summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-sccvn.c
blob: 8380ebb35f2aef937d30e668c97698b396d0415a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
/* SCC value numbering for trees
   Copyright (C) 2006, 2007
   Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "timevar.h"
#include "fibheap.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "real.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "flags.h"
#include "bitmap.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "params.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-sccvn.h"

/* This algorithm is based on the SCC algorithm presented by Keith
   Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
   (http://citeseer.ist.psu.edu/41805.html).  In
   straight line code, it is equivalent to a regular hash based value
   numbering that is performed in reverse postorder.

   For code with cycles, there are two alternatives, both of which
   require keeping the hashtables separate from the actual list of
   value numbers for SSA names.

   1. Iterate value numbering in an RPO walk of the blocks, removing
   all the entries from the hashtable after each iteration (but
   keeping the SSA name->value number mapping between iterations).
   Iterate until it does not change.

   2. Perform value numbering as part of an SCC walk on the SSA graph,
   iterating only the cycles in the SSA graph until they do not change
   (using a separate, optimistic hashtable for value numbering the SCC
   operands).

   The second is not just faster in practice (because most SSA graph
   cycles do not involve all the variables in the graph), it also has
   some nice properties.

   One of these nice properties is that when we pop an SCC off the
   stack, we are guaranteed to have processed all the operands coming from
   *outside of that SCC*, so we do not need to do anything special to
   ensure they have value numbers.

   Another nice property is that the SCC walk is done as part of a DFS
   of the SSA graph, which makes it easy to perform combining and
   simplifying operations at the same time.

   The code below is deliberately written in a way that makes it easy
   to separate the SCC walk from the other work it does.

   In order to propagate constants through the code, we track which
   expressions contain constants, and use those while folding.  In
   theory, we could also track expressions whose value numbers are
   replaced, in case we end up folding based on expression
   identities.

   In order to value number memory, we assign value numbers to vuses.
   This enables us to note that, for example, stores to the same
   address of the same value from the same starting memory states are
   equivalent.
   TODO:

   1. We can iterate only the changing portions of the SCC's, but
   I have not seen an SCC big enough for this to be a win.
   2. If you differentiate between phi nodes for loops and phi nodes
   for if-then-else, you can properly consider phi nodes in different
   blocks for equivalence.
   3. We could value number vuses in more cases, particularly, whole
   structure copies.
*/

/* The set of hashtables and alloc_pool's for their items.  */

typedef struct vn_tables_s
{
  htab_t unary;
  htab_t binary;
  htab_t phis;
  htab_t references;
  alloc_pool unary_op_pool;
  alloc_pool binary_op_pool;
  alloc_pool phis_pool;
  alloc_pool references_pool;
} *vn_tables_t;

/* Binary operations in the hashtable consist of two operands, an
   opcode, and a type.  Result is the value number of the operation,
   and hashcode is stored to avoid having to calculate it
   repeatedly.  */

typedef struct vn_binary_op_s
{
  enum tree_code opcode;
  hashval_t hashcode;
  tree type;
  tree op0;
  tree op1;
  tree result;
} *vn_binary_op_t;
typedef const struct vn_binary_op_s *const_vn_binary_op_t;

/* Unary operations in the hashtable consist of a single operand, an
   opcode, and a type.  Result is the value number of the operation,
   and hashcode is stored to avoid having to calculate it repeatedly. */

typedef struct vn_unary_op_s
{
  enum tree_code opcode;
  hashval_t hashcode;
  tree type;
  tree op0;
  tree result;
} *vn_unary_op_t;
typedef const struct vn_unary_op_s *const_vn_unary_op_t;

/* Phi nodes in the hashtable consist of their non-VN_TOP phi
   arguments, and the basic block the phi is in. Result is the value
   number of the operation, and hashcode is stored to avoid having to
   calculate it repeatedly.  Phi nodes not in the same block are never
   considered equivalent.  */

typedef struct vn_phi_s
{
  VEC (tree, heap) *phiargs;
  basic_block block;
  hashval_t hashcode;
  tree result;
} *vn_phi_t;
typedef const struct vn_phi_s *const_vn_phi_t;

/* Reference operands only exist in reference operations structures.
   They consist of an opcode, type, and some number of operands.  For
   a given opcode, some, all, or none of the operands may be used.
   The operands are there to store the information that makes up the
   portion of the addressing calculation that opcode performs.  */

typedef struct vn_reference_op_struct
{
  enum tree_code opcode;
  tree type;
  tree op0;
  tree op1;
  tree op2;
} vn_reference_op_s;
typedef vn_reference_op_s *vn_reference_op_t;
typedef const vn_reference_op_s *const_vn_reference_op_t;

DEF_VEC_O(vn_reference_op_s);
DEF_VEC_ALLOC_O(vn_reference_op_s, heap);

/* A reference operation in the hashtable is representation as a
   collection of vuses, representing the memory state at the time of
   the operation, and a collection of operands that make up the
   addressing calculation.  If two vn_reference_t's have the same set
   of operands, they access the same memory location. We also store
   the resulting value number, and the hashcode.  The vuses are
   always stored in order sorted by ssa name version.  */

typedef struct vn_reference_s
{
  VEC (tree, gc) *vuses;
  VEC (vn_reference_op_s, heap) *operands;
  hashval_t hashcode;
  tree result;
} *vn_reference_t;
typedef const struct vn_reference_s *const_vn_reference_t;

/* Valid hashtables storing information we have proven to be
   correct.  */

static vn_tables_t valid_info;

/* Optimistic hashtables storing information we are making assumptions about
   during iterations.  */

static vn_tables_t optimistic_info;

/* PRE hashtables storing information about mapping from expressions to
   value handles.  */

static vn_tables_t pre_info;

/* Pointer to the set of hashtables that is currently being used.
   Should always point to either the optimistic_info, or the
   valid_info.  */

static vn_tables_t current_info;


/* Reverse post order index for each basic block.  */

static int *rpo_numbers;

#define SSA_VAL(x) (VN_INFO ((x))->valnum)

/* This represents the top of the VN lattice, which is the universal
   value.  */

tree VN_TOP;

/* Next DFS number and the stack for strongly connected component
   detection. */

static unsigned int next_dfs_num;
static VEC (tree, heap) *sccstack;

DEF_VEC_P(vn_ssa_aux_t);
DEF_VEC_ALLOC_P(vn_ssa_aux_t, heap);

/* Table of vn_ssa_aux_t's, one per ssa_name.  */

static VEC (vn_ssa_aux_t, heap) *vn_ssa_aux_table;

/* Return the value numbering information for a given SSA name.  */

vn_ssa_aux_t
VN_INFO (tree name)
{
  return VEC_index (vn_ssa_aux_t, vn_ssa_aux_table,
		    SSA_NAME_VERSION (name));
}

/* Set the value numbering info for a given SSA name to a given
   value.  */

static inline void
VN_INFO_SET (tree name, vn_ssa_aux_t value)
{
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
	       SSA_NAME_VERSION (name), value);
}

/* Get the value numbering info for a given SSA name, creating it if
   it does not exist.  */

vn_ssa_aux_t
VN_INFO_GET (tree name)
{
  vn_ssa_aux_t newinfo = XCNEW (struct vn_ssa_aux);
  if (SSA_NAME_VERSION (name) >= VEC_length (vn_ssa_aux_t, vn_ssa_aux_table))
    VEC_safe_grow (vn_ssa_aux_t, heap, vn_ssa_aux_table,
		   SSA_NAME_VERSION (name) + 1);
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
	       SSA_NAME_VERSION (name), newinfo);
  return newinfo;
}


/* Free a phi operation structure VP.  */

static void
free_phi (void *vp)
{
  vn_phi_t phi = vp;
  VEC_free (tree, heap, phi->phiargs);
}

