summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-loop-manip.c
blob: 58d1850666f4d8bf5a5e14c9f12af2d5bb5e1124 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
/* Vectorizer Specific Loop Manipulations
   Copyright (C) 2003-2019 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>
   and Ira Rosen <irar@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-ssa-loop-ivopts.h"
#include "gimple-fold.h"
#include "tree-ssa-loop-niter.h"
#include "internal-fn.h"
#include "stor-layout.h"
#include "optabs-query.h"
#include "vec-perm-indices.h"

/*************************************************************************
  Simple Loop Peeling Utilities

  Utilities to support loop peeling for vectorization purposes.
 *************************************************************************/


/* Renames the use *OP_P.  */

static void
rename_use_op (use_operand_p op_p)
{
  tree new_name;

  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
    return;

  new_name = get_current_def (USE_FROM_PTR (op_p));

  /* Something defined outside of the loop.  */
  if (!new_name)
    return;

  /* An ordinary ssa name defined in the loop.  */

  SET_USE (op_p, new_name);
}


/* Renames the variables in basic block BB.  Allow renaming  of PHI arguments
   on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
   true.  */

static void
rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
{
  gimple *stmt;
  use_operand_p use_p;
  ssa_op_iter iter;
  edge e;
  edge_iterator ei;
  struct loop *loop = bb->loop_father;
  struct loop *outer_loop = NULL;

  if (rename_from_outer_loop)
    {
      gcc_assert (loop);
      outer_loop = loop_outer (loop);
    }

  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
	rename_use_op (use_p);
    }

  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (!flow_bb_inside_loop_p (loop, e->src))
	{
	  if (!rename_from_outer_loop)
	    continue;
	  if (e->src != outer_loop->header)
	    {
	      if (outer_loop->inner->next)
		{
		  /* If outer_loop has 2 inner loops, allow there to
		     be an extra basic block which decides which of the
		     two loops to use using LOOP_VECTORIZED.  */
		  if (!single_pred_p (e->src)
		      || single_pred (e->src) != outer_loop->header)
		    continue;
		}
	    }
	}
      for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
    }
}


struct adjust_info
{
  tree from, to;
  basic_block bb;
};

/* A stack of values to be adjusted in debug stmts.  We have to
   process them LIFO, so that the closest substitution applies.  If we
   processed them FIFO, without the stack, we might substitute uses
   with a PHI DEF that would soon become non-dominant, and when we got
   to the suitable one, it wouldn't have anything to substitute any
   more.  */
static vec<adjust_info, va_heap> adjust_vec;

/* Adjust any debug stmts that referenced AI->from values to use the
   loop-closed AI->to, if the references are dominated by AI->bb and
   not by the definition of AI->from.  */

static void
adjust_debug_stmts_now (adjust_info *ai)
{
  basic_block bbphi = ai->bb;
  tree orig_def = ai->from;
  tree new_def = ai->to;
  imm_use_iterator imm_iter;
  gimple *stmt;
  basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));

  gcc_assert (dom_info_available_p (CDI_DOMINATORS));

  /* Adjust any debug stmts that held onto non-loop-closed
     references.  */
  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
    {
      use_operand_p use_p;
      basic_block bbuse;

      if (!is_gimple_debug (stmt))
	continue;

      gcc_assert (gimple_debug_bind_p (stmt));

      bbuse = gimple_bb (stmt);

      if ((bbuse == bbphi
	   || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
	  && !(bbuse == bbdef
	       || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
	{
	  if (new_def)
	    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
	      SET_USE (use_p, new_def);
	  else
	    {
	      gimple_debug_bind_reset_value (stmt);
	      update_stmt (stmt);
	    }
	}
    }
}

/* Adjust debug stmts as scheduled before.  */

static void
adjust_vec_debug_stmts (void)
{
  if (!MAY_HAVE_DEBUG_BIND_STMTS)
    return;

  gcc_assert (adjust_vec.exists ());

  while (!adjust_vec.is_empty ())
    {
      adjust_debug_stmts_now (&adjust_vec.last ());
      adjust_vec.pop ();
    }
}

/* Adjust any debug stmts that referenced FROM values to use the
   loop-closed TO, if the references are dominated by BB and not by
   the definition of FROM.  If adjust_vec is non-NULL, adjustments
   will be postponed until adjust_vec_debug_stmts is called.  */

static void
adjust_debug_stmts (tree from, tree to, basic_block bb)
{
  adjust_info ai;

  if (MAY_HAVE_DEBUG_BIND_STMTS
      && TREE_CODE (from) == SSA_NAME
      && ! SSA_NAME_IS_DEFAULT_DEF (from)
      && ! virtual_operand_p (from))
    {
      ai.from = from;
      ai.to = to;
      ai.bb = bb;

      if (adjust_vec.exists ())
	adjust_vec.safe_push (ai);
      else
	adjust_debug_stmts_now (&ai);
    }
}

/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
   to adjust any debug stmts that referenced the old phi arg,
   presumably non-loop-closed references left over from other
   transformations.  */

static void
adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
{
  tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);

  SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);

  if (MAY_HAVE_DEBUG_BIND_STMTS)
    adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
			gimple_bb (update_phi));
}

/* Define one loop mask MASK from loop LOOP.  INIT_MASK is the value that
   the mask should have during the first iteration and NEXT_MASK is the
   value that it should have on subsequent iterations.  */

static void
vect_set_loop_mask (struct loop *loop, tree mask, tree init_mask,
		    tree next_mask)
{
  gphi *phi = create_phi_node (mask, loop->header);
  add_phi_arg (phi, init_mask, loop_preheader_edge (loop), UNKNOWN_LOCATION);
  add_phi_arg (phi, next_mask, loop_latch_edge (loop), UNKNOWN_LOCATION);
}

/* Add SEQ to the end of LOOP's preheader block.  */

static void
add_preheader_seq (struct loop *loop, gimple_seq seq)
{
  if (seq)
    {
      edge pe = loop_preheader_edge (loop);
      basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
      gcc_assert (!new_bb);
    }
}

/* Add SEQ to the beginning of LOOP's header block.  */

static void
add_header_seq (struct loop *loop, gimple_seq seq)
{
  if (seq)
    {
      gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
      gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
    }
}

/* Return true if the target can interleave elements of two vectors.
   OFFSET is 0 if the first half of the vectors should be interleaved
   or 1 if the second half should.  When returning true, store the
   associated permutation in INDICES.  */

static bool
interleave_supported_p (vec_perm_indices *indices, tree vectype,
			unsigned int offset)
{
  poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
  poly_uint64 base = exact_div (nelts, 2) * offset;
  vec_perm_builder sel (nelts, 2, 3);
  for (unsigned int i = 0; i < 3; ++i)
    {
      sel.quick_push (base + i);
      sel.quick_push (base + i + nelts);
    }
  indices->new_vector (sel, 2, nelts);
  return can_vec_perm_const_p (TYPE_MODE (vectype), *indices);
}

/* Try to use permutes to define the masks in DEST_RGM using the masks
   in SRC_RGM, given that the former has twice as many masks as the
   latter.  Return true on success, adding any new statements to SEQ.  */

static bool
vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_masks *dest_rgm,
			       rgroup_masks *src_rgm)
{
  tree src_masktype = src_rgm->mask_type;
  tree dest_masktype = dest_rgm->mask_type;
  machine_mode src_mode = TYPE_MODE (src_masktype);
  if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
      && optab_handler (vec_unpacku_hi_optab, src_mode) != CODE_FOR_nothing
      && optab_handler (vec_unpacku_lo_optab, src_mode) != CODE_FOR_nothing)
    {
      /* Unpacking the source masks gives at least as many mask bits as
	 we need.  We can then VIEW_CONVERT any excess bits away.  */
      tree unpack_masktype = vect_halve_mask_nunits (src_masktype);
      for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
	{
	  tree src = src_rgm->masks[i / 2];
	  tree dest = dest_rgm->masks[i];
	  tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
			    ? VEC_UNPACK_HI_EXPR
			    : VEC_UNPACK_LO_EXPR);
	  gassign *stmt;
	  if (dest_masktype == unpack_masktype)
	    stmt = gimple_build_assign (dest, code, src);
	  else
	    {
	      tree temp = make_ssa_name (unpack_masktype);
	      stmt = gimple_build_assign (temp, code, src);
	      gimple_seq_add_stmt (seq, stmt);
	      stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
					  build1 (VIEW_CONVERT_EXPR,
						  dest_masktype, temp));
	    }
	  gimple_seq_add_stmt (seq, stmt);
	}
      return true;
    }
  vec_perm_indices indices[2];
  if (dest_masktype == src_masktype
      && interleave_supported_p (&indices[0], src_masktype, 0)
      && interleave_supported_p (&indices[1], src_masktype, 1))
    {
      /* The destination requires twice as many mask bits as the source, so
	 we can use interleaving permutes to double up the number of bits.  */
      tree masks[2];
      for (unsigned int i = 0; i < 2; ++i)
	masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
      for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
	{
	  tree src = src_rgm->masks[i / 2];
	  tree dest = dest_rgm->masks[i];
	  gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
					      src, src, masks[i & 1]);
	  gimple_seq_add_stmt (seq, stmt);
	}
      return true;
    }
  return false;
}

/* Helper for vect_set_loop_condition_masked.  Generate definitions for
   all the masks in RGM and return a mask that is nonzero when the loop
   needs to iterate.  Add any new preheader statements to PREHEADER_SEQ.
   Use LOOP_COND_GSI to insert code before the exit gcond.

