1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
|
/* Loop splitting.
Copyright (C) 2015-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-manip.h"
#include "tree-into-ssa.h"
#include "tree-inline.h"
#include "tree-cfgcleanup.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "gimple-iterator.h"
#include "gimple-pretty-print.h"
#include "cfghooks.h"
#include "gimple-fold.h"
#include "gimplify-me.h"
/* This file implements two kinds of loop splitting.
One transformation of loops like:
for (i = 0; i < 100; i++)
{
if (i < 50)
A;
else
B;
}
into:
for (i = 0; i < 50; i++)
{
A;
}
for (; i < 100; i++)
{
B;
}
*/
/* Return true when BB inside LOOP is a potential iteration space
split point, i.e. ends with a condition like "IV < comp", which
is true on one side of the iteration space and false on the other,
and the split point can be computed. If so, also return the border
point in *BORDER and the comparison induction variable in IV. */
static tree
split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv)
{
gimple *last;
gcond *stmt;
affine_iv iv2;
/* BB must end in a simple conditional jump. */
last = last_stmt (bb);
if (!last || gimple_code (last) != GIMPLE_COND)
return NULL_TREE;
stmt = as_a <gcond *> (last);
enum tree_code code = gimple_cond_code (stmt);
/* Only handle relational comparisons, for equality and non-equality
we'd have to split the loop into two loops and a middle statement. */
switch (code)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
break;
default:
return NULL_TREE;
}
if (loop_exits_from_bb_p (loop, bb))
return NULL_TREE;
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
class loop *useloop = loop_containing_stmt (stmt);
if (!simple_iv (loop, useloop, op0, iv, false))
return NULL_TREE;
if (!simple_iv (loop, useloop, op1, &iv2, false))
return NULL_TREE;
/* Make it so that the first argument of the condition is
the looping one. */
if (!integer_zerop (iv2.step))
{
std::swap (op0, op1);
std::swap (*iv, iv2);
code = swap_tree_comparison (code);
gimple_cond_set_condition (stmt, code, op0, op1);
update_stmt (stmt);
}
else if (integer_zerop (iv->step))
return NULL_TREE;
if (!integer_zerop (iv2.step))
return NULL_TREE;
if (!iv->no_overflow)
return NULL_TREE;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found potential split point: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, " { ");
print_generic_expr (dump_file, iv->base, TDF_SLIM);
fprintf (dump_file, " + I*");
print_generic_expr (dump_file, iv->step, TDF_SLIM);
fprintf (dump_file, " } %s ", get_tree_code_name (code));
print_generic_expr (dump_file, iv2.base, TDF_SLIM);
fprintf (dump_file, "\n");
}
*border = iv2.base;
return op0;
}
/* Given a GUARD conditional stmt inside LOOP, which we want to make always
true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
(a post-increment IV) and NEWBOUND (the comparator) adjust the loop
exit test statement to loop back only if the GUARD statement will
also be true/false in the next iteration. */
static void
patch_loop_exit (class loop *loop, gcond *guard, tree nextval, tree newbound,
bool initial_true)
{
edge exit = single_exit (loop);
gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
gimple_cond_set_condition (stmt, gimple_cond_code (guard),
nextval, newbound);
update_stmt (stmt);
edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
if (initial_true)
{
exit->flags |= EDGE_FALSE_VALUE;
stay->flags |= EDGE_TRUE_VALUE;
}
else
{
exit->flags |= EDGE_TRUE_VALUE;
stay->flags |= EDGE_FALSE_VALUE;
}
}
/* Give an induction variable GUARD_IV, and its affine descriptor IV,
find the loop phi node in LOOP defining it directly, or create
such phi node. Return that phi node. */
static gphi *
find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
{
gimple *def = SSA_NAME_DEF_STMT (guard_iv);
gphi *phi;
if ((phi = dyn_cast <gphi *> (def))
&& gimple_bb (phi) == loop->header)
return phi;
/* XXX Create the PHI instead. */
return NULL;
}
/* Returns true if the exit values of all loop phi nodes can be
determined easily (i.e. that connect_loop_phis can determine them). */
static bool
easy_exit_values (class loop *loop)
{
edge exit = single_exit (loop);
edge latch = loop_latch_edge (loop);
gphi_iterator psi;
/* Currently we regard the exit values as easy if they are the same
as the value over the backedge. Which is the case if the definition
of the backedge value dominates the exit edge. */
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
basic_block bb;
if (TREE_CODE (next) == SSA_NAME
&& (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
&& !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
return false;
}
return true;
}
/* This function updates the SSA form after connect_loops made a new
edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
conditional). I.e. the second loop can now be entered either
via the original entry or via NEW_E, so the entry values of LOOP2
phi nodes are either the original ones or those at the exit
of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting
this. The loops need to fulfill easy_exit_values(). */
static void
connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
{
basic_block rest = loop_preheader_edge (loop2)->src;
gcc_assert (new_e->dest == rest);
edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
edge firste = loop_preheader_edge (loop1);
edge seconde = loop_preheader_edge (loop2);
edge firstn = loop_latch_edge (loop1);
gphi_iterator psi_first, psi_second;
for (psi_first = gsi_start_phis (loop1->header),
psi_second = gsi_start_phis (loop2->header);
!gsi_end_p (psi_first);
gsi_next (&psi_first), gsi_next (&psi_second))
{
tree init, next, new_init;
use_operand_p op;
gphi *phi_first = psi_first.phi ();
gphi *phi_second = psi_second.phi ();
init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
/* Prefer using original variable as a base for the new ssa name.
