summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-operands.c
blob: a3b44e22ea3b47dcf3fb7a97d37d10908d637bd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
/* SSA operands management for trees.
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "function.h"
#include "diagnostic.h"
#include "errors.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "ggc.h"
#include "timevar.h"

#include "langhooks.h"

/* This file contains the code required to manage the operands cache of the 
   SSA optimizer.  For every stmt, we maintain an operand cache in the stmt 
   annotation.  This cache contains operands that will be of interest to 
   optimizers and other passes wishing to manipulate the IL. 

   The operand type are broken up into REAL and VIRTUAL operands.  The real 
   operands are represented as pointers into the stmt's operand tree.  Thus 
   any manipulation of the real operands will be reflected in the actual tree.
   Virtual operands are represented solely in the cache, although the base 
   variable for the SSA_NAME may, or may not occur in the stmt's tree.  
   Manipulation of the virtual operands will not be reflected in the stmt tree.

   The routines in this file are concerned with creating this operand cache 
   from a stmt tree.

   get_stmt_operands() in the primary entry point. 

   The operand tree is the parsed by the various get_* routines which look 
   through the stmt tree for the occurrence of operands which may be of 
   interest, and calls are made to the append_* routines whenever one is 
   found.  There are 5 of these routines, each representing one of the 
   5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and 
   Virtual Must Defs.

   The append_* routines check for duplication, and simply keep a list of 
   unique objects for each operand type in the build_* extendable vectors.

   Once the stmt tree is completely parsed, the finalize_ssa_operands() 
   routine is called, which proceeds to perform the finalization routine 
   on each of the 5 operand vectors which have been built up.

   If the stmt had a previous operand cache, the finalization routines 
   attempt to match up the new operands with the old ones.  If its a perfect 
   match, the old vector is simply reused.  If it isn't a perfect match, then 
   a new vector is created and the new operands are placed there.  For 
   virtual operands, if the previous cache had SSA_NAME version of a 
   variable, and that same variable occurs in the same operands cache, then 
   the new cache vector will also get the same SSA_NAME.

  i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand 
  vector for VUSE, then the new vector will also be modified such that 
  it contains 'a_5' rather than 'a'.

*/


/* Flags to describe operand properties in get_stmt_operands and helpers.  */

/* By default, operands are loaded.  */
#define opf_none	0

/* Operand is the target of an assignment expression or a 
   call-clobbered variable  */
#define opf_is_def 	(1 << 0)

/* Operand is the target of an assignment expression.  */
#define opf_kill_def 	(1 << 1)

/* No virtual operands should be created in the expression.  This is used
   when traversing ADDR_EXPR nodes which have different semantics than
   other expressions.  Inside an ADDR_EXPR node, the only operands that we
   need to consider are indices into arrays.  For instance, &a.b[i] should
   generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
   VUSE for 'b'.  */
#define opf_no_vops 	(1 << 2)

/* Array for building all the def operands.  */
static GTY (()) varray_type build_defs;

/* Array for building all the use operands.  */
static GTY (()) varray_type build_uses;

/* Array for building all the v_may_def operands.  */
static GTY (()) varray_type build_v_may_defs;

/* Array for building all the vuse operands.  */
static GTY (()) varray_type build_vuses;

/* Array for building all the v_must_def operands.  */
static GTY (()) varray_type build_v_must_defs;

/* True if the operands for call clobbered vars are cached and valid.  */
bool ssa_call_clobbered_cache_valid;
bool ssa_ro_call_cache_valid;

/* These arrays are the cached operand vectors for call clobbered calls.  */
static GTY (()) varray_type clobbered_v_may_defs;
static GTY (()) varray_type clobbered_vuses;
static GTY (()) varray_type ro_call_vuses;
static bool clobbered_aliased_loads;
static bool clobbered_aliased_stores;
static bool ro_call_aliased_loads;

def_operand_p NULL_DEF_OPERAND_P = { NULL };
use_operand_p NULL_USE_OPERAND_P = { NULL };

static void note_addressable (tree, stmt_ann_t);
static void get_expr_operands (tree, tree *, int);
static void get_asm_expr_operands (tree);
static void get_indirect_ref_operands (tree, tree, int);
static void get_call_expr_operands (tree, tree);
static inline void append_def (tree *);
static inline void append_use (tree *);
static void append_v_may_def (tree);
static void append_v_must_def (tree);
static void add_call_clobber_ops (tree);
static void add_call_read_ops (tree);
static void add_stmt_operand (tree *, stmt_ann_t, int);

/* Return a vector of contiguous memory for NUM def operands.  */

static inline def_optype
allocate_def_optype (unsigned num)
{
  def_optype def_ops;
  unsigned size;
  size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
  def_ops =  ggc_alloc (size);
  def_ops->num_defs = num;
  return def_ops;
}


/* Return a vector of contiguous memory for NUM use operands.  */

static inline use_optype
allocate_use_optype (unsigned num)
{
  use_optype use_ops;
  unsigned size;
  size = sizeof (struct use_optype_d) + sizeof (tree *) * (num - 1);
  use_ops =  ggc_alloc (size);
  use_ops->num_uses = num;
  return use_ops;
}


/* Return a vector of contiguous memory for NUM v_may_def operands.  */

static inline v_may_def_optype
allocate_v_may_def_optype (unsigned num)
{
  v_may_def_optype v_may_def_ops;
  unsigned size;
  size = sizeof (struct v_may_def_optype_d) 
	   + sizeof (v_def_use_operand_type_t) * (num - 1);
  v_may_def_ops =  ggc_alloc (size);
  v_may_def_ops->num_v_may_defs = num;
  return v_may_def_ops;
}


/* Return a vector of contiguous memory for NUM v_use operands.  */

static inline vuse_optype
allocate_vuse_optype (unsigned num)
{
  vuse_optype vuse_ops;
  unsigned size;
  size = sizeof (struct vuse_optype_d) + sizeof (tree) * (num - 1);
  vuse_ops =  ggc_alloc (size);
  vuse_ops->num_vuses = num;
  return vuse_ops;
}


/* Return a vector of contiguous memory for NUM v_must_def operands.  */

static inline v_must_def_optype
allocate_v_must_def_optype (unsigned num)
{
  v_must_def_optype v_must_def_ops;
  unsigned size;
  size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1);
  v_must_def_ops =  ggc_alloc (size);
  v_must_def_ops->num_v_must_defs = num;
  return v_must_def_ops;
}


/* Free memory for USES.  */

static inline void
free_uses (use_optype *uses)
{
  if (*uses)
    {
      ggc_free (*uses);
      *uses = NULL;
    }
}


/* Free memory for DEFS.  */

static inline void
free_defs (def_optype *defs)
{
  if (*defs)
    {
      ggc_free (*defs);
      *defs = NULL;
    }
}


