summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-loop-manip.c
blob: 12f70ee002a6da090b28c9bd3a2aed26835ee544 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
/* Vectorizer Specific Loop Manipulations
   Copyright (C) 2003-2013 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>
   and Ira Rosen <irar@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "dumpfile.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "diagnostic-core.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "langhooks.h"

/*************************************************************************
  Simple Loop Peeling Utilities

  Utilities to support loop peeling for vectorization purposes.
 *************************************************************************/


/* Renames the use *OP_P.  */

static void
rename_use_op (use_operand_p op_p)
{
  tree new_name;

  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
    return;

  new_name = get_current_def (USE_FROM_PTR (op_p));

  /* Something defined outside of the loop.  */
  if (!new_name)
    return;

  /* An ordinary ssa name defined in the loop.  */

  SET_USE (op_p, new_name);
}


/* Renames the variables in basic block BB.  */

static void
rename_variables_in_bb (basic_block bb)
{
  gimple_stmt_iterator gsi;
  gimple stmt;
  use_operand_p use_p;
  ssa_op_iter iter;
  edge e;
  edge_iterator ei;
  struct loop *loop = bb->loop_father;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
	rename_use_op (use_p);
    }

  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (!flow_bb_inside_loop_p (loop, e->src))
	continue;
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
    }
}


typedef struct
{
  tree from, to;
  basic_block bb;
} adjust_info;

/* A stack of values to be adjusted in debug stmts.  We have to
   process them LIFO, so that the closest substitution applies.  If we
   processed them FIFO, without the stack, we might substitute uses
   with a PHI DEF that would soon become non-dominant, and when we got
   to the suitable one, it wouldn't have anything to substitute any
   more.  */
static vec<adjust_info, va_stack> adjust_vec;

/* Adjust any debug stmts that referenced AI->from values to use the
   loop-closed AI->to, if the references are dominated by AI->bb and
   not by the definition of AI->from.  */

static void
adjust_debug_stmts_now (adjust_info *ai)
{
  basic_block bbphi = ai->bb;
  tree orig_def = ai->from;
  tree new_def = ai->to;
  imm_use_iterator imm_iter;
  gimple stmt;
  basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));

  gcc_assert (dom_info_available_p (CDI_DOMINATORS));

  /* Adjust any debug stmts that held onto non-loop-closed
     references.  */
  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
    {
      use_operand_p use_p;
      basic_block bbuse;

      if (!is_gimple_debug (stmt))
	continue;

      gcc_assert (gimple_debug_bind_p (stmt));

      bbuse = gimple_bb (stmt);

      if ((bbuse == bbphi
	   || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
	  && !(bbuse == bbdef
	       || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
	{
	  if (new_def)
	    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
	      SET_USE (use_p, new_def);
	  else
	    {
	      gimple_debug_bind_reset_value (stmt);
	      update_stmt (stmt);
	    }
	}
    }
}

/* Adjust debug stmts as scheduled before.  */

static void
adjust_vec_debug_stmts (void)
{
  if (!MAY_HAVE_DEBUG_STMTS)
    return;

  gcc_assert (adjust_vec.exists ());

  while (!adjust_vec.is_empty ())
    {
      adjust_debug_stmts_now (&adjust_vec.last ());
      adjust_vec.pop ();
    }

  adjust_vec.release ();
}

/* Adjust any debug stmts that referenced FROM values to use the
   loop-closed TO, if the references are dominated by BB and not by
   the definition of FROM.  If adjust_vec is non-NULL, adjustments
   will be postponed until adjust_vec_debug_stmts is called.  */

static void
adjust_debug_stmts (tree from, tree to, basic_block bb)
{
  adjust_info ai;

  if (MAY_HAVE_DEBUG_STMTS
      && TREE_CODE (from) == SSA_NAME
      && ! SSA_NAME_IS_DEFAULT_DEF (from)
      && ! virtual_operand_p (from))
    {
      ai.from = from;
      ai.to = to;
      ai.bb = bb;

      if (adjust_vec.exists ())
	adjust_vec.safe_push (ai);
      else
	adjust_debug_stmts_now (&ai);
    }
}

/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
   to adjust any debug stmts that referenced the old phi arg,
   presumably non-loop-closed references left over from other
   transformations.  */

static void
adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
{
  tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);

  SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);

  if (MAY_HAVE_DEBUG_STMTS)
    adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
			gimple_bb (update_phi));
}


/* Update PHI nodes for a guard of the LOOP.

   Input:
   - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
        controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
        originates from the guard-bb, skips LOOP and reaches the (unique) exit
        bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
        We denote this bb NEW_MERGE_BB because before the guard code was added
        it had a single predecessor (the LOOP header), and now it became a merge
        point of two paths - the path that ends with the LOOP exit-edge, and
        the path that ends with GUARD_EDGE.
   - NEW_EXIT_BB: New basic block that is added by this function between LOOP
        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.

   ===> The CFG before the guard-code was added:
        LOOP_header_bb:
          loop_body
          if (exit_loop) goto update_bb
          else           goto LOOP_header_bb
        update_bb:

   ==> The CFG after the guard-code was added:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
        LOOP_header_bb:
          loop_body
          if (exit_loop_condition) goto new_merge_bb
          else                     goto LOOP_header_bb
        new_merge_bb:
          goto update_bb
        update_bb:

   ==> The CFG after this function:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
        LOOP_header_bb:
          loop_body
          if (exit_loop_condition) goto new_exit_bb
          else                     goto LOOP_header_bb
        new_exit_bb:
        new_merge_bb:
          goto update_bb
        update_bb:

   This function:
   1. creates and updates the relevant phi nodes to account for the new
      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
      1.1. Create phi nodes at NEW_MERGE_BB.
      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
   2. preserves loop-closed-ssa-form by creating the required phi nodes
      at the exit of LOOP (i.e, in NEW_EXIT_BB).

   There are two flavors to this function:

   slpeel_update_phi_nodes_for_guard1:
     Here the guard controls whether we enter or skip LOOP, where LOOP is a
     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop header.

   slpeel_update_phi_nodes_for_guard2:
     Here the guard controls whether we enter or skip LOOP, where LOOP is an
     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop exit.

   I.E., the overall structure is:

        loop1_preheader_bb:
                guard1 (goto loop1/merge1_bb)
        loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
   that have phis in loop1->header).

   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
   that have phis in next_bb). It also adds some of these phis to
   loop1_exit_bb.

   slpeel_update_phi_nodes_for_guard1 is always called before
   slpeel_update_phi_nodes_for_guard2. They are both needed in order
   to create correct data-flow and loop-closed-ssa-form.

   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
   that change between iterations of a loop (and therefore have a phi-node
   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
   phis for variables that are used out of the loop (and therefore have
   loop-closed exit phis). Some variables may be both updated between
   iterations and used after the loop. This is why in loop1_exit_bb we
   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
   and exit phis (created by slpeel_update_phi_nodes_for_guard2).

   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
     an original loop. i.e., we have:

           orig_loop
           guard_bb (goto LOOP/new_merge)
           new_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
     have:

           new_loop
           guard_bb (goto LOOP/new_merge)
           orig_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     The SSA names defined in the original loop have a current
     reaching definition that that records the corresponding new
     ssa-name used in the new duplicated loop copy.
  */

/* Function slpeel_update_phi_nodes_for_guard1

   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
   - DEFS - a bitmap of ssa names to mark new names for which we recorded
            information.

