summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-prefetch.c
blob: b47970767684063825e0669e572cb30f4ff4eddf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
/* Array prefetching.
   Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
   
This file is part of GCC.
   
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
   
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
   
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "varray.h"
#include "expr.h"
#include "tree-pass.h"
#include "ggc.h"
#include "insn-config.h"
#include "recog.h"
#include "hashtab.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "toplev.h"
#include "params.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-data-ref.h"
#include "optabs.h"

/* This pass inserts prefetch instructions to optimize cache usage during
   accesses to arrays in loops.  It processes loops sequentially and:

   1) Gathers all memory references in the single loop.
   2) For each of the references it decides when it is profitable to prefetch
      it.  To do it, we evaluate the reuse among the accesses, and determines
      two values: PREFETCH_BEFORE (meaning that it only makes sense to do
      prefetching in the first PREFETCH_BEFORE iterations of the loop) and
      PREFETCH_MOD (meaning that it only makes sense to prefetch in the
      iterations of the loop that are zero modulo PREFETCH_MOD).  For example
      (assuming cache line size is 64 bytes, char has size 1 byte and there
      is no hardware sequential prefetch):

      char *a;
      for (i = 0; i < max; i++)
	{
	  a[255] = ...;		(0)
	  a[i] = ...;		(1)
	  a[i + 64] = ...;	(2)
	  a[16*i] = ...;	(3)
	  a[187*i] = ...;	(4)
	  a[187*i + 50] = ...;	(5)
	}

       (0) obviously has PREFETCH_BEFORE 1
       (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
           location 64 iterations before it, and PREFETCH_MOD 64 (since
	   it hits the same cache line otherwise).
       (2) has PREFETCH_MOD 64
       (3) has PREFETCH_MOD 4
       (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
           the cache line accessed by (4) is the same with probability only
	   7/32.
       (5) has PREFETCH_MOD 1 as well.

      Additionally, we use data dependence analysis to determine for each
      reference the distance till the first reuse; this information is used
      to determine the temporality of the issued prefetch instruction.

   3) We determine how much ahead we need to prefetch.  The number of
      iterations needed is time to fetch / time spent in one iteration of
      the loop.  The problem is that we do not know either of these values,
      so we just make a heuristic guess based on a magic (possibly)
      target-specific constant and size of the loop.

   4) Determine which of the references we prefetch.  We take into account
      that there is a maximum number of simultaneous prefetches (provided
      by machine description).  We prefetch as many prefetches as possible
      while still within this bound (starting with those with lowest
      prefetch_mod, since they are responsible for most of the cache
      misses).
      
   5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
      and PREFETCH_BEFORE requirements (within some bounds), and to avoid
      prefetching nonaccessed memory.
      TODO -- actually implement peeling.
      
   6) We actually emit the prefetch instructions.  ??? Perhaps emit the
      prefetch instructions with guards in cases where 5) was not sufficient
      to satisfy the constraints?

   The function is_loop_prefetching_profitable() implements a cost model
   to determine if prefetching is profitable for a given loop. The cost
   model has two heuristcs:
   1. A heuristic that determines whether the given loop has enough CPU
      ops that can be overlapped with cache missing memory ops.
      If not, the loop won't benefit from prefetching. This is implemented 
      by requirung the ratio between the instruction count and the mem ref 
      count to be above a certain minimum.
   2. A heuristic that disables prefetching in a loop with an unknown trip
      count if the prefetching cost is above a certain limit. The relative 
      prefetching cost is estimated by taking the ratio between the
      prefetch count and the total intruction count (this models the I-cache
      cost).
   The limits used in these heuristics are defined as parameters with
   reasonable default values. Machine-specific default values will be 
   added later.
 
   Some other TODO:
      -- write and use more general reuse analysis (that could be also used
	 in other cache aimed loop optimizations)
      -- make it behave sanely together with the prefetches given by user
	 (now we just ignore them; at the very least we should avoid
	 optimizing loops in that user put his own prefetches)
      -- we assume cache line size alignment of arrays; this could be
	 improved.  */

/* Magic constants follow.  These should be replaced by machine specific
   numbers.  */

/* True if write can be prefetched by a read prefetch.  */

#ifndef WRITE_CAN_USE_READ_PREFETCH
#define WRITE_CAN_USE_READ_PREFETCH 1
#endif

/* True if read can be prefetched by a write prefetch. */

#ifndef READ_CAN_USE_WRITE_PREFETCH
#define READ_CAN_USE_WRITE_PREFETCH 0
#endif

/* The size of the block loaded by a single prefetch.  Usually, this is
   the same as cache line size (at the moment, we only consider one level
   of cache hierarchy).  */

#ifndef PREFETCH_BLOCK
#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
#endif

/* Do we have a forward hardware sequential prefetching?  */

#ifndef HAVE_FORWARD_PREFETCH
#define HAVE_FORWARD_PREFETCH 0
#endif

/* Do we have a backward hardware sequential prefetching?  */

#ifndef HAVE_BACKWARD_PREFETCH
#define HAVE_BACKWARD_PREFETCH 0
#endif

/* In some cases we are only able to determine that there is a certain
   probability that the two accesses hit the same cache line.  In this
   case, we issue the prefetches for both of them if this probability
   is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */

#ifndef ACCEPTABLE_MISS_RATE
#define ACCEPTABLE_MISS_RATE 50
#endif

#ifndef HAVE_prefetch
#define HAVE_prefetch 0
#endif

#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))

