1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/* Induction variable canonicalization.
Copyright (C) 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This pass detects the loops that iterate a constant number of times,
adds a canonical induction variable (step -1, tested against 0)
and replaces the exit test. This enables the less powerful rtl
level analysis to use this information.
This might spoil the code in some cases (by increasing register pressure).
Note that in the case the new variable is not needed, ivopts will get rid
of it, so it might only be a problem when there are no other linear induction
variables. In that case the created optimization possibilities are likely
to pay up.
Additionally in case we detect that it is beneficial to unroll the
loop completely, we do it right here to expose the optimization
possibilities to the following passes. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "ggc.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "flags.h"
#include "tree-inline.h"
/* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
is the exit edge whose condition is replaced. */
static void
create_canonical_iv (struct loop *loop, edge exit, tree niter)
{
edge in;
tree cond, type, var;
block_stmt_iterator incr_at;
enum tree_code cmp;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
print_generic_expr (dump_file, niter, TDF_SLIM);
fprintf (dump_file, " iterations.\n");
}
cond = last_stmt (exit->src);
in = EDGE_SUCC (exit->src, 0);
if (in == exit)
in = EDGE_SUCC (exit->src, 1);
/* Note that we do not need to worry about overflows, since
type of niter is always unsigned and all comparisons are
just for equality/nonequality -- i.e. everything works
with a modulo arithmetics. */
type = TREE_TYPE (niter);
niter = fold (build2 (PLUS_EXPR, type,
niter,
build_int_cst (type, 1)));
incr_at = bsi_last (in->src);
create_iv (niter,
fold_convert (type, integer_minus_one_node),
NULL_TREE, loop,
&incr_at, false, NULL, &var);
cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
COND_EXPR_COND (cond) = build2 (cmp, boolean_type_node,
var,
build_int_cst (type, 0));
update_stmt (cond);
}
/* Computes an estimated number of insns in LOOP. */
unsigned
tree_num_loop_insns (struct loop *loop)
{
basic_block *body = get_loop_body (loop);
block_stmt_iterator bsi;
unsigned size = 1, i;
for (i = 0; i < loop->num_nodes; i++)
for (bsi = bsi_start (body[i]); !bsi_end_p (bsi); bsi_next (&bsi))
size += estimate_num_insns (bsi_stmt (bsi));
free (body);
return size;
}
/* Tries to unroll LOOP completely, i.e. NITER times. LOOPS is the
loop tree. COMPLETELY_UNROLL is true if we should unroll the loop
even if it may cause code growth. EXIT is the exit of the loop
that should be eliminated. */
static bool
try_unroll_loop_completely (struct loops *loops ATTRIBUTE_UNUSED,
struct loop *loop,
edge exit, tree niter,
bool completely_unroll)
{
unsigned HOST_WIDE_INT n_unroll, ninsns, max_unroll;
tree old_cond, cond, dont_exit, do_exit;
if (loop->inner)
return false;
if (!host_integerp (niter, 1))
return false;
n_unroll = tree_low_cst (niter, 1);
max_unroll = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
if (n_unroll > max_unroll)
return false;
if (n_unroll)
{
if (!completely_unroll)
return false;
ninsns = tree_num_loop_insns (loop);
if (n_unroll * ninsns
> (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS))
return false;
}
if (exit->flags & EDGE_TRUE_VALUE)
{
dont_exit = boolean_false_node;
do_exit = boolean_true_node;
}
else
{
dont_exit = boolean_true_node;
do_exit = boolean_false_node;
}
cond = last_stmt (exit->src);
if (n_unroll)
{
old_cond = COND_EXPR_COND (cond);
COND_EXPR_COND (cond) = dont_exit;
update_stmt (cond);
if (!tree_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, n_unroll, NULL,
NULL, NULL, NULL, 0))
{
COND_EXPR_COND (cond) = old_cond;
update_stmt (cond);
return false;
}
}
COND_EXPR_COND (cond) = do_exit;
update_stmt (cond);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Unrolled loop %d completely.\n", loop->num);
return true;
}
/* Adds a canonical induction variable to LOOP if suitable. LOOPS is the loops
tree. CREATE_IV is true if we may create a new iv. COMPLETELY_UNROLL is
true if we should do complete unrolling even if it may cause the code
growth. If TRY_EVAL is true, we try to determine the number of iterations
of a loop by direct evaluation. Returns true if cfg is changed. */
static bool
canonicalize_loop_induction_variables (struct loops *loops, struct loop *loop,
bool create_iv, bool completely_unroll,
bool try_eval)
{
edge exit = NULL;
tree niter;
niter = number_of_iterations_in_loop (loop);
if (TREE_CODE (niter) == INTEGER_CST)
{
exit = loop->single_exit;
if (!just_once_each_iteration_p (loop, exit->src))
return false;
/* The result of number_of_iterations_in_loop is by one higher than
we expect (i.e. it returns number of executions of the exit
condition, not of the loop latch edge). */
niter = fold (build2 (MINUS_EXPR, TREE_TYPE (niter), niter,
build_int_cst (TREE_TYPE (niter), 1)));
}
else
{
/* If the loop has more than one exit, try checking all of them
for # of iterations determinable through scev. */
if (!loop->single_exit)
niter = find_loop_niter (loop, &exit);
/* Finally if everything else fails, try brute force evaluation. */
if (try_eval
&& (chrec_contains_undetermined (niter)
|| TREE_CODE (niter) != INTEGER_CST))
niter = find_loop_niter_by_eval (loop, &exit);
if (chrec_contains_undetermined (niter)
|| TREE_CODE (niter) != INTEGER_CST)
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Loop %d iterates ", loop->num);
print_generic_expr (dump_file, niter, TDF_SLIM);
fprintf (dump_file, " times.\n");
}
if (try_unroll_loop_completely (loops, loop, exit, niter, completely_unroll))
return true;
if (create_iv)
create_canonical_iv (loop, exit, niter);
return false;
}
/* The main entry point of the pass. Adds canonical induction variables
to the suitable LOOPS. */
void
canonicalize_induction_variables (struct loops *loops)
{
unsigned i;
struct loop *loop;
bool changed = false;
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (loop)
changed |= canonicalize_loop_induction_variables (loops, loop,
true, false, true);
}
/* Clean up the information about numbers of iterations, since brute force
evaluation could reveal new information. */
scev_reset ();
if (changed)
cleanup_tree_cfg_loop ();
}
/* Unroll LOOPS completely if they iterate just few times. */
void
tree_unroll_loops_completely (struct loops *loops)
{
unsigned i;
struct loop *loop;
bool changed = false;
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (!loop)
continue;
changed |= canonicalize_loop_induction_variables (loops, loop,
false, true,
!flag_tree_loop_ivcanon);
}
/* Clean up the information about numbers of iterations, since complete
unrolling might have invalidated it. */
scev_reset ();
if (changed)
cleanup_tree_cfg_loop ();
}
|