   In the context of the overall structure, we have:

        loop1_preheader_bb:
                guard1 (goto loop1/merge1_bb)
LOOP->  loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name updated between loop iterations (i.e - for each name that has
   an entry (loop-header) phi in LOOP) we create a new phi in:
   1. merge1_bb (to account for the edge from guard1)
   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
*/

static void
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb)
{
  gimple orig_phi, new_phi;
  gimple update_phi, update_phi2;
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
  edge e = EDGE_SUCC (new_merge_bb, 0);
  basic_block update_bb = e->dest;
  basic_block orig_bb = loop->header;
  edge new_exit_e;
  tree current_new_name;
  gimple_stmt_iterator gsi_orig, gsi_update;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (single_exit (loop));

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);

  for (gsi_orig = gsi_start_phis (orig_bb),
       gsi_update = gsi_start_phis (update_bb);
       !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
       gsi_next (&gsi_orig), gsi_next (&gsi_update))
    {
      source_location loop_locus, guard_locus;
      tree new_res;
      orig_phi = gsi_stmt (gsi_orig);
      update_phi = gsi_stmt (gsi_update);

      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, new_merge_bb);

      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
            of LOOP. Set the two phi args in NEW_PHI for these edges:  */
      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
      loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
						      EDGE_SUCC (loop->latch,
								 0));
      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
      guard_locus
	= gimple_phi_arg_location_from_edge (orig_phi,
					     loop_preheader_edge (loop));

      add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
      add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);

      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
      adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      if (virtual_operand_p (PHI_RESULT (orig_phi)))
	continue;

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
				  PHI_RESULT (new_phi));

      /* 2.4. Record the newly created name with set_current_def.
         We want to find a name such that
                name = get_current_def (orig_loop_name)
         and to set its current definition as follows:
                set_current_def (name, new_phi_name)

         If LOOP is a new loop then loop_arg is already the name we're
         looking for. If LOOP is the original loop, then loop_arg is
         the orig_loop_name and the relevant name is recorded in its
         current reaching definition.  */
      if (is_new_loop)
        current_new_name = loop_arg;
      else
        {
          current_new_name = get_current_def (loop_arg);
	  /* current_def is not available only if the variable does not
	     change inside the loop, in which case we also don't care
	     about recording a current_def for it because we won't be
	     trying to create loop-exit-phis for it.  */
	  if (!current_new_name)
	    continue;
        }
      gcc_assert (get_current_def (current_new_name) == NULL_TREE);

      set_current_def (current_new_name, PHI_RESULT (new_phi));
    }
}


/* Function slpeel_update_phi_nodes_for_guard2

   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.

   In the context of the overall structure, we have:

        loop1_preheader_bb:
                guard1 (goto loop1/merge1_bb)
        loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
LOOP->  loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name used out side the loop (i.e - for each name that has an exit
   phi in next_bb) we create a new phi in:
   1. merge2_bb (to account for the edge from guard_bb)
   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
*/

static void
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb)
{
  gimple orig_phi, new_phi;
  gimple update_phi, update_phi2;
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
  edge e = EDGE_SUCC (new_merge_bb, 0);
  basic_block update_bb = e->dest;
  edge new_exit_e;
  tree orig_def, orig_def_new_name;
  tree new_name, new_name2;
  tree arg;
  gimple_stmt_iterator gsi;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (single_exit (loop));

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);

  for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree new_res;
      update_phi = gsi_stmt (gsi);
      orig_phi = update_phi;
      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
      /* This loop-closed-phi actually doesn't represent a use
         out of the loop - the phi arg is a constant.  */
      if (TREE_CODE (orig_def) != SSA_NAME)
        continue;
      orig_def_new_name = get_current_def (orig_def);
      arg = NULL_TREE;

      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, new_merge_bb);

      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
            of LOOP. Set the two PHI args in NEW_PHI for these edges:  */
      new_name = orig_def;
      new_name2 = NULL_TREE;
      if (orig_def_new_name)
        {
          new_name = orig_def_new_name;
	  /* Some variables have both loop-entry-phis and loop-exit-phis.
	     Such variables were given yet newer names by phis placed in
	     guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
	     new_name2 = get_current_def (get_current_def (orig_name)).  */
          new_name2 = get_current_def (new_name);
        }

      if (is_new_loop)
        {
          guard_arg = orig_def;
          loop_arg = new_name;
        }
      else
        {
          guard_arg = new_name;
          loop_arg = orig_def;
        }
      if (new_name2)
        guard_arg = new_name2;

      add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
      add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);

      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
      adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
				  PHI_RESULT (new_phi));


      /** 3. Handle loop-closed-ssa-form phis for first loop  **/

      /* 3.1. Find the relevant names that need an exit-phi in
	 GUARD_BB, i.e. names for which
	 slpeel_update_phi_nodes_for_guard1 had not already created a
	 phi node. This is the case for names that are used outside
	 the loop (and therefore need an exit phi) but are not updated
	 across loop iterations (and therefore don't have a
	 loop-header-phi).

	 slpeel_update_phi_nodes_for_guard1 is responsible for
	 creating loop-exit phis in GUARD_BB for names that have a
	 loop-header-phi.  When such a phi is created we also record
	 the new name in its current definition.  If this new name
	 exists, then guard_arg was set to this new name (see 1.2
	 above).  Therefore, if guard_arg is not this new name, this
	 is an indication that an exit-phi in GUARD_BB was not yet
	 created, so we take care of it here.  */
      if (guard_arg == new_name2)
	continue;
      arg = guard_arg;

      /* 3.2. Generate new phi node in GUARD_BB:  */
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, guard_edge->src);

      /* 3.3. GUARD_BB has one incoming edge:  */
      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
		   UNKNOWN_LOCATION);

      /* 3.4. Update phi in successor of GUARD_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
                                                                == guard_arg);
      adjust_phi_and_debug_stmts (update_phi2, guard_edge,
				  PHI_RESULT (new_phi));
    }
}


/* Make the LOOP iterate NITERS times. This is done by adding a new IV
   that starts at zero, increases by one and its limit is NITERS.

   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */

void
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
{
  tree indx_before_incr, indx_after_incr;
  gimple cond_stmt;
  gimple orig_cond;
  edge exit_edge = single_exit (loop);
  gimple_stmt_iterator loop_cond_gsi;
  gimple_stmt_iterator incr_gsi;
  bool insert_after;
  tree init = build_int_cst (TREE_TYPE (niters), 0);
  tree step = build_int_cst (TREE_TYPE (niters), 1);
  LOC loop_loc;
  enum tree_code code;

  orig_cond = get_loop_exit_condition (loop);
  gcc_assert (orig_cond);
  loop_cond_gsi = gsi_for_stmt (orig_cond);

  standard_iv_increment_position (loop, &incr_gsi, &insert_after);
  create_iv (init, step, NULL_TREE, loop,
             &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);

  indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
					      true, NULL_TREE, true,
					      GSI_SAME_STMT);
  niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
				     true, GSI_SAME_STMT);

  code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
  cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
				 NULL_TREE);

  gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);

  /* Remove old loop exit test:  */
  gsi_remove (&loop_cond_gsi, true);
  free_stmt_vec_info (orig_cond);

  loop_loc = find_loop_location (loop);
  if (dump_enabled_p ())
    {
      if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOC)
	dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOC_FILE (loop_loc),
		     LOC_LINE (loop_loc));
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
    }
  loop->nb_iterations = niters;
}


/* Given LOOP this function generates a new copy of it and puts it
   on E which is either the entry or exit of LOOP.  */

struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
{
  struct loop *new_loop;
  basic_block *new_bbs, *bbs;
  bool at_exit;
  bool was_imm_dom;
  basic_block exit_dest;
  edge exit, new_exit;

  exit = single_exit (loop);
  at_exit = (e == exit);
  if (!at_exit && e != loop_preheader_edge (loop))
    return NULL;

  bbs = XNEWVEC (basic_block, loop->num_nodes + 1);
  get_loop_body_with_size (loop, bbs, loop->num_nodes);