/* Free a reference operation structure VP.  */

static void
free_reference (void *vp)
{
  vn_reference_t vr = vp;
  VEC_free (vn_reference_op_s, heap, vr->operands);
}

/* Compare two reference operands P1 and P2 for equality.  return true if
   they are equal, and false otherwise.  */

static int
vn_reference_op_eq (const void *p1, const void *p2)
{
  const_vn_reference_op_t const vro1 = (const_vn_reference_op_t) p1;
  const_vn_reference_op_t const vro2 = (const_vn_reference_op_t) p2;
  return vro1->opcode == vro2->opcode
    && vro1->type == vro2->type
    && expressions_equal_p (vro1->op0, vro2->op0)
    && expressions_equal_p (vro1->op1, vro2->op1)
    && expressions_equal_p (vro1->op2, vro2->op2);
}

/* Compute the hash for a reference operand VRO1  */

static hashval_t
vn_reference_op_compute_hash (const vn_reference_op_t vro1)
{
  return iterative_hash_expr (vro1->op0, vro1->opcode)
    + iterative_hash_expr (vro1->op1, vro1->opcode)
    + iterative_hash_expr (vro1->op2, vro1->opcode);
}

/* Return the hashcode for a given reference operation P1.  */

static hashval_t
vn_reference_hash (const void *p1)
{
  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  return vr1->hashcode;
}

/* Compute a hash for the reference operation VR1 and return it.  */

static inline hashval_t
vn_reference_compute_hash (const vn_reference_t vr1)
{
  hashval_t result = 0;
  tree v;
  int i;
  vn_reference_op_t vro;

  for (i = 0; VEC_iterate (tree, vr1->vuses, i, v); i++)
    result += iterative_hash_expr (v, 0);
  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
    result += vn_reference_op_compute_hash (vro);

  return result;
}

/* Return true if reference operations P1 and P2 are equivalent.  This
   means they have the same set of operands and vuses.  */

static int
vn_reference_eq (const void *p1, const void *p2)
{
  tree v;
  int i;
  vn_reference_op_t vro;

  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  const_vn_reference_t const vr2 = (const_vn_reference_t) p2;

  if (vr1->vuses == vr2->vuses
      && vr1->operands == vr2->operands)
    return true;

  /* Impossible for them to be equivalent if they have different
     number of vuses.  */
  if (VEC_length (tree, vr1->vuses) != VEC_length (tree, vr2->vuses))
    return false;

  /* We require that address operands be canonicalized in a way that
     two memory references will have the same operands if they are
     equivalent.  */
  if (VEC_length (vn_reference_op_s, vr1->operands)
      != VEC_length (vn_reference_op_s, vr2->operands))
    return false;

  /* The memory state is more often different than the address of the
     store/load, so check it first.  */
  for (i = 0; VEC_iterate (tree, vr1->vuses, i, v); i++)
    {
      if (VEC_index (tree, vr2->vuses, i) != v)
	return false;
    }

  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
    {
      if (!vn_reference_op_eq (VEC_index (vn_reference_op_s, vr2->operands, i),
			       vro))
	return false;
    }
  return true;
}

/* Place the vuses from STMT into *result */

static inline void
vuses_to_vec (tree stmt, VEC (tree, gc) **result)
{
  ssa_op_iter iter;
  tree vuse;

  if (!stmt)
    return;

  VEC_reserve_exact (tree, gc, *result,
		     num_ssa_operands (stmt, SSA_OP_VIRTUAL_USES));

  FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
    VEC_quick_push (tree, *result, vuse);
}


/* Copy the VUSE names in STMT into a vector, and return
   the vector.  */

VEC (tree, gc) *
copy_vuses_from_stmt (tree stmt)
{
  VEC (tree, gc) *vuses = NULL;

  vuses_to_vec (stmt, &vuses);

  return vuses;
}

/* Place the vdefs from STMT into *result */

static inline void
vdefs_to_vec (tree stmt, VEC (tree, gc) **result)
{
  ssa_op_iter iter;
  tree vdef;

  if (!stmt)
    return;

  *result = VEC_alloc (tree, gc, num_ssa_operands (stmt, SSA_OP_VIRTUAL_DEFS));

  FOR_EACH_SSA_TREE_OPERAND (vdef, stmt, iter, SSA_OP_VIRTUAL_DEFS)
    VEC_quick_push (tree, *result, vdef);
}

/* Copy the names of vdef results in STMT into a vector, and return
   the vector.  */

static VEC (tree, gc) *
copy_vdefs_from_stmt (tree stmt)
{
  VEC (tree, gc) *vdefs = NULL;

  vdefs_to_vec (stmt, &vdefs);

  return vdefs;
}

/* Place for shared_v{uses/defs}_from_stmt to shove vuses/vdefs.  */
static VEC (tree, gc) *shared_lookup_vops;

/* Copy the virtual uses from STMT into SHARED_LOOKUP_VOPS.
   This function will overwrite the current SHARED_LOOKUP_VOPS
   variable.  */

VEC (tree, gc) *
shared_vuses_from_stmt (tree stmt)
{
  VEC_truncate (tree, shared_lookup_vops, 0);
  vuses_to_vec (stmt, &shared_lookup_vops);

  return shared_lookup_vops;
}

/* Copy the operations present in load/store/call REF into RESULT, a vector of
   vn_reference_op_s's.  */

static void
copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
{
  /* Calls are different from all other reference operations.  */
  if (TREE_CODE (ref) == CALL_EXPR)
    {
      vn_reference_op_s temp;
      tree callfn;
      call_expr_arg_iterator iter;
      tree callarg;

      /* Copy the call_expr opcode, type, function being called, and
	 arguments.  */
      memset (&temp, 0, sizeof (temp));
      temp.type = TREE_TYPE (ref);
      temp.opcode = CALL_EXPR;
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);

      callfn = get_callee_fndecl (ref);
      if (!callfn)
	callfn = CALL_EXPR_FN (ref);
      temp.type = TREE_TYPE (callfn);
      temp.opcode = TREE_CODE (callfn);
      temp.op0 = callfn;
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);

      FOR_EACH_CALL_EXPR_ARG (callarg, iter, ref)
	{
	  memset (&temp, 0, sizeof (temp));
	  temp.type = TREE_TYPE (callarg);
	  temp.opcode = TREE_CODE (callarg);
	  temp.op0 = callarg;
	  VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
	}
      return;
    }

  /* For non-calls, store the information that makes up the address.  */

  while (ref)
    {
      vn_reference_op_s temp;

      memset (&temp, 0, sizeof (temp));
      temp.type = TREE_TYPE (ref);
      temp.opcode = TREE_CODE (ref);

      switch (temp.opcode)
	{
	case ALIGN_INDIRECT_REF:
	case MISALIGNED_INDIRECT_REF:
	case INDIRECT_REF:
	  /* The only operand is the address, which gets its own
	     vn_reference_op_s structure.  */
	  break;
	case BIT_FIELD_REF:
	  /* Record bits and position.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  temp.op1 = TREE_OPERAND (ref, 2);
	  break;
	case COMPONENT_REF:
	  /* Record field as operand.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  break;
	case ARRAY_RANGE_REF:
	case ARRAY_REF:
	  /* Record index as operand.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  temp.op1 = TREE_OPERAND (ref, 3);
	  break;
	case STRING_CST:
	case INTEGER_CST:
	case COMPLEX_CST:
	case VECTOR_CST:
	case REAL_CST:
	case CONSTRUCTOR:
	case VALUE_HANDLE:
	case VAR_DECL:
	case PARM_DECL:
	case CONST_DECL:
	case RESULT_DECL:
	case SSA_NAME:
	  temp.op0 = ref;
	  break;
	  /* These are only interesting for their operands, their
	     existence, and their type.  They will never be the last
	     ref in the chain of references (IE they require an
	     operand), so we don't have to put anything
	     for op* as it will be handled by the iteration  */
	case IMAGPART_EXPR:
	case REALPART_EXPR:
	case VIEW_CONVERT_EXPR:
	case ADDR_EXPR:
	  break;
	default:
	  gcc_unreachable ();