   RGM belongs to loop LOOP.  The loop originally iterated NITERS
   times and has been vectorized according to LOOP_VINFO.  Each iteration
   of the vectorized loop handles VF iterations of the scalar loop.

   If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
   starts with NITERS_SKIP dummy iterations of the scalar loop before
   the real work starts.  The mask elements for these dummy iterations
   must be 0, to ensure that the extra iterations do not have an effect.

   It is known that:

     NITERS * RGM->max_nscalars_per_iter

   does not overflow.  However, MIGHT_WRAP_P says whether an induction
   variable that starts at 0 and has step:

     VF * RGM->max_nscalars_per_iter

   might overflow before hitting a value above:

     (NITERS + NITERS_SKIP) * RGM->max_nscalars_per_iter

   This means that we cannot guarantee that such an induction variable
   would ever hit a value that produces a set of all-false masks for RGM.  */

static tree
vect_set_loop_masks_directly (struct loop *loop, loop_vec_info loop_vinfo,
			      gimple_seq *preheader_seq,
			      gimple_stmt_iterator loop_cond_gsi,
			      rgroup_masks *rgm, tree vf,
			      tree niters, tree niters_skip,
			      bool might_wrap_p)
{
  tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
  tree mask_type = rgm->mask_type;
  unsigned int nscalars_per_iter = rgm->max_nscalars_per_iter;
  poly_uint64 nscalars_per_mask = TYPE_VECTOR_SUBPARTS (mask_type);

  /* Calculate the maximum number of scalar values that the rgroup
     handles in total, the number that it handles for each iteration
     of the vector loop, and the number that it should skip during the
     first iteration of the vector loop.  */
  tree nscalars_total = niters;
  tree nscalars_step = vf;
  tree nscalars_skip = niters_skip;
  if (nscalars_per_iter != 1)
    {
      /* We checked before choosing to use a fully-masked loop that these
	 multiplications don't overflow.  */
      tree factor = build_int_cst (compare_type, nscalars_per_iter);
      nscalars_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
				     nscalars_total, factor);
      nscalars_step = gimple_build (preheader_seq, MULT_EXPR, compare_type,
				    nscalars_step, factor);
      if (nscalars_skip)
	nscalars_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
				      nscalars_skip, factor);
    }

  /* Create an induction variable that counts the number of scalars
     processed.  */
  tree index_before_incr, index_after_incr;
  gimple_stmt_iterator incr_gsi;
  bool insert_after;
  tree zero_index = build_int_cst (compare_type, 0);
  standard_iv_increment_position (loop, &incr_gsi, &insert_after);
  create_iv (zero_index, nscalars_step, NULL_TREE, loop, &incr_gsi,
	     insert_after, &index_before_incr, &index_after_incr);

  tree test_index, test_limit, first_limit;
  gimple_stmt_iterator *test_gsi;
  if (might_wrap_p)
    {
      /* In principle the loop should stop iterating once the incremented
	 IV reaches a value greater than or equal to:

	   NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP

	 However, there's no guarantee that this addition doesn't overflow
	 the comparison type, or that the IV hits a value above it before
	 wrapping around.  We therefore adjust the limit down by one
	 IV step:

	   (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
	   -[infinite-prec] NSCALARS_STEP

	 and compare the IV against this limit _before_ incrementing it.
	 Since the comparison type is unsigned, we actually want the
	 subtraction to saturate at zero:

	   (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
	   -[sat] NSCALARS_STEP

	 And since NSCALARS_SKIP < NSCALARS_STEP, we can reassociate this as:

	   NSCALARS_TOTAL -[sat] (NSCALARS_STEP - NSCALARS_SKIP)

	 where the rightmost subtraction can be done directly in
	 COMPARE_TYPE.  */
      test_index = index_before_incr;
      tree adjust = nscalars_step;
      if (nscalars_skip)
	adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
			       adjust, nscalars_skip);
      test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
				 nscalars_total, adjust);
      test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
				 test_limit, adjust);
      test_gsi = &incr_gsi;

      /* Get a safe limit for the first iteration.  */
      if (nscalars_skip)
	{
	  /* The first vector iteration can handle at most NSCALARS_STEP
	     scalars.  NSCALARS_STEP <= CONST_LIMIT, and adding
	     NSCALARS_SKIP to that cannot overflow.  */
	  tree const_limit = build_int_cst (compare_type,
					    LOOP_VINFO_VECT_FACTOR (loop_vinfo)
					    * nscalars_per_iter);
	  first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
				      nscalars_total, const_limit);
	  first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
				      first_limit, nscalars_skip);
	}
      else
	/* For the first iteration it doesn't matter whether the IV hits
	   a value above NSCALARS_TOTAL.  That only matters for the latch
	   condition.  */
	first_limit = nscalars_total;
    }
  else
    {
      /* Test the incremented IV, which will always hit a value above
	 the bound before wrapping.  */
      test_index = index_after_incr;
      test_limit = nscalars_total;
      if (nscalars_skip)
	test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
				   test_limit, nscalars_skip);
      test_gsi = &loop_cond_gsi;

      first_limit = test_limit;
    }

  /* Provide a definition of each mask in the group.  */
  tree next_mask = NULL_TREE;
  tree mask;
  unsigned int i;
  FOR_EACH_VEC_ELT_REVERSE (rgm->masks, i, mask)
    {
      /* Previous masks will cover BIAS scalars.  This mask covers the
	 next batch.  */
      poly_uint64 bias = nscalars_per_mask * i;
      tree bias_tree = build_int_cst (compare_type, bias);
      gimple *tmp_stmt;

      /* See whether the first iteration of the vector loop is known
	 to have a full mask.  */
      poly_uint64 const_limit;
      bool first_iteration_full
	= (poly_int_tree_p (first_limit, &const_limit)
	   && known_ge (const_limit, (i + 1) * nscalars_per_mask));

      /* Rather than have a new IV that starts at BIAS and goes up to
	 TEST_LIMIT, prefer to use the same 0-based IV for each mask
	 and adjust the bound down by BIAS.  */
      tree this_test_limit = test_limit;
      if (i != 0)
	{
	  this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
					  compare_type, this_test_limit,
					  bias_tree);
	  this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
					  compare_type, this_test_limit,
					  bias_tree);
	}

      /* Create the initial mask.  First include all scalars that
	 are within the loop limit.  */
      tree init_mask = NULL_TREE;
      if (!first_iteration_full)
	{
	  tree start, end;
	  if (first_limit == test_limit)
	    {
	      /* Use a natural test between zero (the initial IV value)
		 and the loop limit.  The "else" block would be valid too,
		 but this choice can avoid the need to load BIAS_TREE into
		 a register.  */
	      start = zero_index;
	      end = this_test_limit;
	    }
	  else
	    {
	      /* FIRST_LIMIT is the maximum number of scalars handled by the
		 first iteration of the vector loop.  Test the portion
		 associated with this mask.  */
	      start = bias_tree;
	      end = first_limit;
	    }

	  init_mask = make_temp_ssa_name (mask_type, NULL, "max_mask");
	  tmp_stmt = vect_gen_while (init_mask, start, end);
	  gimple_seq_add_stmt (preheader_seq, tmp_stmt);
	}

      /* Now AND out the bits that are within the number of skipped
	 scalars.  */
      poly_uint64 const_skip;
      if (nscalars_skip
	  && !(poly_int_tree_p (nscalars_skip, &const_skip)
	       && known_le (const_skip, bias)))
	{
	  tree unskipped_mask = vect_gen_while_not (preheader_seq, mask_type,
						    bias_tree, nscalars_skip);
	  if (init_mask)
	    init_mask = gimple_build (preheader_seq, BIT_AND_EXPR, mask_type,
				      init_mask, unskipped_mask);
	  else
	    init_mask = unskipped_mask;
	}

      if (!init_mask)
	/* First iteration is full.  */
	init_mask = build_minus_one_cst (mask_type);

      /* Get the mask value for the next iteration of the loop.  */
      next_mask = make_temp_ssa_name (mask_type, NULL, "next_mask");
      gcall *call = vect_gen_while (next_mask, test_index, this_test_limit);
      gsi_insert_before (test_gsi, call, GSI_SAME_STMT);

      vect_set_loop_mask (loop, mask, init_mask, next_mask);
    }
  return next_mask;
}

/* Make LOOP iterate NITERS times using masking and WHILE_ULT calls.
   LOOP_VINFO describes the vectorization of LOOP.  NITERS is the
   number of iterations of the original scalar loop that should be
   handled by the vector loop.  NITERS_MAYBE_ZERO and FINAL_IV are
   as for vect_set_loop_condition.