/* Free memory for VUSES.  */

static inline void
free_vuses (vuse_optype *vuses)
{
  if (*vuses)
    {
      ggc_free (*vuses);
      *vuses = NULL;
    }
}


/* Free memory for V_MAY_DEFS.  */

static inline void
free_v_may_defs (v_may_def_optype *v_may_defs)
{
  if (*v_may_defs)
    {
      ggc_free (*v_may_defs);
      *v_may_defs = NULL;
    }
}


/* Free memory for V_MUST_DEFS.  */

static inline void
free_v_must_defs (v_must_def_optype *v_must_defs)
{
  if (*v_must_defs)
    {
      ggc_free (*v_must_defs);
      *v_must_defs = NULL;
    }
}


/* Initialize the operand cache routines.  */

void
init_ssa_operands (void)
{
  VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
  VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
  VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
  VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
  VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
}


/* Dispose of anything required by the operand routines.  */

void
fini_ssa_operands (void)
{
  ggc_free (build_defs);
  ggc_free (build_uses);
  ggc_free (build_v_may_defs);
  ggc_free (build_vuses);
  ggc_free (build_v_must_defs);
  build_defs = NULL;
  build_uses = NULL;
  build_v_may_defs = NULL;
  build_vuses = NULL;
  build_v_must_defs = NULL;
  if (clobbered_v_may_defs)
    {
      ggc_free (clobbered_v_may_defs);
      ggc_free (clobbered_vuses);
      clobbered_v_may_defs = NULL;
      clobbered_vuses = NULL;
    }
  if (ro_call_vuses)
    {
      ggc_free (ro_call_vuses);
      ro_call_vuses = NULL;
    }
}


/* All the finalize_ssa_* routines do the work required to turn the build_
   VARRAY into an operand_vector of the appropriate type.  The original vector,
   if any, is passed in for comparison and virtual SSA_NAME reuse.  If the
   old vector is reused, the pointer passed in is set to NULL so that 
   the memory is not freed when the old operands are freed.  */

/* Return a new def operand vector for STMT, comparing to OLD_OPS_P.  */

static def_optype
finalize_ssa_defs (def_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
{
  unsigned num, x;
  def_optype def_ops, old_ops;
  bool build_diff;

  num = VARRAY_ACTIVE_SIZE (build_defs);
  if (num == 0)
    return NULL;

  /* There should only be a single real definition per assignment.  */
  gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);

  old_ops = *old_ops_p;

  /* Compare old vector and new array.  */
  build_diff = true;
  if (old_ops && old_ops->num_defs == num)
    {
      build_diff = false;
      for (x = 0; x < num; x++)
        if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
	  {
	    build_diff = true;
	    break;
	  }
    }

  if (!build_diff)
    {
      def_ops = old_ops;
      *old_ops_p = NULL;
    }
  else
    {
      def_ops = allocate_def_optype (num);
      for (x = 0; x < num ; x++)
	def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
    }

  VARRAY_POP_ALL (build_defs);

  return def_ops;
}


/* Return a new use operand vector for STMT, comparing to OLD_OPS_P.  */

static use_optype
finalize_ssa_uses (use_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
{
  unsigned num, x;
  use_optype use_ops, old_ops;
  bool build_diff;

  num = VARRAY_ACTIVE_SIZE (build_uses);
  if (num == 0)
    return NULL;

#ifdef ENABLE_CHECKING
  {
    unsigned x;
    /* If the pointer to the operand is the statement itself, something is
       wrong.  It means that we are pointing to a local variable (the 
       initial call to get_stmt_operands does not pass a pointer to a 
       statement).  */
    for (x = 0; x < num; x++)
      gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
  }
#endif
  old_ops = *old_ops_p;

  /* Check if the old vector and the new array are the same.  */
  build_diff = true;
  if (old_ops && old_ops->num_uses == num)
    {
      build_diff = false;
      for (x = 0; x < num; x++)
        if (old_ops->uses[x].use != VARRAY_TREE_PTR (build_uses, x))
	  {
	    build_diff = true;
	    break;
	  }
    }

  if (!build_diff)
    {
      use_ops = old_ops;
      *old_ops_p = NULL;
    }
  else
    {
      use_ops = allocate_use_optype (num);
      for (x = 0; x < num ; x++)
	use_ops->uses[x].use = VARRAY_TREE_PTR (build_uses, x);
    }
  VARRAY_POP_ALL (build_uses);

  return use_ops;
}


/* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P.  */

static v_may_def_optype
finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p)
{
  unsigned num, x, i, old_num;
  v_may_def_optype v_may_def_ops, old_ops;
  tree result, var;
  bool build_diff;

  num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
  if (num == 0)
    return NULL;

  old_ops = *old_ops_p;

  /* Check if the old vector and the new array are the same.  */
  build_diff = true;
  if (old_ops && old_ops->num_v_may_defs == num)
    {
      old_num = num;
      build_diff = false;
      for (x = 0; x < num; x++)
        {
	  var = old_ops->v_may_defs[x].def;
	  if (TREE_CODE (var) == SSA_NAME)
	    var = SSA_NAME_VAR (var);
	  if (var != VARRAY_TREE (build_v_may_defs, x))
	    {
	      build_diff = true;
	      break;
	    }
	}
    }
  else
    old_num = (old_ops ? old_ops->num_v_may_defs : 0);

  if (!build_diff)
    {
      v_may_def_ops = old_ops;
      *old_ops_p = NULL;
    }
  else
    {
      v_may_def_ops = allocate_v_may_def_optype (num);
      for (x = 0; x < num; x++)
        {
	  var = VARRAY_TREE (build_v_may_defs, x);
	  /* Look for VAR in the old operands vector.  */
	  for (i = 0; i < old_num; i++)
	    {
	      result = old_ops->v_may_defs[i].def;
	      if (TREE_CODE (result) == SSA_NAME)
		result = SSA_NAME_VAR (result);
	      if (result == var)
	        {
		  v_may_def_ops->v_may_defs[x] = old_ops->v_may_defs[i];
		  break;
		}
	    }
	  if (i == old_num)
	    {
	      v_may_def_ops->v_may_defs[x].def = var;
	      v_may_def_ops->v_may_defs[x].use = var;
	    }
	}
    }

  /* Empty the V_MAY_DEF build vector after VUSES have been processed.  */

  return v_may_def_ops;
}


/* Clear the in_list bits and empty the build array for v_may_defs.  */

static inline void
cleanup_v_may_defs (void)
{
  unsigned x, num;
  num = VARRAY_ACTIVE_SIZE (build_v_may_defs);

  for (x = 0; x < num; x++)
    {
      tree t = VARRAY_TREE (build_v_may_defs, x);
      var_ann_t ann = var_ann (t);
      ann->in_v_may_def_list = 0;
    }
  VARRAY_POP_ALL (build_v_may_defs);
}

