1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
|
/* Switch Conversion converts variable initializations based on switch
statements to initializations from a static array.
Copyright (C) 2006, 2008 Free Software Foundation, Inc.
Contributed by Martin Jambor <jamborm@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/*
Switch initialization conversion
The following pass changes simple initializations of scalars in a switch
statement into initializations from a static array. Obviously, the values must
be constant and known at compile time and a default branch must be
provided. For example, the following code:
int a,b;
switch (argc)
{
case 1:
case 2:
a_1 = 8;
b_1 = 6;
break;
case 3:
a_2 = 9;
b_2 = 5;
break;
case 12:
a_3 = 10;
b_3 = 4;
break;
default:
a_4 = 16;
b_4 = 1;
}
a_5 = PHI <a_1, a_2, a_3, a_4>
b_5 = PHI <b_1, b_2, b_3, b_4>
is changed into:
static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
16, 16, 10};
if (((unsigned) argc) - 1 < 11)
{
a_6 = CSWTCH02[argc - 1];
b_6 = CSWTCH01[argc - 1];
}
else
{
a_7 = 16;
b_7 = 1;
}
a_5 = PHI <a_6, a_7>
b_b = PHI <b_6, b_7>
There are further constraints. Specifically, the range of values across all
case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
eight) times the number of the actual switch branches. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <signal.h>
#include "line-map.h"
#include "params.h"
#include "flags.h"
#include "tree.h"
#include "basic-block.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "tree-ssa-operands.h"
#include "output.h"
#include "input.h"
#include "tree-pass.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "timevar.h"
/* The main structure of the pass. */
struct switch_conv_info
{
/* The expression used to decide the switch branch. (It is subsequently used
as the index to the created array.) */
tree index_expr;
/* The following integer constants store the minimum value covered by the
cases. */
tree range_min;
/* The difference between the above two numbers, i.e. The size of the array
that would have to be created by the transformation. */
tree range_size;
/* Basic block that contains the actual SWITCH_EXPR. */
basic_block switch_bb;
/* All branches of the switch statement must have a single successor stored in
the following variable. */
basic_block final_bb;
/* Number of phi nodes in the final bb (that we'll be replacing). */
int phi_count;
/* Array of default values, in the same order as phi nodes. */
tree *default_values;
/* Constructors of new static arrays. */
VEC (constructor_elt, gc) **constructors;
/* Array of ssa names that are initialized with a value from a new static
array. */
tree *target_inbound_names;
/* Array of ssa names that are initialized with the default value if the
switch expression is out of range. */
tree *target_outbound_names;
/* The probability of the default edge in the replaced switch. */
int default_prob;
/* The count of the default edge in the replaced switch. */
gcov_type default_count;
/* Combined count of all other (non-default) edges in the replaced switch. */
gcov_type other_count;
/* The first load statement that loads a temporary from a new static array.