  /* Check whether duplication is possible.  */
  if (!can_copy_bbs_p (bbs, loop->num_nodes))
    {
      free (bbs);
      return NULL;
    }

  /* Generate new loop structure.  */
  new_loop = duplicate_loop (loop, loop_outer (loop));
  duplicate_subloops (loop, new_loop);

  exit_dest = exit->dest;
  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
					  exit_dest) == loop->header ?
		 true : false);

  /* Also copy the pre-header, this avoids jumping through hoops to
     duplicate the loop entry PHI arguments.  Create an empty
     pre-header unconditionally for this.  */
  basic_block preheader = split_edge (loop_preheader_edge (loop));
  edge entry_e = single_pred_edge (preheader);
  bbs[loop->num_nodes] = preheader;
  new_bbs = XNEWVEC (basic_block, loop->num_nodes + 1);

  copy_bbs (bbs, loop->num_nodes + 1, new_bbs,
	    &exit, 1, &new_exit, NULL,
	    e->src, true);
  basic_block new_preheader = new_bbs[loop->num_nodes];

  add_phi_args_after_copy (new_bbs, loop->num_nodes + 1, NULL);

  if (at_exit) /* Add the loop copy at exit.  */
    {
      redirect_edge_and_branch_force (e, new_preheader);
      flush_pending_stmts (e);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
      if (was_imm_dom)
	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);

      /* And remove the non-necessary forwarder again.  Keep the other
         one so we have a proper pre-header for the loop at the exit edge.  */
      redirect_edge_pred (single_succ_edge (preheader), single_pred (preheader));
      delete_basic_block (preheader);
      set_immediate_dominator (CDI_DOMINATORS, loop->header,
			       loop_preheader_edge (loop)->src);
    }
  else /* Add the copy at entry.  */
    {
      redirect_edge_and_branch_force (entry_e, new_preheader);
      flush_pending_stmts (entry_e);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);

      redirect_edge_and_branch_force (new_exit, preheader);
      flush_pending_stmts (new_exit);
      set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);

      /* And remove the non-necessary forwarder again.  Keep the other
         one so we have a proper pre-header for the loop at the exit edge.  */
      redirect_edge_pred (single_succ_edge (new_preheader), single_pred (new_preheader));
      delete_basic_block (new_preheader);
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
			       loop_preheader_edge (new_loop)->src);
    }

  for (unsigned i = 0; i < loop->num_nodes+1; i++)
    rename_variables_in_bb (new_bbs[i]);

  free (new_bbs);
  free (bbs);

#ifdef ENABLE_CHECKING
  verify_dominators (CDI_DOMINATORS);
#endif

  return new_loop;
}


/* Given the condition statement COND, put it as the last statement
   of GUARD_BB; EXIT_BB is the basic block to skip the loop;
   Assumes that this is the single exit of the guarded loop.
   Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST.  */

static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond,
		       gimple_seq cond_expr_stmt_list,
		       basic_block exit_bb, basic_block dom_bb,
		       int probability)
{
  gimple_stmt_iterator gsi;
  edge new_e, enter_e;
  gimple cond_stmt;
  gimple_seq gimplify_stmt_list = NULL;

  enter_e = EDGE_SUCC (guard_bb, 0);
  enter_e->flags &= ~EDGE_FALLTHRU;
  enter_e->flags |= EDGE_FALSE_VALUE;
  gsi = gsi_last_bb (guard_bb);

  cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
				 NULL_TREE);
  if (gimplify_stmt_list)
    gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
  cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
  if (cond_expr_stmt_list)
    gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);

  gsi = gsi_last_bb (guard_bb);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);

  /* Add new edge to connect guard block to the merge/loop-exit block.  */
  new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);

  new_e->count = guard_bb->count;
  new_e->probability = probability;
  new_e->count = apply_probability (enter_e->count, probability);
  enter_e->count -= new_e->count;
  enter_e->probability = inverse_probability (probability);
  set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
  return new_e;
}


/* This function verifies that the following restrictions apply to LOOP:
   (1) it is innermost
   (2) it consists of exactly 2 basic blocks - header, and an empty latch.
   (3) it is single entry, single exit
   (4) its exit condition is the last stmt in the header
   (5) E is the entry/exit edge of LOOP.
 */

bool
slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
{
  edge exit_e = single_exit (loop);
  edge entry_e = loop_preheader_edge (loop);
  gimple orig_cond = get_loop_exit_condition (loop);
  gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);

  if (loop->inner
      /* All loops have an outer scope; the only case loop->outer is NULL is for
         the function itself.  */
      || !loop_outer (loop)
      || loop->num_nodes != 2
      || !empty_block_p (loop->latch)
      || !single_exit (loop)
      /* Verify that new loop exit condition can be trivially modified.  */
      || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
      || (e != exit_e && e != entry_e))
    return false;

  return true;
}

#ifdef ENABLE_CHECKING
static void
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
                                 struct loop *second_loop)
{
  basic_block loop1_exit_bb = single_exit (first_loop)->dest;
  basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
  basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;

  /* A guard that controls whether the second_loop is to be executed or skipped
     is placed in first_loop->exit.  first_loop->exit therefore has two
     successors - one is the preheader of second_loop, and the other is a bb
     after second_loop.
   */
  gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);

  /* 1. Verify that one of the successors of first_loop->exit is the preheader
        of second_loop.  */

  /* The preheader of new_loop is expected to have two predecessors:
     first_loop->exit and the block that precedes first_loop.  */

  gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
              && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
               || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));

  /* Verify that the other successor of first_loop->exit is after the
     second_loop.  */
  /* TODO */
}
#endif

/* If the run time cost model check determines that vectorization is
   not profitable and hence scalar loop should be generated then set
   FIRST_NITERS to prologue peeled iterations. This will allow all the
   iterations to be executed in the prologue peeled scalar loop.  */

static void
set_prologue_iterations (basic_block bb_before_first_loop,
			 tree *first_niters,
			 struct loop *loop,
			 unsigned int th,
			 int probability)
{
  edge e;
  basic_block cond_bb, then_bb;
  tree var, prologue_after_cost_adjust_name;
  gimple_stmt_iterator gsi;
  gimple newphi;
  edge e_true, e_false, e_fallthru;
  gimple cond_stmt;
  gimple_seq stmts = NULL;
  tree cost_pre_condition = NULL_TREE;
  tree scalar_loop_iters =
    unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));

  e = single_pred_edge (bb_before_first_loop);
  cond_bb = split_edge(e);

  e = single_pred_edge (bb_before_first_loop);
  then_bb = split_edge(e);
  set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);

  e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
				   EDGE_FALSE_VALUE);
  set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);

  e_true = EDGE_PRED (then_bb, 0);
  e_true->flags &= ~EDGE_FALLTHRU;
  e_true->flags |= EDGE_TRUE_VALUE;

  e_true->probability = probability;
  e_false->probability = inverse_probability (probability);
  e_true->count = apply_probability (cond_bb->count, probability);
  e_false->count = cond_bb->count - e_true->count;
  then_bb->frequency = EDGE_FREQUENCY (e_true);
  then_bb->count = e_true->count;

  e_fallthru = EDGE_SUCC (then_bb, 0);
  e_fallthru->count = then_bb->count;

  gsi = gsi_last_bb (cond_bb);
  cost_pre_condition =
    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
	         build_int_cst (TREE_TYPE (scalar_loop_iters), th));
  cost_pre_condition =
    force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
				NULL_TREE, false, GSI_CONTINUE_LINKING);
  cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
					   NULL_TREE, NULL_TREE);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);

  var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
			"prologue_after_cost_adjust");
  prologue_after_cost_adjust_name =
    force_gimple_operand (scalar_loop_iters, &stmts, false, var);

  gsi = gsi_last_bb (then_bb);
  if (stmts)
    gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);

  newphi = create_phi_node (var, bb_before_first_loop);
  add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
	       UNKNOWN_LOCATION);
  add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);

  *first_niters = PHI_RESULT (newphi);
}

/* Function slpeel_tree_peel_loop_to_edge.

   Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
   that is placed on the entry (exit) edge E of LOOP. After this transformation
   we have two loops one after the other - first-loop iterates FIRST_NITERS
   times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
   If the cost model indicates that it is profitable to emit a scalar
   loop instead of the vector one, then the prolog (epilog) loop will iterate
   for the entire unchanged scalar iterations of the loop.

   Input:
   - LOOP: the loop to be peeled.
   - E: the exit or entry edge of LOOP.
        If it is the entry edge, we peel the first iterations of LOOP. In this
        case first-loop is LOOP, and second-loop is the newly created loop.
        If it is the exit edge, we peel the last iterations of LOOP. In this
        case, first-loop is the newly created loop, and second-loop is LOOP.
   - NITERS: the number of iterations that LOOP iterates.
   - FIRST_NITERS: the number of iterations that the first-loop should iterate.
   - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible
        for updating the loop bound of the first-loop to FIRST_NITERS.  If it
        is false, the caller of this function may want to take care of this
        (this can be useful if we don't want new stmts added to first-loop).
   - TH: cost model profitability threshold of iterations for vectorization.
   - CHECK_PROFITABILITY: specify whether cost model check has not occurred
                          during versioning and hence needs to occur during
			  prologue generation or whether cost model check
			  has not occurred during prologue generation and hence
			  needs to occur during epilogue generation.
   - BOUND1 is the upper bound on number of iterations of the first loop (if known)
   - BOUND2 is the upper bound on number of iterations of the second loop (if known)


   Output:
   The function returns a pointer to the new loop-copy, or NULL if it failed
   to perform the transformation.

   The function generates two if-then-else guards: one before the first loop,
   and the other before the second loop:
   The first guard is:
     if (FIRST_NITERS == 0) then skip the first loop,
     and go directly to the second loop.
   The second guard is:
     if (FIRST_NITERS == NITERS) then skip the second loop.

   If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
   then the generated condition is combined with COND_EXPR and the
   statements in COND_EXPR_STMT_LIST are emitted together with it.

   FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
   FORNOW the resulting code will not be in loop-closed-ssa form.
*/

static struct loop*
slpeel_tree_peel_loop_to_edge (struct loop *loop,
			       edge e, tree *first_niters,
			       tree niters, bool update_first_loop_count,
			       unsigned int th, bool check_profitability,
			       tree cond_expr, gimple_seq cond_expr_stmt_list,
			       int bound1, int bound2)
{
  struct loop *new_loop = NULL, *first_loop, *second_loop;
  edge skip_e;
  tree pre_condition = NULL_TREE;
  basic_block bb_before_second_loop, bb_after_second_loop;
  basic_block bb_before_first_loop;
  basic_block bb_between_loops;
  basic_block new_exit_bb;
  gimple_stmt_iterator gsi;
  edge exit_e = single_exit (loop);
  LOC loop_loc;
  tree cost_pre_condition = NULL_TREE;
  /* There are many aspects to how likely the first loop is going to be executed.
     Without histogram we can't really do good job.  Simply set it to
     2/3, so the first loop is not reordered to the end of function and
     the hot path through stays short.  */
  int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
  int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
  int probability_of_second_loop;

  if (!slpeel_can_duplicate_loop_p (loop, e))
    return NULL;

  /* We might have a queued need to update virtual SSA form.  As we
     delete the update SSA machinery below after doing a regular
     incremental SSA update during loop copying make sure we don't
     lose that fact.
     ???  Needing to update virtual SSA form by renaming is unfortunate
     but not all of the vectorizer code inserting new loads / stores
     properly assigns virtual operands to those statements.  */
  update_ssa (TODO_update_ssa_only_virtuals);
 
  /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
     in the exit bb and rename all the uses after the loop.  This simplifies
     the *guard[12] routines, which assume loop closed SSA form for all PHIs
     (but normally loop closed SSA form doesn't require virtual PHIs to be
     in the same form).  Doing this early simplifies the checking what
     uses should be renamed.  */
  for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
    if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
      {
	gimple phi = gsi_stmt (gsi);
	for (gsi = gsi_start_phis (exit_e->dest);
	     !gsi_end_p (gsi); gsi_next (&gsi))
	  if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
	    break;
	if (gsi_end_p (gsi))
	  {
	    tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
	    gimple new_phi = create_phi_node (new_vop, exit_e->dest);
	    tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
	    imm_use_iterator imm_iter;
	    gimple stmt;
	    use_operand_p use_p;

	    add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
	    gimple_phi_set_result (new_phi, new_vop);
	    FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
	      if (stmt != new_phi && gimple_bb (stmt) != loop->header)
		FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
		  SET_USE (use_p, new_vop);
	  }
	break;
      }

  /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
        Resulting CFG would be:

        first_loop:
        do {
        } while ...

        second_loop:
        do {
        } while ...

        orig_exit_bb:
   */

  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
    {
      loop_loc = find_loop_location (loop);
      dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
                       "tree_duplicate_loop_to_edge_cfg failed.\n");
      return NULL;
    }

  if (MAY_HAVE_DEBUG_STMTS)
    {
      gcc_assert (!adjust_vec.exists ());
      vec_stack_alloc (adjust_info, adjust_vec, 32);
    }

  if (e == exit_e)
    {
      /* NEW_LOOP was placed after LOOP.  */
      first_loop = loop;
      second_loop = new_loop;
    }
  else
    {
      /* NEW_LOOP was placed before LOOP.  */
      first_loop = new_loop;
      second_loop = loop;
    }

  /* 2.  Add the guard code in one of the following ways:

     2.a Add the guard that controls whether the first loop is executed.
         This occurs when this function is invoked for prologue or epilogue
	 generation and when the cost model check can be done at compile time.

         Resulting CFG would be:

         bb_before_first_loop:
         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:

     2.b Add the cost model check that allows the prologue
         to iterate for the entire unchanged scalar
         iterations of the loop in the event that the cost
         model indicates that the scalar loop is more
         profitable than the vector one. This occurs when
	 this function is invoked for prologue generation
	 and the cost model check needs to be done at run
	 time.

         Resulting CFG after prologue peeling would be:

         if (scalar_loop_iterations <= th)
           FIRST_NITERS = scalar_loop_iterations

         bb_before_first_loop:
         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:

     2.c Add the cost model check that allows the epilogue
         to iterate for the entire unchanged scalar
         iterations of the loop in the event that the cost
         model indicates that the scalar loop is more
         profitable than the vector one. This occurs when
	 this function is invoked for epilogue generation
	 and the cost model check needs to be done at run
	 time.  This check is combined with any pre-existing
	 check in COND_EXPR to avoid versioning.