/* We consider a memory access nontemporal if it is not reused sooner than
   after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
   accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
   so that we use nontemporal prefetches e.g. if single memory location
   is accessed several times in a single iteration of the loop.  */
#define NONTEMPORAL_FRACTION 16

/* In case we have to emit a memory fence instruction after the loop that
   uses nontemporal stores, this defines the builtin to use.  */

#ifndef FENCE_FOLLOWING_MOVNT
#define FENCE_FOLLOWING_MOVNT NULL_TREE
#endif

/* The group of references between that reuse may occur.  */

struct mem_ref_group
{
  tree base;			/* Base of the reference.  */
  HOST_WIDE_INT step;		/* Step of the reference.  */
  struct mem_ref *refs;		/* References in the group.  */
  struct mem_ref_group *next;	/* Next group of references.  */
};

/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */

#define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)

/* The memory reference.  */

struct mem_ref
{
  gimple stmt;			/* Statement in that the reference appears.  */
  tree mem;			/* The reference.  */
  HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
  struct mem_ref_group *group;	/* The group of references it belongs to.  */
  unsigned HOST_WIDE_INT prefetch_mod;
				/* Prefetch only each PREFETCH_MOD-th
				   iteration.  */
  unsigned HOST_WIDE_INT prefetch_before;
				/* Prefetch only first PREFETCH_BEFORE
				   iterations.  */
  unsigned reuse_distance;	/* The amount of data accessed before the first
				   reuse of this value.  */
  struct mem_ref *next;		/* The next reference in the group.  */
  unsigned write_p : 1;		/* Is it a write?  */
  unsigned independent_p : 1;	/* True if the reference is independent on
				   all other references inside the loop.  */
  unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
  unsigned storent_p : 1;	/* True if we changed the store to a
				   nontemporal one.  */
};

/* Dumps information about reference REF to FILE.  */

static void
dump_mem_ref (FILE *file, struct mem_ref *ref)
{
  fprintf (file, "Reference %p:\n", (void *) ref);

  fprintf (file, "  group %p (base ", (void *) ref->group);
  print_generic_expr (file, ref->group->base, TDF_SLIM);
  fprintf (file, ", step ");
  fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
  fprintf (file, ")\n");

  fprintf (file, "  delta ");
  fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
  fprintf (file, "\n");

  fprintf (file, "  %s\n", ref->write_p ? "write" : "read");

  fprintf (file, "\n");
}

/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
   exist.  */

static struct mem_ref_group *
find_or_create_group (struct mem_ref_group **groups, tree base,
		      HOST_WIDE_INT step)
{
  struct mem_ref_group *group;

  for (; *groups; groups = &(*groups)->next)
    {
      if ((*groups)->step == step
	  && operand_equal_p ((*groups)->base, base, 0))
	return *groups;

      /* Keep the list of groups sorted by decreasing step.  */
      if ((*groups)->step < step)
	break;
    }

  group = XNEW (struct mem_ref_group);
  group->base = base;
  group->step = step;
  group->refs = NULL;
  group->next = *groups;
  *groups = group;

  return group;
}

/* Records a memory reference MEM in GROUP with offset DELTA and write status
   WRITE_P.  The reference occurs in statement STMT.  */

static void
record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
	    HOST_WIDE_INT delta, bool write_p)
{
  struct mem_ref **aref;

  /* Do not record the same address twice.  */
  for (aref = &group->refs; *aref; aref = &(*aref)->next)
    {
      /* It does not have to be possible for write reference to reuse the read
	 prefetch, or vice versa.  */
      if (!WRITE_CAN_USE_READ_PREFETCH
	  && write_p
	  && !(*aref)->write_p)
	continue;
      if (!READ_CAN_USE_WRITE_PREFETCH
	  && !write_p
	  && (*aref)->write_p)
	continue;

      if ((*aref)->delta == delta)
	return;
    }

  (*aref) = XNEW (struct mem_ref);
  (*aref)->stmt = stmt;
  (*aref)->mem = mem;
  (*aref)->delta = delta;
  (*aref)->write_p = write_p;
  (*aref)->prefetch_before = PREFETCH_ALL;
  (*aref)->prefetch_mod = 1;
  (*aref)->reuse_distance = 0;
  (*aref)->issue_prefetch_p = false;
  (*aref)->group = group;
  (*aref)->next = NULL;
  (*aref)->independent_p = false;
  (*aref)->storent_p = false;

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_mem_ref (dump_file, *aref);
}

/* Release memory references in GROUPS.  */

static void
release_mem_refs (struct mem_ref_group *groups)
{
  struct mem_ref_group *next_g;
  struct mem_ref *ref, *next_r;

  for (; groups; groups = next_g)
    {
      next_g = groups->next;
      for (ref = groups->refs; ref; ref = next_r)
	{
	  next_r = ref->next;
	  free (ref);
	}
      free (groups);
    }
}

/* A structure used to pass arguments to idx_analyze_ref.  */

struct ar_data
{
  struct loop *loop;			/* Loop of the reference.  */
  gimple stmt;				/* Statement of the reference.  */
  HOST_WIDE_INT *step;			/* Step of the memory reference.  */
  HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
};

