1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
|
/* Global, SSA-based optimizations using mathematical identities.
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Currently, the only mini-pass in this file tries to CSE reciprocal
operations. These are common in sequences such as this one:
modulus = sqrt(x*x + y*y + z*z);
x = x / modulus;
y = y / modulus;
z = z / modulus;
that can be optimized to
modulus = sqrt(x*x + y*y + z*z);
rmodulus = 1.0 / modulus;
x = x * rmodulus;
y = y * rmodulus;
z = z * rmodulus;
We do this for loop invariant divisors, and with this pass whenever
we notice that a division has the same divisor multiple times.
Of course, like in PRE, we don't insert a division if a dominator
already has one. However, this cannot be done as an extension of
PRE for several reasons.
First of all, with some experiments it was found out that the
transformation is not always useful if there are only two divisions
hy the same divisor. This is probably because modern processors
can pipeline the divisions; on older, in-order processors it should
still be effective to optimize two divisions by the same number.
We make this a param, and it shall be called N in the remainder of
this comment.
Second, if trapping math is active, we have less freedom on where
to insert divisions: we can only do so in basic blocks that already
contain one. (If divisions don't trap, instead, we can insert
divisions elsewhere, which will be in blocks that are common dominators
of those that have the division).
We really don't want to compute the reciprocal unless a division will
be found. To do this, we won't insert the division in a basic block
that has less than N divisions *post-dominating* it.
The algorithm constructs a subset of the dominator tree, holding the
blocks containing the divisions and the common dominators to them,
and walk it twice. The first walk is in post-order, and it annotates
each block with the number of divisions that post-dominate it: this
gives information on where divisions can be inserted profitably.
The second walk is in pre-order, and it inserts divisions as explained
above, and replaces divisions by multiplications.
In the best case, the cost of the pass is O(n_statements). In the
worst-case, the cost is due to creating the dominator tree subset,
with a cost of O(n_basic_blocks ^ 2); however this can only happen
for n_statements / n_basic_blocks statements. So, the amortized cost
of creating the dominator tree subset is O(n_basic_blocks) and the
worst-case cost of the pass is O(n_statements * n_basic_blocks).
More practically, the cost will be small because there are few
divisions, and they tend to be in the same basic block, so insert_bb
is called very few times.
If we did this using domwalk.c, an efficient implementation would have
to work on all the variables in a single pass, because we could not
work on just a subset of the dominator tree, as we do now, and the
cost would also be something like O(n_statements * n_basic_blocks).
The data structures would be more complex in order to work on all the
variables in a single pass. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "flags.h"
#include "tree.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "basic-block.h"
#include "target.h"
#include "gimple-pretty-print.h"
/* FIXME: RTL headers have to be included here for optabs. */
#include "rtl.h" /* Because optabs.h wants enum rtx_code. */
#include "expr.h" /* Because optabs.h wants sepops. */
#include "optabs.h"
/* This structure represents one basic block that either computes a
division, or is a common dominator for basic block that compute a
division. */
struct occurrence {
/* The basic block represented by this structure. */
basic_block bb;
/* If non-NULL, the SSA_NAME holding the definition for a reciprocal
inserted in BB. */
tree recip_def;
/* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
was inserted in BB. */
gimple recip_def_stmt;
/* Pointer to a list of "struct occurrence"s for blocks dominated
by BB. */
struct occurrence *children;
/* Pointer to the next "struct occurrence"s in the list of blocks
sharing a common dominator. */
struct occurrence *next;
/* The number of divisions that are in BB before compute_merit. The
number of divisions that are in BB or post-dominate it after
compute_merit. */
int num_divisions;
/* True if the basic block has a division, false if it is a common
dominator for basic blocks that do. If it is false and trapping
math is active, BB is not a candidate for inserting a reciprocal. */
bool bb_has_division;
};
/* The instance of "struct occurrence" representing the highest
interesting block in the dominator tree. */
static struct occurrence *occ_head;
/* Allocation pool for getting instances of "struct occurrence". */
static alloc_pool occ_pool;
/* Allocate and return a new struct occurrence for basic block BB, and
whose children list is headed by CHILDREN. */
static struct occurrence *
occ_new (basic_block bb, struct occurrence *children)
{
struct occurrence *occ;
bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
memset (occ, 0, sizeof (struct occurrence));
occ->bb = bb;
occ->children = children;
return occ;
}
/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
list of "struct occurrence"s, one per basic block, having IDOM as
their common dominator.