/* Return a new vuse operand vector, comparing to OLD_OPS_P.  */

static vuse_optype
finalize_ssa_vuses (vuse_optype *old_ops_p)
{
  unsigned num, x, i, num_v_may_defs, old_num;
  vuse_optype vuse_ops, old_ops;
  bool build_diff;

  num = VARRAY_ACTIVE_SIZE (build_vuses);
  if (num == 0)
    {
      cleanup_v_may_defs ();
      return NULL;
    }

  /* Remove superfluous VUSE operands.  If the statement already has a
   V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
   needed because V_MAY_DEFs imply a VUSE of the variable.  For instance,
   suppose that variable 'a' is aliased:

	      # VUSE <a_2>
	      # a_3 = V_MAY_DEF <a_2>
	      a = a + 1;

  The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
  operation.  */

  num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);

  if (num_v_may_defs > 0)
    {
      size_t i;
      tree vuse;
      for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
	{
	  vuse = VARRAY_TREE (build_vuses, i);
	  if (TREE_CODE (vuse) != SSA_NAME)
	    {
	      var_ann_t ann = var_ann (vuse);
	      ann->in_vuse_list = 0;
	      if (ann->in_v_may_def_list)
	        {
		  /* If we found a useless VUSE operand, remove it from the
		     operand array by replacing it with the last active element
		     in the operand array (unless the useless VUSE was the
		     last operand, in which case we simply remove it.  */
		  if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
		    {
		      VARRAY_TREE (build_vuses, i)
			= VARRAY_TREE (build_vuses,
				       VARRAY_ACTIVE_SIZE (build_vuses) - 1);
		    }
		  VARRAY_POP (build_vuses);

		  /* We want to rescan the element at this index, unless
		     this was the last element, in which case the loop
		     terminates.  */
		  i--;
		}
	    }
	}
    }
  else
    /* Clear out the in_list bits.  */
    for (x = 0; x < num; x++)
      {
	tree t = VARRAY_TREE (build_vuses, x);
	if (TREE_CODE (t) != SSA_NAME)
	  {
	    var_ann_t ann = var_ann (t);
	    ann->in_vuse_list = 0;
	  }
      }


  num = VARRAY_ACTIVE_SIZE (build_vuses);
  /* We could have reduced the size to zero now, however.  */
  if (num == 0)
    {
      cleanup_v_may_defs ();
      return NULL;
    }

  old_ops = *old_ops_p;

  /* Determine whether vuses is the same as the old vector.  */
  build_diff = true;
  if (old_ops && old_ops->num_vuses == num)
    {
      old_num = num;
      build_diff = false;
      for (x = 0; x < num ; x++)
        {
	  tree v;
	  v = old_ops->vuses[x];
	  if (TREE_CODE (v) == SSA_NAME)
	    v = SSA_NAME_VAR (v);
	  if (v != VARRAY_TREE (build_vuses, x))
	    {
	      build_diff = true;
	      break;
	    }
	}
    }
  else
    old_num = (old_ops ? old_ops->num_vuses : 0);

  if (!build_diff)
    {
      vuse_ops = old_ops;
      *old_ops_p = NULL;
    }
  else
    {
      vuse_ops = allocate_vuse_optype (num);
      for (x = 0; x < num; x++)
        {
	  tree result, var = VARRAY_TREE (build_vuses, x);
	  /* Look for VAR in the old vector, and use that SSA_NAME.  */
	  for (i = 0; i < old_num; i++)
	    {
	      result = old_ops->vuses[i];
	      if (TREE_CODE (result) == SSA_NAME)
		result = SSA_NAME_VAR (result);
	      if (result == var)
	        {
		  vuse_ops->vuses[x] = old_ops->vuses[i];
		  break;
		}
	    }
	  if (i == old_num)
	    vuse_ops->vuses[x] = var;
	}
    }

  /* The v_may_def build vector wasn't freed because we needed it here.
     Free it now with the vuses build vector.  */
  VARRAY_POP_ALL (build_vuses);
  cleanup_v_may_defs ();

  return vuse_ops;
}

/* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P.  */

static v_must_def_optype
finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p, 
			  tree stmt ATTRIBUTE_UNUSED)
{
  unsigned num, x, i, old_num = 0;
  v_must_def_optype v_must_def_ops, old_ops;
  bool build_diff;

  num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
  if (num == 0)
    return NULL;

  /* In the presence of subvars, there may be more than one V_MUST_DEF per
     statement (one for each subvar).  It is a bit expensive to verify that
     all must-defs in a statement belong to subvars if there is more than one
     MUST-def, so we don't do it.  Suffice to say, if you reach here without
     having subvars, and have num >1, you have hit a bug. */
     

  old_ops = *old_ops_p;

  /* Check if the old vector and the new array are the same.  */
  build_diff = true;
  if (old_ops && old_ops->num_v_must_defs == num)
    {
      old_num = num;
      build_diff = false;
      for (x = 0; x < num; x++)
        {
	  tree var = old_ops->v_must_defs[x].def;
	  if (TREE_CODE (var) == SSA_NAME)
	    var = SSA_NAME_VAR (var);
	  if (var != VARRAY_TREE (build_v_must_defs, x))
	    {
	      build_diff = true;
	      break;
	    }
	}
    }
  else
    old_num = (old_ops ? old_ops->num_v_must_defs : 0);

  if (!build_diff)
    {
      v_must_def_ops = old_ops;
      *old_ops_p = NULL;
    }
  else
    {
      v_must_def_ops = allocate_v_must_def_optype (num);
      for (x = 0; x < num ; x++)
	{
	  tree result, var = VARRAY_TREE (build_v_must_defs, x);
	  /* Look for VAR in the original vector.  */
	  for (i = 0; i < old_num; i++)
	    {
	      result = old_ops->v_must_defs[i].def;
	      if (TREE_CODE (result) == SSA_NAME)
		result = SSA_NAME_VAR (result);
	      if (result == var)
	        {
		  v_must_def_ops->v_must_defs[x].def = old_ops->v_must_defs[i].def;
		  v_must_def_ops->v_must_defs[x].use = old_ops->v_must_defs[i].use;
		  break;
		}
	    }
	  if (i == old_num)
	    {
	      v_must_def_ops->v_must_defs[x].def = var;
	      v_must_def_ops->v_must_defs[x].use = var;
	    }
	}
    }
  VARRAY_POP_ALL (build_v_must_defs);

  return v_must_def_ops;
}


/* Finalize all the build vectors, fill the new ones into INFO.  */

static inline void
finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops, 
			    stmt_operands_p new_ops)
{
  new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
  new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
  new_ops->v_must_def_ops 
    = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
  new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops));
  new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops));
}