	}
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);

      if (REFERENCE_CLASS_P (ref) || TREE_CODE (ref) == ADDR_EXPR)
	ref = TREE_OPERAND (ref, 0);
      else
	ref = NULL_TREE;
    }
}

/* Create a vector of vn_reference_op_s structures from REF, a
   REFERENCE_CLASS_P tree.  The vector is not shared. */

static VEC(vn_reference_op_s, heap) *
create_reference_ops_from_ref (tree ref)
{
  VEC (vn_reference_op_s, heap) *result = NULL;

  copy_reference_ops_from_ref (ref, &result);
  return result;
}

static VEC(vn_reference_op_s, heap) *shared_lookup_references;

/* Create a vector of vn_reference_op_s structures from REF, a
   REFERENCE_CLASS_P tree.  The vector is shared among all callers of
   this function.  */

static VEC(vn_reference_op_s, heap) *
shared_reference_ops_from_ref (tree ref)
{
  if (!ref)
    return NULL;
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  copy_reference_ops_from_ref (ref, &shared_lookup_references);
  return shared_lookup_references;
}


/* Transform any SSA_NAME's in a vector of vn_reference_op_s
   structures into their value numbers.  This is done in-place, and
   the vector passed in is returned.  */

static VEC (vn_reference_op_s, heap) *
valueize_refs (VEC (vn_reference_op_s, heap) *orig)
{
  vn_reference_op_t vro;
  int i;

  for (i = 0; VEC_iterate (vn_reference_op_s, orig, i, vro); i++)
    {
      if (vro->opcode == SSA_NAME
	  || (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME))
	vro->op0 = SSA_VAL (vro->op0);
    }

  return orig;
}

/* Transform any SSA_NAME's in ORIG, a vector of vuse trees, into
   their value numbers. This is done in-place, and the vector passed
   in is returned.  */

static VEC (tree, gc) *
valueize_vuses (VEC (tree, gc) *orig)
{
  bool made_replacement = false;
  tree vuse;
  int i;

  for (i = 0; VEC_iterate (tree, orig, i, vuse); i++)
    {
      if (vuse != SSA_VAL (vuse))
	{
	  made_replacement = true;
	  VEC_replace (tree, orig, i, SSA_VAL (vuse));
	}
    }

  if (made_replacement && VEC_length (tree, orig) > 1)
    sort_vuses (orig);

  return orig;
}

/* Lookup OP in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */

tree
vn_reference_lookup (tree op, VEC (tree, gc) *vuses)
{
  void **slot;
  struct vn_reference_s vr1;

  vr1.vuses = valueize_vuses (vuses);
  vr1.operands = valueize_refs (shared_reference_ops_from_ref (op));
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  slot = htab_find_slot_with_hash (current_info->references, &vr1, vr1.hashcode,
				   NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->references, &vr1, vr1.hashcode,
				     NO_INSERT);
  if (!slot)
    return NULL_TREE;

  return ((vn_reference_t)*slot)->result;
}

/* Insert OP into the current hash table with a value number of
   RESULT.  */

void
vn_reference_insert (tree op, tree result, VEC (tree, gc) *vuses)
{
  void **slot;
  vn_reference_t vr1;

  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);

  vr1->vuses = valueize_vuses (vuses);
  vr1->operands = valueize_refs (create_reference_ops_from_ref (op));
  vr1->hashcode = vn_reference_compute_hash (vr1);
  vr1->result = TREE_CODE (result) == SSA_NAME ? SSA_VAL (result) : result;

  slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
				   INSERT);

  /* Because we lookup stores using vuses, and value number failures
     using the vdefs (see visit_reference_op_store for how and why),
     it's possible that on failure we may try to insert an already
     inserted store.  This is not wrong, there is no ssa name for a
     store that we could use as a differentiator anyway.  Thus, unlike
     the other lookup functions, you cannot gcc_assert (!*slot)
     here.  */

  /* But free the old slot in case of a collision.  */
  if (*slot)
    free_reference (*slot);

  *slot = vr1;
}


/* Return the stored hashcode for a unary operation.  */

static hashval_t
vn_unary_op_hash (const void *p1)
{
  const_vn_unary_op_t const vuo1 = (const_vn_unary_op_t) p1;
  return vuo1->hashcode;
}

/* Hash a unary operation P1 and return the result.  */

static inline hashval_t
vn_unary_op_compute_hash (const vn_unary_op_t vuo1)
{
  return iterative_hash_expr (vuo1->op0, vuo1->opcode);
}

/* Return true if P1 and P2, two unary operations, are equivalent.  */

static int
vn_unary_op_eq (const void *p1, const void *p2)
{
  const_vn_unary_op_t const vuo1 = (const_vn_unary_op_t) p1;
  const_vn_unary_op_t const vuo2 = (const_vn_unary_op_t) p2;
  return vuo1->opcode == vuo2->opcode
    && vuo1->type == vuo2->type
    && expressions_equal_p (vuo1->op0, vuo2->op0);
}

/* Lookup OP in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */

tree
vn_unary_op_lookup (tree op)
{
  void **slot;
  struct vn_unary_op_s vuo1;

  vuo1.opcode = TREE_CODE (op);
  vuo1.type = TREE_TYPE (op);
  vuo1.op0 = TREE_OPERAND (op, 0);

  if (TREE_CODE (vuo1.op0) == SSA_NAME)
    vuo1.op0 = SSA_VAL (vuo1.op0);

  vuo1.hashcode = vn_unary_op_compute_hash (&vuo1);
  slot = htab_find_slot_with_hash (current_info->unary, &vuo1, vuo1.hashcode,
				   NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->unary, &vuo1, vuo1.hashcode,
				     NO_INSERT);
  if (!slot)
    return NULL_TREE;
  return ((vn_unary_op_t)*slot)->result;
}

/* Insert OP into the current hash table with a value number of
   RESULT.  */

void
vn_unary_op_insert (tree op, tree result)
{
  void **slot;
  vn_unary_op_t vuo1 = (vn_unary_op_t) pool_alloc (current_info->unary_op_pool);

  vuo1->opcode = TREE_CODE (op);
  vuo1->type = TREE_TYPE (op);
  vuo1->op0 = TREE_OPERAND (op, 0);
  vuo1->result = result;

  if (TREE_CODE (vuo1->op0) == SSA_NAME)
    vuo1->op0 = SSA_VAL (vuo1->op0);

  vuo1->hashcode = vn_unary_op_compute_hash (vuo1);
  slot = htab_find_slot_with_hash (current_info->unary, vuo1, vuo1->hashcode,
				   INSERT);
  gcc_assert (!*slot);
  *slot = vuo1;
}

/* Compute and return the hash value for binary operation VBO1.  */

static inline hashval_t
vn_binary_op_compute_hash (const vn_binary_op_t vbo1)
{
  return iterative_hash_expr (vbo1->op0, vbo1->opcode)
    + iterative_hash_expr (vbo1->op1, vbo1->opcode);
}

/* Return the computed hashcode for binary operation P1.  */

static hashval_t
vn_binary_op_hash (const void *p1)
{
  const_vn_binary_op_t const vbo1 = (const_vn_binary_op_t) p1;
  return vbo1->hashcode;
}