/* Analyzes a single INDEX of a memory reference to obtain information
   described at analyze_ref.  Callback for for_each_index.  */

static bool
idx_analyze_ref (tree base, tree *index, void *data)
{
  struct ar_data *ar_data = (struct ar_data *) data;
  tree ibase, step, stepsize;
  HOST_WIDE_INT istep, idelta = 0, imult = 1;
  affine_iv iv;

  if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
      || TREE_CODE (base) == ALIGN_INDIRECT_REF)
    return false;

  if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
		  *index, &iv, false))
    return false;
  ibase = iv.base;
  step = iv.step;

  if (!cst_and_fits_in_hwi (step))
    return false;
  istep = int_cst_value (step);

  if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
      && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
    {
      idelta = int_cst_value (TREE_OPERAND (ibase, 1));
      ibase = TREE_OPERAND (ibase, 0);
    }
  if (cst_and_fits_in_hwi (ibase))
    {
      idelta += int_cst_value (ibase);
      ibase = build_int_cst (TREE_TYPE (ibase), 0);
    }

  if (TREE_CODE (base) == ARRAY_REF)
    {
      stepsize = array_ref_element_size (base);
      if (!cst_and_fits_in_hwi (stepsize))
	return false;
      imult = int_cst_value (stepsize);

      istep *= imult;
      idelta *= imult;
    }

  *ar_data->step += istep;
  *ar_data->delta += idelta;
  *index = ibase;

  return true;
}

/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
   STEP are integer constants and iter is number of iterations of LOOP.  The
   reference occurs in statement STMT.  Strips nonaddressable component
   references from REF_P.  */

static bool
analyze_ref (struct loop *loop, tree *ref_p, tree *base,
	     HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
	     gimple stmt)
{
  struct ar_data ar_data;
  tree off;
  HOST_WIDE_INT bit_offset;
  tree ref = *ref_p;

  *step = 0;
  *delta = 0;

  /* First strip off the component references.  Ignore bitfields.  */
  if (TREE_CODE (ref) == COMPONENT_REF
      && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
    ref = TREE_OPERAND (ref, 0);

  *ref_p = ref;

  for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
    {
      off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
      bit_offset = TREE_INT_CST_LOW (off);
      gcc_assert (bit_offset % BITS_PER_UNIT == 0);
      
      *delta += bit_offset / BITS_PER_UNIT;
    }

  *base = unshare_expr (ref);
  ar_data.loop = loop;
  ar_data.stmt = stmt;
  ar_data.step = step;
  ar_data.delta = delta;
  return for_each_index (base, idx_analyze_ref, &ar_data);
}

/* Record a memory reference REF to the list REFS.  The reference occurs in
   LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
   reference was recorded, false otherwise.  */

static bool
gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
			      tree ref, bool write_p, gimple stmt)
{
  tree base;
  HOST_WIDE_INT step, delta;
  struct mem_ref_group *agrp;

  if (get_base_address (ref) == NULL)
    return false;

  if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
    return false;

  /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
     are integer constants.  */
  agrp = find_or_create_group (refs, base, step);
  record_ref (agrp, stmt, ref, delta, write_p);

  return true;
}

/* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
   true if there are no other memory references inside the loop.  */

static struct mem_ref_group *
gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
{
  basic_block *body = get_loop_body_in_dom_order (loop);
  basic_block bb;
  unsigned i;
  gimple_stmt_iterator bsi;
  gimple stmt;
  tree lhs, rhs;
  struct mem_ref_group *refs = NULL;

  *no_other_refs = true;
  *ref_count = 0;

  /* Scan the loop body in order, so that the former references precede the
     later ones.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = body[i];
      if (bb->loop_father != loop)
	continue;

      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  stmt = gsi_stmt (bsi);

	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
	    {
	      if (gimple_vuse (stmt)
		  || (is_gimple_call (stmt)
		      && !(gimple_call_flags (stmt) & ECF_CONST)))
		*no_other_refs = false;
	      continue;
	    }

	  lhs = gimple_assign_lhs (stmt);
	  rhs = gimple_assign_rhs1 (stmt);

	  if (REFERENCE_CLASS_P (rhs))
	    {
	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
							    rhs, false, stmt);
	    *ref_count += 1;
	    }
	  if (REFERENCE_CLASS_P (lhs))
	    {
	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
							    lhs, true, stmt);
	    *ref_count += 1;
	    }
	}
    }
  free (body);

  return refs;
}

/* Prune the prefetch candidate REF using the self-reuse.  */

static void
prune_ref_by_self_reuse (struct mem_ref *ref)
{
  HOST_WIDE_INT step = ref->group->step;
  bool backward = step < 0;

  if (step == 0)
    {
      /* Prefetch references to invariant address just once.  */
      ref->prefetch_before = 1;
      return;
    }

  if (backward)
    step = -step;

  if (step > PREFETCH_BLOCK)
    return;

  if ((backward && HAVE_BACKWARD_PREFETCH)
      || (!backward && HAVE_FORWARD_PREFETCH))
    {
      ref->prefetch_before = 1;
      return;
    }

  ref->prefetch_mod = PREFETCH_BLOCK / step;
}

/* Divides X by BY, rounding down.  */

static HOST_WIDE_INT
ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
{
  gcc_assert (by > 0);

  if (x >= 0)
    return x / by;
  else
    return (x + by - 1) / by;
}

/* Prune the prefetch candidate REF using the reuse with BY.
   If BY_IS_BEFORE is true, BY is before REF in the loop.  */

static void
prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
			  bool by_is_before)
{
  HOST_WIDE_INT step = ref->group->step;
  bool backward = step < 0;
  HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
  HOST_WIDE_INT delta = delta_b - delta_r;
  HOST_WIDE_INT hit_from;
  unsigned HOST_WIDE_INT prefetch_before, prefetch_block;

  if (delta == 0)
    {
      /* If the references has the same address, only prefetch the
	 former.  */
      if (by_is_before)
	ref->prefetch_before = 0;
      
      return;
    }

  if (!step)
    {
      /* If the reference addresses are invariant and fall into the
	 same cache line, prefetch just the first one.  */
      if (!by_is_before)
	return;

      if (ddown (ref->delta, PREFETCH_BLOCK)
	  != ddown (by->delta, PREFETCH_BLOCK))
	return;

      ref->prefetch_before = 0;
      return;
    }

  /* Only prune the reference that is behind in the array.  */
  if (backward)
    {
      if (delta > 0)
	return;