We try to insert NEW_OCC as deep as possible in the tree, and we also
insert any other block that is a common dominator for BB and one
block already in the tree. */
static void
insert_bb (struct occurrence *new_occ, basic_block idom,
struct occurrence **p_head)
{
struct occurrence *occ, **p_occ;
for (p_occ = p_head; (occ = *p_occ) != NULL; )
{
basic_block bb = new_occ->bb, occ_bb = occ->bb;
basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
if (dom == bb)
{
/* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
from its list. */
*p_occ = occ->next;
occ->next = new_occ->children;
new_occ->children = occ;
/* Try the next block (it may as well be dominated by BB). */
}
else if (dom == occ_bb)
{
/* OCC_BB dominates BB. Tail recurse to look deeper. */
insert_bb (new_occ, dom, &occ->children);
return;
}
else if (dom != idom)
{
gcc_assert (!dom->aux);
/* There is a dominator between IDOM and BB, add it and make
two children out of NEW_OCC and OCC. First, remove OCC from
its list. */
*p_occ = occ->next;
new_occ->next = occ;
occ->next = NULL;
/* None of the previous blocks has DOM as a dominator: if we tail
recursed, we would reexamine them uselessly. Just switch BB with
DOM, and go on looking for blocks dominated by DOM. */
new_occ = occ_new (dom, new_occ);
}
else
{
/* Nothing special, go on with the next element. */
p_occ = &occ->next;
}
}
/* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
new_occ->next = *p_head;
*p_head = new_occ;
}
/* Register that we found a division in BB. */
static inline void
register_division_in (basic_block bb)
{
struct occurrence *occ;
occ = (struct occurrence *) bb->aux;
if (!occ)
{
occ = occ_new (bb, NULL);
insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
}
occ->bb_has_division = true;
occ->num_divisions++;
}
/* Compute the number of divisions that postdominate each block in OCC and
its children. */
static void
compute_merit (struct occurrence *occ)
{
struct occurrence *occ_child;
basic_block dom = occ->bb;
for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
{
basic_block bb;
if (occ_child->children)
compute_merit (occ_child);
if (flag_exceptions)
bb = single_noncomplex_succ (dom);
else
bb = dom;
if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
occ->num_divisions += occ_child->num_divisions;
}
}
/* Return whether USE_STMT is a floating-point division by DEF. */
static inline bool
is_division_by (gimple use_stmt, tree def)
{
return is_gimple_assign (use_stmt)
&& gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
&& gimple_assign_rhs2 (use_stmt) == def
/* Do not recognize x / x as valid division, as we are getting
confused later by replacing all immediate uses x in such
a stmt. */
&& gimple_assign_rhs1 (use_stmt) != def;
}
/* Walk the subset of the dominator tree rooted at OCC, setting the
RECIP_DEF field to a definition of 1.0 / DEF that can be used in
the given basic block. The field may be left NULL, of course,
if it is not possible or profitable to do the optimization.
DEF_BSI is an iterator pointing at the statement defining DEF.
If RECIP_DEF is set, a dominator already has a computation that can
be used. */
static void
insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
tree def, tree recip_def, int threshold)
{
tree type;
gimple new_stmt;
gimple_stmt_iterator gsi;
struct occurrence *occ_child;
if (!recip_def
&& (occ->bb_has_division || !flag_trapping_math)
&& occ->num_divisions >= threshold)
{
/* Make a variable with the replacement and substitute it. */
type = TREE_TYPE (def);
recip_def = make_rename_temp (type, "reciptmp");
new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
build_one_cst (type), def);
if (occ->bb_has_division)
{
/* Case 1: insert before an existing division. */
gsi = gsi_after_labels (occ->bb);
while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
gsi_next (&gsi);
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
}
else if (def_gsi && occ->bb == def_gsi->bb)
{
/* Case 2: insert right after the definition. Note that this will
never happen if the definition statement can throw, because in
that case the sole successor of the statement's basic block will
dominate all the uses as well. */
gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
}
else
{
/* Case 3: insert in a basic block not containing defs/uses. */
gsi = gsi_after_labels (occ->bb);
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
}
occ->recip_def_stmt = new_stmt;
}
occ->recip_def = recip_def;
for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
}
/* Replace the division at USE_P with a multiplication by the reciprocal, if
possible. */
static inline void
replace_reciprocal (use_operand_p use_p)
{
gimple use_stmt = USE_STMT (use_p);
basic_block bb = gimple_bb (use_stmt);
struct occurrence *occ = (struct occurrence *) bb->aux;
if (optimize_bb_for_speed_p (bb)
&& occ->recip_def && use_stmt != occ->recip_def_stmt)
{
gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
SET_USE (use_p, occ->recip_def);
fold_stmt_inplace (use_stmt);
update_stmt (use_stmt);
}
}
/* Free OCC and return one more "struct occurrence" to be freed. */
static struct occurrence *
free_bb (struct occurrence *occ)
{
struct occurrence *child, *next;
/* First get the two pointers hanging off OCC. */
next = occ->next;
child = occ->children;
occ->bb->aux = NULL;
pool_free (occ_pool, occ);
/* Now ensure that we don't recurse unless it is necessary. */
if (!child)
return next;
else
{
while (next)
next = free_bb (next);
return child;
}
}
/* Look for floating-point divisions among DEF's uses, and try to
replace them by multiplications with the reciprocal. Add
as many statements computing the reciprocal as needed.
