always used.  */
   else if (!BLOCK_SUPERCONTEXT (scope)
            || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
     unused = false;
   /* Innermost blocks with no live variables nor statements can be always
      eliminated.  */
   else if (!nsubblocks)
     ;
   /* If there are live subblocks and we still have some unused variables
      or types declared, we must keep them.
      Before inliing we must not depend on debug info verbosity to keep
      DECL_UIDs stable.  */
   else if (!cfun->after_inlining && BLOCK_VARS (scope))
     unused = false;
   /* For terse debug info we can eliminate info on unused variables.  */
   else if (debug_info_level == DINFO_LEVEL_NONE
	    || debug_info_level == DINFO_LEVEL_TERSE)
     {
       /* Even for -g0/-g1 don't prune outer scopes from artificial
	  functions, otherwise diagnostics using tree_nonartificial_location
	  will not be emitted properly.  */
       if (inlined_function_outer_scope_p (scope))
	 {
	   tree ao = scope;

	   while (ao
		  && TREE_CODE (ao) == BLOCK
		  && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
	     ao = BLOCK_ABSTRACT_ORIGIN (ao);
	   if (ao
	       && TREE_CODE (ao) == FUNCTION_DECL
	       && DECL_DECLARED_INLINE_P (ao)
	       && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
	     unused = false;
	 }
     }
   else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
     unused = false;
   /* See if this block is important for representation of inlined function.
      Inlined functions are always represented by block with
      block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
      set...  */
   else if (inlined_function_outer_scope_p (scope))
     unused = false;
   else
   /* Verfify that only blocks with source location set
      are entry points to the inlined functions.  */
     gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);

   TREE_USED (scope) = !unused;
   return unused;
}

/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be 
   eliminated during the tree->rtl conversion process.  */

static inline void
mark_all_vars_used (tree *expr_p, void *data)
{
  walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
}


/* Dump scope blocks starting at SCOPE to FILE.  INDENT is the
   indentation level and FLAGS is as in print_generic_expr.  */

static void
dump_scope_block (FILE *file, int indent, tree scope, int flags)
{
  tree var, t;
  unsigned int i;

  fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
  	   TREE_USED (scope) ? "" : " (unused)",
	   BLOCK_ABSTRACT (scope) ? " (abstract)": "");
  if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
    {
      expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
      fprintf (file, " %s:%i", s.file, s.line);
    }
  if (BLOCK_ABSTRACT_ORIGIN (scope))
    {
      tree origin = block_ultimate_origin (scope);
      if (origin)
	{
	  fprintf (file, " Originating from :");
	  if (DECL_P (origin))
	    print_generic_decl (file, origin, flags);
	  else
	    fprintf (file, "#%i", BLOCK_NUMBER (origin));
	}
    }
  fprintf (file, " \n");
  for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
    {
      bool used = false;
      var_ann_t ann;

      if ((ann = var_ann (var))
	  && ann->used)
	used = true;

      fprintf (file, "%*s",indent, "");
      print_generic_decl (file, var, flags);
      fprintf (file, "%s\n", used ? "" : " (unused)");
    }
  for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
    {
      fprintf (file, "%*s",indent, "");
      print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
      			  flags);
      fprintf (file, " (nonlocalized)\n");
    }
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
    dump_scope_block (file, indent + 2, t, flags);
  fprintf (file, "\n%*s}\n",indent, "");
}


/* Dump the tree of lexical scopes of current_function_decl to FILE.
   FLAGS is as in print_generic_expr.  */

void
dump_scope_blocks (FILE *file, int flags)
{
  dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
}


/* Dump the tree of lexical scopes of current_function_decl to stderr.
   FLAGS is as in print_generic_expr.  */

void
debug_scope_blocks (int flags)
{
  dump_scope_blocks (stderr, flags);
}

/* Remove local variables that are not referenced in the IL.  */

void
remove_unused_locals (void)
{
  basic_block bb;
  tree t, *cell;
  referenced_var_iterator rvi;
  var_ann_t ann;
  bitmap global_unused_vars = NULL;