/* Start the process of building up operands vectors in INFO.  */

static inline void
start_ssa_stmt_operands (void)
{
  gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
  gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
  gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
  gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
  gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
}


/* Add DEF_P to the list of pointers to operands.  */

static inline void
append_def (tree *def_p)
{
  VARRAY_PUSH_TREE_PTR (build_defs, def_p);
}


/* Add USE_P to the list of pointers to operands.  */

static inline void
append_use (tree *use_p)
{
  VARRAY_PUSH_TREE_PTR (build_uses, use_p);
}


/* Add a new virtual may def for variable VAR to the build array.  */

static inline void
append_v_may_def (tree var)
{
  var_ann_t ann = get_var_ann (var);

  /* Don't allow duplicate entries.  */
  if (ann->in_v_may_def_list)
    return;
  ann->in_v_may_def_list = 1;

  VARRAY_PUSH_TREE (build_v_may_defs, var);
}


/* Add VAR to the list of virtual uses.  */

static inline void
append_vuse (tree var)
{

  /* Don't allow duplicate entries.  */
  if (TREE_CODE (var) != SSA_NAME)
    {
      var_ann_t ann = get_var_ann (var);

      if (ann->in_vuse_list || ann->in_v_may_def_list)
        return;
      ann->in_vuse_list = 1;
    }

  VARRAY_PUSH_TREE (build_vuses, var);
}


/* Add VAR to the list of virtual must definitions for INFO.  */

static inline void
append_v_must_def (tree var)
{
  unsigned i;

  /* Don't allow duplicate entries.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
    if (var == VARRAY_TREE (build_v_must_defs, i))
      return;

  VARRAY_PUSH_TREE (build_v_must_defs, var);
}

/* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
   original operands, and if ANN is non-null, appropriate stmt flags are set
   in the stmt's annotation.  Note that some fields in old_ops may 
   change to NULL, although none of the memory they originally pointed to 
   will be destroyed.  It is appropriate to call free_stmt_operands() on 
   the value returned in old_ops.

   The rationale for this: Certain optimizations wish to examine the difference
   between new_ops and old_ops after processing.  If a set of operands don't
   change, new_ops will simply assume the pointer in old_ops, and the old_ops
   pointer will be set to NULL, indicating no memory needs to be cleared.  
   Usage might appear something like:

       old_ops_copy = old_ops = stmt_ann(stmt)->operands;
       build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
          <* compare old_ops_copy and new_ops *>
       free_ssa_operands (old_ops);					*/

static void
build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops, 
		    stmt_operands_p new_ops)
{
  enum tree_code code;
  tree_ann_t saved_ann = stmt->common.ann;
  
  /* Replace stmt's annotation with the one passed in for the duration
     of the operand building process.  This allows "fake" stmts to be built
     and not be included in other data structures which can be built here.  */
  stmt->common.ann = (tree_ann_t) ann;
  
  /* Initially assume that the statement has no volatile operands, nor
     makes aliased loads or stores.  */
  if (ann)
    {
      ann->has_volatile_ops = false;
      ann->makes_aliased_stores = false;
      ann->makes_aliased_loads = false;
    }

  start_ssa_stmt_operands ();

  code = TREE_CODE (stmt);
  switch (code)
    {
    case MODIFY_EXPR:
      /* First get operands from the RHS.  For the LHS, we use a V_MAY_DEF if
	 either only part of LHS is modified or if the RHS might throw,
	 otherwise, use V_MUST_DEF.

	 ??? If it might throw, we should represent somehow that it is killed
	 on the fallthrough path.  */
      {
	tree lhs = TREE_OPERAND (stmt, 0);
	int lhs_flags = opf_is_def;

	get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);

	/* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
	   or not the entire LHS is modified; that depends on what's
	   inside the VIEW_CONVERT_EXPR.  */
	if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
	  lhs = TREE_OPERAND (lhs, 0);

	if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF
	    && TREE_CODE (lhs) != BIT_FIELD_REF
	    && TREE_CODE (lhs) != REALPART_EXPR
	    && TREE_CODE (lhs) != IMAGPART_EXPR)
	  lhs_flags |= opf_kill_def;

        get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
      }
      break;

    case COND_EXPR:
      get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
      break;

    case SWITCH_EXPR:
      get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
      break;

    case ASM_EXPR:
      get_asm_expr_operands (stmt);
      break;

    case RETURN_EXPR:
      get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
      break;

    case GOTO_EXPR:
      get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
      break;

    case LABEL_EXPR:
      get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
      break;

      /* These nodes contain no variable references.  */
    case BIND_EXPR:
    case CASE_LABEL_EXPR:
    case TRY_CATCH_EXPR:
    case TRY_FINALLY_EXPR:
    case EH_FILTER_EXPR:
    case CATCH_EXPR:
    case RESX_EXPR:
      break;

    default:
      /* Notice that if get_expr_operands tries to use &STMT as the operand
	 pointer (which may only happen for USE operands), we will abort in
	 append_use.  This default will handle statements like empty
	 statements, or CALL_EXPRs that may appear on the RHS of a statement
	 or as statements themselves.  */
      get_expr_operands (stmt, &stmt, opf_none);
      break;
    }

  finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
  stmt->common.ann = saved_ann;
}


/* Free any operands vectors in OPS.  */

static void 
free_ssa_operands (stmt_operands_p ops)
{
  if (ops->def_ops)
    free_defs (&(ops->def_ops));
  if (ops->use_ops)
    free_uses (&(ops->use_ops));
  if (ops->vuse_ops)
    free_vuses (&(ops->vuse_ops));
  if (ops->v_may_def_ops)
    free_v_may_defs (&(ops->v_may_def_ops));
  if (ops->v_must_def_ops)
    free_v_must_defs (&(ops->v_must_def_ops));
}


/* Get the operands of statement STMT.  Note that repeated calls to
   get_stmt_operands for the same statement will do nothing until the
   statement is marked modified by a call to modify_stmt().  */

void
get_stmt_operands (tree stmt)
{
  stmt_ann_t ann;
  stmt_operands_t old_operands;

  /* The optimizers cannot handle statements that are nothing but a
     _DECL.  This indicates a bug in the gimplifier.  */
  gcc_assert (!SSA_VAR_P (stmt));

  ann = get_stmt_ann (stmt);

  /* If the statement has not been modified, the operands are still valid.  */
  if (!ann->modified)
    return;

  timevar_push (TV_TREE_OPS);

  old_operands = ann->operands;
  memset (&(ann->operands), 0, sizeof (stmt_operands_t));

  build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
  free_ssa_operands (&old_operands);