         Resulting CFG after prologue peeling would be:

         bb_before_first_loop:
         if ((scalar_loop_iterations <= th)
             ||
             FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:
  */

  bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
  /* Loop copying insterted a forwarder block for us here.  */
  bb_before_second_loop = single_exit (first_loop)->dest;

  probability_of_second_loop = (inverse_probability (first_guard_probability)
			        + combine_probabilities (second_guard_probability,
                                                         first_guard_probability));
  /* Theoretically preheader edge of first loop and exit edge should have
     same frequencies.  Loop exit probablities are however easy to get wrong.
     It is safer to copy value from original loop entry.  */
  bb_before_second_loop->frequency
     = combine_probabilities (bb_before_first_loop->frequency,
                              probability_of_second_loop);
  bb_before_second_loop->count
     = apply_probability (bb_before_first_loop->count,
			  probability_of_second_loop);
  single_succ_edge (bb_before_second_loop)->count
     = bb_before_second_loop->count;

  /* Epilogue peeling.  */
  if (!update_first_loop_count)
    {
      pre_condition =
	fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
		     build_int_cst (TREE_TYPE (*first_niters), 0));
      if (check_profitability)
	{
	  tree scalar_loop_iters
	    = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
					(loop_vec_info_for_loop (loop)));
	  cost_pre_condition =
	    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
		         build_int_cst (TREE_TYPE (scalar_loop_iters), th));

	  pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
				       cost_pre_condition, pre_condition);
	}
      if (cond_expr)
	{
	  pre_condition =
	    fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
			 pre_condition,
			 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
				      cond_expr));
	}
    }

  /* Prologue peeling.  */
  else
    {
      if (check_profitability)
	set_prologue_iterations (bb_before_first_loop, first_niters,
				 loop, th, first_guard_probability);

      pre_condition =
	fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
		     build_int_cst (TREE_TYPE (*first_niters), 0));
    }

  skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
				  cond_expr_stmt_list,
                                  bb_before_second_loop, bb_before_first_loop,
				  inverse_probability (first_guard_probability));
  scale_loop_profile (first_loop, first_guard_probability,
		      check_profitability && (int)th > bound1 ? th : bound1);
  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
				      first_loop == new_loop,
				      &new_exit_bb);


  /* 3. Add the guard that controls whether the second loop is executed.
        Resulting CFG would be:

        bb_before_first_loop:
        if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
                               GOTO first-loop

        first_loop:
        do {
        } while ...

        bb_between_loops:
        if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
                                    GOTO bb_before_second_loop

        bb_before_second_loop:

        second_loop:
        do {
        } while ...

        bb_after_second_loop:

        orig_exit_bb:
   */

  bb_between_loops = new_exit_bb;
  bb_after_second_loop = split_edge (single_exit (second_loop));

  pre_condition =
	fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
  skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
                                  bb_after_second_loop, bb_before_first_loop,
				  inverse_probability (second_guard_probability));
  scale_loop_profile (second_loop, probability_of_second_loop, bound2);
  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
                                     second_loop == new_loop, &new_exit_bb);

  /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
   */
  if (update_first_loop_count)
    slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);

  delete_update_ssa ();

  adjust_vec_debug_stmts ();

  return new_loop;
}

/* Function vect_get_loop_location.

   Extract the location of the loop in the source code.
   If the loop is not well formed for vectorization, an estimated
   location is calculated.
   Return the loop location if succeed and NULL if not.  */

LOC
find_loop_location (struct loop *loop)
{
  gimple stmt = NULL;
  basic_block bb;
  gimple_stmt_iterator si;

  if (!loop)
    return UNKNOWN_LOC;

  stmt = get_loop_exit_condition (loop);

  if (stmt
      && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
    return gimple_location (stmt);

  /* If we got here the loop is probably not "well formed",
     try to estimate the loop location */

  if (!loop->header)
    return UNKNOWN_LOC;

  bb = loop->header;

  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      stmt = gsi_stmt (si);
      if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
        return gimple_location (stmt);
    }

  return UNKNOWN_LOC;
}


/* This function builds ni_name = number of iterations loop executes
   on the loop preheader.  If SEQ is given the stmt is instead emitted
   there.  */

static tree
vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
{
  tree ni_name, var;
  gimple_seq stmts = NULL;
  edge pe;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));

  var = create_tmp_var (TREE_TYPE (ni), "niters");
  ni_name = force_gimple_operand (ni, &stmts, false, var);

  pe = loop_preheader_edge (loop);
  if (stmts)
    {
      if (seq)
	gimple_seq_add_seq (&seq, stmts);
      else
	{
	  basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
	  gcc_assert (!new_bb);
	}
    }

  return ni_name;
}


/* This function generates the following statements:

 ni_name = number of iterations loop executes
 ratio = ni_name / vf
 ratio_mult_vf_name = ratio * vf

 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
 if that is non-NULL.  */

static void
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
				 tree *ni_name_ptr,
				 tree *ratio_mult_vf_name_ptr,
				 tree *ratio_name_ptr,
				 gimple_seq cond_expr_stmt_list)
{

  edge pe;
  basic_block new_bb;
  gimple_seq stmts;
  tree ni_name, ni_minus_gap_name;
  tree var;
  tree ratio_name;
  tree ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = LOOP_VINFO_NITERS (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  tree log_vf;

  pe = loop_preheader_edge (loop);

  /* Generate temporary variable that contains
     number of iterations loop executes.  */

  ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
  log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));

  /* If epilogue loop is required because of data accesses with gaps, we
     subtract one iteration from the total number of iterations here for
     correct calculation of RATIO.  */
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
    {
      ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
				       ni_name,
			               build_one_cst (TREE_TYPE (ni_name)));
      if (!is_gimple_val (ni_minus_gap_name))
	{
	  var = create_tmp_var (TREE_TYPE (ni), "ni_gap");

          stmts = NULL;
          ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
						    true, var);
          if (cond_expr_stmt_list)
            gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
          else
            {
              pe = loop_preheader_edge (loop);
              new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
              gcc_assert (!new_bb);
            }
        }
    }
  else
    ni_minus_gap_name = ni_name;

  /* Create: ratio = ni >> log2(vf) */

  ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
			    ni_minus_gap_name, log_vf);
  if (!is_gimple_val (ratio_name))
    {
      var = create_tmp_var (TREE_TYPE (ni), "bnd");

      stmts = NULL;
      ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
      if (cond_expr_stmt_list)
	gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
      else
	{
	  pe = loop_preheader_edge (loop);
	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
	  gcc_assert (!new_bb);
	}
    }

  /* Create: ratio_mult_vf = ratio << log2 (vf).  */

  ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
				    ratio_name, log_vf);
  if (!is_gimple_val (ratio_mult_vf_name))
    {
      var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");

      stmts = NULL;
      ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
						 true, var);
      if (cond_expr_stmt_list)
	gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
      else
	{
	  pe = loop_preheader_edge (loop);
	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
	  gcc_assert (!new_bb);
	}
    }

  *ni_name_ptr = ni_name;
  *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
  *ratio_name_ptr = ratio_name;

  return;
}

/* Function vect_can_advance_ivs_p

   In case the number of iterations that LOOP iterates is unknown at compile
   time, an epilog loop will be generated, and the loop induction variables
   (IVs) will be "advanced" to the value they are supposed to take just before
   the epilog loop.  Here we check that the access function of the loop IVs
   and the expression that represents the loop bound are simple enough.
   These restrictions will be relaxed in the future.  */

bool
vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block bb = loop->header;
  gimple phi;
  gimple_stmt_iterator gsi;

  /* Analyze phi functions of the loop header.  */

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:");
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree evolution_part;

      phi = gsi_stmt (gsi);
      if (dump_enabled_p ())
	{
          dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
          dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
	}

      /* Skip virtual phi's. The data dependences that are associated with
         virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */

      if (virtual_operand_p (PHI_RESULT (phi)))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
                             "virtual phi. skip.");
	  continue;
	}

      /* Skip reduction phis.  */

      if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
        {
          if (dump_enabled_p ())
            dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
                             "reduc phi. skip.");
          continue;
        }

      /* Analyze the evolution function.  */

      evolution_part
	= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
      if (evolution_part == NULL_TREE)
        {
	  if (dump_enabled_p ())
	    dump_printf (MSG_MISSED_OPTIMIZATION,
			 "No access function or evolution.");
	  return false;
        }

      /* FORNOW: We do not transform initial conditions of IVs
	 which evolution functions are a polynomial of degree >= 2.  */

      if (tree_is_chrec (evolution_part))
	return false;
    }

  return true;
}


/*   Function vect_update_ivs_after_vectorizer.