This is necessary for virtual ops, and useful in order to avoid
losing debug info for real ops. */
if (TREE_CODE (next) == SSA_NAME
&& useless_type_conversion_p (TREE_TYPE (next),
TREE_TYPE (init)))
new_init = copy_ssa_name (next);
else if (TREE_CODE (init) == SSA_NAME
&& useless_type_conversion_p (TREE_TYPE (init),
TREE_TYPE (next)))
new_init = copy_ssa_name (init);
else if (useless_type_conversion_p (TREE_TYPE (next),
TREE_TYPE (init)))
new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
"unrinittmp");
else
new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
"unrinittmp");
gphi * newphi = create_phi_node (new_init, rest);
add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
SET_USE (op, new_init);
}
}
/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
they are still equivalent and placed in two arms of a diamond, like so:
.------if (cond)------.
v v
pre1 pre2
| |
.--->h1 h2<----.
| | | |
| ex1---. .---ex2 |
| / | | \ |
'---l1 X | l2---'
| |
| |
'--->join<---'
This function transforms the program such that LOOP1 is conditionally
falling through to LOOP2, or skipping it. This is done by splitting
the ex1->join edge at X in the diagram above, and inserting a condition
whose one arm goes to pre2, resulting in this situation:
.------if (cond)------.
v v
pre1 .---------->pre2
| | |
.--->h1 | h2<----.
| | | | |
| ex1---. | .---ex2 |
| / v | | \ |
'---l1 skip---' | l2---'
| |
| |
'--->join<---'
The condition used is the exit condition of LOOP1, which effectively means
that when the first loop exits (for whatever reason) but the real original
exit expression is still false the second loop will be entered.
The function returns the new edge cond->pre2.
This doesn't update the SSA form, see connect_loop_phis for that. */
static edge
connect_loops (class loop *loop1, class loop *loop2)
{
edge exit = single_exit (loop1);
basic_block skip_bb = split_edge (exit);
gcond *skip_stmt;
gimple_stmt_iterator gsi;
edge new_e, skip_e;
gimple *stmt = last_stmt (exit->src);
skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt),
NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (skip_bb);
gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
skip_e = EDGE_SUCC (skip_bb, 0);
skip_e->flags &= ~EDGE_FALLTHRU;
new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
if (exit->flags & EDGE_TRUE_VALUE)
{
skip_e->flags |= EDGE_TRUE_VALUE;
new_e->flags |= EDGE_FALSE_VALUE;
}
else
{
skip_e->flags |= EDGE_FALSE_VALUE;
new_e->flags |= EDGE_TRUE_VALUE;
}
new_e->probability = profile_probability::likely ();
skip_e->probability = new_e->probability.invert ();
return new_e;
}
/* This returns the new bound for iterations given the original iteration
space in NITER, an arbitrary new bound BORDER, assumed to be some
comparison value with a different IV, the initial value GUARD_INIT of
that other IV, and the comparison code GUARD_CODE that compares
that other IV with BORDER. We return an SSA name, and place any
necessary statements for that computation into *STMTS.
For example for such a loop:
for (i = beg, j = guard_init; i < end; i++, j++)
if (j < border) // this is supposed to be true/false
...
we want to return a new bound (on j) that makes the loop iterate
as long as the condition j < border stays true. We also don't want
to iterate more often than the original loop, so we have to introduce
some cut-off as well (via min/max), effectively resulting in:
newend = min (end+guard_init-beg, border)
for (i = beg; j = guard_init; j < newend; i++, j++)
if (j < c)
...
Depending on the direction of the IVs and if the exit tests
are strict or non-strict we need to use MIN or MAX,
and add or subtract 1. This routine computes newend above. */
static tree
compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
tree border,
enum tree_code guard_code, tree guard_init)
{
/* The niter structure contains the after-increment IV, we need
the loop-enter base, so subtract STEP once. */
tree controlbase = force_gimple_operand (niter->control.base,
stmts, true, NULL_TREE);
tree controlstep = niter->control.step;
tree enddiff;
if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
{
controlstep = gimple_build (stmts, NEGATE_EXPR,
TREE_TYPE (controlstep), controlstep);
enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (controlbase),
controlbase, controlstep);
}
else
enddiff = gimple_build (stmts, MINUS_EXPR,
TREE_TYPE (controlbase),
controlbase, controlstep);
/* Compute end-beg. */
gimple_seq stmts2;
tree end = force_gimple_operand (niter->bound, &stmts2,
true, NULL_TREE);
gimple_seq_add_seq_without_update (stmts, stmts2);
if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
{
tree tem = gimple_convert (stmts, sizetype, enddiff);
tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (enddiff),
end, tem);
}
else
enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
end, enddiff);
/* Compute guard_init + (end-beg). */
tree newbound;
enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
{
enddiff = gimple_convert (stmts, sizetype, enddiff);
newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (guard_init),
guard_init, enddiff);
}
else
newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
guard_init, enddiff);
/* Depending on the direction of the IVs the new bound for the first
loop is the minimum or maximum of old bound and border.