DEF must be a GIMPLE register of a floating-point type. */
static void
execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
{
use_operand_p use_p;
imm_use_iterator use_iter;
struct occurrence *occ;
int count = 0, threshold;
gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
{
gimple use_stmt = USE_STMT (use_p);
if (is_division_by (use_stmt, def))
{
register_division_in (gimple_bb (use_stmt));
count++;
}
}
/* Do the expensive part only if we can hope to optimize something. */
threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
if (count >= threshold)
{
gimple use_stmt;
for (occ = occ_head; occ; occ = occ->next)
{
compute_merit (occ);
insert_reciprocals (def_gsi, occ, def, NULL, threshold);
}
FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
{
if (is_division_by (use_stmt, def))
{
FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
replace_reciprocal (use_p);
}
}
}
for (occ = occ_head; occ; )
occ = free_bb (occ);
occ_head = NULL;
}
static bool
gate_cse_reciprocals (void)
{
return optimize && flag_reciprocal_math;
}
/* Go through all the floating-point SSA_NAMEs, and call
execute_cse_reciprocals_1 on each of them. */
static unsigned int
execute_cse_reciprocals (void)
{
basic_block bb;
tree arg;
occ_pool = create_alloc_pool ("dominators for recip",
sizeof (struct occurrence),
n_basic_blocks / 3 + 1);
calculate_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
#ifdef ENABLE_CHECKING
FOR_EACH_BB (bb)
gcc_assert (!bb->aux);
#endif
for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
if (gimple_default_def (cfun, arg)
&& FLOAT_TYPE_P (TREE_TYPE (arg))
&& is_gimple_reg (arg))
execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
gimple phi;
tree def;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = gsi_stmt (gsi);
def = PHI_RESULT (phi);
if (FLOAT_TYPE_P (TREE_TYPE (def))
&& is_gimple_reg (def))
execute_cse_reciprocals_1 (NULL, def);
}
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_has_lhs (stmt)
&& (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
&& FLOAT_TYPE_P (TREE_TYPE (def))
&& TREE_CODE (def) == SSA_NAME)
execute_cse_reciprocals_1 (&gsi, def);
}
if (optimize_bb_for_size_p (bb))
continue;
/* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree fndecl;
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == RDIV_EXPR)
{
tree arg1 = gimple_assign_rhs2 (stmt);
gimple stmt1;
if (TREE_CODE (arg1) != SSA_NAME)
continue;
stmt1 = SSA_NAME_DEF_STMT (arg1);
if (is_gimple_call (stmt1)
&& gimple_call_lhs (stmt1)
&& (fndecl = gimple_call_fndecl (stmt1))
&& (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|| DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
{
enum built_in_function code;
bool md_code, fail;
imm_use_iterator ui;
use_operand_p use_p;
code = DECL_FUNCTION_CODE (fndecl);
md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
fndecl = targetm.builtin_reciprocal (code, md_code, false);
if (!fndecl)
continue;
/* Check that all uses of the SSA name are divisions,
otherwise replacing the defining statement will do
the wrong thing. */
fail = false;
FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
{
gimple stmt2 = USE_STMT (use_p);
if (is_gimple_debug (stmt2))
continue;
if (!is_gimple_assign (stmt2)
|| gimple_assign_rhs_code (stmt2) != RDIV_EXPR
|| gimple_assign_rhs1 (stmt2) == arg1
|| gimple_assign_rhs2 (stmt2) != arg1)
{
fail = true;
break;
}
}
if (fail)
continue;
gimple_replace_lhs (stmt1, arg1);
gimple_call_set_fndecl (stmt1, fndecl);
update_stmt (stmt1);
FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
{
gimple_assign_set_rhs_code (stmt, MULT_EXPR);
fold_stmt_inplace (stmt);
update_stmt (stmt);
}
}
}
}
}
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
free_alloc_pool (occ_pool);
return 0;
}
struct gimple_opt_pass pass_cse_reciprocals =
{
{
GIMPLE_PASS,
"recip", /* name */
gate_cse_reciprocals, /* gate */
execute_cse_reciprocals, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
| TODO_verify_stmts /* todo_flags_finish */
}
};
/* Records an occurrence at statement USE_STMT in the vector of trees
STMTS if it is dominated by *TOP_BB or dominates it or this basic block
is not yet initialized. Returns true if the occurrence was pushed on
the vector. Adjusts *TOP_BB to be the basic block dominating all
statements in the vector. */
static bool
maybe_record_sincos (VEC(gimple, heap) **stmts,
basic_block *top_bb, gimple use_stmt)
{
basic_block use_bb = gimple_bb (use_stmt);
if (*top_bb
&& (*top_bb == use_bb
|| dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
VEC_safe_push (gimple, heap, *stmts, use_stmt);
else if (!*top_bb
|| dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
{
VEC_safe_push (gimple, heap, *stmts, use_stmt);
*top_bb = use_bb;
}
else
return false;
return true;
}
/* Look for sin, cos and cexpi calls with the same argument NAME and
create a single call to cexpi CSEing the result in this case.