   Insert the branch-back condition before LOOP_COND_GSI and return the
   final gcond.  */

static gcond *
vect_set_loop_condition_masked (struct loop *loop, loop_vec_info loop_vinfo,
				tree niters, tree final_iv,
				bool niters_maybe_zero,
				gimple_stmt_iterator loop_cond_gsi)
{
  gimple_seq preheader_seq = NULL;
  gimple_seq header_seq = NULL;

  tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
  unsigned int compare_precision = TYPE_PRECISION (compare_type);
  unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
  tree orig_niters = niters;

  /* Type of the initial value of NITERS.  */
  tree ni_actual_type = TREE_TYPE (niters);
  unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);

  /* Convert NITERS to the same size as the compare.  */
  if (compare_precision > ni_actual_precision
      && niters_maybe_zero)
    {
      /* We know that there is always at least one iteration, so if the
	 count is zero then it must have wrapped.  Cope with this by
	 subtracting 1 before the conversion and adding 1 to the result.  */
      gcc_assert (TYPE_UNSIGNED (ni_actual_type));
      niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
			     niters, build_minus_one_cst (ni_actual_type));
      niters = gimple_convert (&preheader_seq, compare_type, niters);
      niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
			     niters, build_one_cst (compare_type));
    }
  else
    niters = gimple_convert (&preheader_seq, compare_type, niters);

  /* Convert skip_niters to the right type.  */
  tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);

  /* Now calculate the value that the induction variable must be able
     to hit in order to ensure that we end the loop with an all-false mask.
     This involves adding the maximum number of inactive trailing scalar
     iterations.  */
  widest_int iv_limit;
  bool known_max_iters = max_loop_iterations (loop, &iv_limit);
  if (known_max_iters)
    {
      if (niters_skip)
	{
	  /* Add the maximum number of skipped iterations to the
	     maximum iteration count.  */
	  if (TREE_CODE (niters_skip) == INTEGER_CST)
	    iv_limit += wi::to_widest (niters_skip);
	  else
	    iv_limit += max_vf - 1;
	}
      /* IV_LIMIT is the maximum number of latch iterations, which is also
	 the maximum in-range IV value.  Round this value down to the previous
	 vector alignment boundary and then add an extra full iteration.  */
      poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
      iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
    }

  /* Get the vectorization factor in tree form.  */
  tree vf = build_int_cst (compare_type,
			   LOOP_VINFO_VECT_FACTOR (loop_vinfo));

  /* Iterate over all the rgroups and fill in their masks.  We could use
     the first mask from any rgroup for the loop condition; here we
     arbitrarily pick the last.  */
  tree test_mask = NULL_TREE;
  rgroup_masks *rgm;
  unsigned int i;
  vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
  FOR_EACH_VEC_ELT (*masks, i, rgm)
    if (!rgm->masks.is_empty ())
      {
	/* First try using permutes.  This adds a single vector
	   instruction to the loop for each mask, but needs no extra
	   loop invariants or IVs.  */
	unsigned int nmasks = i + 1;
	if ((nmasks & 1) == 0)
	  {
	    rgroup_masks *half_rgm = &(*masks)[nmasks / 2 - 1];
	    if (!half_rgm->masks.is_empty ()
		&& vect_maybe_permute_loop_masks (&header_seq, rgm, half_rgm))
	      continue;
	  }

	/* See whether zero-based IV would ever generate all-false masks
	   before wrapping around.  */
	bool might_wrap_p
	  = (!known_max_iters
	     || (wi::min_precision (iv_limit * rgm->max_nscalars_per_iter,
				    UNSIGNED)
		 > compare_precision));

	/* Set up all masks for this group.  */
	test_mask = vect_set_loop_masks_directly (loop, loop_vinfo,
						  &preheader_seq,
						  loop_cond_gsi, rgm, vf,
						  niters, niters_skip,
						  might_wrap_p);
      }

  /* Emit all accumulated statements.  */
  add_preheader_seq (loop, preheader_seq);
  add_header_seq (loop, header_seq);

  /* Get a boolean result that tells us whether to iterate.  */
  edge exit_edge = single_exit (loop);
  tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
  tree zero_mask = build_zero_cst (TREE_TYPE (test_mask));
  gcond *cond_stmt = gimple_build_cond (code, test_mask, zero_mask,
					NULL_TREE, NULL_TREE);
  gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);

  /* The loop iterates (NITERS - 1) / VF + 1 times.
     Subtract one from this to get the latch count.  */
  tree step = build_int_cst (compare_type,
			     LOOP_VINFO_VECT_FACTOR (loop_vinfo));
  tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
				       build_minus_one_cst (compare_type));
  loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
				     niters_minus_one, step);

  if (final_iv)
    {
      gassign *assign = gimple_build_assign (final_iv, orig_niters);
      gsi_insert_on_edge_immediate (single_exit (loop), assign);
    }

  return cond_stmt;
}

/* Like vect_set_loop_condition, but handle the case in which there
   are no loop masks.  */

static gcond *
vect_set_loop_condition_unmasked (struct loop *loop, tree niters,
				  tree step, tree final_iv,
				  bool niters_maybe_zero,
				  gimple_stmt_iterator loop_cond_gsi)
{
  tree indx_before_incr, indx_after_incr;
  gcond *cond_stmt;
  gcond *orig_cond;
  edge pe = loop_preheader_edge (loop);
  edge exit_edge = single_exit (loop);
  gimple_stmt_iterator incr_gsi;
  bool insert_after;
  enum tree_code code;
  tree niters_type = TREE_TYPE (niters);

  orig_cond = get_loop_exit_condition (loop);
  gcc_assert (orig_cond);
  loop_cond_gsi = gsi_for_stmt (orig_cond);

  tree init, limit;
  if (!niters_maybe_zero && integer_onep (step))
    {
      /* In this case we can use a simple 0-based IV:

	 A:
	   x = 0;
	   do
	     {
	       ...
	       x += 1;
	     }
	   while (x < NITERS);  */
      code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
      init = build_zero_cst (niters_type);
      limit = niters;
    }
  else
    {
      /* The following works for all values of NITERS except 0:

	 B:
	   x = 0;
	   do
	     {
	       ...
	       x += STEP;
	     }
	   while (x <= NITERS - STEP);

	 so that the loop continues to iterate if x + STEP - 1 < NITERS
	 but stops if x + STEP - 1 >= NITERS.

	 However, if NITERS is zero, x never hits a value above NITERS - STEP
	 before wrapping around.  There are two obvious ways of dealing with
	 this:

	 - start at STEP - 1 and compare x before incrementing it
	 - start at -1 and compare x after incrementing it

	 The latter is simpler and is what we use.  The loop in this case
	 looks like:

	 C:
	   x = -1;
	   do
	     {
	       ...
	       x += STEP;
	     }
	   while (x < NITERS - STEP);

	 In both cases the loop limit is NITERS - STEP.  */
      gimple_seq seq = NULL;
      limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
      limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
      if (seq)
	{
	  basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
	  gcc_assert (!new_bb);
	}
      if (niters_maybe_zero)
	{
	  /* Case C.  */
	  code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
	  init = build_all_ones_cst (niters_type);
	}
      else
	{
	  /* Case B.  */
	  code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
	  init = build_zero_cst (niters_type);
	}
    }

  standard_iv_increment_position (loop, &incr_gsi, &insert_after);
  create_iv (init, step, NULL_TREE, loop,
             &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
  indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
					      true, NULL_TREE, true,
					      GSI_SAME_STMT);
  limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
				     true, GSI_SAME_STMT);

  cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
				 NULL_TREE);

  gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);

  /* Record the number of latch iterations.  */
  if (limit == niters)
    /* Case A: the loop iterates NITERS times.  Subtract one to get the
       latch count.  */
    loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
				       build_int_cst (niters_type, 1));
  else
    /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
       Subtract one from this to get the latch count.  */
    loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
				       limit, step);

  if (final_iv)
    {
      gassign *assign = gimple_build_assign (final_iv, MINUS_EXPR,
					     indx_after_incr, init);
      gsi_insert_on_edge_immediate (single_exit (loop), assign);
    }

  return cond_stmt;
}

/* If we're using fully-masked loops, make LOOP iterate:

      N == (NITERS - 1) / STEP + 1

   times.  When NITERS is zero, this is equivalent to making the loop
   execute (1 << M) / STEP times, where M is the precision of NITERS.
   NITERS_MAYBE_ZERO is true if this last case might occur.

   If we're not using fully-masked loops, make LOOP iterate:

      N == (NITERS - STEP) / STEP + 1

   times, where NITERS is known to be outside the range [1, STEP - 1].
   This is equivalent to making the loop execute NITERS / STEP times
   when NITERS is nonzero and (1 << M) / STEP times otherwise.
   NITERS_MAYBE_ZERO again indicates whether this last case might occur.

   If FINAL_IV is nonnull, it is an SSA name that should be set to
   N * STEP on exit from the loop.