     "Advance" the induction variables of LOOP to the value they should take
     after the execution of LOOP.  This is currently necessary because the
     vectorizer does not handle induction variables that are used after the
     loop.  Such a situation occurs when the last iterations of LOOP are
     peeled, because:
     1. We introduced new uses after LOOP for IVs that were not originally used
        after LOOP: the IVs of LOOP are now used by an epilog loop.
     2. LOOP is going to be vectorized; this means that it will iterate N/VF
        times, whereas the loop IVs should be bumped N times.

     Input:
     - LOOP - a loop that is going to be vectorized. The last few iterations
              of LOOP were peeled.
     - NITERS - the number of iterations that LOOP executes (before it is
                vectorized). i.e, the number of times the ivs should be bumped.
     - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
                  coming out from LOOP on which there are uses of the LOOP ivs
		  (this is the path from LOOP->exit to epilog_loop->preheader).

                  The new definitions of the ivs are placed in LOOP->exit.
                  The phi args associated with the edge UPDATE_E in the bb
                  UPDATE_E->dest are updated accordingly.

     Assumption 1: Like the rest of the vectorizer, this function assumes
     a single loop exit that has a single predecessor.

     Assumption 2: The phi nodes in the LOOP header and in update_bb are
     organized in the same order.

     Assumption 3: The access function of the ivs is simple enough (see
     vect_can_advance_ivs_p).  This assumption will be relaxed in the future.

     Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
     coming out of LOOP on which the ivs of LOOP are used (this is the path
     that leads to the epilog loop; other paths skip the epilog loop).  This
     path starts with the edge UPDATE_E, and its destination (denoted update_bb)
     needs to have its phis updated.
 */

static void
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
				  edge update_e)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block exit_bb = single_exit (loop)->dest;
  gimple phi, phi1;
  gimple_stmt_iterator gsi, gsi1;
  basic_block update_bb = update_e->dest;

  /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */

  /* Make sure there exists a single-predecessor exit bb:  */
  gcc_assert (single_pred_p (exit_bb));

  for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
       !gsi_end_p (gsi) && !gsi_end_p (gsi1);
       gsi_next (&gsi), gsi_next (&gsi1))
    {
      tree init_expr;
      tree step_expr, off;
      tree type;
      tree var, ni, ni_name;
      gimple_stmt_iterator last_gsi;
      stmt_vec_info stmt_info;

      phi = gsi_stmt (gsi);
      phi1 = gsi_stmt (gsi1);
      if (dump_enabled_p ())
        {
          dump_printf_loc (MSG_NOTE, vect_location,
                           "vect_update_ivs_after_vectorizer: phi: ");
	  dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
        }

      /* Skip virtual phi's.  */
      if (virtual_operand_p (PHI_RESULT (phi)))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
                             "virtual phi. skip.");
	  continue;
	}

      /* Skip reduction phis.  */
      stmt_info = vinfo_for_stmt (phi);
      if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
        {
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
                             "reduc phi. skip.");
          continue;
        }

      type = TREE_TYPE (gimple_phi_result (phi));
      step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
      step_expr = unshare_expr (step_expr);

      /* FORNOW: We do not support IVs whose evolution function is a polynomial
         of degree >= 2 or exponential.  */
      gcc_assert (!tree_is_chrec (step_expr));

      init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));

      off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
			 fold_convert (TREE_TYPE (step_expr), niters),
			 step_expr);
      if (POINTER_TYPE_P (type))
	ni = fold_build_pointer_plus (init_expr, off);
      else
	ni = fold_build2 (PLUS_EXPR, type,
			  init_expr, fold_convert (type, off));

      var = create_tmp_var (type, "tmp");

      last_gsi = gsi_last_bb (exit_bb);
      ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
					  true, GSI_SAME_STMT);

      /* Fix phi expressions in the successor bb.  */
      adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
    }
}

/* Function vect_do_peeling_for_loop_bound

   Peel the last iterations of the loop represented by LOOP_VINFO.
   The peeled iterations form a new epilog loop.  Given that the loop now
   iterates NITERS times, the new epilog loop iterates
   NITERS % VECTORIZATION_FACTOR times.

   The original loop will later be made to iterate
   NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).

   COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
   test.  */

void
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
				unsigned int th, bool check_profitability)
{
  tree ni_name, ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *new_loop;
  edge update_e;
  basic_block preheader;
  int loop_num;
  int max_iter;
  tree cond_expr = NULL_TREE;
  gimple_seq cond_expr_stmt_list = NULL;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "=== vect_do_peeling_for_loop_bound ===");

  initialize_original_copy_tables ();

  /* Generate the following variables on the preheader of original loop:

     ni_name = number of iteration the original loop executes
     ratio = ni_name / vf
     ratio_mult_vf_name = ratio * vf  */
  vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
				   &ratio_mult_vf_name, ratio,
				   cond_expr_stmt_list);

  loop_num  = loop->num;

  new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
                                            &ratio_mult_vf_name, ni_name, false,
                                            th, check_profitability,
					    cond_expr, cond_expr_stmt_list,
					    0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
  gcc_assert (new_loop);
  gcc_assert (loop_num == loop->num);
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif

  /* A guard that controls whether the new_loop is to be executed or skipped
     is placed in LOOP->exit.  LOOP->exit therefore has two successors - one
     is the preheader of NEW_LOOP, where the IVs from LOOP are used.  The other
     is a bb after NEW_LOOP, where these IVs are not used.  Find the edge that
     is on the path where the LOOP IVs are used and need to be updated.  */

  preheader = loop_preheader_edge (new_loop)->src;
  if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
    update_e = EDGE_PRED (preheader, 0);
  else
    update_e = EDGE_PRED (preheader, 1);

  /* Update IVs of original loop as if they were advanced
     by ratio_mult_vf_name steps.  */
  vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);

  /* For vectorization factor N, we need to copy last N-1 values in epilogue
     and this means N-2 loopback edge executions.

     PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
     will execute at least LOOP_VINFO_VECT_FACTOR times.  */
  max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
	      ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
	      : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
  if (check_profitability)
    max_iter = MAX (max_iter, (int) th - 1);
  record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
  dump_printf (MSG_NOTE,
               "Setting upper bound of nb iterations for epilogue "
               "loop to %d\n", max_iter);

  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();

  free_original_copy_tables ();
}


/* Function vect_gen_niters_for_prolog_loop

   Set the number of iterations for the loop represented by LOOP_VINFO
   to the minimum between LOOP_NITERS (the original iteration count of the loop)
   and the misalignment of DR - the data reference recorded in
   LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).  As a result, after the execution of
   this loop, the data reference DR will refer to an aligned location.

   The following computation is generated:

   If the misalignment of DR is known at compile time:
     addr_mis = int mis = DR_MISALIGNMENT (dr);
   Else, compute address misalignment in bytes:
     addr_mis = addr & (vectype_align - 1)

   prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)

   (elem_size = element type size; an element is the scalar element whose type
   is the inner type of the vectype)

   When the step of the data-ref in the loop is not 1 (as in interleaved data
   and SLP), the number of iterations of the prolog must be divided by the step
   (which is equal to the size of interleaved group).

