1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
/* Generic SSA value propagation engine.
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "ggc.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
#include "varray.h"
#include "vec.h"
/* This file implements a generic value propagation engine based on
the same propagation used by the SSA-CCP algorithm [1].
Propagation is performed by simulating the execution of every
statement that produces the value being propagated. Simulation
proceeds as follows:
1- Initially, all edges of the CFG are marked not executable and
the CFG worklist is seeded with all the statements in the entry
basic block (block 0).
2- Every statement S is simulated with a call to the call-back
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
results:
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
interest and does not affect any of the work lists.
SSA_PROP_VARYING: The value produced by S cannot be determined
at compile time. Further simulation of S is not required.
If S is a conditional jump, all the outgoing edges for the
block are considered executable and added to the work
list.
SSA_PROP_INTERESTING: S produces a value that can be computed
at compile time. Its result can be propagated into the
statements that feed from S. Furthermore, if S is a
conditional jump, only the edge known to be taken is added
to the work list. Edges that are known not to execute are
never simulated.
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
return value from SSA_PROP_VISIT_PHI has the same semantics as
described in #2.
4- Three work lists are kept. Statements are only added to these
lists if they produce one of SSA_PROP_INTERESTING or
SSA_PROP_VARYING.
CFG_BLOCKS contains the list of blocks to be simulated.
Blocks are added to this list if their incoming edges are
found executable.
VARYING_SSA_EDGES contains the list of statements that feed
from statements that produce an SSA_PROP_VARYING result.
These are simulated first to speed up processing.
INTERESTING_SSA_EDGES contains the list of statements that
feed from statements that produce an SSA_PROP_INTERESTING
result.
5- Simulation terminates when all three work lists are drained.
Before calling ssa_propagate, it is important to clear
DONT_SIMULATE_AGAIN for all the statements in the program that
should be simulated. This initialization allows an implementation
to specify which statements should never be simulated.
It is also important to compute def-use information before calling
ssa_propagate.
References:
[1] Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
[2] Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
[3] Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
/* Function pointers used to parameterize the propagation engine. */
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
/* Use the TREE_DEPRECATED bitflag to mark statements that have been
added to one of the SSA edges worklists. This flag is used to
avoid visiting statements unnecessarily when draining an SSA edge
worklist. If while simulating a basic block, we find a statement with
STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
processing from visiting it again. */
#define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
/* A bitmap to keep track of executable blocks in the CFG. */
static sbitmap executable_blocks;
/* Array of control flow edges on the worklist. */
static GTY(()) varray_type cfg_blocks = NULL;
static unsigned int cfg_blocks_num = 0;
static int cfg_blocks_tail;
static int cfg_blocks_head;
static sbitmap bb_in_list;
/* Worklist of SSA edges which will need reexamination as their
definition has changed. SSA edges are def-use edges in the SSA
web. For each D-U edge, we store the target statement or PHI node
U. */
static GTY(()) VEC(tree) *interesting_ssa_edges;
/* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
list of SSA edges is split into two. One contains all SSA edges
who need to be reexamined because their lattice value changed to
varying (this worklist), and the other contains all other SSA edges
to be reexamined (INTERESTING_SSA_EDGES).
Since most values in the program are VARYING, the ideal situation
is to move them to that lattice value as quickly as possible.
Thus, it doesn't make sense to process any other type of lattice
value until all VARYING values are propagated fully, which is one
thing using the VARYING worklist achieves. In addition, if we
don't use a separate worklist for VARYING edges, we end up with
situations where lattice values move from
UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
static GTY(()) VEC(tree) *varying_ssa_edges;
/* Return true if the block worklist empty. */
static inline bool
cfg_blocks_empty_p (void)
{
return (cfg_blocks_num == 0);
}
/* Add a basic block to the worklist. The block must not be already
in the worklist, and it must not be the ENTRY or EXIT block. */
static void
cfg_blocks_add (basic_block bb)
{
gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
gcc_assert (!TEST_BIT (bb_in_list, bb->index));
if (cfg_blocks_empty_p ())
{
cfg_blocks_tail = cfg_blocks_head = 0;
cfg_blocks_num = 1;
}
else
{
cfg_blocks_num++;
if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
{
/* We have to grow the array now. Adjust to queue to occupy the
full space of the original array. */
cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
cfg_blocks_head = 0;
VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
}
else
cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
}
VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
SET_BIT (bb_in_list, bb->index);
}
/* Remove a block from the worklist. */
static basic_block
cfg_blocks_get (void)
{
basic_block bb;
bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
gcc_assert (!cfg_blocks_empty_p ());
gcc_assert (bb);
cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
--cfg_blocks_num;
RESET_BIT (bb_in_list, bb->index);
return bb;
}
/* We have just defined a new value for VAR. If IS_VARYING is true,
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
them to INTERESTING_SSA_EDGES. */
static void
add_ssa_edge (tree var, bool is_varying)
{
tree stmt = SSA_NAME_DEF_STMT (var);
dataflow_t df = get_immediate_uses (stmt);
int num_uses = num_immediate_uses (df);
int i;
for (i = 0; i < num_uses; i++)
{
tree use_stmt = immediate_use (df, i);
if (!DONT_SIMULATE_AGAIN (use_stmt)
&& !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
{
STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
if (is_varying)
VEC_safe_push (tree, varying_ssa_edges, use_stmt);
else
VEC_safe_push (tree, interesting_ssa_edges, use_stmt);
}
}
}
/* Add edge E to the control flow worklist. */
static void
add_control_edge (edge e)
{
basic_block bb = e->dest;
if (bb == EXIT_BLOCK_PTR)
return;
/* If the edge had already been executed, skip it. */
if (e->flags & EDGE_EXECUTABLE)
return;
e->flags |= EDGE_EXECUTABLE;
/* If the block is already in the list, we're done. */
if (TEST_BIT (bb_in_list, bb->index))
return;
cfg_blocks_add (bb);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
e->src->index, e->dest->index);
}
/* Simulate the execution of STMT and update the work lists accordingly. */
static void
simulate_stmt (tree stmt)
{
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
edge taken_edge = NULL;
tree output_name = NULL_TREE;
/* Don't bother visiting statements that are already
considered varying by the propagator. */
if (DONT_SIMULATE_AGAIN (stmt))
return;
if (TREE_CODE (stmt) == PHI_NODE)
{
val = ssa_prop_visit_phi (stmt);
output_name = PHI_RESULT (stmt);
}
else
val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
if (val == SSA_PROP_VARYING)
{
DONT_SIMULATE_AGAIN (stmt) = 1;
/* If the statement produced a new varying value, add the SSA
edges coming out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name, true);
/* If STMT transfers control out of its basic block, add
all outgoing edges to the work list. */
if (stmt_ends_bb_p (stmt))
{
edge e;
edge_iterator ei;
basic_block bb = bb_for_stmt (stmt);
FOR_EACH_EDGE (e, ei, bb->succs)
add_control_edge (e);
}
}
else if (val == SSA_PROP_INTERESTING)
{
/* If the statement produced new value, add the SSA edges coming
out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name, false);
/* If we know which edge is going to be taken out of this block,
add it to the CFG work list. */
if (taken_edge)
add_control_edge (taken_edge);
}
}
/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
drain. This pops statements off the given WORKLIST and processes
them until there are no more statements on WORKLIST.
We take a pointer to WORKLIST because it may be reallocated when an
SSA edge is added to it in simulate_stmt. */
static void
process_ssa_edge_worklist (VEC(tree) **worklist)
{
/* Drain the entire worklist. */
while (VEC_length (tree, *worklist) > 0)
{
basic_block bb;
/* Pull the statement to simulate off the worklist. */
tree stmt = VEC_pop (tree, *worklist);
/* If this statement was already visited by simulate_block, then
we don't need to visit it again here. */
if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
continue;
/* STMT is no longer in a worklist. */
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
print_generic_stmt (dump_file, stmt, dump_flags);
}
bb = bb_for_stmt (stmt);
/* PHI nodes are always visited, regardless of whether or not
the destination block is executable. Otherwise, visit the
statement only if its block is marked executable. */
if (TREE_CODE (stmt) == PHI_NODE
|| TEST_BIT (executable_blocks, bb->index))
simulate_stmt (stmt);
}
}
/* Simulate the execution of BLOCK. Evaluate the statement associated
with each variable reference inside the block. */
static void
simulate_block (basic_block block)
{
tree phi;
/* There is nothing to do for the exit block. */
if (block == EXIT_BLOCK_PTR)
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nSimulating block %d\n", block->index);
/* Always simulate PHI nodes, even if we have simulated this block
before. */
for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
simulate_stmt (phi);
/* If this is the first time we've simulated this block, then we
must simulate each of its statements. */
if (!TEST_BIT (executable_blocks, block->index))
{
block_stmt_iterator j;
unsigned int normal_edge_count;
edge e, normal_edge;
edge_iterator ei;
/* Note that we have simulated this block. */
SET_BIT (executable_blocks, block->index);
for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
{
tree stmt = bsi_stmt (j);
/* If this statement is already in the worklist then
"cancel" it. The reevaluation implied by the worklist
entry will produce the same value we generate here and
thus reevaluating it again from the worklist is
pointless. */
if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
simulate_stmt (stmt);
}
/* We can not predict when abnormal edges will be executed, so
once a block is considered executable, we consider any
outgoing abnormal edges as executable.