  /* Removing declarations from lexical blocks when not optimizing is
     not only a waste of time, it actually causes differences in stack
     layout.  */
  if (!optimize)
    return;

  mark_scope_block_unused (DECL_INITIAL (current_function_decl));

  /* Assume all locals are unused.  */
  FOR_EACH_REFERENCED_VAR (t, rvi)
    var_ann (t)->used = false;

  /* Walk the CFG marking all referenced symbols.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator gsi;
      size_t i;
      edge_iterator ei;
      edge e;

      /* Walk the statements.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple stmt = gsi_stmt (gsi);
	  tree b = gimple_block (stmt);

	  if (b)
	    TREE_USED (b) = true;

	  for (i = 0; i < gimple_num_ops (stmt); i++)
	    mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
	}

      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
          use_operand_p arg_p;
          ssa_op_iter i;
	  tree def;
	  gimple phi = gsi_stmt (gsi);

	  /* No point processing globals.  */
	  if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
	    continue;

	  def = gimple_phi_result (phi);
	  mark_all_vars_used (&def, NULL);

          FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
            {
	      tree arg = USE_FROM_PTR (arg_p);
	      mark_all_vars_used (&arg, NULL);
            }
        }

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->goto_locus)
	  TREE_USED (e->goto_block) = true;
    }

  cfun->has_local_explicit_reg_vars = false;

  /* Remove unmarked local vars from local_decls.  */
  for (cell = &cfun->local_decls; *cell; )
    {
      tree var = TREE_VALUE (*cell);

      if (TREE_CODE (var) != FUNCTION_DECL
	  && (!(ann = var_ann (var))
	      || !ann->used))
	{
	  if (is_global_var (var))
	    {
	      if (global_unused_vars == NULL)
		global_unused_vars = BITMAP_ALLOC (NULL);
	      bitmap_set_bit (global_unused_vars, DECL_UID (var));
	    }
	  else
	    {
	      *cell = TREE_CHAIN (*cell);
	      continue;
	    }
	}
      else if (TREE_CODE (var) == VAR_DECL
	       && DECL_HARD_REGISTER (var)
	       && !is_global_var (var))
	cfun->has_local_explicit_reg_vars = true;
      cell = &TREE_CHAIN (*cell);
    }

  /* Remove unmarked global vars from local_decls.  */
  if (global_unused_vars != NULL)
    {
      for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
	{
	  tree var = TREE_VALUE (t);

	  if (TREE_CODE (var) == VAR_DECL
	      && is_global_var (var)
	      && (ann = var_ann (var)) != NULL
	      && ann->used)
	    mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
	}

      for (cell = &cfun->local_decls; *cell; )
	{
	  tree var = TREE_VALUE (*cell);

	  if (TREE_CODE (var) == VAR_DECL
	      && is_global_var (var)
	      && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
	    *cell = TREE_CHAIN (*cell);
	  else
	    cell = &TREE_CHAIN (*cell);
	}
      BITMAP_FREE (global_unused_vars);
    }

  /* Remove unused variables from REFERENCED_VARs.  As a special
     exception keep the variables that are believed to be aliased.
     Those can't be easily removed from the alias sets and operand
     caches.  They will be removed shortly after the next may_alias
     pass is performed.  */
  FOR_EACH_REFERENCED_VAR (t, rvi)
    if (!is_global_var (t)
	&& TREE_CODE (t) != PARM_DECL
	&& TREE_CODE (t) != RESULT_DECL
	&& !(ann = var_ann (t))->used
	&& !TREE_ADDRESSABLE (t))
      remove_referenced_var (t);
  remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Scope blocks after cleanups:\n");
      dump_scope_blocks (dump_file, dump_flags);
    }
}


/* Allocate and return a new live range information object base on MAP.  */

static tree_live_info_p
new_tree_live_info (var_map map)
{
  tree_live_info_p live;
  unsigned x;

  live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
  live->map = map;
  live->num_blocks = last_basic_block;

  live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  for (x = 0; x < (unsigned)last_basic_block; x++)
    live->livein[x] = BITMAP_ALLOC (NULL);

  live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  for (x = 0; x < (unsigned)last_basic_block; x++)
    live->liveout[x] = BITMAP_ALLOC (NULL);

  live->work_stack = XNEWVEC (int, last_basic_block);
  live->stack_top = live->work_stack;

  live->global = BITMAP_ALLOC (NULL);
  return live;
}


/* Free storage for live range info object LIVE.  */

void 
delete_tree_live_info (tree_live_info_p live)
{
  int x;

