1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
/* Routines for discovering and unpropagating edge equivalences.
Copyright (C) 2005-2014 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "stor-layout.h"
#include "flags.h"
#include "tm_p.h"
#include "predict.h"
#include "vec.h"
#include "hashtab.h"
#include "hash-set.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
#include "cfganal.h"
#include "basic-block.h"
#include "hash-table.h"
#include "hash-map.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "domwalk.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
/* The basic structure describing an equivalency created by traversing
an edge. Traversing the edge effectively means that we can assume
that we've seen an assignment LHS = RHS. */
struct edge_equivalency
{
tree rhs;
tree lhs;
};
/* This routine finds and records edge equivalences for every edge
in the CFG.
When complete, each edge that creates an equivalency will have an
EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
The caller is responsible for freeing the AUX fields. */
static void
associate_equivalences_with_edges (void)
{
basic_block bb;
/* Walk over each block. If the block ends with a control statement,
then it might create a useful equivalence. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gimple stmt;
/* If the block does not end with a COND_EXPR or SWITCH_EXPR
then there is nothing to do. */
if (gsi_end_p (gsi))
continue;
stmt = gsi_stmt (gsi);
if (!stmt)
continue;
/* A COND_EXPR may create an equivalency in a variety of different
ways. */
if (gimple_code (stmt) == GIMPLE_COND)
{
edge true_edge;
edge false_edge;
struct edge_equivalency *equivalency;
enum tree_code code = gimple_cond_code (stmt);
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
/* Equality tests may create one or two equivalences. */
if (code == EQ_EXPR || code == NE_EXPR)
{
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
/* Special case comparing booleans against a constant as we
know the value of OP0 on both arms of the branch. i.e., we
can record an equivalence for OP0 rather than COND. */
if (TREE_CODE (op0) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
&& is_gimple_min_invariant (op1))
{
if (code == EQ_EXPR)
{
equivalency = XNEW (struct edge_equivalency);
equivalency->lhs = op0;
equivalency->rhs = (integer_zerop (op1)
? boolean_false_node
: boolean_true_node);
true_edge->aux = equivalency;
equivalency = XNEW (struct edge_equivalency);
equivalency->lhs = op0;
equivalency->rhs = (integer_zerop (op1)
? boolean_true_node
: boolean_false_node);
false_edge->aux = equivalency;
}
else
{
equivalency = XNEW (struct edge_equivalency);
equivalency->lhs = op0;
equivalency->rhs = (integer_zerop (op1)
? boolean_true_node
: boolean_false_node);
true_edge->aux = equivalency;
equivalency = XNEW (struct edge_equivalency);
equivalency->lhs = op0;
equivalency->rhs = (integer_zerop (op1)
? boolean_false_node
: boolean_true_node);
false_edge->aux = equivalency;
}
}
else if (TREE_CODE (op0) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
&& (is_gimple_min_invariant (op1)
|| (TREE_CODE (op1) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
{
/* For IEEE, -0.0 == 0.0, so we don't necessarily know
the sign of a variable compared against zero. If
we're honoring signed zeros, then we cannot record
this value unless we know that the value is nonzero. */
if (HONOR_SIGNED_ZEROS (op0)
&& (TREE_CODE (op1) != REAL_CST
|| REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
continue;
equivalency = XNEW (struct edge_equivalency);
equivalency->lhs = op0;
equivalency->rhs = op1;
if (code == EQ_EXPR)
true_edge->aux = equivalency;
else
false_edge->aux = equivalency;
}
}
/* ??? TRUTH_NOT_EXPR can create an equivalence too. */
}
/* For a SWITCH_EXPR, a case label which represents a single
value and which is the only case label which reaches the
target block creates an equivalence. */
else if (gimple_code (stmt) == GIMPLE_SWITCH)
{
gswitch *switch_stmt = as_a <gswitch *> (stmt);
tree cond = gimple_switch_index (switch_stmt);
if (TREE_CODE (cond) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
{
int i, n_labels = gimple_switch_num_labels (switch_stmt);
tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
/* Walk over the case label vector. Record blocks
which are reached by a single case label which represents
a single value. */
for (i = 0; i < n_labels; i++)
{
tree label = gimple_switch_label (switch_stmt, i);
basic_block bb = label_to_block (CASE_LABEL (label));
if (CASE_HIGH (label)
|| !CASE_LOW (label)
|| info[bb->index])
info[bb->index] = error_mark_node;
else
info[bb->index] = label;
}
/* Now walk over the blocks to determine which ones were
marked as being reached by a useful case label. */
for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
{
tree node = info[i];
if (node != NULL
&& node != error_mark_node)
{
tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
struct edge_equivalency *equivalency;
/* Record an equivalency on the edge from BB to basic
block I. */
equivalency = XNEW (struct edge_equivalency);
equivalency->rhs = x;
equivalency->lhs = cond;
find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
equivalency;
}
}
free (info);
}
}
}
}
/* Translating out of SSA sometimes requires inserting copies and
constant initializations on edges to eliminate PHI nodes.