We first walk over all immediate uses of the argument collecting
statements that we can CSE in a vector and in a second pass replace
the statement rhs with a REALPART or IMAGPART expression on the
result of the cexpi call we insert before the use statement that
dominates all other candidates. */
static bool
execute_cse_sincos_1 (tree name)
{
gimple_stmt_iterator gsi;
imm_use_iterator use_iter;
tree fndecl, res, type;
gimple def_stmt, use_stmt, stmt;
int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
VEC(gimple, heap) *stmts = NULL;
basic_block top_bb = NULL;
int i;
bool cfg_changed = false;
type = TREE_TYPE (name);
FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
{
if (gimple_code (use_stmt) != GIMPLE_CALL
|| !gimple_call_lhs (use_stmt)
|| !(fndecl = gimple_call_fndecl (use_stmt))
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
continue;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_COS):
seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
break;
CASE_FLT_FN (BUILT_IN_SIN):
seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
break;
CASE_FLT_FN (BUILT_IN_CEXPI):
seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
break;
default:;
}
}
if (seen_cos + seen_sin + seen_cexpi <= 1)
{
VEC_free(gimple, heap, stmts);
return false;
}
/* Simply insert cexpi at the beginning of top_bb but not earlier than
the name def statement. */
fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
if (!fndecl)
return false;
res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
stmt = gimple_build_call (fndecl, 1, name);
res = make_ssa_name (res, stmt);
gimple_call_set_lhs (stmt, res);
def_stmt = SSA_NAME_DEF_STMT (name);
if (!SSA_NAME_IS_DEFAULT_DEF (name)
&& gimple_code (def_stmt) != GIMPLE_PHI
&& gimple_bb (def_stmt) == top_bb)
{
gsi = gsi_for_stmt (def_stmt);
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
}
else
{
gsi = gsi_after_labels (top_bb);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
}
update_stmt (stmt);
/* And adjust the recorded old call sites. */
for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
{
tree rhs = NULL;
fndecl = gimple_call_fndecl (use_stmt);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_COS):
rhs = fold_build1 (REALPART_EXPR, type, res);
break;
CASE_FLT_FN (BUILT_IN_SIN):
rhs = fold_build1 (IMAGPART_EXPR, type, res);
break;
CASE_FLT_FN (BUILT_IN_CEXPI):
rhs = res;
break;
default:;
gcc_unreachable ();
}
/* Replace call with a copy. */
stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
gsi = gsi_for_stmt (use_stmt);
gsi_replace (&gsi, stmt, true);
if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
cfg_changed = true;
}
VEC_free(gimple, heap, stmts);
return cfg_changed;
}
/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
on the SSA_NAME argument of each of them. */
static unsigned int
execute_cse_sincos (void)
{
basic_block bb;
bool cfg_changed = false;
calculate_dominance_info (CDI_DOMINATORS);
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree fndecl;
if (is_gimple_call (stmt)
&& gimple_call_lhs (stmt)
&& (fndecl = gimple_call_fndecl (stmt))
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
{
tree arg;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_COS):
CASE_FLT_FN (BUILT_IN_SIN):
CASE_FLT_FN (BUILT_IN_CEXPI):
arg = gimple_call_arg (stmt, 0);
if (TREE_CODE (arg) == SSA_NAME)
cfg_changed |= execute_cse_sincos_1 (arg);
break;
default:;
}
}
}
}
free_dominance_info (CDI_DOMINATORS);
return cfg_changed ? TODO_cleanup_cfg : 0;
}
static bool
gate_cse_sincos (void)
{
/* Make sure we have either sincos or cexp. */
return (TARGET_HAS_SINCOS
|| TARGET_C99_FUNCTIONS)
&& optimize;
}
struct gimple_opt_pass pass_cse_sincos =
{
{
GIMPLE_PASS,
"sincos", /* name */
gate_cse_sincos, /* gate */
execute_cse_sincos, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
| TODO_verify_stmts /* todo_flags_finish */
}
};
/* A symbolic number is used to detect byte permutation and selection
patterns. Therefore the field N contains an artificial number
consisting of byte size markers:
0 - byte has the value 0
1..size - byte contains the content of the byte
number indexed with that value minus one */
struct symbolic_number {
unsigned HOST_WIDEST_INT n;
int size;
};
/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
number N. Return false if the requested operation is not permitted
on a symbolic number. */
static inline bool
do_shift_rotate (enum tree_code code,
struct symbolic_number *n,
int count)
{
if (count % 8 != 0)
return false;
/* Zero out the extra bits of N in order to avoid them being shifted
into the significant bits. */
if (n->size < (int)sizeof (HOST_WIDEST_INT))
n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
switch (code)
{
case LSHIFT_EXPR:
n->n <<= count;
break;
case RSHIFT_EXPR:
n->n >>= count;
break;
case LROTATE_EXPR:
n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
break;
case RROTATE_EXPR:
n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
break;
default:
return false;
}
return true;
}
/* Perform sanity checking for the symbolic number N and the gimple
statement STMT. */
static inline bool
verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
{
tree lhs_type;
lhs_type = gimple_expr_type (stmt);
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
return false;
if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
return false;
return true;
}
/* find_bswap_1 invokes itself recursively with N and tries to perform
the operation given by the rhs of STMT on the result. If the
operation could successfully be executed the function returns the
tree expression of the source operand and NULL otherwise. */
static tree
find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
{
enum tree_code code;
tree rhs1, rhs2 = NULL;
gimple rhs1_stmt, rhs2_stmt;
tree source_expr1;
enum gimple_rhs_class rhs_class;
if (!limit || !is_gimple_assign (stmt))
return NULL_TREE;
rhs1 = gimple_assign_rhs1 (stmt);
if (TREE_CODE (rhs1) != SSA_NAME)
return NULL_TREE;
code = gimple_assign_rhs_code (stmt);
rhs_class = gimple_assign_rhs_class (stmt);
rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
if (rhs_class == GIMPLE_BINARY_RHS)
rhs2 = gimple_assign_rhs2 (stmt);
/* Handle unary rhs and binary rhs with integer constants as second
operand. */
if (rhs_class == GIMPLE_UNARY_RHS
|| (rhs_class == GIMPLE_BINARY_RHS
&& TREE_CODE (rhs2) == INTEGER_CST))
{
if (code != BIT_AND_EXPR
&& code != LSHIFT_EXPR
&& code != RSHIFT_EXPR
&& code != LROTATE_EXPR
&& code != RROTATE_EXPR
&& code != NOP_EXPR
&& code != CONVERT_EXPR)
return NULL_TREE;
source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
/* If find_bswap_1 returned NULL STMT is a leaf node and we have
to initialize the symbolic number. */
if (!source_expr1)
{
/* Set up the symbolic number N by setting each byte to a
value between 1 and the byte size of rhs1. The highest
order byte is set to n->size and the lowest order
byte to 1. */
n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
if (n->size % BITS_PER_UNIT != 0)
return NULL_TREE;
n->size /= BITS_PER_UNIT;
n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
(unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
if (n->size < (int)sizeof (HOST_WIDEST_INT))
n->n &= ((unsigned HOST_WIDEST_INT)1 <<
(n->size * BITS_PER_UNIT)) - 1;
source_expr1 = rhs1;
}
switch (code)
{
case BIT_AND_EXPR:
{
int i;
unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
unsigned HOST_WIDEST_INT tmp = val;
/* Only constants masking full bytes are allowed. */
for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
return NULL_TREE;
n->n &= val;
}
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
return NULL_TREE;
break;
CASE_CONVERT:
{
int type_size;
type_size = TYPE_PRECISION (gimple_expr_type (stmt));
if (type_size % BITS_PER_UNIT != 0)
return NULL_TREE;
if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
{
/* If STMT casts to a smaller type mask out the bits not
belonging to the target type. */
n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
}
n->size = type_size / BITS_PER_UNIT;
}
break;
default:
return NULL_TREE;
};
return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
}
/* Handle binary rhs. */
if (rhs_class == GIMPLE_BINARY_RHS)
{
struct symbolic_number n1, n2;
tree source_expr2;
if (code != BIT_IOR_EXPR)
return NULL_TREE;
if (TREE_CODE (rhs2) != SSA_NAME)
return NULL_TREE;
rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
switch (code)
{
case BIT_IOR_EXPR:
source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
if (!source_expr1)
return NULL_TREE;
source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
if (source_expr1 != source_expr2
|| n1.size != n2.size)
return NULL_TREE;
n->size = n1.size;
n->n = n1.n | n2.n;
if (!verify_symbolic_number_p (n, stmt))
return NULL_TREE;
break;
default:
return NULL_TREE;
}
return source_expr1;
}
return NULL_TREE;
}
/* Check if STMT completes a bswap implementation consisting of ORs,
SHIFTs and ANDs. Return the source tree expression on which the
byte swap is performed and NULL if no bswap was found. */
static tree
find_bswap (gimple stmt)
{
/* The number which the find_bswap result should match in order to
have a full byte swap. The number is shifted to the left according
to the size of the symbolic number before using it. */
unsigned HOST_WIDEST_INT cmp =
sizeof (HOST_WIDEST_INT) < 8 ? 0 :
(unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
struct symbolic_number n;
tree source_expr;
/* The last parameter determines the depth search limit. It usually
correlates directly to the number of bytes to be touched. We
increase that number by one here in order to also cover signed ->
unsigned conversions of the src operand as can be seen in
libgcc. */
source_expr = find_bswap_1 (stmt, &n,
TREE_INT_CST_LOW (
TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
if (!source_expr)
return NULL_TREE;
/* Zero out the extra bits of N and CMP. */
if (n.size < (int)sizeof (HOST_WIDEST_INT))
{