   The above formulas assume that VF == number of elements in the vector. This
   may not hold when there are multiple-types in the loop.
   In this case, for some data-references in the loop the VF does not represent
   the number of elements that fit in the vector.  Therefore, instead of VF we
   use TYPE_VECTOR_SUBPARTS.  */

static tree
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
{
  struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree var;
  gimple_seq stmts;
  tree iters, iters_name;
  edge pe;
  basic_block new_bb;
  gimple dr_stmt = DR_STMT (dr);
  stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
  tree niters_type = TREE_TYPE (loop_niters);
  int nelements = TYPE_VECTOR_SUBPARTS (vectype);

  pe = loop_preheader_edge (loop);

  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
    {
      int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);

      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
                         "known peeling = %d.", npeel);

      iters = build_int_cst (niters_type, npeel);
      *bound = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
    }
  else
    {
      gimple_seq new_stmts = NULL;
      bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
      tree offset = negative
	  ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
      tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
						&new_stmts, offset, loop);
      tree type = unsigned_type_for (TREE_TYPE (start_addr));
      tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
      HOST_WIDE_INT elem_size =
                int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
      tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
      tree nelements_minus_1 = build_int_cst (type, nelements - 1);
      tree nelements_tree = build_int_cst (type, nelements);
      tree byte_misalign;
      tree elem_misalign;

      new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
      gcc_assert (!new_bb);

      /* Create:  byte_misalign = addr & (vectype_align - 1)  */
      byte_misalign =
        fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), 
                     vectype_align_minus_1);

      /* Create:  elem_misalign = byte_misalign / element_size  */
      elem_misalign =
        fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);

      /* Create:  (niters_type) (nelements - elem_misalign)&(nelements - 1)  */
      if (negative)
	iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
      else
	iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
      iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
      iters = fold_convert (niters_type, iters);
      *bound = nelements;
    }

  /* Create:  prolog_loop_niters = min (iters, loop_niters) */
  /* If the loop bound is known at compile time we already verified that it is
     greater than vf; since the misalignment ('iters') is at most vf, there's
     no need to generate the MIN_EXPR in this case.  */
  if (TREE_CODE (loop_niters) != INTEGER_CST)
    iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);

  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "niters for prolog loop: ");
      dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
    }

  var = create_tmp_var (niters_type, "prolog_loop_niters");
  stmts = NULL;
  iters_name = force_gimple_operand (iters, &stmts, false, var);

  /* Insert stmt on loop preheader edge.  */
  if (stmts)
    {
      basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
      gcc_assert (!new_bb);
    }

  return iters_name;
}


/* Function vect_update_init_of_dr

   NITERS iterations were peeled from LOOP.  DR represents a data reference
   in LOOP.  This function updates the information recorded in DR to
   account for the fact that the first NITERS iterations had already been
   executed.  Specifically, it updates the OFFSET field of DR.  */

static void
vect_update_init_of_dr (struct data_reference *dr, tree niters)
{
  tree offset = DR_OFFSET (dr);

  niters = fold_build2 (MULT_EXPR, sizetype,
			fold_convert (sizetype, niters),
			fold_convert (sizetype, DR_STEP (dr)));
  offset = fold_build2 (PLUS_EXPR, sizetype,
			fold_convert (sizetype, offset), niters);
  DR_OFFSET (dr) = offset;
}


/* Function vect_update_inits_of_drs

   NITERS iterations were peeled from the loop represented by LOOP_VINFO.
   This function updates the information recorded for the data references in
   the loop to account for the fact that the first NITERS iterations had
   already been executed.  Specifically, it updates the initial_condition of
   the access_function of all the data_references in the loop.  */

static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
  unsigned int i;
  vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
  struct data_reference *dr;
 
 if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "=== vect_update_inits_of_dr ===");

  FOR_EACH_VEC_ELT (datarefs, i, dr)
    vect_update_init_of_dr (dr, niters);
}


/* Function vect_do_peeling_for_alignment

   Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
   'niters' is set to the misalignment of one of the data references in the
   loop, thereby forcing it to refer to an aligned location at the beginning
   of the execution of this loop.  The data reference for which we are
   peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */

void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo,
			       unsigned int th, bool check_profitability)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree niters_of_prolog_loop, ni_name;
  tree n_iters;
  tree wide_prolog_niters;
  struct loop *new_loop;
  int max_iter;
  int bound = 0;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "=== vect_do_peeling_for_alignment ===");

  initialize_original_copy_tables ();

  ni_name = vect_build_loop_niters (loop_vinfo, NULL);
  niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
							   ni_name,
							   &bound);

  /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
  new_loop =
    slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
				   &niters_of_prolog_loop, ni_name, true,
				   th, check_profitability, NULL_TREE, NULL,
				   bound,
				   0);

  gcc_assert (new_loop);
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif
  /* For vectorization factor N, we need to copy at most N-1 values 
     for alignment and this means N-2 loopback edge executions.  */
  max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
  if (check_profitability)
    max_iter = MAX (max_iter, (int) th - 1);
  record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
  dump_printf (MSG_NOTE,
               "Setting upper bound of nb iterations for prologue "
               "loop to %d\n", max_iter);

  /* Update number of times loop executes.  */
  n_iters = LOOP_VINFO_NITERS (loop_vinfo);
  LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
		TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);

  if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
    wide_prolog_niters = niters_of_prolog_loop;
  else
    {
      gimple_seq seq = NULL;
      edge pe = loop_preheader_edge (loop);
      tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
      tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
      wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
                                                 var);
      if (seq)
	{
	  /* Insert stmt on loop preheader edge.  */
          basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
          gcc_assert (!new_bb);
        }
    }

  /* Update the init conditions of the access functions of all data refs.  */
  vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);

  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();

  free_original_copy_tables ();
}


/* Function vect_create_cond_for_align_checks.

   Create a conditional expression that represents the alignment checks for
   all of data references (array element references) whose alignment must be
   checked at runtime.

   Input:
   COND_EXPR  - input conditional expression.  New conditions will be chained
                with logical AND operation.
   LOOP_VINFO - two fields of the loop information are used.
                LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
                LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.

   Output:
   COND_EXPR_STMT_LIST - statements needed to construct the conditional
                         expression.
   The returned value is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.

   The algorithm makes two assumptions:
     1) The number of bytes "n" in a vector is a power of 2.
     2) An address "a" is aligned if a%n is zero and that this
        test can be done as a&(n-1) == 0.  For example, for 16
        byte vectors the test is a&0xf == 0.  */

static void
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                   tree *cond_expr,
				   gimple_seq *cond_expr_stmt_list)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  vec<gimple> may_misalign_stmts
    = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
  gimple ref_stmt;
  int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
  tree mask_cst;
  unsigned int i;
  tree int_ptrsize_type;
  char tmp_name[20];
  tree or_tmp_name = NULL_TREE;
  tree and_tmp_name;
  gimple and_stmt;
  tree ptrsize_zero;
  tree part_cond_expr;

  /* Check that mask is one less than a power of 2, i.e., mask is
     all zeros followed by all ones.  */
  gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));

  int_ptrsize_type = signed_type_for (ptr_type_node);

  /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
     of the first vector of the i'th data reference. */

  FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
    {
      gimple_seq new_stmt_list = NULL;
      tree addr_base;
      tree addr_tmp_name;
      tree new_or_tmp_name;
      gimple addr_stmt, or_stmt;
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
      tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
      bool negative = tree_int_cst_compare
	(DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
      tree offset = negative
	? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;

      /* create: addr_tmp = (int)(address_of_first_vector) */
      addr_base =
	vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
					      offset, loop);
      if (new_stmt_list != NULL)
	gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);

      sprintf (tmp_name, "addr2int%d", i);
      addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
      addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
						addr_base, NULL_TREE);
      gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);

      /* The addresses are OR together.  */

      if (or_tmp_name != NULL_TREE)
        {
          /* create: or_tmp = or_tmp | addr_tmp */
          sprintf (tmp_name, "orptrs%d", i);
	  new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
	  or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
						  new_or_tmp_name,
						  or_tmp_name, addr_tmp_name);
	  gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
          or_tmp_name = new_or_tmp_name;
        }
      else
        or_tmp_name = addr_tmp_name;

    } /* end for i */

  mask_cst = build_int_cst (int_ptrsize_type, mask);

  /* create: and_tmp = or_tmp & mask  */
  and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");

  and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
					   or_tmp_name, mask_cst);
  gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);

  /* Make and_tmp the left operand of the conditional test against zero.
     if and_tmp has a nonzero bit then some address is unaligned.  */
  ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
  part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
				and_tmp_name, ptrsize_zero);
  if (*cond_expr)
    *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
			      *cond_expr, part_cond_expr);
  else
    *cond_expr = part_cond_expr;
}


/* Function vect_vfa_segment_size.