In some cases those copies and constant initializations are
redundant because the target already has the value on the
RHS of the assignment.
We previously tried to catch these cases after translating
out of SSA form. However, that code often missed cases. Worse
yet, the cases it missed were also often missed by the RTL
optimizers. Thus the resulting code had redundant instructions.
This pass attempts to detect these situations before translating
out of SSA form.
The key concept that this pass is built upon is that these
redundant copies and constant initializations often occur
due to constant/copy propagating equivalences resulting from
COND_EXPRs and SWITCH_EXPRs.
We want to do those propagations as they can sometimes allow
the SSA optimizers to do a better job. However, in the cases
where such propagations do not result in further optimization,
we would like to "undo" the propagation to avoid the redundant
copies and constant initializations.
This pass works by first associating equivalences with edges in
the CFG. For example, the edge leading from a SWITCH_EXPR to
its associated CASE_LABEL will have an equivalency between
SWITCH_COND and the value in the case label.
Once we have found the edge equivalences, we proceed to walk
the CFG in dominator order. As we traverse edges we record
equivalences associated with those edges we traverse.
When we encounter a PHI node, we walk its arguments to see if we
have an equivalence for the PHI argument. If so, then we replace
the argument.
Equivalences are looked up based on their value (think of it as
the RHS of an assignment). A value may be an SSA_NAME or an
invariant. We may have several SSA_NAMEs with the same value,
so with each value we have a list of SSA_NAMEs that have the
same value. */
/* Main structure for recording equivalences into our hash table. */
struct equiv_hash_elt
{
/* The value/key of this entry. */
tree value;
/* List of SSA_NAMEs which have the same value/key. */
vec<tree> equivalences;
};
/* Value to ssa name equivalence hashtable helpers. */
struct val_ssa_equiv_hash_traits : default_hashmap_traits
{
static inline hashval_t hash (tree);
static inline bool equal_keys (tree, tree);
template<typename T> static inline void remove (T &);
};
inline hashval_t
val_ssa_equiv_hash_traits::hash (tree value)
{
return iterative_hash_expr (value, 0);
}
inline bool
val_ssa_equiv_hash_traits::equal_keys (tree value1, tree value2)
{
return operand_equal_p (value1, value2, 0);
}
/* Free an instance of equiv_hash_elt. */
template<typename T>
inline void
val_ssa_equiv_hash_traits::remove (T &elt)
{
elt.m_value.release ();
}
/* Global hash table implementing a mapping from invariant values
to a list of SSA_NAMEs which have the same value. We might be
able to reuse tree-vn for this code. */
static hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> *val_ssa_equiv;
static void uncprop_into_successor_phis (basic_block);
/* Remove the most recently recorded equivalency for VALUE. */
static void
remove_equivalence (tree value)
{
val_ssa_equiv->get (value)->pop ();
}
/* Record EQUIVALENCE = VALUE into our hash table. */
static void
record_equiv (tree value, tree equivalence)
{
val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
}
class uncprop_dom_walker : public dom_walker
{
public:
uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
virtual void before_dom_children (basic_block);
virtual void after_dom_children (basic_block);
private:
/* As we enter each block we record the value for any edge equivalency
leading to this block. If no such edge equivalency exists, then we
record NULL. These equivalences are live until we leave the dominator
subtree rooted at the block where we record the equivalency. */
auto_vec<tree, 2> m_equiv_stack;
};
/* We have finished processing the dominator children of BB, perform
any finalization actions in preparation for leaving this node in
the dominator tree. */
void
uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
{
/* Pop the topmost value off the equiv stack. */
tree value = m_equiv_stack.pop ();
/* If that value was non-null, then pop the topmost equivalency off
its equivalency stack. */
if (value != NULL)
remove_equivalence (value);
}
/* Unpropagate values from PHI nodes in successor blocks of BB. */
static void
uncprop_into_successor_phis (basic_block bb)
{
edge e;
edge_iterator ei;
/* For each successor edge, first temporarily record any equivalence
on that edge. Then unpropagate values in any PHI nodes at the