  /* Clear the modified bit for STMT.  Subsequent calls to
     get_stmt_operands for this statement will do nothing until the
     statement is marked modified by a call to modify_stmt().  */
  ann->modified = 0;

  timevar_pop (TV_TREE_OPS);
}


/* Return true if OFFSET and SIZE define a range that overlaps with some
   portion of the range of SV, a subvar.  If there was an exact overlap,
   *EXACT will be set to true upon return. */

static bool
overlap_subvar (HOST_WIDE_INT offset, HOST_WIDE_INT size,
		subvar_t sv,  bool *exact)
{
  /* There are three possible cases of overlap.
     1. We can have an exact overlap, like so:   
     |offset, offset + size             |
     |sv->offset, sv->offset + sv->size |
     
     2. We can have offset starting after sv->offset, like so:
     
           |offset, offset + size              |
     |sv->offset, sv->offset + sv->size  |

     3. We can have offset starting before sv->offset, like so:
     
     |offset, offset + size    |
       |sv->offset, sv->offset + sv->size|
  */

  if (exact)
    *exact = false;
  if (offset == sv->offset && size == sv->size)
    {
      if (exact)
	*exact = true;
      return true;
    }
  else if (offset >= sv->offset && offset < (sv->offset + sv->size))
    {
      return true;
    }
  else if (offset < sv->offset && (offset + size > sv->offset))
    {
      return true;
    }
  return false;

}
/* Recursively scan the expression pointed by EXPR_P in statement referred to
   by INFO.  FLAGS is one of the OPF_* constants modifying how to interpret the
   operands found.  */

static void
get_expr_operands (tree stmt, tree *expr_p, int flags)
{
  enum tree_code code;
  enum tree_code_class class;
  tree expr = *expr_p;
  stmt_ann_t s_ann = stmt_ann (stmt);

  if (expr == NULL)
    return;

  code = TREE_CODE (expr);
  class = TREE_CODE_CLASS (code);

  switch (code)
    {
    case ADDR_EXPR:
      /* We could have the address of a component, array member,
	 etc which has interesting variable references.  */
      /* Taking the address of a variable does not represent a
	 reference to it, but the fact that the stmt takes its address will be
	 of interest to some passes (e.g. alias resolution).  */
      add_stmt_operand (expr_p, s_ann, 0);

      /* If the address is invariant, there may be no interesting variable
	 references inside.  */
      if (is_gimple_min_invariant (expr))
	return;

      /* There should be no VUSEs created, since the referenced objects are
	 not really accessed.  The only operands that we should find here
	 are ARRAY_REF indices which will always be real operands (GIMPLE
	 does not allow non-registers as array indices).  */
      flags |= opf_no_vops;

      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case SSA_NAME:
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case CONST_DECL:
      {
	subvar_t svars;
	
	/* Add the subvars for a variable if it has subvars, to DEFS or USES.
	   Otherwise, add the variable itself.  
	   Whether it goes to USES or DEFS depends on the operand flags.  */
	if (var_can_have_subvars (expr)
	    && (svars = get_subvars_for_var (expr)))
	  {
	    subvar_t sv;
	    for (sv = svars; sv; sv = sv->next)
	      add_stmt_operand (&sv->var, s_ann, flags);
	  }
	else
	  {
	    add_stmt_operand (expr_p, s_ann, flags);
	  }
	return;
      }
    case MISALIGNED_INDIRECT_REF:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
      /* fall through */

    case ALIGN_INDIRECT_REF:
    case INDIRECT_REF:
      get_indirect_ref_operands (stmt, expr, flags);
      return;

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      /* Treat array references as references to the virtual variable
	 representing the array.  The virtual variable for an ARRAY_REF
	 is the VAR_DECL for the array.  */

      /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
	 according to the value of IS_DEF.  Recurse if the LHS of the
	 ARRAY_REF node is not a regular variable.  */
      if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
	add_stmt_operand (expr_p, s_ann, flags);
      else
	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);

      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
      return;

    case COMPONENT_REF:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      {
	tree ref;
	HOST_WIDE_INT offset, size;
 	/* This component ref becomes an access to all of the subvariables
	   it can touch,  if we can determine that, but *NOT* the real one.
	   If we can't determine which fields we could touch, the recursion
	   will eventually get to a variable and add *all* of its subvars, or
	   whatever is the minimum correct subset.  */

	ref = okay_component_ref_for_subvars (expr, &offset, &size);
	if (ref)
	  {	  
	    subvar_t svars = get_subvars_for_var (ref);
	    subvar_t sv;
	    for (sv = svars; sv; sv = sv->next)
	      {
		bool exact;		
		if (overlap_subvar (offset, size, sv, &exact))
		  {
		    if (exact)
		      flags &= ~opf_kill_def;
		    add_stmt_operand (&sv->var, s_ann, flags);
		  }
	      }
	  }
	else
	  get_expr_operands (stmt, &TREE_OPERAND (expr, 0), 
			     flags & ~opf_kill_def);
	
	if (code == COMPONENT_REF)
	  get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
	return;
      }
    case WITH_SIZE_EXPR:
      /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
	 and an rvalue reference to its second argument.  */
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case CALL_EXPR:
      get_call_expr_operands (stmt, expr);
      return;

    case COND_EXPR:
    case VEC_COND_EXPR:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
      return;

    case MODIFY_EXPR:
      {
	int subflags;
	tree op;

	get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);

	op = TREE_OPERAND (expr, 0);
	if (TREE_CODE (op) == WITH_SIZE_EXPR)
	  op = TREE_OPERAND (expr, 0);
	if (TREE_CODE (op) == ARRAY_REF
	    || TREE_CODE (op) == ARRAY_RANGE_REF
	    || TREE_CODE (op) == REALPART_EXPR
	    || TREE_CODE (op) == IMAGPART_EXPR)
	  subflags = opf_is_def;
	else
	  subflags = opf_is_def | opf_kill_def;

	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
	return;
      }

    case CONSTRUCTOR:
      {
	/* General aggregate CONSTRUCTORs have been decomposed, but they
	   are still in use as the COMPLEX_EXPR equivalent for vectors.  */

	tree t;
	for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
	  get_expr_operands (stmt, &TREE_VALUE (t), opf_none);

	return;
      }

    case TRUTH_NOT_EXPR:
    case BIT_FIELD_REF:
    case VIEW_CONVERT_EXPR:
    do_unary:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case COMPOUND_EXPR:
    case OBJ_TYPE_REF:
    do_binary:
      {
	tree op0 = TREE_OPERAND (expr, 0);
	tree op1 = TREE_OPERAND (expr, 1);

	/* If it would be profitable to swap the operands, then do so to
	   canonicalize the statement, enabling better optimization.