unsigned HOST_WIDEST_INT mask =
((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
n.n &= mask;
cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
}
/* A complete byte swap should make the symbolic number to start
with the largest digit in the highest order byte. */
if (cmp != n.n)
return NULL_TREE;
return source_expr;
}
/* Find manual byte swap implementations and turn them into a bswap
builtin invokation. */
static unsigned int
execute_optimize_bswap (void)
{
basic_block bb;
bool bswap32_p, bswap64_p;
bool changed = false;
tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
if (BITS_PER_UNIT != 8)
return 0;
if (sizeof (HOST_WIDEST_INT) < 8)
return 0;
bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
&& (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
|| (bswap32_p && word_mode == SImode)));
if (!bswap32_p && !bswap64_p)
return 0;
/* Determine the argument type of the builtins. The code later on
assumes that the return and argument type are the same. */
if (bswap32_p)
{
tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
if (bswap64_p)
{
tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree bswap_src, bswap_type;
tree bswap_tmp;
tree fndecl = NULL_TREE;
int type_size;
gimple call;
if (!is_gimple_assign (stmt)
|| gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
continue;
type_size = TYPE_PRECISION (gimple_expr_type (stmt));
switch (type_size)
{
case 32:
if (bswap32_p)
{
fndecl = built_in_decls[BUILT_IN_BSWAP32];
bswap_type = bswap32_type;
}
break;
case 64:
if (bswap64_p)
{
fndecl = built_in_decls[BUILT_IN_BSWAP64];
bswap_type = bswap64_type;
}
break;
default:
continue;
}
if (!fndecl)
continue;
bswap_src = find_bswap (stmt);
if (!bswap_src)
continue;
changed = true;
bswap_tmp = bswap_src;
/* Convert the src expression if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
{
gimple convert_stmt;
bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
add_referenced_var (bswap_tmp);
bswap_tmp = make_ssa_name (bswap_tmp, NULL);
convert_stmt = gimple_build_assign_with_ops (
CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
}
call = gimple_build_call (fndecl, 1, bswap_tmp);
bswap_tmp = gimple_assign_lhs (stmt);
/* Convert the result if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
{
gimple convert_stmt;
bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
add_referenced_var (bswap_tmp);
bswap_tmp = make_ssa_name (bswap_tmp, NULL);
convert_stmt = gimple_build_assign_with_ops (
CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
}
gimple_call_set_lhs (call, bswap_tmp);
if (dump_file)
{
fprintf (dump_file, "%d bit bswap implementation found at: ",
(int)type_size);
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gsi_insert_after (&gsi, call, GSI_SAME_STMT);
gsi_remove (&gsi, true);
}
}
return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
| TODO_verify_stmts : 0);
}
static bool
gate_optimize_bswap (void)
{
return flag_expensive_optimizations && optimize;
}
struct gimple_opt_pass pass_optimize_bswap =
{
{
GIMPLE_PASS,
"bswap", /* name */
gate_optimize_bswap, /* gate */
execute_optimize_bswap, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0 /* todo_flags_finish */
}
};
/* Return true if RHS is a suitable operand for a widening multiplication.
There are two cases:
- RHS makes some value twice as wide. Store that value in *NEW_RHS_OUT
if so, and store its type in *TYPE_OUT.
- RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
but leave *TYPE_OUT untouched. */
static bool
is_widening_mult_rhs_p (tree rhs, tree *type_out, tree *new_rhs_out)
{
gimple stmt;
tree type, type1, rhs1;
enum tree_code rhs_code;
if (TREE_CODE (rhs) == SSA_NAME)
{
type = TREE_TYPE (rhs);
stmt = SSA_NAME_DEF_STMT (rhs);
if (!is_gimple_assign (stmt))
return false;
rhs_code = gimple_assign_rhs_code (stmt);
if (TREE_CODE (type) == INTEGER_TYPE
? !CONVERT_EXPR_CODE_P (rhs_code)
: rhs_code != FIXED_CONVERT_EXPR)
return false;
rhs1 = gimple_assign_rhs1 (stmt);
type1 = TREE_TYPE (rhs1);
if (TREE_CODE (type1) != TREE_CODE (type)
|| TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
return false;
*new_rhs_out = rhs1;
*type_out = type1;
return true;
}
if (TREE_CODE (rhs) == INTEGER_CST)
{
*new_rhs_out = rhs;
*type_out = NULL;
return true;
}
return false;
}
/* Return true if STMT performs a widening multiplication. If so,
store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT
respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting
those operands to types *TYPE1_OUT and *TYPE2_OUT would give the
operands of the multiplication. */
static bool
is_widening_mult_p (gimple stmt,
tree *type1_out, tree *rhs1_out,
tree *type2_out, tree *rhs2_out)
{
tree type;
type = TREE_TYPE (gimple_assign_lhs (stmt));
if (TREE_CODE (type) != INTEGER_TYPE
&& TREE_CODE (type) != FIXED_POINT_TYPE)
return false;
if (!is_widening_mult_rhs_p (gimple_assign_rhs1 (stmt), type1_out, rhs1_out))
return false;
if (!is_widening_mult_rhs_p (gimple_assign_rhs2 (stmt), type2_out, rhs2_out))