   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */

void
vect_set_loop_condition (struct loop *loop, loop_vec_info loop_vinfo,
			 tree niters, tree step, tree final_iv,
			 bool niters_maybe_zero)
{
  gcond *cond_stmt;
  gcond *orig_cond = get_loop_exit_condition (loop);
  gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);

  if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    cond_stmt = vect_set_loop_condition_masked (loop, loop_vinfo, niters,
						final_iv, niters_maybe_zero,
						loop_cond_gsi);
  else
    cond_stmt = vect_set_loop_condition_unmasked (loop, niters, step,
						  final_iv, niters_maybe_zero,
						  loop_cond_gsi);

  /* Remove old loop exit test.  */
  stmt_vec_info orig_cond_info;
  if (loop_vinfo
      && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
    loop_vinfo->remove_stmt (orig_cond_info);
  else
    gsi_remove (&loop_cond_gsi, true);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
		     cond_stmt);
}

/* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
   For all PHI arguments in FROM->dest and TO->dest from those
   edges ensure that TO->dest PHI arguments have current_def
   to that in from.  */

static void
slpeel_duplicate_current_defs_from_edges (edge from, edge to)
{
  gimple_stmt_iterator gsi_from, gsi_to;

  for (gsi_from = gsi_start_phis (from->dest),
       gsi_to = gsi_start_phis (to->dest);
       !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
    {
      gimple *from_phi = gsi_stmt (gsi_from);
      gimple *to_phi = gsi_stmt (gsi_to);
      tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
      tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
      if (virtual_operand_p (from_arg))
	{
	  gsi_next (&gsi_from);
	  continue;
	}
      if (virtual_operand_p (to_arg))
	{
	  gsi_next (&gsi_to);
	  continue;
	}
      if (TREE_CODE (from_arg) != SSA_NAME)
	gcc_assert (operand_equal_p (from_arg, to_arg, 0));
      else if (TREE_CODE (to_arg) == SSA_NAME
	       && from_arg != to_arg)
	{
	  if (get_current_def (to_arg) == NULL_TREE)
	    {
	      gcc_assert (types_compatible_p (TREE_TYPE (to_arg),
					      TREE_TYPE (get_current_def
							   (from_arg))));
	      set_current_def (to_arg, get_current_def (from_arg));
	    }
	}
      gsi_next (&gsi_from);
      gsi_next (&gsi_to);
    }

  gphi *from_phi = get_virtual_phi (from->dest);
  gphi *to_phi = get_virtual_phi (to->dest);
  if (from_phi)
    set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
		     get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
}


/* Given LOOP this function generates a new copy of it and puts it
   on E which is either the entry or exit of LOOP.  If SCALAR_LOOP is
   non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
   basic blocks from SCALAR_LOOP instead of LOOP, but to either the
   entry or exit of LOOP.  */

struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
					struct loop *scalar_loop, edge e)
{
  struct loop *new_loop;
  basic_block *new_bbs, *bbs, *pbbs;
  bool at_exit;
  bool was_imm_dom;
  basic_block exit_dest;
  edge exit, new_exit;
  bool duplicate_outer_loop = false;

  exit = single_exit (loop);
  at_exit = (e == exit);
  if (!at_exit && e != loop_preheader_edge (loop))
    return NULL;

  if (scalar_loop == NULL)
    scalar_loop = loop;

  bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
  pbbs = bbs + 1;
  get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
  /* Allow duplication of outer loops.  */
  if (scalar_loop->inner)
    duplicate_outer_loop = true;
  /* Check whether duplication is possible.  */
  if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
    {
      free (bbs);
      return NULL;
    }

  /* Generate new loop structure.  */
  new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
  duplicate_subloops (scalar_loop, new_loop);

  exit_dest = exit->dest;
  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
					  exit_dest) == loop->header ?
		 true : false);

  /* Also copy the pre-header, this avoids jumping through hoops to
     duplicate the loop entry PHI arguments.  Create an empty
     pre-header unconditionally for this.  */
  basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
  edge entry_e = single_pred_edge (preheader);
  bbs[0] = preheader;
  new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);

  exit = single_exit (scalar_loop);
  copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
	    &exit, 1, &new_exit, NULL,
	    at_exit ? loop->latch : e->src, true);
  exit = single_exit (loop);
  basic_block new_preheader = new_bbs[0];

  add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);

  if (scalar_loop != loop)
    {
      /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
	 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
	 but LOOP will not.  slpeel_update_phi_nodes_for_guard{1,2} expects
	 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
	 header) to have current_def set, so copy them over.  */
      slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
						exit);
      slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
							   0),
						EDGE_SUCC (loop->latch, 0));
    }

  if (at_exit) /* Add the loop copy at exit.  */
    {
      if (scalar_loop != loop)
	{
	  gphi_iterator gsi;
	  new_exit = redirect_edge_and_branch (new_exit, exit_dest);

	  for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
	       gsi_next (&gsi))
	    {
	      gphi *phi = gsi.phi ();
	      tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
	      location_t orig_locus
		= gimple_phi_arg_location_from_edge (phi, e);

	      add_phi_arg (phi, orig_arg, new_exit, orig_locus);
	    }
	}
      redirect_edge_and_branch_force (e, new_preheader);
      flush_pending_stmts (e);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
      if (was_imm_dom || duplicate_outer_loop)
	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);

      /* And remove the non-necessary forwarder again.  Keep the other
         one so we have a proper pre-header for the loop at the exit edge.  */
      redirect_edge_pred (single_succ_edge (preheader),
			  single_pred (preheader));
      delete_basic_block (preheader);
      set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
			       loop_preheader_edge (scalar_loop)->src);
    }
  else /* Add the copy at entry.  */
    {
      if (scalar_loop != loop)
	{
	  /* Remove the non-necessary forwarder of scalar_loop again.  */
	  redirect_edge_pred (single_succ_edge (preheader),
			      single_pred (preheader));
	  delete_basic_block (preheader);
	  set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
				   loop_preheader_edge (scalar_loop)->src);
	  preheader = split_edge (loop_preheader_edge (loop));
	  entry_e = single_pred_edge (preheader);
	}

      redirect_edge_and_branch_force (entry_e, new_preheader);
      flush_pending_stmts (entry_e);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);

      redirect_edge_and_branch_force (new_exit, preheader);
      flush_pending_stmts (new_exit);
      set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);

      /* And remove the non-necessary forwarder again.  Keep the other
         one so we have a proper pre-header for the loop at the exit edge.  */
      redirect_edge_pred (single_succ_edge (new_preheader),
			  single_pred (new_preheader));
      delete_basic_block (new_preheader);
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
			       loop_preheader_edge (new_loop)->src);
    }

  /* Skip new preheader since it's deleted if copy loop is added at entry.  */
  for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
    rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);

  if (scalar_loop != loop)
    {
      /* Update new_loop->header PHIs, so that on the preheader
	 edge they are the ones from loop rather than scalar_loop.  */
      gphi_iterator gsi_orig, gsi_new;
      edge orig_e = loop_preheader_edge (loop);
      edge new_e = loop_preheader_edge (new_loop);

      for (gsi_orig = gsi_start_phis (loop->header),
	   gsi_new = gsi_start_phis (new_loop->header);
	   !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
	   gsi_next (&gsi_orig), gsi_next (&gsi_new))
	{
	  gphi *orig_phi = gsi_orig.phi ();
	  gphi *new_phi = gsi_new.phi ();
	  tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
	  location_t orig_locus
	    = gimple_phi_arg_location_from_edge (orig_phi, orig_e);

	  add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
	}
    }

  free (new_bbs);
  free (bbs);

  checking_verify_dominators (CDI_DOMINATORS);

  return new_loop;
}


/* Given the condition expression COND, put it as the last statement of
   GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
   DOM_BB; return the skip edge.  GUARD_TO is the target basic block to
   skip the loop.  PROBABILITY is the skip edge's probability.  Mark the
   new edge as irreducible if IRREDUCIBLE_P is true.  */

static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond,
		       basic_block guard_to, basic_block dom_bb,
		       profile_probability probability, bool irreducible_p)
{
  gimple_stmt_iterator gsi;
  edge new_e, enter_e;
  gcond *cond_stmt;
  gimple_seq gimplify_stmt_list = NULL;

  enter_e = EDGE_SUCC (guard_bb, 0);
  enter_e->flags &= ~EDGE_FALLTHRU;
  enter_e->flags |= EDGE_FALSE_VALUE;
  gsi = gsi_last_bb (guard_bb);

  cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
				 NULL_TREE);
  if (gimplify_stmt_list)
    gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);

  cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
  gsi = gsi_last_bb (guard_bb);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);

  /* Add new edge to connect guard block to the merge/loop-exit block.  */
  new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);

  new_e->probability = probability;
  if (irreducible_p)
    new_e->flags |= EDGE_IRREDUCIBLE_LOOP;

  enter_e->probability = probability.invert ();
  set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);