Also, if the guard condition isn't strictly less or greater,
we need to adjust the bound. */
int addbound = 0;
enum tree_code minmax;
if (niter->cmp == LT_EXPR)
{
/* GT and LE are the same, inverted. */
if (guard_code == GT_EXPR || guard_code == LE_EXPR)
addbound = -1;
minmax = MIN_EXPR;
}
else
{
gcc_assert (niter->cmp == GT_EXPR);
if (guard_code == GE_EXPR || guard_code == LT_EXPR)
addbound = 1;
minmax = MAX_EXPR;
}
if (addbound)
{
tree type2 = TREE_TYPE (newbound);
if (POINTER_TYPE_P (type2))
type2 = sizetype;
newbound = gimple_build (stmts,
POINTER_TYPE_P (TREE_TYPE (newbound))
? POINTER_PLUS_EXPR : PLUS_EXPR,
TREE_TYPE (newbound),
newbound,
build_int_cst (type2, addbound));
}
tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
border, newbound);
return newend;
}
/* Checks if LOOP contains an conditional block whose condition
depends on which side in the iteration space it is, and if so
splits the iteration space into two loops. Returns true if the
loop was split. NITER must contain the iteration descriptor for the
single exit of LOOP. */
static bool
split_loop (class loop *loop1)
{
class tree_niter_desc niter;
basic_block *bbs;
unsigned i;
bool changed = false;
tree guard_iv;
tree border = NULL_TREE;
affine_iv iv;
if (!single_exit (loop1)
/* ??? We could handle non-empty latches when we split the latch edge
(not the exit edge), and put the new exit condition in the new block.
OTOH this executes some code unconditionally that might have been
skipped by the original exit before. */
|| !empty_block_p (loop1->latch)
|| !easy_exit_values (loop1)
|| !number_of_iterations_exit (loop1, single_exit (loop1), &niter,
false, true)
|| niter.cmp == ERROR_MARK
/* We can't yet handle loops controlled by a != predicate. */
|| niter.cmp == NE_EXPR)
return false;
bbs = get_loop_body (loop1);
if (!can_copy_bbs_p (bbs, loop1->num_nodes))
{
free (bbs);
return false;
}
/* Find a splitting opportunity. */
for (i = 0; i < loop1->num_nodes; i++)
if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
{
/* Handling opposite steps is not implemented yet. Neither
is handling different step sizes. */
if ((tree_int_cst_sign_bit (iv.step)
!= tree_int_cst_sign_bit (niter.control.step))
|| !tree_int_cst_equal (iv.step, niter.control.step))
continue;
/* Find a loop PHI node that defines guard_iv directly,
or create one doing that. */
gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
if (!phi)
continue;
gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
loop_preheader_edge (loop1));
enum tree_code guard_code = gimple_cond_code (guard_stmt);
/* Loop splitting is implemented by versioning the loop, placing
the new loop after the old loop, make the first loop iterate
as long as the conditional stays true (or false) and let the
second (new) loop handle the rest of the iterations.
First we need to determine if the condition will start being true
or false in the first loop. */
bool initial_true;
switch (guard_code)
{
case LT_EXPR:
case LE_EXPR:
initial_true = !tree_int_cst_sign_bit (iv.step);
break;
case GT_EXPR:
case GE_EXPR:
initial_true = tree_int_cst_sign_bit (iv.step);
break;
default:
gcc_unreachable ();
}
/* Build a condition that will skip the first loop when the
guard condition won't ever be true (or false). */
gimple_seq stmts2;
border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
if (stmts2)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
stmts2);
tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
if (!initial_true)
cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
/* Now version the loop, placing loop2 after loop1 connecting
them, and fix up SSA form for that. */
initialize_original_copy_tables ();
basic_block cond_bb;
class loop *loop2 = loop_version (loop1, cond, &cond_bb,
profile_probability::always (),
profile_probability::always (),
profile_probability::always (),
profile_probability::always (),
true);
gcc_assert (loop2);
update_ssa (TODO_update_ssa);
edge new_e = connect_loops (loop1, loop2);
connect_loop_phis (loop1, loop2, new_e);
/* The iterations of the second loop is now already
exactly those that the first loop didn't do, but the
iteration space of the first loop is still the original one.