*/
gimple arr_ref_first;
/* The last load statement that loads a temporary from a new static array. */
gimple arr_ref_last;
/* String reason why the case wasn't a good candidate that is written to the
dump file, if there is one. */
const char *reason;
};
/* Global pass info. */
static struct switch_conv_info info;
/* Checks whether the range given by individual case statements of the SWTCH
switch statement isn't too big and whether the number of branches actually
satisfies the size of the new array. */
static bool
check_range (gimple swtch)
{
tree min_case, max_case;
unsigned int branch_num = gimple_switch_num_labels (swtch);
tree range_max;
/* The gimplifier has already sorted the cases by CASE_LOW and ensured there
is a default label which is the last in the vector. */
min_case = gimple_switch_label (swtch, 1);
info.range_min = CASE_LOW (min_case);
gcc_assert (branch_num > 1);
gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);
max_case = gimple_switch_label (swtch, branch_num - 1);
if (CASE_HIGH (max_case) != NULL_TREE)
range_max = CASE_HIGH (max_case);
else
range_max = CASE_LOW (max_case);
gcc_assert (info.range_min);
gcc_assert (range_max);
info.range_size = int_const_binop (MINUS_EXPR, range_max, info.range_min, 0);
gcc_assert (info.range_size);
if (!host_integerp (info.range_size, 1))
{
info.reason = "index range way too large or otherwise unusable.\n";
return false;
}
if ((unsigned HOST_WIDE_INT) tree_low_cst (info.range_size, 1)
> ((unsigned) branch_num * SWITCH_CONVERSION_BRANCH_RATIO))
{
info.reason = "the maximum range-branch ratio exceeded.\n";
return false;
}
return true;
}
/* Checks the given CS switch case whether it is suitable for conversion
(whether all but the default basic blocks are empty and so on). If it is,
adds the case to the branch list along with values for the defined variables
and returns true. Otherwise returns false. */
static bool
check_process_case (tree cs)
{
tree ldecl;
basic_block label_bb, following_bb;
edge e;
ldecl = CASE_LABEL (cs);
label_bb = label_to_block (ldecl);
e = find_edge (info.switch_bb, label_bb);
gcc_assert (e);
if (CASE_LOW (cs) == NULL_TREE)
{
/* Default branch. */
info.default_prob = e->probability;
info.default_count = e->count;
}
else
info.other_count += e->count;
if (!label_bb)
{
info.reason = " Bad case - cs BB label is NULL\n";
return false;
}
if (!single_pred_p (label_bb))
{
if (info.final_bb && info.final_bb != label_bb)
{
info.reason = " Bad case - a non-final BB has two predecessors\n";
return false; /* sth complex going on in this branch */
}
following_bb = label_bb;
}
else
{
if (!empty_block_p (label_bb))
{
info.reason = " Bad case - a non-final BB not empty\n";
return false;
}
e = single_succ_edge (label_bb);
following_bb = single_succ (label_bb);
}
if (!info.final_bb)
info.final_bb = following_bb;
else if (info.final_bb != following_bb)
{
info.reason = " Bad case - different final BB\n";
return false; /* the only successor is not common for all the branches */
}
return true;
}
/* This function checks whether all required values in phi nodes in final_bb
are constants. Required values are those that correspond to a basic block
which is a part of the examined switch statement. It returns true if the
phi nodes are OK, otherwise false. */
static bool
check_final_bb (void)
{
gimple_stmt_iterator gsi;
info.phi_count = 0;
for (gsi = gsi_start_phis (info.final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
unsigned int i;
info.phi_count++;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
basic_block bb = gimple_phi_arg_edge (phi, i)->src;
if (bb == info.switch_bb
|| (single_pred_p (bb) && single_pred (bb) == info.switch_bb))
{
tree reloc, val;
val = gimple_phi_arg_def (phi, i);
if (!is_gimple_ip_invariant (val))
{
info.reason = " Non-invariant value from a case\n";
return false; /* Non-invariant argument. */
}
reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
if ((flag_pic && reloc != null_pointer_node)
|| (!flag_pic && reloc == NULL_TREE))
{
if (reloc)
info.reason
= " Value from a case would need runtime relocations\n";
else
info.reason
= " Value from a case is not a valid initializer\n";
return false;
}
}
}
}
return true;
}
/* The following function allocates default_values, target_{in,out}_names and
constructors arrays. The last one is also populated with pointers to
vectors that will become constructors of new arrays. */
static void
create_temp_arrays (void)
{
int i;
info.default_values = (tree *) xcalloc (info.phi_count, sizeof (tree));
info.constructors = (VEC (constructor_elt, gc) **) xcalloc (info.phi_count,
sizeof (tree));
info.target_inbound_names = (tree *) xcalloc (info.phi_count, sizeof (tree));
info.target_outbound_names = (tree *) xcalloc (info.phi_count,
sizeof (tree));
for (i = 0; i < info.phi_count; i++)
info.constructors[i]
= VEC_alloc (constructor_elt, gc, tree_low_cst (info.range_size, 1) + 1);
}
/* Free the arrays created by create_temp_arrays(). The vectors that are
created by that function are not freed here, however, because they have
already become constructors and must be preserved. */
static void
free_temp_arrays (void)
{
free (info.constructors);
free (info.default_values);
free (info.target_inbound_names);
free (info.target_outbound_names);
}
/* Populate the array of default values in the order of phi nodes.
DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
static void
gather_default_values (tree default_case)
{
gimple_stmt_iterator gsi;
basic_block bb = label_to_block (CASE_LABEL (default_case));
edge e;
int i = 0;
gcc_assert (CASE_LOW (default_case) == NULL_TREE);
if (bb == info.final_bb)
e = find_edge (info.switch_bb, bb);
else
e = single_succ_edge (bb);
for (gsi = gsi_start_phis (info.final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
gcc_assert (val);
info.default_values[i++] = val;
}
}
/* The following function populates the vectors in the constructors array with
future contents of the static arrays. The vectors are populated in the
order of phi nodes. SWTCH is the switch statement being converted. */
static void
build_constructors (gimple swtch)
{
unsigned i, branch_num = gimple_switch_num_labels (swtch);
tree pos = info.range_min;
for (i = 1; i < branch_num; i++)
{
tree cs = gimple_switch_label (swtch, i);
basic_block bb = label_to_block (CASE_LABEL (cs));
edge e;
tree high;
gimple_stmt_iterator gsi;
int j;
if (bb == info.final_bb)
e = find_edge (info.switch_bb, bb);
else
e = single_succ_edge (bb);
gcc_assert (e);
while (tree_int_cst_lt (pos, CASE_LOW (cs)))
{
int k;
for (k = 0; k < info.phi_count; k++)
{
constructor_elt *elt;
elt = VEC_quick_push (constructor_elt,
info.constructors[k], NULL);
elt->index = int_const_binop (MINUS_EXPR, pos,
info.range_min, 0);
elt->value = info.default_values[k];
}
pos = int_const_binop (PLUS_EXPR, pos, integer_one_node, 0);
}
gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
j = 0;
if (CASE_HIGH (cs))
high = CASE_HIGH (cs);
else
high = CASE_LOW (cs);
for (gsi = gsi_start_phis (info.final_bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
tree low = CASE_LOW (cs);
pos = CASE_LOW (cs);
do
{
constructor_elt *elt;
elt = VEC_quick_push (constructor_elt,
info.constructors[j], NULL);
elt->index = int_const_binop (MINUS_EXPR, pos, info.range_min, 0);
elt->value = val;
pos = int_const_binop (PLUS_EXPR, pos, integer_one_node, 0);
} while (!tree_int_cst_lt (high, pos)
&& tree_int_cst_lt (low, pos));
j++;
}
}
}
/* If all values in the constructor vector are the same, return the value.