      /* Transform the data so that we may assume that the accesses
	 are forward.  */
      delta = - delta;
      step = -step;
      delta_r = PREFETCH_BLOCK - 1 - delta_r;
      delta_b = PREFETCH_BLOCK - 1 - delta_b;
    }
  else
    {
      if (delta < 0)
	return;
    }

  /* Check whether the two references are likely to hit the same cache
     line, and how distant the iterations in that it occurs are from
     each other.  */

  if (step <= PREFETCH_BLOCK)
    {
      /* The accesses are sure to meet.  Let us check when.  */
      hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
      prefetch_before = (hit_from - delta_r + step - 1) / step;

      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* A more complicated case.  First let us ensure that size of cache line
     and step are coprime (here we assume that PREFETCH_BLOCK is a power
     of two.  */
  prefetch_block = PREFETCH_BLOCK;
  while ((step & 1) == 0
	 && prefetch_block > 1)
    {
      step >>= 1;
      prefetch_block >>= 1;
      delta >>= 1;
    }

  /* Now step > prefetch_block, and step and prefetch_block are coprime.
     Determine the probability that the accesses hit the same cache line.  */

  prefetch_before = delta / step;
  delta %= step;
  if ((unsigned HOST_WIDE_INT) delta
      <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
    {
      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* Try also the following iteration.  */
  prefetch_before++;
  delta = step - delta;
  if ((unsigned HOST_WIDE_INT) delta
      <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
    {
      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* The ref probably does not reuse by.  */
  return;
}

/* Prune the prefetch candidate REF using the reuses with other references
   in REFS.  */

static void
prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
{
  struct mem_ref *prune_by;
  bool before = true;

  prune_ref_by_self_reuse (ref);

  for (prune_by = refs; prune_by; prune_by = prune_by->next)
    {
      if (prune_by == ref)
	{
	  before = false;
	  continue;
	}

      if (!WRITE_CAN_USE_READ_PREFETCH
	  && ref->write_p
	  && !prune_by->write_p)
	continue;
      if (!READ_CAN_USE_WRITE_PREFETCH
	  && !ref->write_p
	  && prune_by->write_p)
	continue;

      prune_ref_by_group_reuse (ref, prune_by, before);
    }
}

/* Prune the prefetch candidates in GROUP using the reuse analysis.  */

static void
prune_group_by_reuse (struct mem_ref_group *group)
{
  struct mem_ref *ref_pruned;

  for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
    {
      prune_ref_by_reuse (ref_pruned, group->refs);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);

	  if (ref_pruned->prefetch_before == PREFETCH_ALL
	      && ref_pruned->prefetch_mod == 1)
	    fprintf (dump_file, " no restrictions");
	  else if (ref_pruned->prefetch_before == 0)
	    fprintf (dump_file, " do not prefetch");
	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
	    fprintf (dump_file, " prefetch once");
	  else
	    {
	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
		{
		  fprintf (dump_file, " prefetch before ");
		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
			   ref_pruned->prefetch_before);
		}
	      if (ref_pruned->prefetch_mod != 1)
		{
		  fprintf (dump_file, " prefetch mod ");
		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
			   ref_pruned->prefetch_mod);
		}
	    }
	  fprintf (dump_file, "\n");
	}
    }
}

/* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */

static void
prune_by_reuse (struct mem_ref_group *groups)
{
  for (; groups; groups = groups->next)
    prune_group_by_reuse (groups);
}

/* Returns true if we should issue prefetch for REF.  */

static bool
should_issue_prefetch_p (struct mem_ref *ref)
{
  /* For now do not issue prefetches for only first few of the
     iterations.  */
  if (ref->prefetch_before != PREFETCH_ALL)
    return false;

  /* Do not prefetch nontemporal stores.  */
  if (ref->storent_p)
    return false;

  return true;
}

/* Decide which of the prefetch candidates in GROUPS to prefetch.
   AHEAD is the number of iterations to prefetch ahead (which corresponds
   to the number of simultaneous instances of one prefetch running at a
   time).  UNROLL_FACTOR is the factor by that the loop is going to be
   unrolled.  Returns true if there is anything to prefetch.  */

static bool
schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
		     unsigned ahead)
{
  unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
  unsigned slots_per_prefetch;
  struct mem_ref *ref;
  bool any = false;

  /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
  remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;

  /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
     AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
     it will need a prefetch slot.  */
  slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
	     slots_per_prefetch);

  /* For now we just take memory references one by one and issue
     prefetches for as many as possible.  The groups are sorted
     starting with the largest step, since the references with
     large step are more likely to cause many cache misses.  */

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      {
	if (!should_issue_prefetch_p (ref))
	  continue;

	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
	   and we unroll the loop UNROLL_FACTOR times, we need to insert
	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
	   iteration.  */
	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
			/ ref->prefetch_mod);
	prefetch_slots = n_prefetches * slots_per_prefetch;