Compute the new bound for the guarding IV and patch the
loop exit to use it instead of original IV and bound. */
gimple_seq stmts = NULL;
tree newend = compute_new_first_bound (&stmts, &niter, border,
guard_code, guard_init);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
stmts);
tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
/* Finally patch out the two copies of the condition to be always
true/false (or opposite). */
gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
if (!initial_true)
std::swap (force_true, force_false);
gimple_cond_make_true (force_true);
gimple_cond_make_false (force_false);
update_stmt (force_true);
update_stmt (force_false);
free_original_copy_tables ();
/* We destroyed LCSSA form above. Eventually we might be able
to fix it on the fly, for now simply punt and use the helper. */
rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ";; Loop split.\n");
/* Only deal with the first opportunity. */
break;
}
free (bbs);
return changed;
}
/* Another transformation of loops like:
for (i = INIT (); CHECK (i); i = NEXT ())
{
if (expr (a_1, a_2, ..., a_n)) // expr is pure
a_j = ...; // change at least one a_j
else
S; // not change any a_j
}
into:
for (i = INIT (); CHECK (i); i = NEXT ())
{
if (expr (a_1, a_2, ..., a_n))
a_j = ...;
else
{
S;
i = NEXT ();
break;
}
}
for (; CHECK (i); i = NEXT ())
{
S;
}
*/
/* Data structure to hold temporary information during loop split upon
semi-invariant conditional statement. */
class split_info {
public:
/* Array of all basic blocks in a loop, returned by get_loop_body(). */
basic_block *bbs;
/* All memory store/clobber statements in a loop. */
auto_vec<gimple *> memory_stores;
/* Whether above memory stores vector has been filled. */
int need_init;
/* Control dependencies of basic blocks in a loop. */
auto_vec<hash_set<basic_block> *> control_deps;
split_info () : bbs (NULL), need_init (true) { }
~split_info ()
{
if (bbs)
free (bbs);
for (unsigned i = 0; i < control_deps.length (); i++)
delete control_deps[i];
}
};
/* Find all statements with memory-write effect in LOOP, including memory
store and non-pure function call, and keep those in a vector. This work
is only done one time, for the vector should be constant during analysis
stage of semi-invariant condition. */
static void
find_vdef_in_loop (struct loop *loop)
{
split_info *info = (split_info *) loop->aux;
gphi *vphi = get_virtual_phi (loop->header);
/* Indicate memory store vector has been filled. */
info->need_init = false;
/* If loop contains memory operation, there must be a virtual PHI node in
loop header basic block. */
if (vphi == NULL)
return;
/* All virtual SSA names inside the loop are connected to be a cyclic
graph via virtual PHI nodes. The virtual PHI node in loop header just
links the first and the last virtual SSA names, by using the last as
PHI operand to define the first. */
const edge latch = loop_latch_edge (loop);
const tree first = gimple_phi_result (vphi);
const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
/* The virtual SSA cyclic graph might consist of only one SSA name, who
is defined by itself.
.MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
This means the loop contains only memory loads, so we can skip it. */
if (first == last)
return;
auto_vec<gimple *> other_stores;
auto_vec<tree> worklist;
auto_bitmap visited;
bitmap_set_bit (visited, SSA_NAME_VERSION (first));
bitmap_set_bit (visited, SSA_NAME_VERSION (last));
worklist.safe_push (last);
do
{
tree vuse = worklist.pop ();
gimple *stmt = SSA_NAME_DEF_STMT (vuse);
/* We mark the first and last SSA names as visited at the beginning,
and reversely start the process from the last SSA name towards the
first, which ensures that this do-while will not touch SSA names
defined outside the loop. */
gcc_assert (gimple_bb (stmt)
&& flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
tree arg = gimple_phi_arg_def (stmt, i);
if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
worklist.safe_push (arg);
}
}
else
{
tree prev = gimple_vuse (stmt);
/* Non-pure call statement is conservatively assumed to impact all
memory locations. So place call statements ahead of other memory
stores in the vector with an idea of using them as shortcut
terminators to memory alias analysis. */
if (gimple_code (stmt) == GIMPLE_CALL)
info->memory_stores.safe_push (stmt);
else
other_stores.safe_push (stmt);
if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
worklist.safe_push (prev);
}
} while (!worklist.is_empty ());
info->memory_stores.safe_splice (other_stores);
}
/* Two basic blocks have equivalent control dependency if one dominates to
the other, and it is post-dominated by the latter. Given a basic block
BB in LOOP, find farest equivalent dominating basic block. For BB, there
is a constraint that BB does not post-dominate loop header of LOOP, this
means BB is control-dependent on at least one basic block in LOOP. */
static basic_block
get_control_equiv_head_block (struct loop *loop, basic_block bb)
{
while (!bb->aux)
{
basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
break;
bb = dom_bb;
}
return bb;
}
/* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
dependent on. */
static hash_set<basic_block> *
find_control_dep_blocks (struct loop *loop, basic_block bb)
{
/* BB has same control dependency as loop header, then it is not control-
dependent on any basic block in LOOP. */
if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
return NULL;
basic_block equiv_head = get_control_equiv_head_block (loop, bb);
if (equiv_head->aux)
{
/* There is a basic block containing control dependency equivalent
to BB. No need to recompute that, and also set this information
to other equivalent basic blocks. */
for (; bb != equiv_head;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
bb->aux = equiv_head->aux;
return (hash_set<basic_block> *) equiv_head->aux;
}
/* A basic block X is control-dependent on another Y iff there exists
a path from X to Y, in which every basic block other than X and Y
is post-dominated by Y, but X is not post-dominated by Y.