   Create an expression that computes the size of segment
   that will be accessed for a data reference.  The functions takes into
   account that realignment loads may access one more vector.

   Input:
     DR: The data reference.
     LENGTH_FACTOR: segment length to consider.

   Return an expression whose value is the size of segment which will be
   accessed by DR.  */

static tree
vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
{
  tree segment_length;

  if (integer_zerop (DR_STEP (dr)))
    segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
  else
    segment_length = size_binop (MULT_EXPR,
                                 fold_convert (sizetype, DR_STEP (dr)),
                                 fold_convert (sizetype, length_factor));

  if (vect_supportable_dr_alignment (dr, false)
        == dr_explicit_realign_optimized)
    {
      tree vector_size = TYPE_SIZE_UNIT
			  (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));

      segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
    }
  return segment_length;
}


/* Function vect_create_cond_for_alias_checks.

   Create a conditional expression that represents the run-time checks for
   overlapping of address ranges represented by a list of data references
   relations passed as input.

   Input:
   COND_EXPR  - input conditional expression.  New conditions will be chained
                with logical AND operation.
   LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
	        to be checked.

   Output:
   COND_EXPR - conditional expression.

   The returned value is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.
*/

static void
vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
{
  vec<ddr_p>  may_alias_ddrs =
    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
  int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);

  ddr_p ddr;
  unsigned int i;
  tree part_cond_expr, length_factor;

  /* Create expression
     ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
     || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
     &&
     ...
     &&
     ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
     || (load_ptr_n + load_segment_length_n) <= store_ptr_n))  */

  if (may_alias_ddrs.is_empty ())
    return;

  FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
    {
      struct data_reference *dr_a, *dr_b;
      gimple dr_group_first_a, dr_group_first_b;
      tree addr_base_a, addr_base_b;
      tree segment_length_a, segment_length_b;
      gimple stmt_a, stmt_b;
      tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;

      dr_a = DDR_A (ddr);
      stmt_a = DR_STMT (DDR_A (ddr));
      dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
      if (dr_group_first_a)
        {
	  stmt_a = dr_group_first_a;
	  dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
	}

      dr_b = DDR_B (ddr);
      stmt_b = DR_STMT (DDR_B (ddr));
      dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
      if (dr_group_first_b)
        {
	  stmt_b = dr_group_first_b;
	  dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
	}

      addr_base_a
	= fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a),
				   size_binop (PLUS_EXPR, DR_OFFSET (dr_a),
					       DR_INIT (dr_a)));
      addr_base_b
	= fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b),
				   size_binop (PLUS_EXPR, DR_OFFSET (dr_b),
					       DR_INIT (dr_b)));

      if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
	length_factor = scalar_loop_iters;
      else
	length_factor = size_int (vect_factor);
      segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
      segment_length_b = vect_vfa_segment_size (dr_b, length_factor);

      if (dump_enabled_p ())
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
                           "create runtime check for data references ");
	  dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
	  dump_printf (MSG_NOTE, " and ");
	  dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
	}

      seg_a_min = addr_base_a;
      seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
      if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
	seg_a_min = seg_a_max, seg_a_max = addr_base_a;

      seg_b_min = addr_base_b;
      seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
      if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
	seg_b_min = seg_b_max, seg_b_max = addr_base_b;

      part_cond_expr =
      	fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
	  fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
	  fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));

      if (*cond_expr)
	*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				  *cond_expr, part_cond_expr);
      else
	*cond_expr = part_cond_expr;
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "created %u versioning for alias checks.\n",
		     may_alias_ddrs.length ());
}


/* Function vect_loop_versioning.

   If the loop has data references that may or may not be aligned or/and
   has data reference relations whose independence was not proven then
   two versions of the loop need to be generated, one which is vectorized
   and one which isn't.  A test is then generated to control which of the
   loops is executed.  The test checks for the alignment of all of the
   data references that may or may not be aligned.  An additional
   sequence of runtime tests is generated for each pairs of DDRs whose
   independence was not proven.  The vectorized version of loop is
   executed only if both alias and alignment tests are passed.

   The test generated to check which version of loop is executed
   is modified to also check for profitability as indicated by the
   cost model initially.

   The versioning precondition(s) are placed in *COND_EXPR and
   *COND_EXPR_STMT_LIST.  */

void
vect_loop_versioning (loop_vec_info loop_vinfo,
		      unsigned int th, bool check_profitability)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block condition_bb;
  gimple_stmt_iterator gsi, cond_exp_gsi;
  basic_block merge_bb;
  basic_block new_exit_bb;
  edge new_exit_e, e;
  gimple orig_phi, new_phi;
  tree cond_expr = NULL_TREE;
  gimple_seq cond_expr_stmt_list = NULL;
  tree arg;
  unsigned prob = 4 * REG_BR_PROB_BASE / 5;
  gimple_seq gimplify_stmt_list = NULL;
  tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);

  if (check_profitability)
    {
      cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
			       build_int_cst (TREE_TYPE (scalar_loop_iters), th));
      cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
					  is_gimple_condexpr, NULL_TREE);
    }

  if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
    vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
				       &cond_expr_stmt_list);

  if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
    vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);

  cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
				      is_gimple_condexpr, NULL_TREE);
  gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);

  initialize_original_copy_tables ();
  loop_version (loop, cond_expr, &condition_bb,
		prob, prob, REG_BR_PROB_BASE - prob, true);
  free_original_copy_tables();

  /* Loop versioning violates an assumption we try to maintain during
     vectorization - that the loop exit block has a single predecessor.
     After versioning, the exit block of both loop versions is the same
     basic block (i.e. it has two predecessors). Just in order to simplify
     following transformations in the vectorizer, we fix this situation
     here by adding a new (empty) block on the exit-edge of the loop,
     with the proper loop-exit phis to maintain loop-closed-form.  */

  merge_bb = single_exit (loop)->dest;
  gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
  new_exit_bb = split_edge (single_exit (loop));
  new_exit_e = single_exit (loop);
  e = EDGE_SUCC (new_exit_bb, 0);

  for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree new_res;
      orig_phi = gsi_stmt (gsi);
      new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
      new_phi = create_phi_node (new_res, new_exit_bb);
      arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
      add_phi_arg (new_phi, arg, new_exit_e,
		   gimple_phi_arg_location_from_edge (orig_phi, e));
      adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
    }

  /* End loop-exit-fixes after versioning.  */

  if (cond_expr_stmt_list)
    {
      cond_exp_gsi = gsi_last_bb (condition_bb);
      gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
			     GSI_SAME_STMT);
    }
  update_ssa (TODO_update_ssa);
}