	   By placing canonicalization of such expressions here we
	   transparently keep statements in canonical form, even
	   when the statement is modified.  */
	if (tree_swap_operands_p (op0, op1, false))
	  {
	    /* For relationals we need to swap the operands
	       and change the code.  */
	    if (code == LT_EXPR
		|| code == GT_EXPR
		|| code == LE_EXPR
		|| code == GE_EXPR)
	      {
		TREE_SET_CODE (expr, swap_tree_comparison (code));
		TREE_OPERAND (expr, 0) = op1;
		TREE_OPERAND (expr, 1) = op0;
	      }
	  
	    /* For a commutative operator we can just swap the operands.  */
	    else if (commutative_tree_code (code))
	      {
		TREE_OPERAND (expr, 0) = op1;
		TREE_OPERAND (expr, 1) = op0;
	      }
	  }

	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
	get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
	return;
      }

    case REALIGN_LOAD_EXPR:
      {
	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
        get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
        get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
        return;
      }

    case BLOCK:
    case FUNCTION_DECL:
    case EXC_PTR_EXPR:
    case FILTER_EXPR:
    case LABEL_DECL:
      /* Expressions that make no memory references.  */
      return;

    default:
      if (class == tcc_unary)
	goto do_unary;
      if (class == tcc_binary || class == tcc_comparison)
	goto do_binary;
      if (class == tcc_constant || class == tcc_type)
	return;
    }

  /* If we get here, something has gone wrong.  */
#ifdef ENABLE_CHECKING
  fprintf (stderr, "unhandled expression in get_expr_operands():\n");
  debug_tree (expr);
  fputs ("\n", stderr);
  internal_error ("internal error");
#endif
  gcc_unreachable ();
}


/* Scan operands in the ASM_EXPR stmt referred to in INFO.  */

static void
get_asm_expr_operands (tree stmt)
{
  stmt_ann_t s_ann = stmt_ann (stmt);
  int noutputs = list_length (ASM_OUTPUTS (stmt));
  const char **oconstraints
    = (const char **) alloca ((noutputs) * sizeof (const char *));
  int i;
  tree link;
  const char *constraint;
  bool allows_mem, allows_reg, is_inout;

  for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
    {
      oconstraints[i] = constraint
	= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
      parse_output_constraint (&constraint, i, 0, 0,
	  &allows_mem, &allows_reg, &is_inout);

      /* This should have been split in gimplify_asm_expr.  */
      gcc_assert (!allows_reg || !is_inout);

      /* Memory operands are addressable.  Note that STMT needs the
	 address of this operand.  */
      if (!allows_reg && allows_mem)
	{
	  tree t = get_base_address (TREE_VALUE (link));
	  if (t && DECL_P (t))
	    note_addressable (t, s_ann);
	}

      get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
    }

  for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
    {
      constraint
	= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
      parse_input_constraint (&constraint, 0, 0, noutputs, 0,
	  oconstraints, &allows_mem, &allows_reg);

      /* Memory operands are addressable.  Note that STMT needs the
	 address of this operand.  */
      if (!allows_reg && allows_mem)
	{
	  tree t = get_base_address (TREE_VALUE (link));
	  if (t && DECL_P (t))
	    note_addressable (t, s_ann);
	}

      get_expr_operands (stmt, &TREE_VALUE (link), 0);
    }


  /* Clobber memory for asm ("" : : : "memory");  */
  for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
    if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
      {
	unsigned i;
	bitmap_iterator bi;

	/* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
	   decided to group them).  */
	if (global_var)
	  add_stmt_operand (&global_var, s_ann, opf_is_def);
	else
	  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
	      {
		tree var = referenced_var (i);
		add_stmt_operand (&var, s_ann, opf_is_def);
	      }

	/* Now clobber all addressables.  */
	EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
	    {
	      tree var = referenced_var (i);
	      add_stmt_operand (&var, s_ann, opf_is_def);
	    }

	break;
      }
}

/* A subroutine of get_expr_operands to handle INDIRECT_REF,
   ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF.  */

static void
get_indirect_ref_operands (tree stmt, tree expr, int flags)
{
  tree *pptr = &TREE_OPERAND (expr, 0);
  tree ptr = *pptr;
  stmt_ann_t s_ann = stmt_ann (stmt);

  /* Stores into INDIRECT_REF operands are never killing definitions.  */
  flags &= ~opf_kill_def;

  if (SSA_VAR_P (ptr))
    {
      struct ptr_info_def *pi = NULL;

      /* If PTR has flow-sensitive points-to information, use it.  */
      if (TREE_CODE (ptr) == SSA_NAME
	  && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
	  && pi->name_mem_tag)
	{
	  /* PTR has its own memory tag.  Use it.  */
	  add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
	}
      else
	{
	  /* If PTR is not an SSA_NAME or it doesn't have a name
	     tag, use its type memory tag.  */
	  var_ann_t v_ann;

	  /* If we are emitting debugging dumps, display a warning if
	     PTR is an SSA_NAME with no flow-sensitive alias
	     information.  That means that we may need to compute
	     aliasing again.  */
	  if (dump_file
	      && TREE_CODE (ptr) == SSA_NAME
	      && pi == NULL)
	    {
	      fprintf (dump_file,
		  "NOTE: no flow-sensitive alias info for ");
	      print_generic_expr (dump_file, ptr, dump_flags);
	      fprintf (dump_file, " in ");
	      print_generic_stmt (dump_file, stmt, dump_flags);
	    }

	  if (TREE_CODE (ptr) == SSA_NAME)
	    ptr = SSA_NAME_VAR (ptr);
	  v_ann = var_ann (ptr);
	  if (v_ann->type_mem_tag)
	    add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
	}
    }

  /* If a constant is used as a pointer, we can't generate a real
     operand for it but we mark the statement volatile to prevent
     optimizations from messing things up.  */
  else if (TREE_CODE (ptr) == INTEGER_CST)
    {
      if (s_ann)
	s_ann->has_volatile_ops = true;
      return;
    }

  /* Everything else *should* have been folded elsewhere, but users
     are smarter than we in finding ways to write invalid code.  We
     cannot just abort here.  If we were absolutely certain that we
     do handle all valid cases, then we could just do nothing here.
     That seems optimistic, so attempt to do something logical... */
  else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
	   && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
	   && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
    {
      /* Make sure we know the object is addressable.  */
      pptr = &TREE_OPERAND (ptr, 0);
      add_stmt_operand (pptr, s_ann, 0);

      /* Mark the object itself with a VUSE.  */
      pptr = &TREE_OPERAND (*pptr, 0);
      get_expr_operands (stmt, pptr, flags);
      return;
    }

  /* Ok, this isn't even is_gimple_min_invariant.  Something's broke.  */
  else
    gcc_unreachable ();

  /* Add a USE operand for the base pointer.  */
  get_expr_operands (stmt, pptr, opf_none);
}

/* A subroutine of get_expr_operands to handle CALL_EXPR.  */

static void
get_call_expr_operands (tree stmt, tree expr)
{
  tree op;
  int call_flags = call_expr_flags (expr);

  /* If aliases have been computed already, add V_MAY_DEF or V_USE
     operands for all the symbols that have been found to be
     call-clobbered.
     