According to this rule, traverse basic blocks in the loop backwards
starting from BB, if a basic block is post-dominated by BB, extend
current post-dominating path to this block, otherwise it is another
one that BB is control-dependent on. */
auto_vec<basic_block> pdom_worklist;
hash_set<basic_block> pdom_visited;
hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
pdom_worklist.safe_push (equiv_head);
do
{
basic_block pdom_bb = pdom_worklist.pop ();
edge_iterator ei;
edge e;
if (pdom_visited.add (pdom_bb))
continue;
FOR_EACH_EDGE (e, ei, pdom_bb->preds)
{
basic_block pred_bb = e->src;
if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
{
dep_bbs->add (pred_bb);
continue;
}
pred_bb = get_control_equiv_head_block (loop, pred_bb);
if (pdom_visited.contains (pred_bb))
continue;
if (!pred_bb->aux)
{
pdom_worklist.safe_push (pred_bb);
continue;
}
/* If control dependency of basic block is available, fast extend
post-dominating path using the information instead of advancing
forward step-by-step. */
hash_set<basic_block> *pred_dep_bbs
= (hash_set<basic_block> *) pred_bb->aux;
for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
iter != pred_dep_bbs->end (); ++iter)
{
basic_block pred_dep_bb = *iter;
/* Basic blocks can either be in control dependency of BB, or
must be post-dominated by BB, if so, extend the path from
these basic blocks. */
if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
dep_bbs->add (pred_dep_bb);
else if (!pdom_visited.contains (pred_dep_bb))
pdom_worklist.safe_push (pred_dep_bb);
}
}
} while (!pdom_worklist.is_empty ());
/* Record computed control dependencies in loop so that we can reach them
when reclaiming resources. */
((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
/* Associate control dependence with related equivalent basic blocks. */
for (equiv_head->aux = dep_bbs; bb != equiv_head;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
bb->aux = dep_bbs;
return dep_bbs;
}
/* Forward declaration */
static bool
stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat);
/* Given STMT, memory load or pure call statement, check whether it is impacted
by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
trace is composed of SKIP_HEAD and those basic block dominated by it, always
corresponds to one branch of a conditional statement). If SKIP_HEAD is
NULL, all basic blocks of LOOP are checked. */
static bool
vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
const_basic_block skip_head)
{
split_info *info = (split_info *) loop->aux;
tree rhs = NULL_TREE;
ao_ref ref;
gimple *store;
unsigned i;
/* Collect memory store/clobber statements if haven't done that. */
if (info->need_init)
find_vdef_in_loop (loop);
if (is_gimple_assign (stmt))
rhs = gimple_assign_rhs1 (stmt);
ao_ref_init (&ref, rhs);
FOR_EACH_VEC_ELT (info->memory_stores, i, store)
{
/* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */
if (skip_head
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
continue;
if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
return false;
}
return true;
}
/* Suppose one condition branch, led by SKIP_HEAD, is not executed since
certain iteration of LOOP, check whether an SSA name (NAME) remains
unchanged in next iteration. We call this characteristic semi-
invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic
blocks and control flows in the loop will be considered. Semi-invariant
state of checked statement is cached in hash map STMT_STAT to avoid
redundant computation in possible following re-check. */
static inline bool
ssa_semi_invariant_p (struct loop *loop, tree name,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
gimple *def = SSA_NAME_DEF_STMT (name);
const_basic_block def_bb = gimple_bb (def);
/* An SSA name defined outside loop is definitely semi-invariant. */
if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
return true;
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return false;
return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
}
/* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
are excluded from LOOP. */
static bool
loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
const_basic_block skip_head)
{
const_edge latch = loop_latch_edge (loop);
tree name = gimple_phi_result (loop_phi);
tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
gcc_checking_assert (from);
/* Loop iteration PHI node locates in loop header, and it has two source
operands, one is an initial value coming from outside the loop, the other
is a value through latch of the loop, which is derived in last iteration,
we call the latter latch value. From the PHI node to definition of latch
value, if excluding branch trace starting from SKIP_HEAD, except copy-
assignment or likewise, there is no other kind of value redefinition, SSA
name defined by the PHI node is semi-invariant.
loop entry
| .--- latch ---.