	/* If more than half of the prefetches would be lost anyway, do not
	   issue the prefetch.  */
	if (2 * remaining_prefetch_slots < prefetch_slots)
	  continue;

	ref->issue_prefetch_p = true;

	if (remaining_prefetch_slots <= prefetch_slots)
	  return true;
	remaining_prefetch_slots -= prefetch_slots;
	any = true;
      }

  return any;
}

/* Estimate the number of prefetches in the given GROUPS.  */

static int
estimate_prefetch_count (struct mem_ref_group *groups)
{
  struct mem_ref *ref;
  int prefetch_count = 0;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      if (should_issue_prefetch_p (ref))
	  prefetch_count++;

  return prefetch_count;
}

/* Issue prefetches for the reference REF into loop as decided before.
   HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
   is the factor by which LOOP was unrolled.  */

static void
issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
{
  HOST_WIDE_INT delta;
  tree addr, addr_base, write_p, local;
  gimple prefetch;
  gimple_stmt_iterator bsi;
  unsigned n_prefetches, ap;
  bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Issued%s prefetch for %p.\n",
	     nontemporal ? " nontemporal" : "",
	     (void *) ref);

  bsi = gsi_for_stmt (ref->stmt);

  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
		  / ref->prefetch_mod);
  addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
  addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
					true, NULL, true, GSI_SAME_STMT);
  write_p = ref->write_p ? integer_one_node : integer_zero_node;
  local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);

  for (ap = 0; ap < n_prefetches; ap++)
    {
      /* Determine the address to prefetch.  */
      delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
      addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
			  addr_base, size_int (delta));
      addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
				       true, GSI_SAME_STMT);

      /* Create the prefetch instruction.  */
      prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
				    3, addr, write_p, local);
      gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
    }
}

/* Issue prefetches for the references in GROUPS into loop as decided before.
   HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
   factor by that LOOP was unrolled.  */

static void
issue_prefetches (struct mem_ref_group *groups,
		  unsigned unroll_factor, unsigned ahead)
{
  struct mem_ref *ref;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      if (ref->issue_prefetch_p)
	issue_prefetch_ref (ref, unroll_factor, ahead);
}

/* Returns true if REF is a memory write for that a nontemporal store insn
   can be used.  */

static bool
nontemporal_store_p (struct mem_ref *ref)
{
  enum machine_mode mode;
  enum insn_code code;

  /* REF must be a write that is not reused.  We require it to be independent
     on all other memory references in the loop, as the nontemporal stores may
     be reordered with respect to other memory references.  */
  if (!ref->write_p
      || !ref->independent_p
      || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
    return false;

  /* Check that we have the storent instruction for the mode.  */
  mode = TYPE_MODE (TREE_TYPE (ref->mem));
  if (mode == BLKmode)
    return false;

  code = optab_handler (storent_optab, mode)->insn_code;
  return code != CODE_FOR_nothing;
}

/* If REF is a nontemporal store, we mark the corresponding modify statement
   and return true.  Otherwise, we return false.  */

static bool
mark_nontemporal_store (struct mem_ref *ref)
{
  if (!nontemporal_store_p (ref))
    return false;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
	     (void *) ref);

  gimple_assign_set_nontemporal_move (ref->stmt, true);
  ref->storent_p = true;

  return true;
}

/* Issue a memory fence instruction after LOOP.  */

static void
emit_mfence_after_loop (struct loop *loop)
{
  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
  edge exit;
  gimple call;
  gimple_stmt_iterator bsi;
  unsigned i;

  for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
    {
      call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);

      if (!single_pred_p (exit->dest)
	  /* If possible, we prefer not to insert the fence on other paths
	     in cfg.  */
	  && !(exit->flags & EDGE_ABNORMAL))
	split_loop_exit_edge (exit);
      bsi = gsi_after_labels (exit->dest);

      gsi_insert_before (&bsi, call, GSI_NEW_STMT);
      mark_virtual_ops_for_renaming (call);
    }

  VEC_free (edge, heap, exits);
  update_ssa (TODO_update_ssa_only_virtuals);
}

/* Returns true if we can use storent in loop, false otherwise.  */

static bool
may_use_storent_in_loop_p (struct loop *loop)
{
  bool ret = true;

  if (loop->inner != NULL)
    return false;

  /* If we must issue a mfence insn after using storent, check that there
     is a suitable place for it at each of the loop exits.  */
  if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
    {
      VEC (edge, heap) *exits = get_loop_exit_edges (loop);
      unsigned i;
      edge exit;

      for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
	if ((exit->flags & EDGE_ABNORMAL)
	    && exit->dest == EXIT_BLOCK_PTR)
	  ret = false;

      VEC_free (edge, heap, exits);
    }

  return ret;
}

/* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
   references in the loop.  */

static void
mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
{
  struct mem_ref *ref;
  bool any = false;

  if (!may_use_storent_in_loop_p (loop))
    return;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      any |= mark_nontemporal_store (ref);

  if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
    emit_mfence_after_loop (loop);
}

/* Determines whether we can profitably unroll LOOP FACTOR times, and if
   this is the case, fill in DESC by the description of number of
   iterations.  */

static bool
should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
		      unsigned factor)
{
  if (!can_unroll_loop_p (loop, factor, desc))
    return false;

  /* We only consider loops without control flow for unrolling.  This is not
     a hard restriction -- tree_unroll_loop works with arbitrary loops
     as well; but the unrolling/prefetching is usually more profitable for
     loops consisting of a single basic block, and we want to limit the
     code growth.  */
  if (loop->num_nodes > 2)
    return false;

  return true;
}

/* Determine the coefficient by that unroll LOOP, from the information
   contained in the list of memory references REFS.  Description of
   umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
   insns of the LOOP.  EST_NITER is the estimated number of iterations of
   the loop, or -1 if no estimate is available.  */

static unsigned
determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
			 unsigned ninsns, struct tree_niter_desc *desc,
			 HOST_WIDE_INT est_niter)
{
  unsigned upper_bound;
  unsigned nfactor, factor, mod_constraint;
  struct mem_ref_group *agp;
  struct mem_ref *ref;