  /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS.  */
  if (enter_e->dest->loop_father->header == enter_e->dest)
    split_edge (enter_e);

  return new_e;
}


/* This function verifies that the following restrictions apply to LOOP:
   (1) it consists of exactly 2 basic blocks - header, and an empty latch
       for innermost loop and 5 basic blocks for outer-loop.
   (2) it is single entry, single exit
   (3) its exit condition is the last stmt in the header
   (4) E is the entry/exit edge of LOOP.
 */

bool
slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
{
  edge exit_e = single_exit (loop);
  edge entry_e = loop_preheader_edge (loop);
  gcond *orig_cond = get_loop_exit_condition (loop);
  gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
  unsigned int num_bb = loop->inner? 5 : 2;

  /* All loops have an outer scope; the only case loop->outer is NULL is for
     the function itself.  */
  if (!loop_outer (loop)
      || loop->num_nodes != num_bb
      || !empty_block_p (loop->latch)
      || !single_exit (loop)
      /* Verify that new loop exit condition can be trivially modified.  */
      || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
      || (e != exit_e && e != entry_e))
    return false;

  return true;
}

/* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
   in the exit bb and rename all the uses after the loop.  This simplifies
   the *guard[12] routines, which assume loop closed SSA form for all PHIs
   (but normally loop closed SSA form doesn't require virtual PHIs to be
   in the same form).  Doing this early simplifies the checking what
   uses should be renamed.  */

static void
create_lcssa_for_virtual_phi (struct loop *loop)
{
  gphi_iterator gsi;
  edge exit_e = single_exit (loop);

  for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
    if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
      {
	gphi *phi = gsi.phi ();
	for (gsi = gsi_start_phis (exit_e->dest);
	     !gsi_end_p (gsi); gsi_next (&gsi))
	  if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
	    break;
	if (gsi_end_p (gsi))
	  {
	    tree new_vop = copy_ssa_name (PHI_RESULT (phi));
	    gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
	    tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
	    imm_use_iterator imm_iter;
	    gimple *stmt;
	    use_operand_p use_p;

	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_vop)
	      = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vop);
	    add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
	    gimple_phi_set_result (new_phi, new_vop);
	    FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
	      if (stmt != new_phi
		  && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
		FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
		  SET_USE (use_p, new_vop);
	  }
	break;
      }

}

/* Function vect_get_loop_location.

   Extract the location of the loop in the source code.
   If the loop is not well formed for vectorization, an estimated
   location is calculated.
   Return the loop location if succeed and NULL if not.  */

dump_user_location_t
find_loop_location (struct loop *loop)
{
  gimple *stmt = NULL;
  basic_block bb;
  gimple_stmt_iterator si;

  if (!loop)
    return dump_user_location_t ();

  stmt = get_loop_exit_condition (loop);

  if (stmt
      && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
    return stmt;

  /* If we got here the loop is probably not "well formed",
     try to estimate the loop location */

  if (!loop->header)
    return dump_user_location_t ();

  bb = loop->header;

  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      stmt = gsi_stmt (si);
      if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
        return stmt;
    }

  return dump_user_location_t ();
}

/* Return true if the phi described by STMT_INFO defines an IV of the
   loop to be vectorized.  */

static bool
iv_phi_p (stmt_vec_info stmt_info)
{
  gphi *phi = as_a <gphi *> (stmt_info->stmt);
  if (virtual_operand_p (PHI_RESULT (phi)))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
      || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
    return false;

  return true;
}

/* Function vect_can_advance_ivs_p

   In case the number of iterations that LOOP iterates is unknown at compile
   time, an epilog loop will be generated, and the loop induction variables
   (IVs) will be "advanced" to the value they are supposed to take just before
   the epilog loop.  Here we check that the access function of the loop IVs
   and the expression that represents the loop bound are simple enough.
   These restrictions will be relaxed in the future.  */

bool
vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block bb = loop->header;
  gphi_iterator gsi;

  /* Analyze phi functions of the loop header.  */

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree evolution_part;

      gphi *phi = gsi.phi ();
      stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
			 phi_info->stmt);

      /* Skip virtual phi's. The data dependences that are associated with
	 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.

	 Skip reduction phis.  */
      if (!iv_phi_p (phi_info))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "reduc or virtual phi. skip.\n");
	  continue;
	}

      /* Analyze the evolution function.  */

      evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
      if (evolution_part == NULL_TREE)
        {
	  if (dump_enabled_p ())
	    dump_printf (MSG_MISSED_OPTIMIZATION,
			 "No access function or evolution.\n");
	  return false;
        }

      /* FORNOW: We do not transform initial conditions of IVs
	 which evolution functions are not invariants in the loop.  */

      if (!expr_invariant_in_loop_p (loop, evolution_part))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "evolution not invariant in loop.\n");
	  return false;
	}

      /* FORNOW: We do not transform initial conditions of IVs
	 which evolution functions are a polynomial of degree >= 2.  */

      if (tree_is_chrec (evolution_part))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "evolution is chrec.\n");
	  return false;
	}
    }

  return true;
}


/*   Function vect_update_ivs_after_vectorizer.

     "Advance" the induction variables of LOOP to the value they should take
     after the execution of LOOP.  This is currently necessary because the
     vectorizer does not handle induction variables that are used after the
     loop.  Such a situation occurs when the last iterations of LOOP are
     peeled, because:
     1. We introduced new uses after LOOP for IVs that were not originally used
        after LOOP: the IVs of LOOP are now used by an epilog loop.
     2. LOOP is going to be vectorized; this means that it will iterate N/VF
        times, whereas the loop IVs should be bumped N times.

     Input:
     - LOOP - a loop that is going to be vectorized. The last few iterations
              of LOOP were peeled.
     - NITERS - the number of iterations that LOOP executes (before it is
                vectorized). i.e, the number of times the ivs should be bumped.
     - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
                  coming out from LOOP on which there are uses of the LOOP ivs
		  (this is the path from LOOP->exit to epilog_loop->preheader).

                  The new definitions of the ivs are placed in LOOP->exit.
                  The phi args associated with the edge UPDATE_E in the bb
                  UPDATE_E->dest are updated accordingly.

     Assumption 1: Like the rest of the vectorizer, this function assumes
     a single loop exit that has a single predecessor.

     Assumption 2: The phi nodes in the LOOP header and in update_bb are
     organized in the same order.

     Assumption 3: The access function of the ivs is simple enough (see
     vect_can_advance_ivs_p).  This assumption will be relaxed in the future.

     Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
     coming out of LOOP on which the ivs of LOOP are used (this is the path
     that leads to the epilog loop; other paths skip the epilog loop).  This
     path starts with the edge UPDATE_E, and its destination (denoted update_bb)
     needs to have its phis updated.
 */

static void
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
				  tree niters, edge update_e)
{
  gphi_iterator gsi, gsi1;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block update_bb = update_e->dest;
  basic_block exit_bb = single_exit (loop)->dest;

  /* Make sure there exists a single-predecessor exit bb:  */
  gcc_assert (single_pred_p (exit_bb));
  gcc_assert (single_succ_edge (exit_bb) == update_e);

  for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
       !gsi_end_p (gsi) && !gsi_end_p (gsi1);
       gsi_next (&gsi), gsi_next (&gsi1))
    {
      tree init_expr;
      tree step_expr, off;
      tree type;
      tree var, ni, ni_name;
      gimple_stmt_iterator last_gsi;

      gphi *phi = gsi.phi ();
      gphi *phi1 = gsi1.phi ();
      stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "vect_update_ivs_after_vectorizer: phi: %G", phi);

      /* Skip reduction and virtual phis.  */
      if (!iv_phi_p (phi_info))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "reduc or virtual phi. skip.\n");
	  continue;
	}

      type = TREE_TYPE (gimple_phi_result (phi));
      step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
      step_expr = unshare_expr (step_expr);

      /* FORNOW: We do not support IVs whose evolution function is a polynomial
         of degree >= 2 or exponential.  */
      gcc_assert (!tree_is_chrec (step_expr));

      init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));

      off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
			 fold_convert (TREE_TYPE (step_expr), niters),
			 step_expr);
      if (POINTER_TYPE_P (type))
	ni = fold_build_pointer_plus (init_expr, off);
      else
	ni = fold_build2 (PLUS_EXPR, type,
			  init_expr, fold_convert (type, off));

      var = create_tmp_var (type, "tmp");

      last_gsi = gsi_last_bb (exit_bb);
      gimple_seq new_stmts = NULL;
      ni_name = force_gimple_operand (ni, &new_stmts, false, var);
      /* Exit_bb shouldn't be empty.  */
      if (!gsi_end_p (last_gsi))
	gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
      else
	gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);

      /* Fix phi expressions in the successor bb.  */
      adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
    }
}