| | |
v v |
x_1 = PHI <x_0, x_3> |
| |
v |
.------- if (cond) -------. |
| | |
| [ SKIP ] |
| | |
| x_2 = ... |
| | |
'---- T ---->.<---- F ----' |
| |
v |
x_3 = PHI <x_1, x_2> |
| |
'----------------------'
Suppose in certain iteration, execution flow in above graph goes through
true branch, which means that one source value to define x_3 in false
branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
iterations is defined by x_3, we know that x_1 will never changed if COND
always chooses true branch from then on. */
while (from != name)
{
/* A new value comes from a CONSTANT. */
if (TREE_CODE (from) != SSA_NAME)
return false;
gimple *stmt = SSA_NAME_DEF_STMT (from);
const_basic_block bb = gimple_bb (stmt);
/* A new value comes from outside the loop. */
if (!bb || !flow_bb_inside_loop_p (loop, bb))
return false;
from = NULL_TREE;
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
if (skip_head)
{
const_edge e = gimple_phi_arg_edge (phi, i);
/* Don't consider redefinitions in excluded basic blocks. */
if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
continue;
}
tree arg = gimple_phi_arg_def (phi, i);
if (!from)
from = arg;
else if (!operand_equal_p (from, arg, 0))
/* There are more than one source operands that provide
different values to the SSA name, it is variant. */
return false;
}
}
else if (gimple_code (stmt) == GIMPLE_ASSIGN)
{
/* For simple value copy, check its rhs instead. */
if (gimple_assign_ssa_name_copy_p (stmt))
from = gimple_assign_rhs1 (stmt);
}
/* Any other kind of definition is deemed to introduce a new value
to the SSA name. */
if (!from)
return false;
}
return true;
}
/* Check whether conditional predicates that BB is control-dependent on, are
semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
are excluded from LOOP. Semi-invariant state of checked statement is cached
in hash map STMT_STAT. */
static bool
control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
if (!dep_bbs)
return true;
for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
iter != dep_bbs->end (); ++iter)
{
gimple *last = last_stmt (*iter);
if (!last)
return false;
/* Only check condition predicates. */
if (gimple_code (last) != GIMPLE_COND
&& gimple_code (last) != GIMPLE_SWITCH)
return false;
if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
return false;
}
return true;
}
/* Check whether STMT is semi-invariant in LOOP, iff all its operands are
semi-invariant, consequently, all its defined values are semi-invariant.
Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
Semi-invariant state of checked statement is cached in hash map
STMT_STAT. */
static bool
stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
bool existed;
bool &invar = stmt_stat.get_or_insert (stmt, &existed);
if (existed)
return invar;
/* A statement might depend on itself, which is treated as variant. So set
state of statement under check to be variant to ensure that. */
invar = false;
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
if (gimple_bb (stmt) == loop->header)
{
/* If the entry value is subject to abnormal coalescing
avoid the transform since we're going to duplicate the
loop header and thus likely introduce overlapping life-ranges
between the PHI def and the entry on the path when the
first loop is skipped. */
tree entry_def
= PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
if (TREE_CODE (entry_def) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def))
return false;
invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
return invar;
}
/* For a loop PHI node that does not locate in loop header, it is semi-
invariant only if two conditions are met. The first is its source
values are derived from CONSTANT (including loop-invariant value), or
from SSA name defined by semi-invariant loop iteration PHI node. The
second is its source incoming edges are control-dependent on semi-
invariant conditional predicates. */
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
const_edge e = gimple_phi_arg_edge (phi, i);
tree arg = gimple_phi_arg_def (phi, i);
if (TREE_CODE (arg) == SSA_NAME)
{
if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
return false;
/* If source value is defined in location from where the source
edge comes in, no need to check control dependency again
since this has been done in above SSA name check stage. */
if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
continue;
}
if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
stmt_stat))
return false;
}
}
else
{
ssa_op_iter iter;
tree use;
/* Volatile memory load or return of normal (non-const/non-pure) call
should not be treated as constant in each iteration of loop. */
if (gimple_has_side_effects (stmt))
return false;
/* Check if any memory store may kill memory load at this place. */
if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
return false;
/* Although operand of a statement might be SSA name, CONSTANT or
VARDECL, here we only need to check SSA name operands. This is
because check on VARDECL operands, which involve memory loads,
must have been done prior to invocation of this function in
vuse_semi_invariant_p. */
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
return false;
}
if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
stmt_stat))
return false;
/* Here we SHOULD NOT use invar = true, since hash map might be changed due
to new insertion, and thus invar may point to invalid memory. */
stmt_stat.put (stmt, true);
return true;
}
/* A helper function to check whether STMT is semi-invariant in LOOP. Basic
blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */
static bool
stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