Otherwise return NULL_TREE. Not supposed to be called for empty
vectors. */
static tree
constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
{
int i, len = VEC_length (constructor_elt, vec);
tree prev = NULL_TREE;
for (i = 0; i < len; i++)
{
constructor_elt *elt = VEC_index (constructor_elt, vec, i);
if (!prev)
prev = elt->value;
else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
return NULL_TREE;
}
return prev;
}
/* Create an appropriate array type and declaration and assemble a static array
variable. Also create a load statement that initializes the variable in
question with a value from the static array. SWTCH is the switch statement
being converted, NUM is the index to arrays of constructors, default values
and target SSA names for this particular array. ARR_INDEX_TYPE is the type
of the index of the new array, PHI is the phi node of the final BB that
corresponds to the value that will be loaded from the created array. TIDX
is an ssa name of a temporary variable holding the index for loads from the
new array. */
static void
build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
tree tidx)
{
tree name, cst;
gimple load;
gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
location_t loc = gimple_location (swtch);
gcc_assert (info.default_values[num]);
name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
info.target_inbound_names[num] = name;
cst = constructor_contains_same_values_p (info.constructors[num]);
if (cst)
load = gimple_build_assign (name, cst);
else
{
tree array_type, ctor, decl, value_type, fetch;
value_type = TREE_TYPE (info.default_values[num]);
array_type = build_array_type (value_type, arr_index_type);
ctor = build_constructor (array_type, info.constructors[num]);
TREE_CONSTANT (ctor) = true;
decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
TREE_STATIC (decl) = 1;
DECL_INITIAL (decl) = ctor;
DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
DECL_ARTIFICIAL (decl) = 1;
TREE_CONSTANT (decl) = 1;
add_referenced_var (decl);
varpool_mark_needed_node (varpool_node (decl));
varpool_finalize_decl (decl);
fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
NULL_TREE);
load = gimple_build_assign (name, fetch);
}
SSA_NAME_DEF_STMT (name) = load;
gsi_insert_before (&gsi, load, GSI_SAME_STMT);
update_stmt (load);
info.arr_ref_last = load;
}
/* Builds and initializes static arrays initialized with values gathered from
the SWTCH switch statement. Also creates statements that load values from
them. */
static void
build_arrays (gimple swtch)
{
tree arr_index_type;
tree tidx, sub, tmp;
gimple stmt;
gimple_stmt_iterator gsi;
int i;
gsi = gsi_for_stmt (swtch);
arr_index_type = build_index_type (info.range_size);
tmp = create_tmp_var (arr_index_type, "csti");
add_referenced_var (tmp);
tidx = make_ssa_name (tmp, NULL);
sub = fold_build2 (MINUS_EXPR, TREE_TYPE (info.index_expr), info.index_expr,
fold_convert (TREE_TYPE (info.index_expr),
info.range_min));
sub = force_gimple_operand_gsi (&gsi, fold_convert (arr_index_type, sub),
false, NULL, true, GSI_SAME_STMT);
stmt = gimple_build_assign (tidx, sub);
SSA_NAME_DEF_STMT (tidx) = stmt;
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
info.arr_ref_first = stmt;
for (gsi = gsi_start_phis (info.final_bb), i = 0;
!gsi_end_p (gsi); gsi_next (&gsi), i++)
build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx);
}
/* Generates and appropriately inserts loads of default values at the position
given by BSI. Returns the last inserted statement. */
static gimple
gen_def_assigns (gimple_stmt_iterator *gsi)
{
int i;
gimple assign = NULL;
for (i = 0; i < info.phi_count; i++)
{
tree name
= make_ssa_name (SSA_NAME_VAR (info.target_inbound_names[i]), NULL);
info.target_outbound_names[i] = name;
assign = gimple_build_assign (name, info.default_values[i]);
SSA_NAME_DEF_STMT (name) = assign;
gsi_insert_before (gsi, assign, GSI_SAME_STMT);
update_stmt (assign);
}
return assign;
}
/* Deletes the unused bbs and edges that now contain the switch statement and
its empty branch bbs. BBD is the now dead BB containing the original switch
statement, FINAL is the last BB of the converted switch statement (in terms
of succession). */
static void
prune_bbs (basic_block bbd, basic_block final)
{
edge_iterator ei;
edge e;
for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
{
basic_block bb;
bb = e->dest;
remove_edge (e);
if (bb != final)
delete_basic_block (bb);
}
delete_basic_block (bbd);
}
/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
from the basic block loading values from an array and E2F from the basic
block loading default values. BBF is the last switch basic block (see the
bbf description in the comment below). */
static void
fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
{
gimple_stmt_iterator gsi;
int i;
for (gsi = gsi_start_phis (bbf), i = 0;
!gsi_end_p (gsi); gsi_next (&gsi), i++)
{
gimple phi = gsi_stmt (gsi);
add_phi_arg (phi, info.target_inbound_names[i], e1f);
add_phi_arg (phi, info.target_outbound_names[i], e2f);
}
}
/* Creates a check whether the switch expression value actually falls into the
range given by all the cases. If it does not, the temporaries are loaded
with default values instead. SWTCH is the switch statement being converted.
