1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
/* SSA Jump Threading
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Jeff Law <law@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "output.h"
#include "function.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
#include "params.h"
/* To avoid code explosion due to jump threading, we limit the
number of statements we are going to copy. This variable
holds the number of statements currently seen that we'll have
to copy as part of the jump threading process. */
static int stmt_count;
/* Array to record value-handles per SSA_NAME. */
VEC(tree,heap) *ssa_name_values;
/* Set the value for the SSA name NAME to VALUE. */
void
set_ssa_name_value (tree name, tree value)
{
if (SSA_NAME_VERSION (name) >= VEC_length (tree, ssa_name_values))
VEC_safe_grow_cleared (tree, heap, ssa_name_values,
SSA_NAME_VERSION (name) + 1);
VEC_replace (tree, ssa_name_values, SSA_NAME_VERSION (name), value);
}
/* Initialize the per SSA_NAME value-handles array. Returns it. */
void
threadedge_initialize_values (void)
{
gcc_assert (ssa_name_values == NULL);
ssa_name_values = VEC_alloc(tree, heap, num_ssa_names);
}
/* Free the per SSA_NAME value-handle array. */
void
threadedge_finalize_values (void)
{
VEC_free(tree, heap, ssa_name_values);
}
/* Return TRUE if we may be able to thread an incoming edge into
BB to an outgoing edge from BB. Return FALSE otherwise. */
bool
potentially_threadable_block (basic_block bb)
{
gimple_stmt_iterator gsi;
/* If BB has a single successor or a single predecessor, then
there is no threading opportunity. */
if (single_succ_p (bb) || single_pred_p (bb))
return false;
/* If BB does not end with a conditional, switch or computed goto,
then there is no threading opportunity. */
gsi = gsi_last_bb (bb);
if (gsi_end_p (gsi)
|| ! gsi_stmt (gsi)
|| (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
return false;
return true;
}
/* Return the LHS of any ASSERT_EXPR where OP appears as the first
argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
BB. If no such ASSERT_EXPR is found, return OP. */
static tree
lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
{
imm_use_iterator imm_iter;
gimple use_stmt;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
{
use_stmt = USE_STMT (use_p);
if (use_stmt != stmt
&& gimple_assign_single_p (use_stmt)
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
&& TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
&& dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
{
return gimple_assign_lhs (use_stmt);
}
}
return op;
}
/* We record temporary equivalences created by PHI nodes or
statements within the target block. Doing so allows us to
identify more jump threading opportunities, even in blocks
with side effects.
We keep track of those temporary equivalences in a stack
structure so that we can unwind them when we're done processing
a particular edge. This routine handles unwinding the data
structures. */
static void
remove_temporary_equivalences (VEC(tree, heap) **stack)
{
while (VEC_length (tree, *stack) > 0)
{
tree prev_value, dest;
dest = VEC_pop (tree, *stack);
/* A NULL value indicates we should stop unwinding, otherwise
pop off the next entry as they're recorded in pairs. */
if (dest == NULL)
break;
prev_value = VEC_pop (tree, *stack);
set_ssa_name_value (dest, prev_value);
}
}
/* Record a temporary equivalence, saving enough information so that
we can restore the state of recorded equivalences when we're
done processing the current edge. */
static void
record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
{
tree prev_x = SSA_NAME_VALUE (x);
if (TREE_CODE (y) == SSA_NAME)
{
tree tmp = SSA_NAME_VALUE (y);
y = tmp ? tmp : y;
}
set_ssa_name_value (x, y);
VEC_reserve (tree, heap, *stack, 2);
VEC_quick_push (tree, *stack, prev_x);
VEC_quick_push (tree, *stack, x);
}
/* Record temporary equivalences created by PHIs at the target of the
edge E. Record unwind information for the equivalences onto STACK.
If a PHI which prevents threading is encountered, then return FALSE
indicating we should not thread this edge, else return TRUE. */
static bool
record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
{
gimple_stmt_iterator gsi;
/* Each PHI creates a temporary equivalence, record them.
These are context sensitive equivalences and will be removed
later. */
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
tree dst = gimple_phi_result (phi);
/* If the desired argument is not the same as this PHI's result
and it is set by a PHI in E->dest, then we can not thread
through E->dest. */
if (src != dst
&& TREE_CODE (src) == SSA_NAME
&& gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
&& gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
return false;
/* We consider any non-virtual PHI as a statement since it
count result in a constant assignment or copy operation. */
if (is_gimple_reg (dst))
stmt_count++;
record_temporary_equivalence (dst, src, stack);
}
return true;
}
/* Fold the RHS of an assignment statement and return it as a tree.