/* Compare binary operations P1 and P2 and return true if they are
   equivalent.  */

static int
vn_binary_op_eq (const void *p1, const void *p2)
{
  const_vn_binary_op_t const vbo1 = (const_vn_binary_op_t) p1;
  const_vn_binary_op_t const vbo2 = (const_vn_binary_op_t) p2;
  return vbo1->opcode == vbo2->opcode
    && vbo1->type == vbo2->type
    && expressions_equal_p (vbo1->op0, vbo2->op0)
    && expressions_equal_p (vbo1->op1, vbo2->op1);
}

/* Lookup OP in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */

tree
vn_binary_op_lookup (tree op)
{
  void **slot;
  struct vn_binary_op_s vbo1;

  vbo1.opcode = TREE_CODE (op);
  vbo1.type = TREE_TYPE (op);
  vbo1.op0 = TREE_OPERAND (op, 0);
  vbo1.op1 = TREE_OPERAND (op, 1);

  if (TREE_CODE (vbo1.op0) == SSA_NAME)
    vbo1.op0 = SSA_VAL (vbo1.op0);
  if (TREE_CODE (vbo1.op1) == SSA_NAME)
    vbo1.op1 = SSA_VAL (vbo1.op1);

  if (tree_swap_operands_p (vbo1.op0, vbo1.op1, false)
      && commutative_tree_code (vbo1.opcode))
    {
      tree temp = vbo1.op0;
      vbo1.op0 = vbo1.op1;
      vbo1.op1 = temp;
    }

  vbo1.hashcode = vn_binary_op_compute_hash (&vbo1);
  slot = htab_find_slot_with_hash (current_info->binary, &vbo1, vbo1.hashcode,
				   NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->binary, &vbo1, vbo1.hashcode,
				     NO_INSERT);
  if (!slot)
    return NULL_TREE;
  return ((vn_binary_op_t)*slot)->result;
}

/* Insert OP into the current hash table with a value number of
   RESULT.  */

void
vn_binary_op_insert (tree op, tree result)
{
  void **slot;
  vn_binary_op_t vbo1;
  vbo1 = (vn_binary_op_t) pool_alloc (current_info->binary_op_pool);

  vbo1->opcode = TREE_CODE (op);
  vbo1->type = TREE_TYPE (op);
  vbo1->op0 = TREE_OPERAND (op, 0);
  vbo1->op1 = TREE_OPERAND (op, 1);
  vbo1->result = result;

  if (TREE_CODE (vbo1->op0) == SSA_NAME)
    vbo1->op0 = SSA_VAL (vbo1->op0);
  if (TREE_CODE (vbo1->op1) == SSA_NAME)
    vbo1->op1 = SSA_VAL (vbo1->op1);

  if (tree_swap_operands_p (vbo1->op0, vbo1->op1, false)
      && commutative_tree_code (vbo1->opcode))
    {
      tree temp = vbo1->op0;
      vbo1->op0 = vbo1->op1;
      vbo1->op1 = temp;
    }
  vbo1->hashcode = vn_binary_op_compute_hash (vbo1);
  slot = htab_find_slot_with_hash (current_info->binary, vbo1, vbo1->hashcode,
				   INSERT);
  gcc_assert (!*slot);

  *slot = vbo1;
}

/* Compute a hashcode for PHI operation VP1 and return it.  */

static inline hashval_t
vn_phi_compute_hash (vn_phi_t vp1)
{
  hashval_t result = 0;
  int i;
  tree phi1op;

  result = vp1->block->index;

  for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
    {
      if (phi1op == VN_TOP)
	continue;
      result += iterative_hash_expr (phi1op, result);
    }

  return result;
}

/* Return the computed hashcode for phi operation P1.  */

static hashval_t
vn_phi_hash (const void *p1)
{
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  return vp1->hashcode;
}

/* Compare two phi entries for equality, ignoring VN_TOP arguments.  */

static int
vn_phi_eq (const void *p1, const void *p2)
{
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  const_vn_phi_t const vp2 = (const_vn_phi_t) p2;

  if (vp1->block == vp2->block)
    {
      int i;
      tree phi1op;

      /* Any phi in the same block will have it's arguments in the
	 same edge order, because of how we store phi nodes.  */
      for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
	{
	  tree phi2op = VEC_index (tree, vp2->phiargs, i);
	  if (phi1op == VN_TOP || phi2op == VN_TOP)
	    continue;
	  if (!expressions_equal_p (phi1op, phi2op))
	    return false;
	}
      return true;
    }
  return false;
}

static VEC(tree, heap) *shared_lookup_phiargs;

/* Lookup PHI in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */

static tree
vn_phi_lookup (tree phi)
{
  void **slot;
  struct vn_phi_s vp1;
  int i;

  VEC_truncate (tree, shared_lookup_phiargs, 0);

  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      VEC_safe_push (tree, heap, shared_lookup_phiargs, def);
    }
  vp1.phiargs = shared_lookup_phiargs;
  vp1.block = bb_for_stmt (phi);
  vp1.hashcode = vn_phi_compute_hash (&vp1);
  slot = htab_find_slot_with_hash (current_info->phis, &vp1, vp1.hashcode,
				   NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->phis, &vp1, vp1.hashcode,
				     NO_INSERT);
  if (!slot)
    return NULL_TREE;
  return ((vn_phi_t)*slot)->result;
}

/* Insert PHI into the current hash table with a value number of
   RESULT.  */

static void
vn_phi_insert (tree phi, tree result)
{
  void **slot;
  vn_phi_t vp1 = (vn_phi_t) pool_alloc (current_info->phis_pool);
  int i;
  VEC (tree, heap) *args = NULL;

  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      VEC_safe_push (tree, heap, args, def);
    }
  vp1->phiargs = args;
  vp1->block = bb_for_stmt (phi);
  vp1->result = result;
  vp1->hashcode = vn_phi_compute_hash (vp1);

  slot = htab_find_slot_with_hash (current_info->phis, vp1, vp1->hashcode,
				   INSERT);

  /* Because we iterate over phi operations more than once, it's
     possible the slot might already exist here, hence no assert.*/
  *slot = vp1;
}


/* Print set of components in strongly connected component SCC to OUT. */

static void
print_scc (FILE *out, VEC (tree, heap) *scc)
{
  tree var;
  unsigned int i;

  fprintf (out, "SCC consists of: ");
  for (i = 0; VEC_iterate (tree, scc, i, var); i++)
    {
      print_generic_expr (out, var, 0);
      fprintf (out, " ");
    }
  fprintf (out, "\n");
}

/* Set the value number of FROM to TO, return true if it has changed
   as a result.  */

static inline bool
set_ssa_val_to (tree from, tree to)
{
  tree currval;

  if (from != to
      && TREE_CODE (to) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to))
    to = from;

  /* The only thing we allow as value numbers are VN_TOP, ssa_names
     and invariants.  So assert that here.  */
  gcc_assert (to != NULL_TREE
	      && (to == VN_TOP
		  || TREE_CODE (to) == SSA_NAME
		  || is_gimple_min_invariant (to)));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Setting value number of ");
      print_generic_expr (dump_file, from, 0);
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, to, 0);
      fprintf (dump_file, "\n");
    }

  currval = SSA_VAL (from);

  if (currval != to  && !operand_equal_p (currval, to, OEP_PURE_SAME))
    {
      SSA_VAL (from) = to;
      return true;
    }
  return false;
}

/* Set all definitions in STMT to value number to themselves.
   Return true if a value number changed. */

static bool
defs_to_varying (tree stmt)
{
  bool changed = false;
  ssa_op_iter iter;
  def_operand_p defp;

  FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
    {
      tree def = DEF_FROM_PTR (defp);

      VN_INFO (def)->use_processed = true;
      changed |= set_ssa_val_to (def, def);
    }
  return changed;
}