const_basic_block skip_head)
{
hash_map<gimple *, bool> stmt_stat;
return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
}
/* Determine when conditional statement never transfers execution to one of its
branch, whether we can remove the branch's leading basic block (BRANCH_BB)
and those basic blocks dominated by BRANCH_BB. */
static bool
branch_removable_p (basic_block branch_bb)
{
edge_iterator ei;
edge e;
if (single_pred_p (branch_bb))
return true;
FOR_EACH_EDGE (e, ei, branch_bb->preds)
{
if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
continue;
if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
continue;
/* The branch can be reached from opposite branch, or from some
statement not dominated by the conditional statement. */
return false;
}
return true;
}
/* Find out which branch of a conditional statement (COND) is invariant in the
execution context of LOOP. That is: once the branch is selected in certain
iteration of the loop, any operand that contributes to computation of the
conditional statement remains unchanged in all following iterations. */
static edge
get_cond_invariant_branch (struct loop *loop, gcond *cond)
{
basic_block cond_bb = gimple_bb (cond);
basic_block targ_bb[2];
bool invar[2];
unsigned invar_checks = 0;
for (unsigned i = 0; i < 2; i++)
{
targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
/* One branch directs to loop exit, no need to perform loop split upon
this conditional statement. Firstly, it is trivial if the exit branch
is semi-invariant, for the statement is just to break loop. Secondly,
if the opposite branch is semi-invariant, it means that the statement
is real loop-invariant, which is covered by loop unswitch. */
if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
return NULL;
}
for (unsigned i = 0; i < 2; i++)
{
invar[!i] = false;
if (!branch_removable_p (targ_bb[i]))
continue;
/* Given a semi-invariant branch, if its opposite branch dominates
loop latch, it and its following trace will only be executed in
final iteration of loop, namely it is not part of repeated body
of the loop. Similar to the above case that the branch is loop
exit, no need to split loop. */
if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
continue;
invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
invar_checks++;
}
/* With both branches being invariant (handled by loop unswitch) or
variant is not what we want. */
if (invar[0] ^ !invar[1])
return NULL;
/* Found a real loop-invariant condition, do nothing. */
if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
return NULL;
return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
}
/* Calculate increased code size measured by estimated insn number if applying
loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */
static int
compute_added_num_insns (struct loop *loop, const_edge branch_edge)
{
basic_block cond_bb = branch_edge->src;
unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
basic_block *bbs = ((split_info *) loop->aux)->bbs;
int num = 0;
for (unsigned i = 0; i < loop->num_nodes; i++)
{
/* Do no count basic blocks only in opposite branch. */
if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
continue;
num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
}
/* It is unnecessary to evaluate expression of the conditional statement
in new loop that contains only invariant branch. This expression should
be constant value (either true or false). Exclude code size of insns
that contribute to computation of the expression. */
auto_vec<gimple *> worklist;
hash_set<gimple *> removed;
gimple *stmt = last_stmt (cond_bb);
worklist.safe_push (stmt);
removed.add (stmt);
num -= estimate_num_insns (stmt, &eni_size_weights);
do
{
ssa_op_iter opnd_iter;
use_operand_p opnd_p;
stmt = worklist.pop ();
FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
{
tree opnd = USE_FROM_PTR (opnd_p);
if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
continue;
gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
use_operand_p use_p;
imm_use_iterator use_iter;
if (removed.contains (opnd_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
continue;
FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
{
gimple *use_stmt = USE_STMT (use_p);
if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
{
opnd_stmt = NULL;
break;
}
}
if (opnd_stmt)
{
worklist.safe_push (opnd_stmt);
removed.add (opnd_stmt);
num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
}
}
} while (!worklist.is_empty ());
gcc_assert (num >= 0);
return num;
}
/* Find out loop-invariant branch of a conditional statement (COND) if it has,
and check whether it is eligible and profitable to perform loop split upon
this branch in LOOP. */
static edge
get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
{
edge invar_branch = get_cond_invariant_branch (loop, cond);
if (!invar_branch)
return NULL;
/* When accurate profile information is available, and execution
frequency of the branch is too low, just let it go. */
profile_probability prob = invar_branch->probability;
if (prob.reliable_p ())
{
int thres = param_min_loop_cond_split_prob;
if (prob < profile_probability::always ().apply_scale (thres, 100))
return NULL;
}
/* Add a threshold for increased code size to disable loop split. */
if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
return NULL;
return invar_branch;
}
/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
conditional statement, perform loop split transformation illustrated
as the following graph.
.-------T------ if (true) ------F------.
| .---------------. |
| | | |
v | v v
pre-header | pre-header
| .------------. | | .------------.