May return NULL_TREE if no simplification is possible. */
static tree
fold_assignment_stmt (gimple stmt)
{
enum tree_code subcode = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (subcode))
{
case GIMPLE_SINGLE_RHS:
return fold (gimple_assign_rhs1 (stmt));
case GIMPLE_UNARY_RHS:
{
tree lhs = gimple_assign_lhs (stmt);
tree op0 = gimple_assign_rhs1 (stmt);
return fold_unary (subcode, TREE_TYPE (lhs), op0);
}
case GIMPLE_BINARY_RHS:
{
tree lhs = gimple_assign_lhs (stmt);
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
}
case GIMPLE_TERNARY_RHS:
{
tree lhs = gimple_assign_lhs (stmt);
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
tree op2 = gimple_assign_rhs3 (stmt);
/* Sadly, we have to handle conditional assignments specially
here, because fold expects all the operands of an expression
to be folded before the expression itself is folded, but we
can't just substitute the folded condition here. */
if (gimple_assign_rhs_code (stmt) == COND_EXPR)
op0 = fold (op0);
return fold_ternary (subcode, TREE_TYPE (lhs), op0, op1, op2);
}
default:
gcc_unreachable ();
}
}
/* Try to simplify each statement in E->dest, ultimately leading to
a simplification of the COND_EXPR at the end of E->dest.
Record unwind information for temporary equivalences onto STACK.
Use SIMPLIFY (a pointer to a callback function) to further simplify
statements using pass specific information.
We might consider marking just those statements which ultimately
feed the COND_EXPR. It's not clear if the overhead of bookkeeping
would be recovered by trying to simplify fewer statements.
If we are able to simplify a statement into the form
SSA_NAME = (SSA_NAME | gimple invariant), then we can record
a context sensitive equivalence which may help us simplify
later statements in E->dest. */
static gimple
record_temporary_equivalences_from_stmts_at_dest (edge e,
VEC(tree, heap) **stack,
tree (*simplify) (gimple,
gimple))
{
gimple stmt = NULL;
gimple_stmt_iterator gsi;
int max_stmt_count;
max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
/* Walk through each statement in the block recording equivalences
we discover. Note any equivalences we discover are context
sensitive (ie, are dependent on traversing E) and must be unwound
when we're finished processing E. */
for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
tree cached_lhs = NULL;
stmt = gsi_stmt (gsi);
/* Ignore empty statements and labels. */
if (gimple_code (stmt) == GIMPLE_NOP
|| gimple_code (stmt) == GIMPLE_LABEL
|| is_gimple_debug (stmt))
continue;
/* If the statement has volatile operands, then we assume we
can not thread through this block. This is overly
conservative in some ways. */
if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
return NULL;
/* If duplicating this block is going to cause too much code
expansion, then do not thread through this block. */
stmt_count++;
if (stmt_count > max_stmt_count)
return NULL;
/* If this is not a statement that sets an SSA_NAME to a new
value, then do not try to simplify this statement as it will
not simplify in any way that is helpful for jump threading. */
if ((gimple_code (stmt) != GIMPLE_ASSIGN
|| TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
&& (gimple_code (stmt) != GIMPLE_CALL
|| gimple_call_lhs (stmt) == NULL_TREE
|| TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
continue;
/* The result of __builtin_object_size depends on all the arguments
of a phi node. Temporarily using only one edge produces invalid
results. For example
if (x < 6)
goto l;
else
goto l;
l:
r = PHI <&w[2].a[1](2), &a.a[6](3)>
__builtin_object_size (r, 0)
The result of __builtin_object_size is defined to be the maximum of
remaining bytes. If we use only one edge on the phi, the result will
change to be the remaining bytes for the corresponding phi argument.
Similarly for __builtin_constant_p:
r = PHI <1(2), 2(3)>
__builtin_constant_p (r)
Both PHI arguments are constant, but x ? 1 : 2 is still not
constant. */
if (is_gimple_call (stmt))
{
tree fndecl = gimple_call_fndecl (stmt);
if (fndecl
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
continue;
}
/* At this point we have a statement which assigns an RHS to an
SSA_VAR on the LHS. We want to try and simplify this statement
to expose more context sensitive equivalences which in turn may
allow us to simplify the condition at the end of the loop.