/* Visit a copy between LHS and RHS, return true if the value number
   changed.  */

static bool
visit_copy (tree lhs, tree rhs)
{

  /* Follow chains of copies to their destination.  */
  while (SSA_VAL (rhs) != rhs && TREE_CODE (SSA_VAL (rhs)) == SSA_NAME)
    rhs = SSA_VAL (rhs);

  /* The copy may have a more interesting constant filled expression
     (we don't, since we know our RHS is just an SSA name).  */
  VN_INFO (lhs)->has_constants = VN_INFO (rhs)->has_constants;
  VN_INFO (lhs)->expr = VN_INFO (rhs)->expr;

  return set_ssa_val_to (lhs, rhs);
}

/* Visit a unary operator RHS, value number it, and return true if the
   value number of LHS has changed as a result.  */

static bool
visit_unary_op (tree lhs, tree op)
{
  bool changed = false;
  tree result = vn_unary_op_lookup (op);

  if (result)
    {
      changed = set_ssa_val_to (lhs, result);
    }
  else
    {
      changed = set_ssa_val_to (lhs, lhs);
      vn_unary_op_insert (op, lhs);
    }

  return changed;
}

/* Visit a binary operator RHS, value number it, and return true if the
   value number of LHS has changed as a result.  */

static bool
visit_binary_op (tree lhs, tree op)
{
  bool changed = false;
  tree result = vn_binary_op_lookup (op);

  if (result)
    {
      changed = set_ssa_val_to (lhs, result);
    }
  else
    {
      changed = set_ssa_val_to (lhs, lhs);
      vn_binary_op_insert (op, lhs);
    }

  return changed;
}

/* Visit a load from a reference operator RHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */

static bool
visit_reference_op_load (tree lhs, tree op, tree stmt)
{
  bool changed = false;
  tree result = vn_reference_lookup (op, shared_vuses_from_stmt (stmt));

  if (result)
    {
      changed = set_ssa_val_to (lhs, result);
    }
  else
    {
      changed = set_ssa_val_to (lhs, lhs);
      vn_reference_insert (op, lhs, copy_vuses_from_stmt (stmt));
    }

  return changed;
}


/* Visit a store to a reference operator LHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */

static bool
visit_reference_op_store (tree lhs, tree op, tree stmt)
{
  bool changed = false;
  tree result;
  bool resultsame = false;

  /* First we want to lookup using the *vuses* from the store and see
     if there the last store to this location with the same address
     had the same value.

     The vuses represent the memory state before the store.  If the
     memory state, address, and value of the store is the same as the
     last store to this location, then this store will produce the
     same memory state as that store.

     In this case the vdef versions for this store are value numbered to those
     vuse versions, since they represent the same memory state after
     this store.

     Otherwise, the vdefs for the store are used when inserting into
     the table, since the store generates a new memory state.  */

  result = vn_reference_lookup (lhs, shared_vuses_from_stmt (stmt));

  if (result)
    {
      if (TREE_CODE (result) == SSA_NAME)
	result = SSA_VAL (result);
      resultsame = expressions_equal_p (result, op);
    }

  if (!result || !resultsame)
    {
      VEC(tree, gc) *vdefs = copy_vdefs_from_stmt (stmt);
      int i;
      tree vdef;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "No store match\n");
	  fprintf (dump_file, "Value numbering store ");
	  print_generic_expr (dump_file, lhs, 0);
	  fprintf (dump_file, " to ");
	  print_generic_expr (dump_file, op, 0);
	  fprintf (dump_file, "\n");
	}
      /* Have to set value numbers before insert, since insert is
	 going to valueize the references in-place.  */
      for (i = 0; VEC_iterate (tree, vdefs, i, vdef); i++)
	{
	  VN_INFO (vdef)->use_processed = true;
	  changed |= set_ssa_val_to (vdef, vdef);
	}

      vn_reference_insert (lhs, op, vdefs);
    }
  else
    {
      /* We had a match, so value number the vdefs to have the value
	 number of the vuses they came from.  */
      ssa_op_iter op_iter;
      def_operand_p var;
      vuse_vec_p vv;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Store matched earlier value,"
		 "value numbering store vdefs to matching vuses.\n");

      FOR_EACH_SSA_VDEF_OPERAND (var, vv, stmt, op_iter)
	{
	  tree def = DEF_FROM_PTR (var);
	  tree use;

	  /* Uh, if the vuse is a multiuse, we can't really do much
	     here, sadly, since we don't know which value number of
	     which vuse to use.  */
	  if (VUSE_VECT_NUM_ELEM (*vv) != 1)
	    use = def;
	  else
	    use = VUSE_ELEMENT_VAR (*vv, 0);

	  VN_INFO (def)->use_processed = true;
	  changed |= set_ssa_val_to (def, SSA_VAL (use));
	}
    }

  return changed;
}

/* Visit and value number PHI, return true if the value number
   changed.  */

static bool
visit_phi (tree phi)
{
  bool changed = false;
  tree result;
  tree sameval = VN_TOP;
  bool allsame = true;
  int i;

  /* TODO: We could check for this in init_sccvn, and replace this
     with a gcc_assert.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
    return set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));

  /* See if all non-TOP arguments have the same value.  TOP is
     equivalent to everything, so we can ignore it.  */
  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);

      if (TREE_CODE (def) == SSA_NAME)
	def = SSA_VAL (def);
      if (def == VN_TOP)
	continue;
      if (sameval == VN_TOP)
	{
	  sameval = def;
	}
      else
	{
	  if (!expressions_equal_p (def, sameval))
	    {
	      allsame = false;
	      break;
	    }
	}
    }

  /* If all value numbered to the same value, the phi node has that
     value.  */
  if (allsame)
    {
      if (is_gimple_min_invariant (sameval))
	{
	  VN_INFO (PHI_RESULT (phi))->has_constants = true;
	  VN_INFO (PHI_RESULT (phi))->expr = sameval;
	}
      else
	{
	  VN_INFO (PHI_RESULT (phi))->has_constants = false;
	  VN_INFO (PHI_RESULT (phi))->expr = sameval;
	}

      if (TREE_CODE (sameval) == SSA_NAME)
	return visit_copy (PHI_RESULT (phi), sameval);

      return set_ssa_val_to (PHI_RESULT (phi), sameval);
    }

  /* Otherwise, see if it is equivalent to a phi node in this block.  */
  result = vn_phi_lookup (phi);
  if (result)
    {
      if (TREE_CODE (result) == SSA_NAME)
	changed = visit_copy (PHI_RESULT (phi), result);
      else
	changed = set_ssa_val_to (PHI_RESULT (phi), result);
    }
  else
    {
      vn_phi_insert (phi, PHI_RESULT (phi));
      VN_INFO (PHI_RESULT (phi))->has_constants = false;
      VN_INFO (PHI_RESULT (phi))->expr = PHI_RESULT (phi);
      changed = set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
    }

  return changed;
}

/* Return true if EXPR contains constants.  */

static bool
expr_has_constants (tree expr)
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case tcc_unary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0));

    case tcc_binary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0))
	|| is_gimple_min_invariant (TREE_OPERAND (expr, 1));
      /* Constants inside reference ops are rarely interesting, but
	 it can take a lot of looking to find them.  */
    case tcc_reference:
    case tcc_declaration:
      return false;
    default:
      return is_gimple_min_invariant (expr);
    }
  return false;
}

/* Replace SSA_NAMES in expr with their value numbers, and return the
   result.
   This is performed in place. */

static tree
valueize_expr (tree expr)
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case tcc_unary:
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
	  && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
	TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
      break;
    case tcc_binary:
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
	  && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
	TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
      if (TREE_CODE (TREE_OPERAND (expr, 1)) == SSA_NAME
	  && SSA_VAL (TREE_OPERAND (expr, 1)) != VN_TOP)
	TREE_OPERAND (expr, 1) = SSA_VAL (TREE_OPERAND (expr, 1));
      break;
    default:
      break;
    }
  return expr;
}