  /* First check whether the loop is not too large to unroll.  We ignore
     PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
     from unrolling them enough to make exactly one cache line covered by each
     iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
     us from unrolling the loops too many times in cases where we only expect
     gains from better scheduling and decreasing loop overhead, which is not
     the case here.  */
  upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;

  /* If we unrolled the loop more times than it iterates, the unrolled version
     of the loop would be never entered.  */
  if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
    upper_bound = est_niter;

  if (upper_bound <= 1)
    return 1;

  /* Choose the factor so that we may prefetch each cache just once,
     but bound the unrolling by UPPER_BOUND.  */
  factor = 1;
  for (agp = refs; agp; agp = agp->next)
    for (ref = agp->refs; ref; ref = ref->next)
      if (should_issue_prefetch_p (ref))
	{
	  mod_constraint = ref->prefetch_mod;
	  nfactor = least_common_multiple (mod_constraint, factor);
	  if (nfactor <= upper_bound)
	    factor = nfactor;
	}

  if (!should_unroll_loop_p (loop, desc, factor))
    return 1;

  return factor;
}

/* Returns the total volume of the memory references REFS, taking into account
   reuses in the innermost loop and cache line size.  TODO -- we should also
   take into account reuses across the iterations of the loops in the loop
   nest.  */

static unsigned
volume_of_references (struct mem_ref_group *refs)
{
  unsigned volume = 0;
  struct mem_ref_group *gr;
  struct mem_ref *ref;

  for (gr = refs; gr; gr = gr->next)
    for (ref = gr->refs; ref; ref = ref->next)
      {
	/* Almost always reuses another value?  */
	if (ref->prefetch_before != PREFETCH_ALL)
	  continue;

	/* If several iterations access the same cache line, use the size of
	   the line divided by this number.  Otherwise, a cache line is
	   accessed in each iteration.  TODO -- in the latter case, we should
	   take the size of the reference into account, rounding it up on cache
	   line size multiple.  */
	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
      }
  return volume;
}

/* Returns the volume of memory references accessed across VEC iterations of
   loops, whose sizes are described in the LOOP_SIZES array.  N is the number
   of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */

static unsigned
volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
{
  unsigned i;

  for (i = 0; i < n; i++)
    if (vec[i] != 0)
      break;

  if (i == n)
    return 0;

  gcc_assert (vec[i] > 0);

  /* We ignore the parts of the distance vector in subloops, since usually
     the numbers of iterations are much smaller.  */
  return loop_sizes[i] * vec[i];
}

/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
   at the position corresponding to the loop of the step.  N is the depth
   of the considered loop nest, and, LOOP is its innermost loop.  */

static void
add_subscript_strides (tree access_fn, unsigned stride,
		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
{
  struct loop *aloop;
  tree step;
  HOST_WIDE_INT astep;
  unsigned min_depth = loop_depth (loop) - n;

  while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
    {
      aloop = get_chrec_loop (access_fn);
      step = CHREC_RIGHT (access_fn);
      access_fn = CHREC_LEFT (access_fn);

      if ((unsigned) loop_depth (aloop) <= min_depth)
	continue;

      if (host_integerp (step, 0))
	astep = tree_low_cst (step, 0);
      else
	astep = L1_CACHE_LINE_SIZE;

      strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;

    }
}

/* Returns the volume of memory references accessed between two consecutive
   self-reuses of the reference DR.  We consider the subscripts of DR in N
   loops, and LOOP_SIZES contains the volumes of accesses in each of the
   loops.  LOOP is the innermost loop of the current loop nest.  */

static unsigned
self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
		     struct loop *loop)
{
  tree stride, access_fn;
  HOST_WIDE_INT *strides, astride;
  VEC (tree, heap) *access_fns;
  tree ref = DR_REF (dr);
  unsigned i, ret = ~0u;

  /* In the following example:

     for (i = 0; i < N; i++)
       for (j = 0; j < N; j++)
         use (a[j][i]);
     the same cache line is accessed each N steps (except if the change from
     i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
     we cannot rely purely on the results of the data dependence analysis.

     Instead, we compute the stride of the reference in each loop, and consider
     the innermost loop in that the stride is less than cache size.  */

  strides = XCNEWVEC (HOST_WIDE_INT, n);
  access_fns = DR_ACCESS_FNS (dr);

  for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
    {
      /* Keep track of the reference corresponding to the subscript, so that we
	 know its stride.  */
      while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
	ref = TREE_OPERAND (ref, 0);
      
      if (TREE_CODE (ref) == ARRAY_REF)
	{
	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
	  if (host_integerp (stride, 1))
	    astride = tree_low_cst (stride, 1);
	  else
	    astride = L1_CACHE_LINE_SIZE;

	  ref = TREE_OPERAND (ref, 0);
	}
      else
	astride = 1;

      add_subscript_strides (access_fn, astride, strides, n, loop);
    }

  for (i = n; i-- > 0; )
    {
      unsigned HOST_WIDE_INT s;

      s = strides[i] < 0 ?  -strides[i] : strides[i];

      if (s < (unsigned) L1_CACHE_LINE_SIZE
	  && (loop_sizes[i]
	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
	{
	  ret = loop_sizes[i];
	  break;
	}
    }

  free (strides);
  return ret;
}

/* Determines the distance till the first reuse of each reference in REFS
   in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
   memory references in the loop.  */

static void
determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
			   bool no_other_refs)
{
  struct loop *nest, *aloop;
  VEC (data_reference_p, heap) *datarefs = NULL;
  VEC (ddr_p, heap) *dependences = NULL;
  struct mem_ref_group *gr;
  struct mem_ref *ref, *refb;
  VEC (loop_p, heap) *vloops = NULL;
  unsigned *loop_data_size;
  unsigned i, j, n;
  unsigned volume, dist, adist;
  HOST_WIDE_INT vol;
  data_reference_p dr;
  ddr_p dep;

  if (loop->inner)
    return;