bb0 is the bb with the switch statement, however, we'll end it with a
condition instead.
bb1 is the bb to be used when the range check went ok. It is derived from
the switch BB
bb2 is the bb taken when the expression evaluated outside of the range
covered by the created arrays. It is populated by loads of default
values.
bbF is a fall through for both bb1 and bb2 and contains exactly what
originally followed the switch statement.
bbD contains the switch statement (in the end). It is unreachable but we
still need to strip off its edges.
*/
static void
gen_inbound_check (gimple swtch)
{
tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
gimple label1, label2, label3;
tree utype;
tree tmp_u_1, tmp_u_2, tmp_u_var;
tree cast;
gimple cast_assign, minus_assign;
tree ulb, minus;
tree bound;
gimple cond_stmt;
gimple last_assign;
gimple_stmt_iterator gsi;
basic_block bb0, bb1, bb2, bbf, bbd;
edge e01, e02, e21, e1d, e1f, e2f;
gcc_assert (info.default_values);
bb0 = gimple_bb (swtch);
/* Make sure we do not generate arithmetics in a subrange. */
if (TREE_TYPE (TREE_TYPE (info.index_expr)))
utype = unsigned_type_for (TREE_TYPE (TREE_TYPE (info.index_expr)));
else
utype = unsigned_type_for (TREE_TYPE (info.index_expr));
/* (end of) block 0 */
gsi = gsi_for_stmt (info.arr_ref_first);
tmp_u_var = create_tmp_var (utype, "csui");
add_referenced_var (tmp_u_var);
tmp_u_1 = make_ssa_name (tmp_u_var, NULL);
cast = fold_convert (utype, info.index_expr);
cast_assign = gimple_build_assign (tmp_u_1, cast);
SSA_NAME_DEF_STMT (tmp_u_1) = cast_assign;
gsi_insert_before (&gsi, cast_assign, GSI_SAME_STMT);
update_stmt (cast_assign);
ulb = fold_convert (utype, info.range_min);
minus = fold_build2 (MINUS_EXPR, utype, tmp_u_1, ulb);
minus = force_gimple_operand_gsi (&gsi, minus, false, NULL, true,
GSI_SAME_STMT);
tmp_u_2 = make_ssa_name (tmp_u_var, NULL);
minus_assign = gimple_build_assign (tmp_u_2, minus);
SSA_NAME_DEF_STMT (tmp_u_2) = minus_assign;
gsi_insert_before (&gsi, minus_assign, GSI_SAME_STMT);
update_stmt (minus_assign);
bound = fold_convert (utype, info.range_size);
cond_stmt = gimple_build_cond (LE_EXPR, tmp_u_2, bound, NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
update_stmt (cond_stmt);
/* block 2 */
gsi = gsi_for_stmt (info.arr_ref_first);
label2 = gimple_build_label (label_decl2);
gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
last_assign = gen_def_assigns (&gsi);
/* block 1 */
gsi = gsi_for_stmt (info.arr_ref_first);
label1 = gimple_build_label (label_decl1);
gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
/* block F */
gsi = gsi_start_bb (info.final_bb);
label3 = gimple_build_label (label_decl3);
gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
/* cfg fix */
e02 = split_block (bb0, cond_stmt);
bb2 = e02->dest;
e21 = split_block (bb2, last_assign);
bb1 = e21->dest;
remove_edge (e21);
e1d = split_block (bb1, info.arr_ref_last);
bbd = e1d->dest;
remove_edge (e1d);
/* flags and profiles of the edge for in-range values */
e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
e01->probability = REG_BR_PROB_BASE - info.default_prob;
e01->count = info.other_count;
/* flags and profiles of the edge taking care of out-of-range values */
e02->flags &= ~EDGE_FALLTHRU;
e02->flags |= EDGE_FALSE_VALUE;
e02->probability = info.default_prob;
e02->count = info.default_count;
bbf = info.final_bb;
e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
e1f->probability = REG_BR_PROB_BASE;
e1f->count = info.other_count;
e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