Handle simple copy operations as well as implied copies from
ASSERT_EXPRs. */
if (gimple_assign_single_p (stmt)
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
cached_lhs = gimple_assign_rhs1 (stmt);
else if (gimple_assign_single_p (stmt)
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
else
{
/* A statement that is not a trivial copy or ASSERT_EXPR.
We're going to temporarily copy propagate the operands
and see if that allows us to simplify this statement. */
tree *copy;
ssa_op_iter iter;
use_operand_p use_p;
unsigned int num, i = 0;
num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
copy = XCNEWVEC (tree, num);
/* Make a copy of the uses & vuses into USES_COPY, then cprop into
the operands. */
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
{
tree tmp = NULL;
tree use = USE_FROM_PTR (use_p);
copy[i++] = use;
if (TREE_CODE (use) == SSA_NAME)
tmp = SSA_NAME_VALUE (use);
if (tmp)
SET_USE (use_p, tmp);
}
/* Try to fold/lookup the new expression. Inserting the
expression into the hash table is unlikely to help. */
if (is_gimple_call (stmt))
cached_lhs = fold_call_stmt (stmt, false);
else
cached_lhs = fold_assignment_stmt (stmt);
if (!cached_lhs
|| (TREE_CODE (cached_lhs) != SSA_NAME
&& !is_gimple_min_invariant (cached_lhs)))
cached_lhs = (*simplify) (stmt, stmt);
/* Restore the statement's original uses/defs. */
i = 0;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
SET_USE (use_p, copy[i++]);
free (copy);
}
/* Record the context sensitive equivalence if we were able
to simplify this statement. */
if (cached_lhs
&& (TREE_CODE (cached_lhs) == SSA_NAME
|| is_gimple_min_invariant (cached_lhs)))
record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
}
return stmt;
}
/* Simplify the control statement at the end of the block E->dest.
To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
is available to use/clobber in DUMMY_COND.
Use SIMPLIFY (a pointer to a callback function) to further simplify
a condition using pass specific information.
Return the simplified condition or NULL if simplification could
not be performed. */
static tree
simplify_control_stmt_condition (edge e,
gimple stmt,
gimple dummy_cond,
tree (*simplify) (gimple, gimple),
bool handle_dominating_asserts)
{
tree cond, cached_lhs;
enum gimple_code code = gimple_code (stmt);
/* For comparisons, we have to update both operands, then try
to simplify the comparison. */
if (code == GIMPLE_COND)
{
tree op0, op1;
enum tree_code cond_code;
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
cond_code = gimple_cond_code (stmt);
/* Get the current value of both operands. */
if (TREE_CODE (op0) == SSA_NAME)
{
tree tmp = SSA_NAME_VALUE (op0);
if (tmp)
op0 = tmp;
}
if (TREE_CODE (op1) == SSA_NAME)
{
tree tmp = SSA_NAME_VALUE (op1);
if (tmp)
op1 = tmp;
}
if (handle_dominating_asserts)
{
/* Now see if the operand was consumed by an ASSERT_EXPR
which dominates E->src. If so, we want to replace the
operand with the LHS of the ASSERT_EXPR. */
if (TREE_CODE (op0) == SSA_NAME)
op0 = lhs_of_dominating_assert (op0, e->src, stmt);
if (TREE_CODE (op1) == SSA_NAME)
op1 = lhs_of_dominating_assert (op1, e->src, stmt);
}
/* We may need to canonicalize the comparison. For
example, op0 might be a constant while op1 is an
SSA_NAME. Failure to canonicalize will cause us to
miss threading opportunities. */
if (tree_swap_operands_p (op0, op1, false))
{
tree tmp;
cond_code = swap_tree_comparison (cond_code);
tmp = op0;
op0 = op1;
op1 = tmp;
}
/* Stuff the operator and operands into our dummy conditional
expression. */
gimple_cond_set_code (dummy_cond, cond_code);
gimple_cond_set_lhs (dummy_cond, op0);
gimple_cond_set_rhs (dummy_cond, op1);
/* We absolutely do not care about any type conversions
we only care about a zero/nonzero value. */
fold_defer_overflow_warnings ();
cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
if (cached_lhs)
while (CONVERT_EXPR_P (cached_lhs))
cached_lhs = TREE_OPERAND (cached_lhs, 0);
fold_undefer_overflow_warnings ((cached_lhs
&& is_gimple_min_invariant (cached_lhs)),
stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
/* If we have not simplified the condition down to an invariant,
then use the pass specific callback to simplify the condition. */
if (!cached_lhs
|| !is_gimple_min_invariant (cached_lhs))
cached_lhs = (*simplify) (dummy_cond, stmt);
return cached_lhs;
}
if (code == GIMPLE_SWITCH)
cond = gimple_switch_index (stmt);
else if (code == GIMPLE_GOTO)
cond = gimple_goto_dest (stmt);
else
gcc_unreachable ();
/* We can have conditionals which just test the state of a variable
rather than use a relational operator. These are simpler to handle. */
if (TREE_CODE (cond) == SSA_NAME)
{
cached_lhs = cond;
/* Get the variable's current value from the equivalence chains.