/* Simplify the binary expression RHS, and return the result if
   simplified. */

static tree
simplify_binary_expression (tree stmt, tree rhs)
{
  tree result = NULL_TREE;
  tree op0 = TREE_OPERAND (rhs, 0);
  tree op1 = TREE_OPERAND (rhs, 1);

  /* This will not catch every single case we could combine, but will
     catch those with constants.  The goal here is to simultaneously
     combine constants between expressions, but avoid infinite
     expansion of expressions during simplification.  */
  if (TREE_CODE (op0) == SSA_NAME)
    {
      if (VN_INFO (op0)->has_constants)
	op0 = valueize_expr (VN_INFO (op0)->expr);
      else if (SSA_VAL (op0) != VN_TOP && SSA_VAL (op0) != op0)
	op0 = SSA_VAL (op0);
    }

  if (TREE_CODE (op1) == SSA_NAME)
    {
      if (VN_INFO (op1)->has_constants)
	op1 = valueize_expr (VN_INFO (op1)->expr);
      else if (SSA_VAL (op1) != VN_TOP && SSA_VAL (op1) != op1)
	op1 = SSA_VAL (op1);
    }

  /* Avoid folding if nothing changed.  */
  if (op0 == TREE_OPERAND (rhs, 0)
      && op1 == TREE_OPERAND (rhs, 1))
    return NULL_TREE;

  fold_defer_overflow_warnings ();

  result = fold_binary (TREE_CODE (rhs), TREE_TYPE (rhs), op0, op1);

  fold_undefer_overflow_warnings (result && valid_gimple_expression_p (result),
				  stmt, 0);

  /* Make sure result is not a complex expression consisting
     of operators of operators (IE (a + b) + (a + c))
     Otherwise, we will end up with unbounded expressions if
     fold does anything at all.  */
  if (result && valid_gimple_expression_p (result))
    return result;

  return NULL_TREE;
}

/* Simplify the unary expression RHS, and return the result if
   simplified. */

static tree
simplify_unary_expression (tree rhs)
{
  tree result = NULL_TREE;
  tree op0 = TREE_OPERAND (rhs, 0);

  if (TREE_CODE (op0) != SSA_NAME)
    return NULL_TREE;

  if (VN_INFO (op0)->has_constants)
    op0 = valueize_expr (VN_INFO (op0)->expr);
  else if (TREE_CODE (rhs) == NOP_EXPR
	   || TREE_CODE (rhs) == CONVERT_EXPR
	   || TREE_CODE (rhs) == REALPART_EXPR
	   || TREE_CODE (rhs) == IMAGPART_EXPR)
    {
      /* We want to do tree-combining on conversion-like expressions.
         Make sure we feed only SSA_NAMEs or constants to fold though.  */
      tree tem = valueize_expr (VN_INFO (op0)->expr);
      if (UNARY_CLASS_P (tem)
	  || BINARY_CLASS_P (tem)
	  || TREE_CODE (tem) == SSA_NAME
	  || is_gimple_min_invariant (tem))
	op0 = tem;
    }

  /* Avoid folding if nothing changed, but remember the expression.  */
  if (op0 == TREE_OPERAND (rhs, 0))
    return rhs;

  result = fold_unary (TREE_CODE (rhs), TREE_TYPE (rhs), op0);
  if (result)
    {
      STRIP_USELESS_TYPE_CONVERSION (result);
      if (valid_gimple_expression_p (result))
        return result;
    }

  return rhs;
}

/* Try to simplify RHS using equivalences and constant folding.  */

static tree
try_to_simplify (tree stmt, tree rhs)
{
  if (TREE_CODE (rhs) == SSA_NAME)
    {
      if (is_gimple_min_invariant (SSA_VAL (rhs)))
	return SSA_VAL (rhs);
      else if (VN_INFO (rhs)->has_constants)
	return VN_INFO (rhs)->expr;
    }
  else
    {
      switch (TREE_CODE_CLASS (TREE_CODE (rhs)))
	{
	  /* For references, see if we find a result for the lookup,
	     and use it if we do.  */
	case tcc_declaration:
	  /* Pull out any truly constant values.  */
	  if (TREE_READONLY (rhs)
	      && TREE_STATIC (rhs)
	      && DECL_INITIAL (rhs)
	      && valid_gimple_expression_p (DECL_INITIAL (rhs)))
	    return DECL_INITIAL (rhs);

	    /* Fallthrough. */
	case tcc_reference:
	  {
	    tree result = vn_reference_lookup (rhs,
					       shared_vuses_from_stmt (stmt));
	    if (result)
	      return result;
	  }
	  /* Fallthrough for some codes.  */
	  if (!(TREE_CODE (rhs) == REALPART_EXPR
	        || TREE_CODE (rhs) == IMAGPART_EXPR))
	    break;
	  /* We could do a little more with unary ops, if they expand
	     into binary ops, but it's debatable whether it is worth it. */
	case tcc_unary:
	  return simplify_unary_expression (rhs);
	  break;
	case tcc_comparison:
	case tcc_binary:
	  return simplify_binary_expression (stmt, rhs);
	  break;
	default:
	  break;
	}
    }
  return rhs;
}

/* Visit and value number USE, return true if the value number
   changed. */

static bool
visit_use (tree use)
{
  bool changed = false;
  tree stmt = SSA_NAME_DEF_STMT (use);
  stmt_ann_t ann;

  VN_INFO (use)->use_processed = true;

  gcc_assert (!SSA_NAME_IN_FREE_LIST (use));
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Value numbering ");
      print_generic_expr (dump_file, use, 0);
      fprintf (dump_file, " stmt = ");
      print_generic_stmt (dump_file, stmt, 0);
    }

  /* RETURN_EXPR may have an embedded MODIFY_STMT.  */
  if (TREE_CODE (stmt) == RETURN_EXPR
      && TREE_CODE (TREE_OPERAND (stmt, 0)) == GIMPLE_MODIFY_STMT)
    stmt = TREE_OPERAND (stmt, 0);

  ann = stmt_ann (stmt);

  /* Handle uninitialized uses.  */
  if (IS_EMPTY_STMT (stmt))
    {
      changed = set_ssa_val_to (use, use);
    }
  else
    {
      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  changed = visit_phi (stmt);
	}
      else if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT
	       || (ann && ann->has_volatile_ops)
	       || tree_could_throw_p (stmt))
	{
	  changed = defs_to_varying (stmt);
	}
      else
	{
	  tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
	  tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
	  tree simplified;

	  STRIP_USELESS_TYPE_CONVERSION (rhs);

	  /* Shortcut for copies. Simplifying copies is pointless,
	     since we copy the expression and value they represent.  */
	  if (TREE_CODE (rhs) == SSA_NAME && TREE_CODE (lhs) == SSA_NAME)
	    {
	      changed = visit_copy (lhs, rhs);
	      goto done;
	    }
	  simplified = try_to_simplify (stmt, rhs);
	  if (simplified && simplified != rhs)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "RHS ");
		  print_generic_expr (dump_file, rhs, 0);
		  fprintf (dump_file, " simplified to ");
		  print_generic_expr (dump_file, simplified, 0);
		  if (TREE_CODE (lhs) == SSA_NAME)
		    fprintf (dump_file, " has constants %d\n",
			     VN_INFO (lhs)->has_constants);
		  else
		    fprintf (dump_file, "\n");