  BITMAP_FREE (live->global);
  free (live->work_stack);

  for (x = live->num_blocks - 1; x >= 0; x--)
    BITMAP_FREE (live->liveout[x]);
  free (live->liveout);

  for (x = live->num_blocks - 1; x >= 0; x--)
    BITMAP_FREE (live->livein[x]);
  free (live->livein);

  free (live);
}


/* Visit basic block BB and propagate any required live on entry bits from 
   LIVE into the predecessors.  VISITED is the bitmap of visited blocks.  
   TMP is a temporary work bitmap which is passed in to avoid reallocating
   it each time.  */

static void 
loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
		 bitmap tmp)
{
  edge e;
  bool change;
  edge_iterator ei;
  basic_block pred_bb;
  bitmap loe;
  gcc_assert (!TEST_BIT (visited, bb->index));

  SET_BIT (visited, bb->index);
  loe = live_on_entry (live, bb);

  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      pred_bb = e->src;
      if (pred_bb == ENTRY_BLOCK_PTR)
	continue;
      /* TMP is variables live-on-entry from BB that aren't defined in the
	 predecessor block.  This should be the live on entry vars to pred.  
	 Note that liveout is the DEFs in a block while live on entry is
	 being calculated.  */
      bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);

      /* Add these bits to live-on-entry for the pred. if there are any 
	 changes, and pred_bb has been visited already, add it to the
	 revisit stack.  */
      change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
      if (TEST_BIT (visited, pred_bb->index) && change)
	{
	  RESET_BIT (visited, pred_bb->index);
	  *(live->stack_top)++ = pred_bb->index;
	}
    }
}


/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses 
   of all the variables.  */

static void
live_worklist (tree_live_info_p live)
{
  unsigned b;
  basic_block bb;
  sbitmap visited = sbitmap_alloc (last_basic_block + 1);
  bitmap tmp = BITMAP_ALLOC (NULL);

  sbitmap_zero (visited);

  /* Visit all the blocks in reverse order and propagate live on entry values
     into the predecessors blocks.  */
  FOR_EACH_BB_REVERSE (bb)
    loe_visit_block (live, bb, visited, tmp);

  /* Process any blocks which require further iteration.  */
  while (live->stack_top != live->work_stack)
    {
      b = *--(live->stack_top);
      loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
    }

  BITMAP_FREE (tmp);
  sbitmap_free (visited);
}


/* Calculate the initial live on entry vector for SSA_NAME using immediate_use
   links.  Set the live on entry fields in LIVE.  Def's are marked temporarily
   in the liveout vector.  */

static void
set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
{
  int p;
  gimple stmt;
  use_operand_p use;
  basic_block def_bb = NULL;
  imm_use_iterator imm_iter;
  bool global = false;

  p = var_to_partition (live->map, ssa_name);
  if (p == NO_PARTITION)
    return;

  stmt = SSA_NAME_DEF_STMT (ssa_name);
  if (stmt)
    {
      def_bb = gimple_bb (stmt);
      /* Mark defs in liveout bitmap temporarily.  */
      if (def_bb)
	bitmap_set_bit (live->liveout[def_bb->index], p);
    }
  else
    def_bb = ENTRY_BLOCK_PTR;

  /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
     add it to the list of live on entry blocks.  */
  FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
    {
      gimple use_stmt = USE_STMT (use);
      basic_block add_block = NULL;

      if (gimple_code (use_stmt) == GIMPLE_PHI)
        {
	  /* Uses in PHI's are considered to be live at exit of the SRC block
	     as this is where a copy would be inserted.  Check to see if it is
	     defined in that block, or whether its live on entry.  */
	  int index = PHI_ARG_INDEX_FROM_USE (use);
	  edge e = gimple_phi_arg_edge (use_stmt, index);
	  if (e->src != ENTRY_BLOCK_PTR)
	    {
	      if (e->src != def_bb)
		add_block = e->src;
	    }
	}
      else
        {
	  /* If its not defined in this block, its live on entry.  */
	  basic_block use_bb = gimple_bb (use_stmt);
	  if (use_bb != def_bb)
	    add_block = use_bb;
	}  