e2f->probability = REG_BR_PROB_BASE;
e2f->count = info.default_count;
/* frequencies of the new BBs */
bb1->frequency = EDGE_FREQUENCY (e01);
bb2->frequency = EDGE_FREQUENCY (e02);
bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
prune_bbs (bbd, info.final_bb); /* To keep calc_dfs_tree() in dominance.c
happy. */
fix_phi_nodes (e1f, e2f, bbf);
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
}
/* The following function is invoked on every switch statement (the current one
is given in SWTCH) and runs the individual phases of switch conversion on it
one after another until one fails or the conversion is completed. */
static bool
process_switch (gimple swtch)
{
unsigned int i, branch_num = gimple_switch_num_labels (swtch);
tree index_type;
/* Operand 2 is either NULL_TREE or a vector of cases (stmt.c). */
if (branch_num < 2)
{
info.reason = "switch has no labels\n";
return false;
}
info.final_bb = NULL;
info.switch_bb = gimple_bb (swtch);
info.index_expr = gimple_switch_index (swtch);
index_type = TREE_TYPE (info.index_expr);
info.arr_ref_first = NULL;
info.arr_ref_last = NULL;
info.default_prob = 0;
info.default_count = 0;
info.other_count = 0;
/* An ERROR_MARK occurs for various reasons including invalid data type.
(comment from stmt.c) */
if (index_type == error_mark_node)
{
info.reason = "index error.\n";
return false;
}
/* Check the case label values are within reasonable range: */
if (!check_range (swtch))
return false;
/* For all the cases, see whether they are empty, the assignments they
represent constant and so on... */
for (i = 0; i < branch_num; i++)
if (!check_process_case (gimple_switch_label (swtch, i)))
{
if (dump_file)
fprintf (dump_file, "Processing of case %i failed\n", i);
return false;
}
if (!check_final_bb ())
return false;
/* At this point all checks have passed and we can proceed with the
transformation. */
create_temp_arrays ();
gather_default_values (gimple_switch_label (swtch, 0));
build_constructors (swtch);
build_arrays (swtch); /* Build the static arrays and assignments. */
gen_inbound_check (swtch); /* Build the bounds check. */
/* Cleanup: */
free_temp_arrays ();
return true;
}
/* The main function of the pass scans statements for switches and invokes
process_switch on them. */
static unsigned int
do_switchconv (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
gimple stmt = last_stmt (bb);
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
{
if (dump_file)
{
expanded_location loc = expand_location (gimple_location (stmt));
fprintf (dump_file, "beginning to process the following "
"SWITCH statement (%s:%d) : ------- \n",
loc.file, loc.line);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
info.reason = NULL;
if (process_switch (stmt))
{
if (dump_file)
{
fprintf (dump_file, "Switch converted\n");
fprintf (dump_file, "--------------------------------\n");
}
}
else
{
if (dump_file)
{
gcc_assert (info.reason);
fprintf (dump_file, "Bailing out - ");
fprintf (dump_file, info.reason);
fprintf (dump_file, "--------------------------------\n");
}
}
}
}
return 0;
}
/* The pass gate. */
static bool
switchconv_gate (void)
{
return flag_tree_switch_conversion != 0;
}
struct gimple_opt_pass pass_convert_switch =
{
{
GIMPLE_PASS,
"switchconv", /* name */
switchconv_gate, /* gate */
do_switchconv, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SWITCH_CONVERSION, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa | TODO_dump_func
| TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
}
};
|