| | | | | | |
| v | | | v |
header | | header |
| | | | |
.--- if (cond) ---. | | .--- if (true) ---. |
| | | | | | |
invariant | | | invariant | |
| | | | | | |
'---T--->.<---F---' | | '---T--->.<---F---' |
| | / | |
stmts | / stmts |
| F T | |
/ \ | / / \ |
.-------* * [ if (cond) ] .-------* * |
| | | | | |
| latch | | latch |
| | | | | |
| '------------' | '------------'
'------------------------. .-----------'
loop1 | | loop2
v v
exits
In the graph, loop1 represents the part derived from original one, and
loop2 is duplicated using loop_version (), which corresponds to the part
of original one being splitted out. In original latch edge of loop1, we
insert a new conditional statement duplicated from the semi-invariant cond,
and one of its branch goes back to loop1 header as a latch edge, and the
other branch goes to loop2 pre-header as an entry edge. And also in loop2,
we abandon the variant branch of the conditional statement by setting a
constant bool condition, based on which branch is semi-invariant. */
static bool
do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
{
basic_block cond_bb = invar_branch->src;
bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
gcc_assert (cond_bb->loop_father == loop1);
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
"loop split on semi-invariant condition at %s branch\n",
true_invar ? "true" : "false");
initialize_original_copy_tables ();
struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
profile_probability::always (),
profile_probability::never (),
profile_probability::always (),
profile_probability::always (),
true);
if (!loop2)
{
free_original_copy_tables ();
return false;
}
basic_block cond_bb_copy = get_bb_copy (cond_bb);
gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
/* Replace the condition in loop2 with a bool constant to let PassManager
remove the variant branch after current pass completes. */
if (true_invar)
gimple_cond_make_true (cond_copy);
else
gimple_cond_make_false (cond_copy);
update_stmt (cond_copy);
/* Insert a new conditional statement on latch edge of loop1, its condition
is duplicated from the semi-invariant. This statement acts as a switch
to transfer execution from loop1 to loop2, when loop1 enters into
invariant state. */
basic_block latch_bb = split_edge (loop_latch_edge (loop1));
basic_block break_bb = split_edge (single_pred_edge (latch_bb));
gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
gimple_cond_lhs (cond),
gimple_cond_rhs (cond),
NULL_TREE, NULL_TREE);
gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
edge to_loop1 = single_succ_edge (break_bb);
edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
to_loop1->flags &= ~EDGE_FALLTHRU;
to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
update_ssa (TODO_update_ssa);
/* Due to introduction of a control flow edge from loop1 latch to loop2
pre-header, we should update PHIs in loop2 to reflect this connection
between loop1 and loop2. */
connect_loop_phis (loop1, loop2, to_loop2);
free_original_copy_tables ();
rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
return true;
}
/* Traverse all conditional statements in LOOP, to find out a good candidate
upon which we can do loop split. */
static bool
split_loop_on_cond (struct loop *loop)
{
split_info *info = new split_info ();
basic_block *bbs = info->bbs = get_loop_body (loop);
bool do_split = false;
/* Allocate an area to keep temporary info, and associate its address
with loop aux field. */
loop->aux = info;
for (unsigned i = 0; i < loop->num_nodes; i++)
bbs[i]->aux = NULL;
for (unsigned i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
/* We only consider conditional statement, which be executed at most once
in each iteration of the loop. So skip statements in inner loops. */
if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
continue;
/* Actually this check is not a must constraint. With it, we can ensure
conditional statement will always be executed in each iteration. */
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
continue;
gimple *last = last_stmt (bb);
if (!last || gimple_code (last) != GIMPLE_COND)
continue;
gcond *cond = as_a <gcond *> (last);
edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
if (branch_edge)
{
do_split_loop_on_cond (loop, branch_edge);
do_split = true;
break;
}
}
delete info;
loop->aux = NULL;
return do_split;
}
/* Main entry point. Perform loop splitting on all suitable loops. */
static unsigned int
tree_ssa_split_loops (void)
{
class loop *loop;
bool changed = false;
gcc_assert (scev_initialized_p ());
calculate_dominance_info (CDI_POST_DOMINATORS);
FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
loop->aux = NULL;
/* Go through all loops starting from innermost. */
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
{
if (loop->aux)
{
/* If any of our inner loops was split, don't split us,
and mark our containing loop as having had splits as well. */
loop_outer (loop)->aux = loop;
continue;
}
if (optimize_loop_for_size_p (loop))
continue;
if (split_loop (loop) || split_loop_on_cond (loop))
{
/* Mark our containing loop as having had some split inner loops. */
loop_outer (loop)->aux = loop;
changed = true;
}
}
FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
loop->aux = NULL;
clear_aux_for_blocks ();
free_dominance_info (CDI_POST_DOMINATORS);
if (changed)
return TODO_cleanup_cfg;
return 0;
}
/* Loop splitting pass. */
namespace {
const pass_data pass_data_loop_split =
{
GIMPLE_PASS, /* type */
"lsplit", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_LOOP_SPLIT, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_loop_split : public gimple_opt_pass
{
public:
pass_loop_split (gcc::context *ctxt)
: gimple_opt_pass (pass_data_loop_split, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_split_loops != 0; }
virtual unsigned int execute (function *);
}; // class pass_loop_split
unsigned int
pass_loop_split::execute (function *fun)
{
if (number_of_loops (fun) <= 1)
return 0;
return tree_ssa_split_loops ();
}
} // anon namespace
gimple_opt_pass *
make_pass_loop_split (gcc::context *ctxt)
{
return new pass_loop_split (ctxt);
}
|