		}
	    }
	  /* Setting value numbers to constants will occasionally
	     screw up phi congruence because constants are not
	     uniquely associated with a single ssa name that can be
	     looked up.  */
	  if (simplified && is_gimple_min_invariant (simplified)
	      && TREE_CODE (lhs) == SSA_NAME
	      && simplified != rhs)
	    {
	      VN_INFO (lhs)->expr = simplified;
	      VN_INFO (lhs)->has_constants = true;
	      changed = set_ssa_val_to (lhs, simplified);
	      goto done;
	    }
	  else if (simplified && TREE_CODE (simplified) == SSA_NAME
		   && TREE_CODE (lhs) == SSA_NAME)
	    {
	      changed = visit_copy (lhs, simplified);
	      goto done;
	    }
	  else if (simplified)
	    {
	      if (TREE_CODE (lhs) == SSA_NAME)
		{
		  VN_INFO (lhs)->has_constants = expr_has_constants (simplified);
		  /* We have to unshare the expression or else
		     valuizing may change the IL stream.  */
		  VN_INFO (lhs)->expr = unshare_expr (simplified);
		}
	      rhs = simplified;
	    }
	  else if (expr_has_constants (rhs) && TREE_CODE (lhs) == SSA_NAME)
	    {
	      VN_INFO (lhs)->has_constants = true;
	      VN_INFO (lhs)->expr = unshare_expr (rhs);
	    }
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      /* We reset expr and constantness here because we may
		 have been value numbering optimistically, and
		 iterating. They may become non-constant in this case,
		 even if they were optimistically constant. */

	      VN_INFO (lhs)->has_constants = false;
	      VN_INFO (lhs)->expr = lhs;
	    }

	  if (TREE_CODE (lhs) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
	    changed = defs_to_varying (stmt);
	  else if (REFERENCE_CLASS_P (lhs) || DECL_P (lhs))
	    {
	      changed = visit_reference_op_store (lhs, rhs, stmt);
	    }
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      if (is_gimple_min_invariant (rhs))
		{
		  VN_INFO (lhs)->has_constants = true;
		  VN_INFO (lhs)->expr = rhs;
		  changed = set_ssa_val_to (lhs, rhs);
		}
	      else
		{
		  switch (TREE_CODE_CLASS (TREE_CODE (rhs)))
		    {
		    case tcc_unary:
		      changed = visit_unary_op (lhs, rhs);
		      break;
		    case tcc_binary:
		      changed = visit_binary_op (lhs, rhs);
		      break;
		      /* If tcc_vl_expr ever encompasses more than
			 CALL_EXPR, this will need to be changed.  */
		    case tcc_vl_exp:
		      if (call_expr_flags (rhs)  & (ECF_PURE | ECF_CONST))
			changed = visit_reference_op_load (lhs, rhs, stmt);
		      else
			changed = defs_to_varying (stmt);
		      break;
		    case tcc_declaration:
		    case tcc_reference:
		      changed = visit_reference_op_load (lhs, rhs, stmt);
		      break;
		    case tcc_expression:
		      if (TREE_CODE (rhs) == ADDR_EXPR)
			{
			  changed = visit_unary_op (lhs, rhs);
			  goto done;
			}
		      /* Fallthrough.  */
		    default:
		      changed = defs_to_varying (stmt);
		      break;
		    }
		}
	    }
	  else
	    changed = defs_to_varying (stmt);
	}
    }
 done:
  return changed;
}

/* Compare two operands by reverse postorder index */

static int
compare_ops (const void *pa, const void *pb)
{
  const tree opa = *((const tree *)pa);
  const tree opb = *((const tree *)pb);
  tree opstmta = SSA_NAME_DEF_STMT (opa);
  tree opstmtb = SSA_NAME_DEF_STMT (opb);
  basic_block bba;
  basic_block bbb;

  if (IS_EMPTY_STMT (opstmta) && IS_EMPTY_STMT (opstmtb))
    return 0;
  else if (IS_EMPTY_STMT (opstmta))
    return -1;
  else if (IS_EMPTY_STMT (opstmtb))
    return 1;

  bba = bb_for_stmt (opstmta);
  bbb = bb_for_stmt (opstmtb);

  if (!bba && !bbb)
    return 0;
  else if (!bba)
    return -1;
  else if (!bbb)
    return 1;

  if (bba == bbb)
    {
      if (TREE_CODE (opstmta) == PHI_NODE && TREE_CODE (opstmtb) == PHI_NODE)
	return 0;
      else if (TREE_CODE (opstmta) == PHI_NODE)
	return -1;
      else if (TREE_CODE (opstmtb) == PHI_NODE)
	return 1;
      return stmt_ann (opstmta)->uid - stmt_ann (opstmtb)->uid;
    }
  return rpo_numbers[bba->index] - rpo_numbers[bbb->index];
}

/* Sort an array containing members of a strongly connected component
   SCC so that the members are ordered by RPO number.
   This means that when the sort is complete, iterating through the
   array will give you the members in RPO order.  */

static void
sort_scc (VEC (tree, heap) *scc)
{
  qsort (VEC_address (tree, scc),
	 VEC_length (tree, scc),
	 sizeof (tree),
	 compare_ops);
}

/* Process a strongly connected component in the SSA graph.  */

static void
process_scc (VEC (tree, heap) *scc)
{
  /* If the SCC has a single member, just visit it.  */

  if (VEC_length (tree, scc) == 1)
    {
      tree use = VEC_index (tree, scc, 0);
      if (!VN_INFO (use)->use_processed)
	visit_use (use);
    }
  else
    {
      tree var;
      unsigned int i;
      unsigned int iterations = 0;
      bool changed = true;

      /* Iterate over the SCC with the optimistic table until it stops
	 changing.  */
      current_info = optimistic_info;
      while (changed)
	{
	  changed = false;
	  iterations++;
	  htab_empty (optimistic_info->unary);
	  htab_empty (optimistic_info->binary);
	  htab_empty (optimistic_info->phis);
	  htab_empty (optimistic_info->references);
	  empty_alloc_pool (optimistic_info->unary_op_pool);
	  empty_alloc_pool (optimistic_info->binary_op_pool);
	  empty_alloc_pool (optimistic_info->phis_pool);
	  empty_alloc_pool (optimistic_info->references_pool);
	  for (i = 0; VEC_iterate (tree, scc, i, var); i++)
	    changed |= visit_use (var);
	}

      if (dump_file && (dump_flags & TDF_STATS))
	fprintf (dump_file, "Processing SCC required %d iterations\n",
		 iterations);

      /* Finally, visit the SCC once using the valid table.  */
      current_info = valid_info;
      for (i = 0; VEC_iterate (tree, scc, i, var); i++)
	visit_use (var);
    }
}

/* Depth first search on NAME to discover and process SCC's in the SSA
   graph.
   Execution of this algorithm relies on the fact that the SCC's are
   popped off the stack in topological order.
   Returns true if successful, false if we stopped processing SCC's due
   to ressource constraints.  */

static bool
DFS (tree name)
{
  ssa_op_iter iter;
  use_operand_p usep;
  tree defstmt;

  /* SCC info */
  VN_INFO (name)->dfsnum = next_dfs_num++;
  VN_INFO (name)->visited = true;
  VN_INFO (name)->low = VN_INFO (name)->dfsnum;

  VEC_safe_push (tree, heap, sccstack, name);
  VN_INFO (name)->on_sccstack = true;
  defstmt = SSA_NAME_DEF_STMT (name);

  /* Recursively DFS on our operands, looking for SCC's.  */
  if (!IS_EMPTY_STMT (defstmt))
    {
      FOR_EACH_PHI_OR_STMT_USE (usep, SSA_NAME_DEF_STMT (name), iter,
				SSA_OP_ALL_USES)
	{
	  tree use = USE_FROM_PTR (usep);