      /* If there was a live on entry use, set the bit.  */
      if (add_block)
        {
	  global = true;
	  bitmap_set_bit (live->livein[add_block->index], p);
	}
    }

  /* If SSA_NAME is live on entry to at least one block, fill in all the live
     on entry blocks between the def and all the uses.  */
  if (global)
    bitmap_set_bit (live->global, p);
}


/* Calculate the live on exit vectors based on the entry info in LIVEINFO.  */

void
calculate_live_on_exit (tree_live_info_p liveinfo)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  /* live on entry calculations used liveout vectors for defs, clear them.  */
  FOR_EACH_BB (bb)
    bitmap_clear (liveinfo->liveout[bb->index]);

  /* Set all the live-on-exit bits for uses in PHIs.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator gsi;
      size_t i;

      /* Mark the PHI arguments which are live on exit to the pred block.  */
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);
	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    { 
	      tree t = PHI_ARG_DEF (phi, i);
	      int p;

	      if (TREE_CODE (t) != SSA_NAME)
		continue;

	      p = var_to_partition (liveinfo->map, t);
	      if (p == NO_PARTITION)
		continue;
	      e = gimple_phi_arg_edge (phi, i);
	      if (e->src != ENTRY_BLOCK_PTR)
		bitmap_set_bit (liveinfo->liveout[e->src->index], p);
	    }
	}

      /* Add each successors live on entry to this bock live on exit.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
        if (e->dest != EXIT_BLOCK_PTR)
	  bitmap_ior_into (liveinfo->liveout[bb->index],
			   live_on_entry (liveinfo, e->dest));
    }
}


/* Given partition map MAP, calculate all the live on entry bitmaps for 
   each partition.  Return a new live info object.  */

tree_live_info_p 
calculate_live_ranges (var_map map)
{
  tree var;
  unsigned i;
  tree_live_info_p live;

  live = new_tree_live_info (map);
  for (i = 0; i < num_var_partitions (map); i++)
    {
      var = partition_to_var (map, i);
      if (var != NULL_TREE)
	set_var_live_on_entry (var, live);
    }

  live_worklist (live);

#ifdef ENABLE_CHECKING
  verify_live_on_entry (live);
#endif

  calculate_live_on_exit (live);
  return live;
}


/* Output partition map MAP to file F.  */

void
dump_var_map (FILE *f, var_map map)
{
  int t;
  unsigned x, y;
  int p;

  fprintf (f, "\nPartition map \n\n");

  for (x = 0; x < map->num_partitions; x++)
    {
      if (map->view_to_partition != NULL)
	p = map->view_to_partition[x];
      else
	p = x;

      if (ssa_name (p) == NULL_TREE)
        continue;

      t = 0;
      for (y = 1; y < num_ssa_names; y++)
        {
	  p = partition_find (map->var_partition, y);
	  if (map->partition_to_view)
	    p = map->partition_to_view[p];
	  if (p == (int)x)
	    {
	      if (t++ == 0)
	        {
		  fprintf(f, "Partition %d (", x);
		  print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
		  fprintf (f, " - ");
		}
	      fprintf (f, "%d ", y);
	    }
	}
      if (t != 0)
	fprintf (f, ")\n");
    }
  fprintf (f, "\n");
}