At the same time, if this block has only one successor that is
reached by non-abnormal edges, then add that successor to the
worklist. */
normal_edge_count = 0;
normal_edge = NULL;
FOR_EACH_EDGE (e, ei, block->succs)
{
if (e->flags & EDGE_ABNORMAL)
add_control_edge (e);
else
{
normal_edge_count++;
normal_edge = e;
}
}
if (normal_edge_count == 1)
add_control_edge (normal_edge);
}
}
/* Initialize local data structures and work lists. */
static void
ssa_prop_init (void)
{
edge e;
edge_iterator ei;
basic_block bb;
/* Worklists of SSA edges. */
interesting_ssa_edges = VEC_alloc (tree, 20);
varying_ssa_edges = VEC_alloc (tree, 20);
executable_blocks = sbitmap_alloc (last_basic_block);
sbitmap_zero (executable_blocks);
bb_in_list = sbitmap_alloc (last_basic_block);
sbitmap_zero (bb_in_list);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_immediate_uses (dump_file);
VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
/* Initially assume that every edge in the CFG is not executable
(including the edges coming out of ENTRY_BLOCK_PTR). */
FOR_ALL_BB (bb)
{
block_stmt_iterator si;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
e->flags &= ~EDGE_EXECUTABLE;
}
/* Seed the algorithm by adding the successors of the entry block to the
edge worklist. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
add_control_edge (e);
}
/* Free allocated storage. */
static void
ssa_prop_fini (void)
{
VEC_free (tree, interesting_ssa_edges);
VEC_free (tree, varying_ssa_edges);
cfg_blocks = NULL;
sbitmap_free (bb_in_list);
sbitmap_free (executable_blocks);
free_df ();
}
/* Get the main expression from statement STMT. */
tree
get_rhs (tree stmt)
{
enum tree_code code = TREE_CODE (stmt);
switch (code)
{
case RETURN_EXPR:
stmt = TREE_OPERAND (stmt, 0);
if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
return stmt;
/* FALLTHRU */
case MODIFY_EXPR:
stmt = TREE_OPERAND (stmt, 1);
if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
return TREE_OPERAND (stmt, 0);
else
return stmt;
case COND_EXPR:
return COND_EXPR_COND (stmt);
case SWITCH_EXPR:
return SWITCH_COND (stmt);
case GOTO_EXPR:
return GOTO_DESTINATION (stmt);
case LABEL_EXPR:
return LABEL_EXPR_LABEL (stmt);
default:
return stmt;
}
}
/* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
GIMPLE expression no changes are done and the function returns
false. */
bool
set_rhs (tree *stmt_p, tree expr)
{
tree stmt = *stmt_p, op;
enum tree_code code = TREE_CODE (expr);
stmt_ann_t ann;
tree var;
ssa_op_iter iter;
/* Verify the constant folded result is valid gimple. */
if (TREE_CODE_CLASS (code) == tcc_binary)
{
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
return false;
}
else if (TREE_CODE_CLASS (code) == tcc_unary)
{
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
return false;
}
else if (code == COMPOUND_EXPR)
return false;
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
op = TREE_OPERAND (stmt, 0);
if (TREE_CODE (op) != MODIFY_EXPR)
{
TREE_OPERAND (stmt, 0) = expr;
break;
}
stmt = op;
/* FALLTHRU */
case MODIFY_EXPR:
op = TREE_OPERAND (stmt, 1);
if (TREE_CODE (op) == WITH_SIZE_EXPR)
stmt = op;
TREE_OPERAND (stmt, 1) = expr;
break;
case COND_EXPR:
COND_EXPR_COND (stmt) = expr;
break;
case SWITCH_EXPR:
SWITCH_COND (stmt) = expr;
break;
case GOTO_EXPR:
GOTO_DESTINATION (stmt) = expr;
break;
case LABEL_EXPR:
LABEL_EXPR_LABEL (stmt) = expr;
break;
default:
/* Replace the whole statement with EXPR. If EXPR has no side
effects, then replace *STMT_P with an empty statement. */
ann = stmt_ann (stmt);
*stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
(*stmt_p)->common.ann = (tree_ann_t) ann;
if (TREE_SIDE_EFFECTS (expr))
{
/* Fix all the SSA_NAMEs created by *STMT_P to point to its new
replacement. */
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
{
if (TREE_CODE (var) == SSA_NAME)
SSA_NAME_DEF_STMT (var) = *stmt_p;
}
}
break;
}
return true;
}
/* Entry point to the propagation engine.
VISIT_STMT is called for every statement visited.
VISIT_PHI is called for every PHI node visited. */
void
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
ssa_prop_visit_phi_fn visit_phi)
{
ssa_prop_visit_stmt = visit_stmt;
ssa_prop_visit_phi = visit_phi;
ssa_prop_init ();
/* Iterate until the worklists are empty. */
while (!cfg_blocks_empty_p ()
|| VEC_length (tree, interesting_ssa_edges) > 0
|| VEC_length (tree, varying_ssa_edges) > 0)
{
if (!cfg_blocks_empty_p ())
{
/* Pull the next block to simulate off the worklist. */
basic_block dest_block = cfg_blocks_get ();
simulate_block (dest_block);
}
/* In order to move things to varying as quickly as
possible,process the VARYING_SSA_EDGES worklist first. */
process_ssa_edge_worklist (&varying_ssa_edges);
/* Now process the INTERESTING_SSA_EDGES worklist. */
process_ssa_edge_worklist (&interesting_ssa_edges);
}
ssa_prop_fini ();
}
#include "gt-tree-ssa-propagate.h"
|