     Note that if aliases have not been computed, the global effects
     of calls will not be included in the SSA web. This is fine
     because no optimizer should run before aliases have been
     computed.  By not bothering with virtual operands for CALL_EXPRs
     we avoid adding superfluous virtual operands, which can be a
     significant compile time sink (See PR 15855).  */
  if (aliases_computed_p
      && !bitmap_empty_p (call_clobbered_vars)
      && !(call_flags & ECF_NOVOPS))
    {
      /* A 'pure' or a 'const' functions never call clobber anything. 
	 A 'noreturn' function might, but since we don't return anyway 
	 there is no point in recording that.  */ 
      if (TREE_SIDE_EFFECTS (expr)
	  && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
	add_call_clobber_ops (stmt);
      else if (!(call_flags & ECF_CONST))
	add_call_read_ops (stmt);
    }

  /* Find uses in the called function.  */
  get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);

  for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
    get_expr_operands (stmt, &TREE_VALUE (op), opf_none);

  get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);

}


/* Add *VAR_P to the appropriate operand array for INFO.  FLAGS is as in
   get_expr_operands.  If *VAR_P is a GIMPLE register, it will be added to
   the statement's real operands, otherwise it is added to virtual
   operands.  */

static void
add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
{
  bool is_real_op;
  tree var, sym;
  var_ann_t v_ann;

  var = *var_p;
  STRIP_NOPS (var);

  /* If the operand is an ADDR_EXPR, add its operand to the list of
     variables that have had their address taken in this statement.  */
  if (TREE_CODE (var) == ADDR_EXPR)
    {
      note_addressable (TREE_OPERAND (var, 0), s_ann);
      return;
    }

  /* If the original variable is not a scalar, it will be added to the list
     of virtual operands.  In that case, use its base symbol as the virtual
     variable representing it.  */
  is_real_op = is_gimple_reg (var);
  if (!is_real_op && !DECL_P (var))
    var = get_virtual_var (var);

  /* If VAR is not a variable that we care to optimize, do nothing.  */
  if (var == NULL_TREE || !SSA_VAR_P (var))
    return;

  sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
  v_ann = var_ann (sym);

  /* Mark statements with volatile operands.  Optimizers should back
     off from statements having volatile operands.  */
  if (TREE_THIS_VOLATILE (sym) && s_ann)
    s_ann->has_volatile_ops = true;

  if (is_real_op)
    {
      /* The variable is a GIMPLE register.  Add it to real operands.  */
      if (flags & opf_is_def)
	append_def (var_p);
      else
	append_use (var_p);
    }
  else
    {
      varray_type aliases;

      /* The variable is not a GIMPLE register.  Add it (or its aliases) to
	 virtual operands, unless the caller has specifically requested
	 not to add virtual operands (used when adding operands inside an
	 ADDR_EXPR expression).  */
      if (flags & opf_no_vops)
	return;

      aliases = v_ann->may_aliases;

      if (aliases == NULL)
	{
	  /* The variable is not aliased or it is an alias tag.  */
	  if (flags & opf_is_def)
	    {
	      if (flags & opf_kill_def)
		{
		  /* Only regular variables or struct fields may get a
		     V_MUST_DEF operand.  */
		  gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG 
			      || v_ann->mem_tag_kind == STRUCT_FIELD);
		  /* V_MUST_DEF for non-aliased, non-GIMPLE register 
		    variable definitions.  */
		  append_v_must_def (var);
		}
	      else
		{
		  /* Add a V_MAY_DEF for call-clobbered variables and
		     memory tags.  */
		  append_v_may_def (var);
		}
	    }
	  else
	    {
	      append_vuse (var);
	      if (s_ann && v_ann->is_alias_tag)
		s_ann->makes_aliased_loads = 1;
	    }
	}
      else
	{
	  size_t i;

	  /* The variable is aliased.  Add its aliases to the virtual
	     operands.  */
	  gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);

	  if (flags & opf_is_def)
	    {
	      /* If the variable is also an alias tag, add a virtual
		 operand for it, otherwise we will miss representing
		 references to the members of the variable's alias set.
		 This fixes the bug in gcc.c-torture/execute/20020503-1.c.  */
	      if (v_ann->is_alias_tag)
		append_v_may_def (var);

	      for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
		append_v_may_def (VARRAY_TREE (aliases, i));

	      if (s_ann)
		s_ann->makes_aliased_stores = 1;
	    }
	  else
	    {
	      /* Similarly, append a virtual uses for VAR itself, when
		 it is an alias tag.  */
	      if (v_ann->is_alias_tag)
		append_vuse (var);

	      for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
		append_vuse (VARRAY_TREE (aliases, i));

	      if (s_ann)
		s_ann->makes_aliased_loads = 1;
	    }
	}
    }
}

  
/* Record that VAR had its address taken in the statement with annotations
   S_ANN.  */

static void
note_addressable (tree var, stmt_ann_t s_ann)
{
  tree ref;
  subvar_t svars;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT size;

  if (!s_ann)
    return;
  
  /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
     take the address of the subvariables it will touch.
     Otherwise, we take the address of all the subvariables, plus the real
     ones.  */

  if (var && TREE_CODE (var) == COMPONENT_REF 
      && (ref = okay_component_ref_for_subvars (var, &offset, &size)))
    {
      subvar_t sv;
      svars = get_subvars_for_var (ref);
      
      if (s_ann->addresses_taken == NULL)
	s_ann->addresses_taken = BITMAP_GGC_ALLOC ();      
      
      for (sv = svars; sv; sv = sv->next)
	{
	  if (overlap_subvar (offset, size, sv, NULL))
	    bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
	}
      return;
    }
  
  var = get_base_address (var);
  if (var && SSA_VAR_P (var))
    {
      if (s_ann->addresses_taken == NULL)
	s_ann->addresses_taken = BITMAP_GGC_ALLOC ();      
      

      if (var_can_have_subvars (var)
	  && (svars = get_subvars_for_var (var)))
	{
	  subvar_t sv;
	  for (sv = svars; sv; sv = sv->next)
	    bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
	}
      else
	bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
    }
}