/* Output live range info LIVE to file F, controlled by FLAG.  */

void
dump_live_info (FILE *f, tree_live_info_p live, int flag)
{
  basic_block bb;
  unsigned i;
  var_map map = live->map;
  bitmap_iterator bi;

  if ((flag & LIVEDUMP_ENTRY) && live->livein)
    {
      FOR_EACH_BB (bb)
	{
	  fprintf (f, "\nLive on entry to BB%d : ", bb->index);
	  EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
	    {
	      print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
	      fprintf (f, "  ");
	    }
	  fprintf (f, "\n");
	}
    }

  if ((flag & LIVEDUMP_EXIT) && live->liveout)
    {
      FOR_EACH_BB (bb)
	{
	  fprintf (f, "\nLive on exit from BB%d : ", bb->index);
	  EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
	    {
	      print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
	      fprintf (f, "  ");
	    }
	  fprintf (f, "\n");
	}
    }
}


#ifdef ENABLE_CHECKING
/* Verify that SSA_VAR is a non-virtual SSA_NAME.  */

void
register_ssa_partition_check (tree ssa_var)
{
  gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
  if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
    {
      fprintf (stderr, "Illegally registering a virtual SSA name :");
      print_generic_expr (stderr, ssa_var, TDF_SLIM);
      fprintf (stderr, " in the SSA->Normal phase.\n");
      internal_error ("SSA corruption");
    }
}


/* Verify that the info in LIVE matches the current cfg.  */

static void
verify_live_on_entry (tree_live_info_p live)
{
  unsigned i;
  tree var;
  gimple stmt;
  basic_block bb;
  edge e;
  int num;
  edge_iterator ei;
  var_map map = live->map;

   /* Check for live on entry partitions and report those with a DEF in
      the program. This will typically mean an optimization has done
      something wrong.  */
  bb = ENTRY_BLOCK_PTR;
  num = 0;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      int entry_block = e->dest->index;
      if (e->dest == EXIT_BLOCK_PTR)
        continue;
      for (i = 0; i < (unsigned)num_var_partitions (map); i++)
	{
	  basic_block tmp;
	  tree d;
	  bitmap loe;
	  var = partition_to_var (map, i);
	  stmt = SSA_NAME_DEF_STMT (var);
	  tmp = gimple_bb (stmt);
	  d = gimple_default_def (cfun, SSA_NAME_VAR (var));

	  loe = live_on_entry (live, e->dest);
	  if (loe && bitmap_bit_p (loe, i))
	    {
	      if (!gimple_nop_p (stmt))
		{
		  num++;
		  print_generic_expr (stderr, var, TDF_SLIM);
		  fprintf (stderr, " is defined ");
		  if (tmp)
		    fprintf (stderr, " in BB%d, ", tmp->index);
		  fprintf (stderr, "by:\n");
		  print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
		  fprintf (stderr, "\nIt is also live-on-entry to entry BB %d", 
			   entry_block);
		  fprintf (stderr, " So it appears to have multiple defs.\n");
		}
	      else
	        {
		  if (d != var)
		    {
		      num++;
		      print_generic_expr (stderr, var, TDF_SLIM);
		      fprintf (stderr, " is live-on-entry to BB%d ",
			       entry_block);
		      if (d)
		        {
			  fprintf (stderr, " but is not the default def of ");
			  print_generic_expr (stderr, d, TDF_SLIM);
			  fprintf (stderr, "\n");
			}
		      else
			fprintf (stderr, " and there is no default def.\n");
		    }
		}
	    }
	  else
	    if (d == var)
	      {
		/* The only way this var shouldn't be marked live on entry is 
		   if it occurs in a PHI argument of the block.  */
		size_t z;
		bool ok = false;
		gimple_stmt_iterator gsi;
		for (gsi = gsi_start_phis (e->dest);
		     !gsi_end_p (gsi) && !ok;
		     gsi_next (&gsi))
		  {
		    gimple phi = gsi_stmt (gsi);
		    for (z = 0; z < gimple_phi_num_args (phi); z++)
		      if (var == gimple_phi_arg_def (phi, z))
			{
			  ok = true;
			  break;
			}
		  }
		if (ok)
		  continue;
	        num++;
		print_generic_expr (stderr, var, TDF_SLIM);
		fprintf (stderr, " is not marked live-on-entry to entry BB%d ", 
			 entry_block);
		fprintf (stderr, "but it is a default def so it should be.\n");
	      }
	}
    }
  gcc_assert (num <= 0);
}
#endif