It is possible to get loops in the SSA_NAME_VALUE chains
(consider threading the backedge of a loop where we have
a loop invariant SSA_NAME used in the condition. */
if (cached_lhs
&& TREE_CODE (cached_lhs) == SSA_NAME
&& SSA_NAME_VALUE (cached_lhs))
cached_lhs = SSA_NAME_VALUE (cached_lhs);
/* If we're dominated by a suitable ASSERT_EXPR, then
update CACHED_LHS appropriately. */
if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
/* If we haven't simplified to an invariant yet, then use the
pass specific callback to try and simplify it further. */
if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
cached_lhs = (*simplify) (stmt, stmt);
}
else
cached_lhs = NULL;
return cached_lhs;
}
/* TAKEN_EDGE represents the an edge taken as a result of jump threading.
See if we can thread around TAKEN_EDGE->dest as well. If so, return
the edge out of TAKEN_EDGE->dest that we can statically compute will be
traversed.
We are much more restrictive as to the contents of TAKEN_EDGE->dest
as the path isolation code in tree-ssa-threadupdate.c isn't prepared
to handle copying intermediate blocks on a threaded path.
Long term a more consistent and structured approach to path isolation
would be a huge help. */
static edge
thread_around_empty_block (edge taken_edge,
gimple dummy_cond,
bool handle_dominating_asserts,
tree (*simplify) (gimple, gimple),
bitmap visited)
{
basic_block bb = taken_edge->dest;
gimple_stmt_iterator gsi;
gimple stmt;
tree cond;
/* This block must have a single predecessor (E->dest). */
if (!single_pred_p (bb))
return NULL;
/* This block must have more than one successor. */
if (single_succ_p (bb))
return NULL;
/* This block can have no PHI nodes. This is overly conservative. */
if (!gsi_end_p (gsi_start_phis (bb)))
return NULL;
/* Skip over DEBUG statements at the start of the block. */
gsi = gsi_start_nondebug_bb (bb);
if (gsi_end_p (gsi))
return NULL;
/* This block can have no statements other than its control altering
statement. This is overly conservative. */
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_COND
&& gimple_code (stmt) != GIMPLE_GOTO
&& gimple_code (stmt) != GIMPLE_SWITCH)
return NULL;
/* Extract and simplify the condition. */
cond = simplify_control_stmt_condition (taken_edge, stmt, dummy_cond,
simplify, handle_dominating_asserts);
/* If the condition can be statically computed and we have not already
visited the destination edge, then add the taken edge to our thread
path. */
if (cond && is_gimple_min_invariant (cond))
{
edge taken_edge = find_taken_edge (bb, cond);
if (bitmap_bit_p (visited, taken_edge->dest->index))
return NULL;
bitmap_set_bit (visited, taken_edge->dest->index);
return taken_edge;
}
return NULL;
}
/* E1 and E2 are edges into the same basic block. Return TRUE if the
PHI arguments associated with those edges are equal or there are no
PHI arguments, otherwise return FALSE. */
static bool
phi_args_equal_on_edges (edge e1, edge e2)
{
gimple_stmt_iterator gsi;
int indx1 = e1->dest_idx;
int indx2 = e2->dest_idx;
for (gsi = gsi_start_phis (e1->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
if (!operand_equal_p (gimple_phi_arg_def (phi, indx1),
gimple_phi_arg_def (phi, indx2), 0))
return false;
}
return true;
}
/* We are exiting E->src, see if E->dest ends with a conditional
jump which has a known value when reached via E.
Special care is necessary if E is a back edge in the CFG as we
may have already recorded equivalences for E->dest into our
various tables, including the result of the conditional at
the end of E->dest. Threading opportunities are severely
limited in that case to avoid short-circuiting the loop
incorrectly.