  /* Find the outermost loop of the loop nest of loop (we require that
     there are no sibling loops inside the nest).  */
  nest = loop;
  while (1)
    {
      aloop = loop_outer (nest);

      if (aloop == current_loops->tree_root
	  || aloop->inner->next)
	break;

      nest = aloop;
    }

  /* For each loop, determine the amount of data accessed in each iteration.
     We use this to estimate whether the reference is evicted from the
     cache before its reuse.  */
  find_loop_nest (nest, &vloops);
  n = VEC_length (loop_p, vloops);
  loop_data_size = XNEWVEC (unsigned, n);
  volume = volume_of_references (refs);
  i = n;
  while (i-- != 0)
    {
      loop_data_size[i] = volume;
      /* Bound the volume by the L2 cache size, since above this bound,
	 all dependence distances are equivalent.  */
      if (volume > L2_CACHE_SIZE_BYTES)
	continue;

      aloop = VEC_index (loop_p, vloops, i);
      vol = estimated_loop_iterations_int (aloop, false);
      if (vol < 0)
	vol = expected_loop_iterations (aloop);
      volume *= vol;
    }

  /* Prepare the references in the form suitable for data dependence
     analysis.  We ignore unanalyzable data references (the results
     are used just as a heuristics to estimate temporality of the
     references, hence we do not need to worry about correctness).  */
  for (gr = refs; gr; gr = gr->next)
    for (ref = gr->refs; ref; ref = ref->next)
      {
	dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);

	if (dr)
	  {
	    ref->reuse_distance = volume;
	    dr->aux = ref;
	    VEC_safe_push (data_reference_p, heap, datarefs, dr);
	  }
	else
	  no_other_refs = false;
      }

  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    {
      dist = self_reuse_distance (dr, loop_data_size, n, loop);
      ref = (struct mem_ref *) dr->aux;
      if (ref->reuse_distance > dist)
	ref->reuse_distance = dist;

      if (no_other_refs)
	ref->independent_p = true;
    }

  compute_all_dependences (datarefs, &dependences, vloops, true);

  for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
    {
      if (DDR_ARE_DEPENDENT (dep) == chrec_known)
	continue;

      ref = (struct mem_ref *) DDR_A (dep)->aux;
      refb = (struct mem_ref *) DDR_B (dep)->aux;

      if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
	  || DDR_NUM_DIST_VECTS (dep) == 0)
	{
	  /* If the dependence cannot be analyzed, assume that there might be
	     a reuse.  */
	  dist = 0;
      
	  ref->independent_p = false;
	  refb->independent_p = false;
	}
      else
	{
	  /* The distance vectors are normalized to be always lexicographically
	     positive, hence we cannot tell just from them whether DDR_A comes
	     before DDR_B or vice versa.  However, it is not important,
	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
	     in cache (and marking it as nontemporal would not affect
	     anything).  */

	  dist = volume;
	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
	    {
	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
					     loop_data_size, n);

	      /* If this is a dependence in the innermost loop (i.e., the
		 distances in all superloops are zero) and it is not
		 the trivial self-dependence with distance zero, record that
		 the references are not completely independent.  */
	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
		  && (ref != refb
		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
		{
		  ref->independent_p = false;
		  refb->independent_p = false;
		}

	      /* Ignore accesses closer than
		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
	      	 so that we use nontemporal prefetches e.g. if single memory
		 location is accessed several times in a single iteration of
		 the loop.  */
	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
		continue;

	      if (adist < dist)
		dist = adist;
	    }
	}

      if (ref->reuse_distance > dist)
	ref->reuse_distance = dist;
      if (refb->reuse_distance > dist)
	refb->reuse_distance = dist;
    }

  free_dependence_relations (dependences);
  free_data_refs (datarefs);
  free (loop_data_size);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Reuse distances:\n");
      for (gr = refs; gr; gr = gr->next)
	for (ref = gr->refs; ref; ref = ref->next)
	  fprintf (dump_file, " ref %p distance %u\n",
		   (void *) ref, ref->reuse_distance);
    }
}

/* Do a cost-benefit analysis to determine if prefetching is profitable
   for the current loop given the following parameters:
   AHEAD: the iteration ahead distance,
   EST_NITER: the estimated trip count,  
   NINSNS: estimated number of instructions in the loop,
   PREFETCH_COUNT: an estimate of the number of prefetches
   MEM_REF_COUNT: total number of memory references in the loop.  */

static bool 
is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter, 
				unsigned ninsns, unsigned prefetch_count, 
				unsigned mem_ref_count)
{
  int insn_to_mem_ratio, insn_to_prefetch_ratio;

  if (mem_ref_count == 0)
    return false;

  /* Prefetching improves performance by overlapping cache missing 
     memory accesses with CPU operations.  If the loop does not have 
     enough CPU operations to overlap with memory operations, prefetching 
     won't give a significant benefit.  One approximate way of checking 
     this is to require the ratio of instructions to memory references to 
     be above a certain limit.  This approximation works well in practice.
     TODO: Implement a more precise computation by estimating the time
     for each CPU or memory op in the loop. Time estimates for memory ops
     should account for cache misses.  */
  insn_to_mem_ratio = ninsns / mem_ref_count;  

  if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
    return false;