	  /* Since we handle phi nodes, we will sometimes get
	     invariants in the use expression.  */
	  if (TREE_CODE (use) != SSA_NAME)
	    continue;

	  if (! (VN_INFO (use)->visited))
	    {
	      if (!DFS (use))
		return false;
	      VN_INFO (name)->low = MIN (VN_INFO (name)->low,
					 VN_INFO (use)->low);
	    }
	  if (VN_INFO (use)->dfsnum < VN_INFO (name)->dfsnum
	      && VN_INFO (use)->on_sccstack)
	    {
	      VN_INFO (name)->low = MIN (VN_INFO (use)->dfsnum,
					 VN_INFO (name)->low);
	    }
	}
    }

  /* See if we found an SCC.  */
  if (VN_INFO (name)->low == VN_INFO (name)->dfsnum)
    {
      VEC (tree, heap) *scc = NULL;
      tree x;

      /* Found an SCC, pop the components off the SCC stack and
	 process them.  */
      do
	{
	  x = VEC_pop (tree, sccstack);

	  VN_INFO (x)->on_sccstack = false;
	  VEC_safe_push (tree, heap, scc, x);
	} while (x != name);

      /* Bail out of SCCVN in case a SCC turns out to be incredibly large.  */
      if (VEC_length (tree, scc)
	    > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE))
	{
	  if (dump_file)
	    fprintf (dump_file, "WARNING: Giving up with SCCVN due to "
		     "SCC size %u exceeding %u\n", VEC_length (tree, scc),
		     (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE));
	  return false;
	}

      if (VEC_length (tree, scc) > 1)
	sort_scc (scc);

      if (dump_file && (dump_flags & TDF_DETAILS))
	print_scc (dump_file, scc);

      process_scc (scc);

      VEC_free (tree, heap, scc);
    }

  return true;
}

/* Allocate a value number table.  */

static void
allocate_vn_table (vn_tables_t table)
{
  table->phis = htab_create (23, vn_phi_hash, vn_phi_eq, free_phi);
  table->unary = htab_create (23, vn_unary_op_hash, vn_unary_op_eq, NULL);
  table->binary = htab_create (23, vn_binary_op_hash, vn_binary_op_eq, NULL);
  table->references = htab_create (23, vn_reference_hash, vn_reference_eq,
				   free_reference);

  table->unary_op_pool = create_alloc_pool ("VN unary operations",
					    sizeof (struct vn_unary_op_s),
					    30);
  table->binary_op_pool = create_alloc_pool ("VN binary operations",
					     sizeof (struct vn_binary_op_s),
					     30);
  table->phis_pool = create_alloc_pool ("VN phis",
					sizeof (struct vn_phi_s),
					30);
  table->references_pool = create_alloc_pool ("VN references",
					      sizeof (struct vn_reference_s),
					      30);
}

/* Free a value number table.  */

static void
free_vn_table (vn_tables_t table)
{
  htab_delete (table->phis);
  htab_delete (table->unary);
  htab_delete (table->binary);
  htab_delete (table->references);
  free_alloc_pool (table->unary_op_pool);
  free_alloc_pool (table->binary_op_pool);
  free_alloc_pool (table->phis_pool);
  free_alloc_pool (table->references_pool);
}

static void
init_scc_vn (void)
{
  size_t i;
  int j;
  int *rpo_numbers_temp;
  basic_block bb;
  size_t id = 0;

  calculate_dominance_info (CDI_DOMINATORS);
  sccstack = NULL;
  next_dfs_num = 1;

  vn_ssa_aux_table = VEC_alloc (vn_ssa_aux_t, heap, num_ssa_names + 1);
  /* VEC_alloc doesn't actually grow it to the right size, it just
     preallocates the space to do so.  */
  VEC_safe_grow (vn_ssa_aux_t, heap, vn_ssa_aux_table, num_ssa_names + 1);
  shared_lookup_phiargs = NULL;
  shared_lookup_vops = NULL;
  shared_lookup_references = NULL;
  rpo_numbers = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  rpo_numbers_temp = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  pre_and_rev_post_order_compute (NULL, rpo_numbers_temp, false);

  /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
     the i'th block in RPO order is bb.  We want to map bb's to RPO
     numbers, so we need to rearrange this array.  */
  for (j = 0; j < n_basic_blocks - NUM_FIXED_BLOCKS; j++)
    rpo_numbers[rpo_numbers_temp[j]] = j;

  free (rpo_numbers_temp);

  VN_TOP = create_tmp_var_raw (void_type_node, "vn_top");

  /* Create the VN_INFO structures, and initialize value numbers to
     TOP.  */
  for (i = 0; i < num_ssa_names; i++)
    {
      tree name = ssa_name (i);
      if (name)
	{
	  VN_INFO_GET (name)->valnum = VN_TOP;
	  VN_INFO (name)->expr = name;
	}
    }

  FOR_ALL_BB (bb)
    {
      block_stmt_iterator bsi;
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt = bsi_stmt (bsi);
	  stmt_ann (stmt)->uid = id++;
	}
    }

  /* Create the valid and optimistic value numbering tables.  */
  valid_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (valid_info);
  optimistic_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (optimistic_info);
  pre_info = NULL;
}

void
switch_to_PRE_table (void)
{
  pre_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (pre_info);
  current_info = pre_info;
}

void
free_scc_vn (void)
{
  size_t i;

  VEC_free (tree, heap, shared_lookup_phiargs);
  VEC_free (tree, gc, shared_lookup_vops);
  VEC_free (vn_reference_op_s, heap, shared_lookup_references);
  XDELETEVEC (rpo_numbers);
  for (i = 0; i < num_ssa_names; i++)
    {
      tree name = ssa_name (i);
      if (name)
	{
	  XDELETE (VN_INFO (name));
	  if (SSA_NAME_VALUE (name) &&
	      TREE_CODE (SSA_NAME_VALUE (name)) == VALUE_HANDLE)
	    SSA_NAME_VALUE (name) = NULL;
	}
    }

  VEC_free (vn_ssa_aux_t, heap, vn_ssa_aux_table);
  VEC_free (tree, heap, sccstack);
  free_vn_table (valid_info);
  XDELETE (valid_info);
  free_vn_table (optimistic_info);
  XDELETE (optimistic_info);
  if (pre_info)
    {
      free_vn_table (pre_info);
      XDELETE (pre_info);
    }
}

/* Do SCCVN.  Returns true if it finished, false if we bailed out
   due to ressource constraints.  */

bool
run_scc_vn (void)
{
  size_t i;
  tree param;

  init_scc_vn ();
  current_info = valid_info;

  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
       param = TREE_CHAIN (param))
    {
      if (gimple_default_def (cfun, param) != NULL)
	{
	  tree def = gimple_default_def (cfun, param);
	  SSA_VAL (def) = def;
	}
    }

  for (i = num_ssa_names - 1; i > 0; i--)
    {
      tree name = ssa_name (i);
      if (name
	  && VN_INFO (name)->visited == false
	  && !has_zero_uses (name))
	if (!DFS (name))
	  {
	    free_scc_vn ();
	    return false;
	  }
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Value numbers:\n");
      for (i = 0; i < num_ssa_names; i++)
	{
	  tree name = ssa_name (i);
	  if (name && VN_INFO (name)->visited
	      && (SSA_VAL (name) != name
		  || is_gimple_min_invariant (VN_INFO (name)->expr)))
	    {
	      print_generic_expr (dump_file, name, 0);
	      fprintf (dump_file, " = ");
	      if (is_gimple_min_invariant (VN_INFO (name)->expr))
		print_generic_expr (dump_file, VN_INFO (name)->expr, 0);
	      else
		print_generic_expr (dump_file, SSA_VAL (name), 0);
	      fprintf (dump_file, "\n");
	    }
	}
    }

  return true;
}