/* Return a gimple value containing the misalignment (measured in vector
   elements) for the loop described by LOOP_VINFO, i.e. how many elements
   it is away from a perfectly aligned address.  Add any new statements
   to SEQ.  */

static tree
get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
{
  dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  stmt_vec_info stmt_info = dr_info->stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);

  poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
  unsigned HOST_WIDE_INT target_align_c;
  tree target_align_minus_1;

  bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
					size_zero_node) < 0;
  tree offset = (negative
		 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1)
		 : size_zero_node);
  tree start_addr = vect_create_addr_base_for_vector_ref (stmt_info, seq,
							  offset);
  tree type = unsigned_type_for (TREE_TYPE (start_addr));
  if (target_align.is_constant (&target_align_c))
    target_align_minus_1 = build_int_cst (type, target_align_c - 1);
  else
    {
      tree vla = build_int_cst (type, target_align);
      tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
				    fold_build2 (MINUS_EXPR, type,
						 build_int_cst (type, 0), vla));
      target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
					  build_int_cst (type, 1));
    }

  HOST_WIDE_INT elem_size
    = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
  tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));

  /* Create:  misalign_in_bytes = addr & (target_align - 1).  */
  tree int_start_addr = fold_convert (type, start_addr);
  tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
					target_align_minus_1);

  /* Create:  misalign_in_elems = misalign_in_bytes / element_size.  */
  tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
					elem_size_log);

  return misalign_in_elems;
}

/* Function vect_gen_prolog_loop_niters

   Generate the number of iterations which should be peeled as prolog for the
   loop represented by LOOP_VINFO.  It is calculated as the misalignment of
   DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
   As a result, after the execution of this loop, the data reference DR will
   refer to an aligned location.  The following computation is generated:

   If the misalignment of DR is known at compile time:
     addr_mis = int mis = DR_MISALIGNMENT (dr);
   Else, compute address misalignment in bytes:
     addr_mis = addr & (target_align - 1)

   prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step

   (elem_size = element type size; an element is the scalar element whose type
   is the inner type of the vectype)

   The computations will be emitted at the end of BB.  We also compute and
   store upper bound (included) of the result in BOUND.

   When the step of the data-ref in the loop is not 1 (as in interleaved data
   and SLP), the number of iterations of the prolog must be divided by the step
   (which is equal to the size of interleaved group).

   The above formulas assume that VF == number of elements in the vector. This
   may not hold when there are multiple-types in the loop.
   In this case, for some data-references in the loop the VF does not represent
   the number of elements that fit in the vector.  Therefore, instead of VF we
   use TYPE_VECTOR_SUBPARTS.  */

static tree
vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
			     basic_block bb, int *bound)
{
  dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  tree var;
  tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
  gimple_seq stmts = NULL, new_stmts = NULL;
  tree iters, iters_name;
  stmt_vec_info stmt_info = dr_info->stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);

  if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
    {
      int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);

      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
                         "known peeling = %d.\n", npeel);

      iters = build_int_cst (niters_type, npeel);
      *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
    }
  else
    {
      tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
      tree type = TREE_TYPE (misalign_in_elems);
      HOST_WIDE_INT elem_size
	= int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
      /* We only do prolog peeling if the target alignment is known at compile
         time.  */
      poly_uint64 align_in_elems =
	exact_div (target_align, elem_size);
      tree align_in_elems_minus_1 =
	build_int_cst (type, align_in_elems - 1);
      tree align_in_elems_tree = build_int_cst (type, align_in_elems);

      /* Create:  (niters_type) ((align_in_elems - misalign_in_elems)
				 & (align_in_elems - 1)).  */
      bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
					    size_zero_node) < 0;
      if (negative)
	iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
			     align_in_elems_tree);
      else
	iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
			     misalign_in_elems);
      iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
      iters = fold_convert (niters_type, iters);
      unsigned HOST_WIDE_INT align_in_elems_c;
      if (align_in_elems.is_constant (&align_in_elems_c))
	*bound = align_in_elems_c - 1;
      else
	*bound = -1;
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "niters for prolog loop: %T\n", iters);

  var = create_tmp_var (niters_type, "prolog_loop_niters");
  iters_name = force_gimple_operand (iters, &new_stmts, false, var);

  if (new_stmts)
    gimple_seq_add_seq (&stmts, new_stmts);
  if (stmts)
    {
      gcc_assert (single_succ_p (bb));
      gimple_stmt_iterator gsi = gsi_last_bb (bb);
      if (gsi_end_p (gsi))
	gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
      else
	gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
    }
  return iters_name;
}


/* Function vect_update_init_of_dr

   If CODE is PLUS, the vector loop starts NITERS iterations after the
   scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
   iterations before the scalar one (using masking to skip inactive
   elements).  This function updates the information recorded in DR to
   account for the difference.  Specifically, it updates the OFFSET
   field of DR.  */

static void
vect_update_init_of_dr (struct data_reference *dr, tree niters, tree_code code)
{
  tree offset = DR_OFFSET (dr);

  niters = fold_build2 (MULT_EXPR, sizetype,
			fold_convert (sizetype, niters),
			fold_convert (sizetype, DR_STEP (dr)));
  offset = fold_build2 (code, sizetype,
			fold_convert (sizetype, offset), niters);
  DR_OFFSET (dr) = offset;
}


/* Function vect_update_inits_of_drs

   Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
   CODE and NITERS are as for vect_update_inits_of_dr.  */

static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
			  tree_code code)
{
  unsigned int i;
  vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
  struct data_reference *dr;

  DUMP_VECT_SCOPE ("vect_update_inits_of_dr");

  /* Adjust niters to sizetype and insert stmts on loop preheader edge.  */
  if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
    {
      gimple_seq seq;
      edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
      tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");

      niters = fold_convert (sizetype, niters);
      niters = force_gimple_operand (niters, &seq, false, var);
      if (seq)
	{
	  basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
	  gcc_assert (!new_bb);
	}
    }

  FOR_EACH_VEC_ELT (datarefs, i, dr)
    {
      dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
      if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt))
	vect_update_init_of_dr (dr, niters, code);
    }
}

/* For the information recorded in LOOP_VINFO prepare the loop for peeling
   by masking.  This involves calculating the number of iterations to
   be peeled and then aligning all memory references appropriately.  */

void
vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
{
  tree misalign_in_elems;
  tree type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);

  gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));

  /* From the information recorded in LOOP_VINFO get the number of iterations
     that need to be skipped via masking.  */
  if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
    {
      poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
			     - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
      misalign_in_elems = build_int_cst (type, misalign);
    }
  else
    {
      gimple_seq seq1 = NULL, seq2 = NULL;
      misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
      misalign_in_elems = fold_convert (type, misalign_in_elems);
      misalign_in_elems = force_gimple_operand (misalign_in_elems,
						&seq2, true, NULL_TREE);
      gimple_seq_add_seq (&seq1, seq2);
      if (seq1)
	{
	  edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
	  basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
	  gcc_assert (!new_bb);
	}
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "misalignment for fully-masked loop: %T\n",
		     misalign_in_elems);

  LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;

  vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
}

/* This function builds ni_name = number of iterations.  Statements
   are emitted on the loop preheader edge.  If NEW_VAR_P is not NULL, set
   it to TRUE if new ssa_var is generated.  */

tree
vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
{
  tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
  if (TREE_CODE (ni) == INTEGER_CST)
    return ni;
  else
    {
      tree ni_name, var;
      gimple_seq stmts = NULL;
      edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));

      var = create_tmp_var (TREE_TYPE (ni), "niters");
      ni_name = force_gimple_operand (ni, &stmts, false, var);
      if (stmts)
	{
	  gsi_insert_seq_on_edge_immediate (pe, stmts);
	  if (new_var_p != NULL)
	    *new_var_p = true;
	}

      return ni_name;
    }
}

/* Calculate the number of iterations above which vectorized loop will be
   preferred than scalar loop.  NITERS_PROLOG is the number of iterations
   of prolog loop.  If it's integer const, the integer number is also passed
   in INT_NITERS_PROLOG.  BOUND_PROLOG is the upper bound (inclusive) of the
   number of iterations of the prolog loop.  BOUND_EPILOG is the corresponding
   value for the epilog loop.  If CHECK_PROFITABILITY is true, TH is the
   threshold below which the scalar (rather than vectorized) loop will be
   executed.  This function stores the upper bound (inclusive) of the result
   in BOUND_SCALAR.  */

static tree
vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
			     int bound_prolog, poly_int64 bound_epilog, int th,
			     poly_uint64 *bound_scalar,
			     bool check_profitability)
{
  tree type = TREE_TYPE (niters_prolog);
  tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
			     build_int_cst (type, bound_epilog));

  *bound_scalar = bound_prolog + bound_epilog;
  if (check_profitability)
    {
      /* TH indicates the minimum niters of vectorized loop, while we
	 compute the maximum niters of scalar loop.  */
      th--;
      /* Peeling for constant times.  */
      if (int_niters_prolog >= 0)
	{
	  *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
	  return build_int_cst (type, *bound_scalar);
	}
      /* Peeling an unknown number of times.  Note that both BOUND_PROLOG
	 and BOUND_EPILOG are inclusive upper bounds.  */
      if (known_ge (th, bound_prolog + bound_epilog))
	{
	  *bound_scalar = th;
	  return build_int_cst (type, th);
	}
      /* Need to do runtime comparison.  */
      else if (maybe_gt (th, bound_epilog))
	{
	  *bound_scalar = upper_bound (*bound_scalar, th);
	  return fold_build2 (MAX_EXPR, type,
			      build_int_cst (type, th), niters);
	}
    }
  return niters;
}