return false;
if (*type1_out == NULL)
{
if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
return false;
*type1_out = *type2_out;
}
if (*type2_out == NULL)
{
if (!int_fits_type_p (*rhs2_out, *type1_out))
return false;
*type2_out = *type1_out;
}
return true;
}
/* Process a single gimple statement STMT, which has a MULT_EXPR as
its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
value is true iff we converted the statement. */
static bool
convert_mult_to_widen (gimple stmt)
{
tree lhs, rhs1, rhs2, type, type1, type2;
enum insn_code handler;
lhs = gimple_assign_lhs (stmt);
type = TREE_TYPE (lhs);
if (TREE_CODE (type) != INTEGER_TYPE)
return false;
if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
return false;
if (TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2))
handler = optab_handler (umul_widen_optab, TYPE_MODE (type));
else if (!TYPE_UNSIGNED (type1) && !TYPE_UNSIGNED (type2))
handler = optab_handler (smul_widen_optab, TYPE_MODE (type));
else
handler = optab_handler (usmul_widen_optab, TYPE_MODE (type));
if (handler == CODE_FOR_nothing)
return false;
gimple_assign_set_rhs1 (stmt, fold_convert (type1, rhs1));
gimple_assign_set_rhs2 (stmt, fold_convert (type2, rhs2));
gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
update_stmt (stmt);
return true;
}
/* Process a single gimple statement STMT, which is found at the
iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
rhs (given by CODE), and try to convert it into a
WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
is true iff we converted the statement. */
static bool
convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
enum tree_code code)
{
gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
tree type, type1, type2;
tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
optab this_optab;
enum tree_code wmult_code;
lhs = gimple_assign_lhs (stmt);
type = TREE_TYPE (lhs);
if (TREE_CODE (type) != INTEGER_TYPE
&& TREE_CODE (type) != FIXED_POINT_TYPE)
return false;
if (code == MINUS_EXPR)
wmult_code = WIDEN_MULT_MINUS_EXPR;
else
wmult_code = WIDEN_MULT_PLUS_EXPR;
rhs1 = gimple_assign_rhs1 (stmt);
rhs2 = gimple_assign_rhs2 (stmt);
if (TREE_CODE (rhs1) == SSA_NAME)
{
rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
if (is_gimple_assign (rhs1_stmt))
rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
}
else
return false;
if (TREE_CODE (rhs2) == SSA_NAME)
{
rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
if (is_gimple_assign (rhs2_stmt))
rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
}
else
return false;
if (code == PLUS_EXPR && rhs1_code == MULT_EXPR)
{
if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
&type2, &mult_rhs2))
return false;
add_rhs = rhs2;
}
else if (rhs2_code == MULT_EXPR)
{
if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
&type2, &mult_rhs2))
return false;
add_rhs = rhs1;
}
else if (code == PLUS_EXPR && rhs1_code == WIDEN_MULT_EXPR)
{
mult_rhs1 = gimple_assign_rhs1 (rhs1_stmt);
mult_rhs2 = gimple_assign_rhs2 (rhs1_stmt);
type1 = TREE_TYPE (mult_rhs1);
type2 = TREE_TYPE (mult_rhs2);
add_rhs = rhs2;
}
else if (rhs2_code == WIDEN_MULT_EXPR)
{
mult_rhs1 = gimple_assign_rhs1 (rhs2_stmt);
mult_rhs2 = gimple_assign_rhs2 (rhs2_stmt);
type1 = TREE_TYPE (mult_rhs1);
type2 = TREE_TYPE (mult_rhs2);
add_rhs = rhs1;
}
else
return false;
if (TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
return false;
/* Verify that the machine can perform a widening multiply
accumulate in this mode/signedness combination, otherwise
this transformation is likely to pessimize code. */
this_optab = optab_for_tree_code (wmult_code, type1, optab_default);
if (optab_handler (this_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
return false;
/* ??? May need some type verification here? */
gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code,
fold_convert (type1, mult_rhs1),
fold_convert (type2, mult_rhs2),
add_rhs);
update_stmt (gsi_stmt (*gsi));
return true;
}
/* Combine the multiplication at MUL_STMT with uses in additions and
subtractions to form fused multiply-add operations. Returns true
if successful and MUL_STMT should be removed. */
static bool
convert_mult_to_fma (gimple mul_stmt)
{
tree mul_result = gimple_assign_lhs (mul_stmt);
tree type = TREE_TYPE (mul_result);
gimple use_stmt, neguse_stmt, fma_stmt;
use_operand_p use_p;
imm_use_iterator imm_iter;
if (FLOAT_TYPE_P (type)
&& flag_fp_contract_mode == FP_CONTRACT_OFF)
return false;
/* We don't want to do bitfield reduction ops. */
if (INTEGRAL_TYPE_P (type)
&& (TYPE_PRECISION (type)
!= GET_MODE_PRECISION (TYPE_MODE (type))))
return false;
/* If the target doesn't support it, don't generate it. We assume that
if fma isn't available then fms, fnma or fnms are not either. */
if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
return false;
/* Make sure that the multiplication statement becomes dead after
the transformation, thus that all uses are transformed to FMAs.