Note it is quite common for the first block inside a loop to
end with a conditional which is either always true or always
false when reached via the loop backedge. Thus we do not want
to blindly disable threading across a loop backedge.
DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
to avoid allocating memory.
HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
the simplified condition with left-hand sides of ASSERT_EXPRs they are
used in.
STACK is used to undo temporary equivalences created during the walk of
E->dest.
SIMPLIFY is a pass-specific function used to simplify statements. */
void
thread_across_edge (gimple dummy_cond,
edge e,
bool handle_dominating_asserts,
VEC(tree, heap) **stack,
tree (*simplify) (gimple, gimple))
{
gimple stmt;
/* If E is a backedge, then we want to verify that the COND_EXPR,
SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
by any statements in e->dest. If it is affected, then it is not
safe to thread this edge. */
if (e->flags & EDGE_DFS_BACK)
{
ssa_op_iter iter;
use_operand_p use_p;
gimple last = gsi_stmt (gsi_last_bb (e->dest));
FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
{
tree use = USE_FROM_PTR (use_p);
if (TREE_CODE (use) == SSA_NAME
&& gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
&& gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
goto fail;
}
}
stmt_count = 0;
/* PHIs create temporary equivalences. */
if (!record_temporary_equivalences_from_phis (e, stack))
goto fail;
/* Now walk each statement recording any context sensitive
temporary equivalences we can detect. */
stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
if (!stmt)
goto fail;
/* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
will be taken. */
if (gimple_code (stmt) == GIMPLE_COND
|| gimple_code (stmt) == GIMPLE_GOTO
|| gimple_code (stmt) == GIMPLE_SWITCH)
{
tree cond;
/* Extract and simplify the condition. */
cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify,
handle_dominating_asserts);
if (cond && is_gimple_min_invariant (cond))
{
edge taken_edge = find_taken_edge (e->dest, cond);
basic_block dest = (taken_edge ? taken_edge->dest : NULL);
bitmap visited;
edge e2;
if (dest == e->dest)
goto fail;
/* DEST could be null for a computed jump to an absolute
address. If DEST is not null, then see if we can thread
through it as well, this helps capture secondary effects
of threading without having to re-run DOM or VRP. */
if (dest)
{
/* We don't want to thread back to a block we have already
visited. This may be overly conservative. */
visited = BITMAP_ALLOC (NULL);
bitmap_set_bit (visited, dest->index);
bitmap_set_bit (visited, e->dest->index);
do
{
e2 = thread_around_empty_block (taken_edge,
dummy_cond,
handle_dominating_asserts,
simplify,
visited);
if (e2)
taken_edge = e2;
}
while (e2);
BITMAP_FREE (visited);
}
remove_temporary_equivalences (stack);
register_jump_thread (e, taken_edge, NULL);
return;
}
}
/* We were unable to determine what out edge from E->dest is taken. However,
we might still be able to thread through successors of E->dest. This
often occurs when E->dest is a joiner block which then fans back out
based on redundant tests.
If so, we'll copy E->dest and redirect the appropriate predecessor to
the copy. Within the copy of E->dest, we'll thread one or more edges
to points deeper in the CFG.
This is a stopgap until we have a more structured approach to path
isolation. */
{
edge e2, e3, taken_edge;
edge_iterator ei;
bool found = false;
bitmap visited = BITMAP_ALLOC (NULL);
/* Look at each successor of E->dest to see if we can thread through it. */
FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
{
/* Avoid threading to any block we have already visited. */
bitmap_clear (visited);
bitmap_set_bit (visited, taken_edge->dest->index);
bitmap_set_bit (visited, e->dest->index);
/* Record whether or not we were able to thread through a successor
of E->dest. */
found = false;
e3 = taken_edge;
do
{
e2 = thread_around_empty_block (e3,
dummy_cond,
handle_dominating_asserts,
simplify,
visited);
if (e2)
{
e3 = e2;
found = true;
}
}
while (e2);
/* If we were able to thread through a successor of E->dest, then
record the jump threading opportunity. */
if (found)
{
edge tmp;
/* If there is already an edge from the block to be duplicated
(E2->src) to the final target (E3->dest), then make sure that
the PHI args associated with the edges E2 and E3 are the
same. */
tmp = find_edge (taken_edge->src, e3->dest);
if (!tmp || phi_args_equal_on_edges (tmp, e3))
register_jump_thread (e, taken_edge, e3);
}
}
BITMAP_FREE (visited);
}
fail:
remove_temporary_equivalences (stack);
}
|