/* NITERS is the number of times that the original scalar loop executes
   after peeling.  Work out the maximum number of iterations N that can
   be handled by the vectorized form of the loop and then either:

   a) set *STEP_VECTOR_PTR to the vectorization factor and generate:

	niters_vector = N

   b) set *STEP_VECTOR_PTR to one and generate:

        niters_vector = N / vf

   In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
   any new statements on the loop preheader edge.  NITERS_NO_OVERFLOW
   is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero).  */

void
vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
			     tree *niters_vector_ptr, tree *step_vector_ptr,
			     bool niters_no_overflow)
{
  tree ni_minus_gap, var;
  tree niters_vector, step_vector, type = TREE_TYPE (niters);
  poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
  tree log_vf = NULL_TREE;

  /* If epilogue loop is required because of data accesses with gaps, we
     subtract one iteration from the total number of iterations here for
     correct calculation of RATIO.  */
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
    {
      ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
				  build_one_cst (type));
      if (!is_gimple_val (ni_minus_gap))
	{
	  var = create_tmp_var (type, "ni_gap");
	  gimple *stmts = NULL;
	  ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
					       true, var);
	  gsi_insert_seq_on_edge_immediate (pe, stmts);
	}
    }
  else
    ni_minus_gap = niters;

  unsigned HOST_WIDE_INT const_vf;
  if (vf.is_constant (&const_vf)
      && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      /* Create: niters >> log2(vf) */
      /* If it's known that niters == number of latch executions + 1 doesn't
	 overflow, we can generate niters >> log2(vf); otherwise we generate
	 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
	 will be at least one.  */
      log_vf = build_int_cst (type, exact_log2 (const_vf));
      if (niters_no_overflow)
	niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
      else
	niters_vector
	  = fold_build2 (PLUS_EXPR, type,
			 fold_build2 (RSHIFT_EXPR, type,
				      fold_build2 (MINUS_EXPR, type,
						   ni_minus_gap,
						   build_int_cst (type, vf)),
				      log_vf),
			 build_int_cst (type, 1));
      step_vector = build_one_cst (type);
    }
  else
    {
      niters_vector = ni_minus_gap;
      step_vector = build_int_cst (type, vf);
    }

  if (!is_gimple_val (niters_vector))
    {
      var = create_tmp_var (type, "bnd");
      gimple_seq stmts = NULL;
      niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
      gsi_insert_seq_on_edge_immediate (pe, stmts);
      /* Peeling algorithm guarantees that vector loop bound is at least ONE,
	 we set range information to make niters analyzer's life easier.  */
      if (stmts != NULL && log_vf)
	set_range_info (niters_vector, VR_RANGE,
			wi::to_wide (build_int_cst (type, 1)),
			wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
						  TYPE_MAX_VALUE (type),
						  log_vf)));
    }
  *niters_vector_ptr = niters_vector;
  *step_vector_ptr = step_vector;

  return;
}

/* Given NITERS_VECTOR which is the number of iterations for vectorized
   loop specified by LOOP_VINFO after vectorization, compute the number
   of iterations before vectorization (niters_vector * vf) and store it
   to NITERS_VECTOR_MULT_VF_PTR.  */

static void
vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
				     tree niters_vector,
				     tree *niters_vector_mult_vf_ptr)
{
  /* We should be using a step_vector of VF if VF is variable.  */
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree type = TREE_TYPE (niters_vector);
  tree log_vf = build_int_cst (type, exact_log2 (vf));
  basic_block exit_bb = single_exit (loop)->dest;

  gcc_assert (niters_vector_mult_vf_ptr != NULL);
  tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
					    niters_vector, log_vf);
  if (!is_gimple_val (niters_vector_mult_vf))
    {
      tree var = create_tmp_var (type, "niters_vector_mult_vf");
      gimple_seq stmts = NULL;
      niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
						    &stmts, true, var);
      gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
    }
  *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
}

/* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
   from SECOND/FIRST and puts it at the original loop's preheader/exit
   edge, the two loops are arranged as below:

       preheader_a:
     first_loop:
       header_a:
	 i_1 = PHI<i_0, i_2>;
	 ...
	 i_2 = i_1 + 1;
	 if (cond_a)
	   goto latch_a;
	 else
	   goto between_bb;
       latch_a:
	 goto header_a;

       between_bb:
	 ;; i_x = PHI<i_2>;   ;; LCSSA phi node to be created for FIRST,

     second_loop:
       header_b:
	 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
				 or with i_2 if no LCSSA phi is created
				 under condition of CREATE_LCSSA_FOR_IV_PHIS.
	 ...
	 i_4 = i_3 + 1;
	 if (cond_b)
	   goto latch_b;
	 else
	   goto exit_bb;
       latch_b:
	 goto header_b;

       exit_bb:

   This function creates loop closed SSA for the first loop; update the
   second loop's PHI nodes by replacing argument on incoming edge with the
   result of newly created lcssa PHI nodes.  IF CREATE_LCSSA_FOR_IV_PHIS
   is false, Loop closed ssa phis will only be created for non-iv phis for
   the first loop.

   This function assumes exit bb of the first loop is preheader bb of the
   second loop, i.e, between_bb in the example code.  With PHIs updated,
   the second loop will execute rest iterations of the first.  */

static void
slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
				   struct loop *first, struct loop *second,
				   bool create_lcssa_for_iv_phis)
{
  gphi_iterator gsi_update, gsi_orig;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  edge first_latch_e = EDGE_SUCC (first->latch, 0);
  edge second_preheader_e = loop_preheader_edge (second);
  basic_block between_bb = single_exit (first)->dest;

  gcc_assert (between_bb == second_preheader_e->src);
  gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
  /* Either the first loop or the second is the loop to be vectorized.  */
  gcc_assert (loop == first || loop == second);

  for (gsi_orig = gsi_start_phis (first->header),
       gsi_update = gsi_start_phis (second->header);
       !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
       gsi_next (&gsi_orig), gsi_next (&gsi_update))
    {
      gphi *orig_phi = gsi_orig.phi ();
      gphi *update_phi = gsi_update.phi ();

      tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
      /* Generate lcssa PHI node for the first loop.  */
      gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
      stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
      if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
	{
	  tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
	  gphi *lcssa_phi = create_phi_node (new_res, between_bb);
	  add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
	  arg = new_res;
	}

      /* Update PHI node in the second loop by replacing arg on the loop's
	 incoming edge.  */
      adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
    }
}

/* Function slpeel_add_loop_guard adds guard skipping from the beginning
   of SKIP_LOOP to the beginning of UPDATE_LOOP.  GUARD_EDGE and MERGE_EDGE
   are two pred edges of the merge point before UPDATE_LOOP.  The two loops
   appear like below:

       guard_bb:
	 if (cond)
	   goto merge_bb;
	 else
	   goto skip_loop;

     skip_loop:
       header_a:
	 i_1 = PHI<i_0, i_2>;
	 ...
	 i_2 = i_1 + 1;
	 if (cond_a)
	   goto latch_a;
	 else
	   goto exit_a;
       latch_a:
	 goto header_a;

       exit_a:
	 i_5 = PHI<i_2>;

       merge_bb:
	 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.

     update_loop:
       header_b:
	 i_3 = PHI<i_5, i_4>;  ;; Use of i_5 to be replaced with i_x.
	 ...
	 i_4 = i_3 + 1;
	 if (cond_b)
	   goto latch_b;
	 else
	   goto exit_bb;
       latch_b:
	 goto header_b;

       exit_bb:

   This function creates PHI nodes at merge_bb and replaces the use of i_5
   in the update_loop's PHI node with the result of new PHI result.  */

static void
slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
				    struct loop *update_loop,
				    edge guard_edge, edge merge_edge)
{
  location_t merge_loc, guard_loc;
  edge orig_e = loop_preheader_edge (skip_loop);
  edge update_e = loop_preheader_edge (update_loop);
  gphi_iterator gsi_orig, gsi_update;

  for ((gsi_orig = gsi_start_phis (skip_loop->header),
	gsi_update = gsi_start_phis (update_loop->header));
       !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
       gsi_next (&gsi_orig), gsi_next (&gsi_update))
    {
      gphi *orig_phi = gsi_orig.phi ();
      gphi *update_phi = gsi_update.phi ();

      /* Generate new phi node at merge bb of the guard.  */
      tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
      gphi *new_phi = create_phi_node (new_res, guard_edge->dest);

      /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE.  Set the
	 args in NEW_PHI for these edges.  */
      tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
      tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
      merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
      guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
      add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
      add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);

      /* Update phi in UPDATE_PHI.  */
      adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
    }
}

/* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
   this function searches for the corresponding lcssa phi node in exit
   bb of LOOP.  If it is found, return the phi result; otherwise return
   NULL.  */

static tree
find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
		gphi *lcssa_phi)
{
  gphi_iterator gsi;
  edge e = single_exit (loop);

  gcc_assert (single_pred_p (e->dest));
  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      if (operand_equal_p (PHI_ARG_DEF (phi, 0),
			   PHI_ARG_DEF (lcssa_phi, 0), 0))
	return PHI_RESULT (phi);
    }
  return NULL_TREE;
}

/* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
   from LOOP.  Function slpeel_add_loop_guard adds guard skipping from a
   point between the two loops to the end of EPILOG.  Edges GUARD_EDGE
   and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
   The CFG looks like:

     loop:
       header_a:
	 i_1 = PHI<i_0, i_2>;
	 ...
	 i_2 = i_1 + 1;
	 if (cond_a)
	   goto latch_a;
	 else
	   goto exit_a;
       latch_a:
	 goto header_a;

       exit_a:

       guard_bb:
	 if (cond)
	   goto merge_bb;
	 else
	   goto epilog_loop;

       ;; fall_through_bb

     epilog_loop:
       header_b:
	 i_3 = PHI<i_2, i_4>;
	 ...
	 i_4 = i_3 + 1;
	 if (cond_b)
	   goto latch_b;
	 else
	   goto merge_bb;
       latch_b:
	 goto header_b;

       merge_bb:
	 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.

       exit_bb:
	 i_x = PHI<i_4>;  ;Use of i_4 to be replaced with i_y in merge_bb.