This means we assume that an FMA operation has the same cost
as an addition. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
{
enum tree_code use_code;
tree result = mul_result;
bool negate_p = false;
use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
/* For now restrict this operations to single basic blocks. In theory
we would want to support sinking the multiplication in
m = a*b;
if ()
ma = m + c;
else
d = m;
to form a fma in the then block and sink the multiplication to the
else block. */
if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
return false;
if (!is_gimple_assign (use_stmt))
return false;
use_code = gimple_assign_rhs_code (use_stmt);
/* A negate on the multiplication leads to FNMA. */
if (use_code == NEGATE_EXPR)
{
result = gimple_assign_lhs (use_stmt);
/* Make sure the negate statement becomes dead with this
single transformation. */
if (!single_imm_use (gimple_assign_lhs (use_stmt),
&use_p, &neguse_stmt))
return false;
/* Re-validate. */
use_stmt = neguse_stmt;
if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
return false;
if (!is_gimple_assign (use_stmt))
return false;
use_code = gimple_assign_rhs_code (use_stmt);
negate_p = true;
}
switch (use_code)
{
case MINUS_EXPR:
if (gimple_assign_rhs2 (use_stmt) == result)
negate_p = !negate_p;
break;
case PLUS_EXPR:
break;
default:
/* FMA can only be formed from PLUS and MINUS. */
return false;
}
/* We can't handle a * b + a * b. */
if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
return false;
/* While it is possible to validate whether or not the exact form
that we've recognized is available in the backend, the assumption
is that the transformation is never a loss. For instance, suppose
the target only has the plain FMA pattern available. Consider
a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
still have 3 operations, but in the FMA form the two NEGs are
independant and could be run in parallel. */
}
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
{
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
enum tree_code use_code;
tree addop, mulop1, result = mul_result;
bool negate_p = false;
if (is_gimple_debug (use_stmt))
continue;
use_code = gimple_assign_rhs_code (use_stmt);
if (use_code == NEGATE_EXPR)
{
result = gimple_assign_lhs (use_stmt);
single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
gsi_remove (&gsi, true);
release_defs (use_stmt);
use_stmt = neguse_stmt;
gsi = gsi_for_stmt (use_stmt);
use_code = gimple_assign_rhs_code (use_stmt);
negate_p = true;
}
if (gimple_assign_rhs1 (use_stmt) == result)
{
addop = gimple_assign_rhs2 (use_stmt);
/* a * b - c -> a * b + (-c) */
if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
addop = force_gimple_operand_gsi (&gsi,
build1 (NEGATE_EXPR,
type, addop),
true, NULL_TREE, true,
GSI_SAME_STMT);
}
else
{
addop = gimple_assign_rhs1 (use_stmt);
/* a - b * c -> (-b) * c + a */
if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
negate_p = !negate_p;
}
mulop1 = gimple_assign_rhs1 (mul_stmt);
if (negate_p)
mulop1 = force_gimple_operand_gsi (&gsi,
build1 (NEGATE_EXPR,
type, mulop1),
true, NULL_TREE, true,
GSI_SAME_STMT);
fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
gimple_assign_lhs (use_stmt),
mulop1,
gimple_assign_rhs2 (mul_stmt),
addop);
gsi_replace (&gsi, fma_stmt, true);
}
return true;
}
/* Find integer multiplications where the operands are extended from
smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
where appropriate. */
static unsigned int
execute_optimize_widening_mul (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
{
gimple stmt = gsi_stmt (gsi);
enum tree_code code;
if (is_gimple_assign (stmt))
{
code = gimple_assign_rhs_code (stmt);
switch (code)
{
case MULT_EXPR:
if (!convert_mult_to_widen (stmt)
&& convert_mult_to_fma (stmt))
{
gsi_remove (&gsi, true);
release_defs (stmt);
continue;
}
break;
case PLUS_EXPR:
case MINUS_EXPR:
convert_plusminus_to_widen (&gsi, stmt, code);
break;
default:;
}
}
gsi_next (&gsi);
}
}
return 0;
}
static bool
gate_optimize_widening_mul (void)
{
return flag_expensive_optimizations && optimize;
}
struct gimple_opt_pass pass_optimize_widening_mul =
{
{
GIMPLE_PASS,
"widening_mul", /* name */
gate_optimize_widening_mul, /* gate */
execute_optimize_widening_mul, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_ssa
| TODO_verify_stmts
| TODO_dump_func
| TODO_update_ssa /* todo_flags_finish */
}
};
|