/* Add clobbering definitions for .GLOBAL_VAR or for each of the call
   clobbered variables in the function.  */

static void
add_call_clobber_ops (tree stmt)
{
  unsigned i;
  tree t;
  bitmap_iterator bi;
  stmt_ann_t s_ann = stmt_ann (stmt);
  struct stmt_ann_d empty_ann;

  /* Functions that are not const, pure or never return may clobber
     call-clobbered variables.  */
  if (s_ann)
    s_ann->makes_clobbering_call = true;

  /* If we created .GLOBAL_VAR earlier, just use it.  See compute_may_aliases 
     for the heuristic used to decide whether to create .GLOBAL_VAR or not.  */
  if (global_var)
    {
      add_stmt_operand (&global_var, s_ann, opf_is_def);
      return;
    }

  /* If cache is valid, copy the elements into the build vectors.  */
  if (ssa_call_clobbered_cache_valid)
    {
      for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++)
	{
	  t = VARRAY_TREE (clobbered_vuses, i);
	  gcc_assert (TREE_CODE (t) != SSA_NAME);
	  var_ann (t)->in_vuse_list = 1;
	  VARRAY_PUSH_TREE (build_vuses, t);
	}
      for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++)
	{
	  t = VARRAY_TREE (clobbered_v_may_defs, i);
	  gcc_assert (TREE_CODE (t) != SSA_NAME);
	  var_ann (t)->in_v_may_def_list = 1;
	  VARRAY_PUSH_TREE (build_v_may_defs, t);
	}
      if (s_ann)
	{
	  s_ann->makes_aliased_loads = clobbered_aliased_loads;
	  s_ann->makes_aliased_stores = clobbered_aliased_stores;
	}
      return;
    }

  memset (&empty_ann, 0, sizeof (struct stmt_ann_d));

  /* Add a V_MAY_DEF operand for every call clobbered variable.  */
  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
    {
      tree var = referenced_var (i);
      if (TREE_READONLY (var)
	  && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
	add_stmt_operand (&var, &empty_ann, opf_none);
      else
	add_stmt_operand (&var, &empty_ann, opf_is_def);
    }

  clobbered_aliased_loads = empty_ann.makes_aliased_loads;
  clobbered_aliased_stores = empty_ann.makes_aliased_stores;

  /* Set the flags for a stmt's annotation.  */
  if (s_ann)
    {
      s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
      s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
    }

  /* Prepare empty cache vectors.  */
  if (clobbered_v_may_defs)
    {
      VARRAY_POP_ALL (clobbered_vuses);
      VARRAY_POP_ALL (clobbered_v_may_defs);
    }
  else
    {
      VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs");
      VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses");
    }

  /* Now fill the clobbered cache with the values that have been found.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
    VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i));
  for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
    VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i));

  ssa_call_clobbered_cache_valid = true;
}


/* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
   function.  */

static void
add_call_read_ops (tree stmt)
{
  unsigned i;
  tree t;
  bitmap_iterator bi;
  stmt_ann_t s_ann = stmt_ann (stmt);
  struct stmt_ann_d empty_ann;

  /* if the function is not pure, it may reference memory.  Add
     a VUSE for .GLOBAL_VAR if it has been created.  See add_referenced_var
     for the heuristic used to decide whether to create .GLOBAL_VAR.  */
  if (global_var)
    {
      add_stmt_operand (&global_var, s_ann, opf_none);
      return;
    }
  
  /* If cache is valid, copy the elements into the build vector.  */
  if (ssa_ro_call_cache_valid)
    {
      for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++)
	{
	  t = VARRAY_TREE (ro_call_vuses, i);
	  gcc_assert (TREE_CODE (t) != SSA_NAME);
	  var_ann (t)->in_vuse_list = 1;
	  VARRAY_PUSH_TREE (build_vuses, t);
	}
      if (s_ann)
	s_ann->makes_aliased_loads = ro_call_aliased_loads;
      return;
    }

  memset (&empty_ann, 0, sizeof (struct stmt_ann_d));

  /* Add a VUSE for each call-clobbered variable.  */
  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
    {
      tree var = referenced_var (i);
      add_stmt_operand (&var, &empty_ann, opf_none);
    }

  ro_call_aliased_loads = empty_ann.makes_aliased_loads;
  if (s_ann)
    s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;

  /* Prepare empty cache vectors.  */
  if (ro_call_vuses)
    VARRAY_POP_ALL (ro_call_vuses);
  else
    VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses");

  /* Now fill the clobbered cache with the values that have been found.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
    VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i));

  ssa_ro_call_cache_valid = true;
}

/* Copies virtual operands from SRC to DST.  */

void
copy_virtual_operands (tree dst, tree src)
{
  unsigned i;
  vuse_optype vuses = STMT_VUSE_OPS (src);
  v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
  v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
  vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
  v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
  v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;

  if (vuses)
    {
      *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
      for (i = 0; i < NUM_VUSES (vuses); i++)
	SET_VUSE_OP (*vuses_new, i, VUSE_OP (vuses, i));
    }

  if (v_may_defs)
    {
      *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
      for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
	{
	  SET_V_MAY_DEF_OP (*v_may_defs_new, i, V_MAY_DEF_OP (v_may_defs, i));
	  SET_V_MAY_DEF_RESULT (*v_may_defs_new, i, 
				V_MAY_DEF_RESULT (v_may_defs, i));
	}
    }

  if (v_must_defs)
    {
      *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
      for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
	{
	  SET_V_MUST_DEF_RESULT (*v_must_defs_new, i, V_MUST_DEF_RESULT (v_must_defs, i));
	  SET_V_MUST_DEF_KILL (*v_must_defs_new, i, V_MUST_DEF_KILL (v_must_defs, i));
	}
    }
}


/* Specifically for use in DOM's expression analysis.  Given a store, we
   create an artificial stmt which looks like a load from the store, this can
   be used to eliminate redundant loads.  OLD_OPS are the operands from the 
   store stmt, and NEW_STMT is the new load which represents a load of the
   values stored.  */

void
create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
{
  stmt_ann_t ann;
  tree op;
  stmt_operands_t tmp;
  unsigned j;

  memset (&tmp, 0, sizeof (stmt_operands_t));
  ann = get_stmt_ann (new_stmt);

  /* Free operands just in case is was an existing stmt.  */
  free_ssa_operands (&(ann->operands));

  build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
  free_vuses (&(ann->operands.vuse_ops));
  free_v_may_defs (&(ann->operands.v_may_def_ops));
  free_v_must_defs (&(ann->operands.v_must_def_ops));
  
  /* For each VDEF on the original statement, we want to create a
     VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new 
     statement.  */
  for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
    {
      op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
      append_vuse (op);
    }
    
  for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
    {
      op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j);
      append_vuse (op);
    }

  /* Now set the vuses for this new stmt.  */
  ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops));
}

#include "gt-tree-ssa-operands.h"