destination of the edge. Then remove the temporary equivalence. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
gimple_seq phis = phi_nodes (e->dest);
gimple_stmt_iterator gsi;
/* If there are no PHI nodes in this destination, then there is
no sense in recording any equivalences. */
if (gimple_seq_empty_p (phis))
continue;
/* Record any equivalency associated with E. */
if (e->aux)
{
struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
record_equiv (equiv->rhs, equiv->lhs);
}
/* Walk over the PHI nodes, unpropagating values. */
for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree arg = PHI_ARG_DEF (phi, e->dest_idx);
tree res = PHI_RESULT (phi);
/* If the argument is not an invariant and can be potentially
coalesced with the result, then there's no point in
un-propagating the argument. */
if (!is_gimple_min_invariant (arg)
&& gimple_can_coalesce_p (arg, res))
continue;
/* Lookup this argument's value in the hash table. */
vec<tree> *equivalences = val_ssa_equiv->get (arg);
if (equivalences)
{
/* Walk every equivalence with the same value. If we find
one that can potentially coalesce with the PHI rsult,
then replace the value in the argument with its equivalent
SSA_NAME. Use the most recent equivalence as hopefully
that results in shortest lifetimes. */
for (int j = equivalences->length () - 1; j >= 0; j--)
{
tree equiv = (*equivalences)[j];
if (gimple_can_coalesce_p (equiv, res))
{
SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
break;
}
}
}
}
/* If we had an equivalence associated with this edge, remove it. */
if (e->aux)
{
struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
remove_equivalence (equiv->rhs);
}
}
}
/* Ignoring loop backedges, if BB has precisely one incoming edge then
return that edge. Otherwise return NULL. */
static edge
single_incoming_edge_ignoring_loop_edges (basic_block bb)
{
edge retval = NULL;
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
/* A loop back edge can be identified by the destination of
the edge dominating the source of the edge. */
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
continue;
/* If we have already seen a non-loop edge, then we must have
multiple incoming non-loop edges and thus we return NULL. */
if (retval)
return NULL;
/* This is the first non-loop incoming edge we have found. Record
it. */
retval = e;
}
return retval;
}
void
uncprop_dom_walker::before_dom_children (basic_block bb)
{
basic_block parent;
edge e;
bool recorded = false;
/* If this block is dominated by a single incoming edge and that edge
has an equivalency, then record the equivalency and push the
VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
parent = get_immediate_dominator (CDI_DOMINATORS, bb);
if (parent)
{
e = single_incoming_edge_ignoring_loop_edges (bb);
if (e && e->src == parent && e->aux)
{
struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
record_equiv (equiv->rhs, equiv->lhs);
m_equiv_stack.safe_push (equiv->rhs);
recorded = true;
}
}
if (!recorded)
m_equiv_stack.safe_push (NULL_TREE);
uncprop_into_successor_phis (bb);
}
namespace {
const pass_data pass_data_uncprop =
{
GIMPLE_PASS, /* type */
"uncprop", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_SSA_UNCPROP, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_uncprop : public gimple_opt_pass
{
public:
pass_uncprop (gcc::context *ctxt)
: gimple_opt_pass (pass_data_uncprop, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_uncprop (m_ctxt); }
virtual bool gate (function *) { return flag_tree_dom != 0; }
virtual unsigned int execute (function *);
}; // class pass_uncprop
unsigned int
pass_uncprop::execute (function *fun)
{
basic_block bb;
associate_equivalences_with_edges ();
/* Create our global data structures. */
val_ssa_equiv
= new hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> (1024);
/* We're going to do a dominator walk, so ensure that we have
dominance information. */
calculate_dominance_info (CDI_DOMINATORS);
/* Recursively walk the dominator tree undoing unprofitable
constant/copy propagations. */
uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
/* we just need to empty elements out of the hash table, and cleanup the
AUX field on the edges. */
delete val_ssa_equiv;
val_ssa_equiv = NULL;
FOR_EACH_BB_FN (bb, fun)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->aux)
{
free (e->aux);
e->aux = NULL;
}
}
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_uncprop (gcc::context *ctxt)
{
return new pass_uncprop (ctxt);
}
|