  /* Profitability of prefetching is highly dependent on the trip count.
     For a given AHEAD distance, the first AHEAD iterations do not benefit 
     from prefetching, and the last AHEAD iterations execute useless 
     prefetches.  So, if the trip count is not large enough relative to AHEAD,
     prefetching may cause serious performance degradation.  To avoid this
     problem when the trip count is not known at compile time, we 
     conservatively skip loops with high prefetching costs.  For now, only
     the I-cache cost is considered.  The relative I-cache cost is estimated 
     by taking the ratio between the number of prefetches and the total
     number of instructions.  Since we are using integer arithmetic, we
     compute the reciprocal of this ratio.  
     TODO: Account for loop unrolling, which may reduce the costs of
     shorter stride prefetches.  Note that not accounting for loop 
     unrolling over-estimates the cost and hence gives more conservative
     results.  */
  if (est_niter < 0)
    {
      insn_to_prefetch_ratio = ninsns / prefetch_count;      
      return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
    }
       
  if (est_niter <= (HOST_WIDE_INT) ahead)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Not prefetching -- loop estimated to roll only %d times\n",
		 (int) est_niter);
      return false;
    }
  return true;
}


/* Issue prefetch instructions for array references in LOOP.  Returns
   true if the LOOP was unrolled.  */

static bool
loop_prefetch_arrays (struct loop *loop)
{
  struct mem_ref_group *refs;
  unsigned ahead, ninsns, time, unroll_factor;
  HOST_WIDE_INT est_niter;
  struct tree_niter_desc desc;
  bool unrolled = false, no_other_refs;
  unsigned prefetch_count;
  unsigned mem_ref_count;

  if (optimize_loop_nest_for_size_p (loop))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "  ignored (cold area)\n");
      return false;
    }

  /* Step 1: gather the memory references.  */
  refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);

  /* Step 2: estimate the reuse effects.  */
  prune_by_reuse (refs);

  prefetch_count = estimate_prefetch_count (refs);
  if (prefetch_count == 0)
    goto fail;

  determine_loop_nest_reuse (loop, refs, no_other_refs);

  /* Step 3: determine the ahead and unroll factor.  */

  /* FIXME: the time should be weighted by the probabilities of the blocks in
     the loop body.  */
  time = tree_num_loop_insns (loop, &eni_time_weights);
  ahead = (PREFETCH_LATENCY + time - 1) / time;
  est_niter = estimated_loop_iterations_int (loop, false);  

  ninsns = tree_num_loop_insns (loop, &eni_size_weights);
  unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
					   est_niter);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Ahead %d, unroll factor %d, trip count " 
	     HOST_WIDE_INT_PRINT_DEC "\n"
	     "insn count %d, mem ref count %d, prefetch count %d\n", 
	     ahead, unroll_factor, est_niter, 
	     ninsns, mem_ref_count, prefetch_count);    

  if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns, 
				       prefetch_count, mem_ref_count))
    goto fail;

  mark_nontemporal_stores (loop, refs);

  /* Step 4: what to prefetch?  */
  if (!schedule_prefetches (refs, unroll_factor, ahead))
    goto fail;

  /* Step 5: unroll the loop.  TODO -- peeling of first and last few
     iterations so that we do not issue superfluous prefetches.  */
  if (unroll_factor != 1)
    {
      tree_unroll_loop (loop, unroll_factor,
			single_dom_exit (loop), &desc);
      unrolled = true;
    }

  /* Step 6: issue the prefetches.  */
  issue_prefetches (refs, unroll_factor, ahead);

fail:
  release_mem_refs (refs);
  return unrolled;
}

/* Issue prefetch instructions for array references in loops.  */

unsigned int
tree_ssa_prefetch_arrays (void)
{
  loop_iterator li;
  struct loop *loop;
  bool unrolled = false;
  int todo_flags = 0;

  if (!HAVE_prefetch
      /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
	 of processor costs and i486 does not have prefetch, but
	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
      || PREFETCH_BLOCK == 0)
    return 0;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Prefetching parameters:\n");
      fprintf (dump_file, "    simultaneous prefetches: %d\n",
	       SIMULTANEOUS_PREFETCHES);
      fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
      fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
      fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
      fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
      fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);      
      fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n", 
	       MIN_INSN_TO_PREFETCH_RATIO);
      fprintf (dump_file, "    min insn-to-mem ratio: %d \n", 
	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
      fprintf (dump_file, "\n");
    }

  initialize_original_copy_tables ();

  if (!built_in_decls[BUILT_IN_PREFETCH])
    {
      tree type = build_function_type (void_type_node,
				       tree_cons (NULL_TREE,
						  const_ptr_type_node,
						  NULL_TREE));
      tree decl = add_builtin_function ("__builtin_prefetch", type,
					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
					NULL, NULL_TREE);
      DECL_IS_NOVOPS (decl) = true;
      built_in_decls[BUILT_IN_PREFETCH] = decl;
    }

  /* We assume that size of cache line is a power of two, so verify this
     here.  */
  gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);

  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Processing loop %d:\n", loop->num);

      unrolled |= loop_prefetch_arrays (loop);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "\n\n");
    }

  if (unrolled)
    {
      scev_reset ();
      todo_flags |= TODO_cleanup_cfg;
    }

  free_original_copy_tables ();
  return todo_flags;
}