   For each name used out side EPILOG (i.e - for each name that has a lcssa
   phi in exit_bb) we create a new PHI in merge_bb.  The new PHI has two
   args corresponding to GUARD_EDGE and MERGE_EDGE.  Arg for MERGE_EDGE is
   the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
   by LOOP and is found in the exit bb of LOOP.  Arg of the original PHI
   in exit_bb will also be updated.  */

static void
slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
				    edge guard_edge, edge merge_edge)
{
  gphi_iterator gsi;
  basic_block merge_bb = guard_edge->dest;

  gcc_assert (single_succ_p (merge_bb));
  edge e = single_succ_edge (merge_bb);
  basic_block exit_bb = e->dest;
  gcc_assert (single_pred_p (exit_bb));
  gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);

  for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gphi *update_phi = gsi.phi ();
      tree old_arg = PHI_ARG_DEF (update_phi, 0);
      /* This loop-closed-phi actually doesn't represent a use out of the
	 loop - the phi arg is a constant.  */
      if (TREE_CODE (old_arg) != SSA_NAME)
	continue;

      tree merge_arg = get_current_def (old_arg);
      if (!merge_arg)
	merge_arg = old_arg;

      tree guard_arg = find_guard_arg (loop, epilog, update_phi);
      /* If the var is live after loop but not a reduction, we simply
	 use the old arg.  */
      if (!guard_arg)
	guard_arg = old_arg;

      /* Create new phi node in MERGE_BB:  */
      tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
      gphi *merge_phi = create_phi_node (new_res, merge_bb);

      /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
	 the two PHI args in merge_phi for these edges.  */
      add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
      add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);

      /* Update the original phi in exit_bb.  */
      adjust_phi_and_debug_stmts (update_phi, e, new_res);
    }
}

/* EPILOG loop is duplicated from the original loop for vectorizing,
   the arg of its loop closed ssa PHI needs to be updated.  */

static void
slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
{
  gphi_iterator gsi;
  basic_block exit_bb = single_exit (epilog)->dest;

  gcc_assert (single_pred_p (exit_bb));
  edge e = EDGE_PRED (exit_bb, 0);
  for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
}

/* Function vect_do_peeling.

   Input:
   - LOOP_VINFO: Represent a loop to be vectorized, which looks like:

       preheader:
     LOOP:
       header_bb:
	 loop_body
	 if (exit_loop_cond) goto exit_bb
	 else                goto header_bb
       exit_bb:

   - NITERS: The number of iterations of the loop.
   - NITERSM1: The number of iterations of the loop's latch.
   - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
   - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
			      CHECK_PROFITABILITY is true.
   Output:
   - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
     iterate after vectorization; see vect_set_loop_condition for details.
   - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
     should be set to the number of scalar iterations handled by the
     vector loop.  The SSA name is only used on exit from the loop.

   This function peels prolog and epilog from the loop, adds guards skipping
   PROLOG and EPILOG for various conditions.  As a result, the changed CFG
   would look like:

       guard_bb_1:
	 if (prefer_scalar_loop) goto merge_bb_1
	 else                    goto guard_bb_2

       guard_bb_2:
         if (skip_prolog) goto merge_bb_2
         else             goto prolog_preheader

       prolog_preheader:
     PROLOG:
       prolog_header_bb:
	 prolog_body
	 if (exit_prolog_cond) goto prolog_exit_bb
	 else                  goto prolog_header_bb
       prolog_exit_bb:

       merge_bb_2:

       vector_preheader:
     VECTOR LOOP:
       vector_header_bb:
	 vector_body
	 if (exit_vector_cond) goto vector_exit_bb
	 else                  goto vector_header_bb
       vector_exit_bb:

       guard_bb_3:
	 if (skip_epilog) goto merge_bb_3
	 else             goto epilog_preheader

       merge_bb_1:

       epilog_preheader:
     EPILOG:
       epilog_header_bb:
	 epilog_body
	 if (exit_epilog_cond) goto merge_bb_3
	 else                  goto epilog_header_bb

       merge_bb_3:

   Note this function peels prolog and epilog only if it's necessary,
   as well as guards.
   Returns created epilogue or NULL.

   TODO: Guard for prefer_scalar_loop should be emitted along with
   versioning conditions if loop versioning is needed.  */


struct loop *
vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
		 tree *niters_vector, tree *step_vector,
		 tree *niters_vector_mult_vf_var, int th,
		 bool check_profitability, bool niters_no_overflow)
{
  edge e, guard_e;
  tree type = TREE_TYPE (niters), guard_cond;
  basic_block guard_bb, guard_to;
  profile_probability prob_prolog, prob_vector, prob_epilog;
  int estimated_vf;
  int prolog_peeling = 0;
  /* We currently do not support prolog peeling if the target alignment is not
     known at compile time.  'vect_gen_prolog_loop_niters' depends on the
     target alignment being constant.  */
  dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
    return NULL;

  if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
    prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);

  poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  poly_uint64 bound_epilog = 0;
  if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
      && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
    bound_epilog += vf - 1;
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
    bound_epilog += 1;
  bool epilog_peeling = maybe_ne (bound_epilog, 0U);
  poly_uint64 bound_scalar = bound_epilog;

  if (!prolog_peeling && !epilog_peeling)
    return NULL;

  prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
  estimated_vf = vect_vf_for_cost (loop_vinfo);
  if (estimated_vf == 2)
    estimated_vf = 3;
  prob_prolog = prob_epilog = profile_probability::guessed_always ()
			.apply_scale (estimated_vf - 1, estimated_vf);

  struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *first_loop = loop;
  bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
  create_lcssa_for_virtual_phi (loop);
  update_ssa (TODO_update_ssa_only_virtuals);

  if (MAY_HAVE_DEBUG_BIND_STMTS)
    {
      gcc_assert (!adjust_vec.exists ());
      adjust_vec.create (32);
    }
  initialize_original_copy_tables ();

  /* Record the anchor bb at which the guard should be placed if the scalar
     loop might be preferred.  */
  basic_block anchor = loop_preheader_edge (loop)->src;

  /* Generate the number of iterations for the prolog loop.  We do this here
     so that we can also get the upper bound on the number of iterations.  */
  tree niters_prolog;
  int bound_prolog = 0;
  if (prolog_peeling)
    niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
						 &bound_prolog);
  else
    niters_prolog = build_int_cst (type, 0);

  /* Prolog loop may be skipped.  */
  bool skip_prolog = (prolog_peeling != 0);
  /* Skip to epilog if scalar loop may be preferred.  It's only needed
     when we peel for epilog loop and when it hasn't been checked with
     loop versioning.  */
  bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
		      ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
				  bound_prolog + bound_epilog)
		      : !LOOP_REQUIRES_VERSIONING (loop_vinfo));
  /* Epilog loop must be executed if the number of iterations for epilog
     loop is known at compile time, otherwise we need to add a check at
     the end of vector loop and skip to the end of epilog loop.  */
  bool skip_epilog = (prolog_peeling < 0
		      || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
		      || !vf.is_constant ());
  /* PEELING_FOR_GAPS is special because epilog loop must be executed.  */
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
    skip_epilog = false;

  if (skip_vector)
    {
      split_edge (loop_preheader_edge (loop));

      /* Due to the order in which we peel prolog and epilog, we first
	 propagate probability to the whole loop.  The purpose is to
	 avoid adjusting probabilities of both prolog and vector loops
	 separately.  Note in this case, the probability of epilog loop
	 needs to be scaled back later.  */
      basic_block bb_before_loop = loop_preheader_edge (loop)->src;
      if (prob_vector.initialized_p ())
	{
	  scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
	  scale_loop_profile (loop, prob_vector, 0);
	}
    }

  dump_user_location_t loop_loc = find_loop_location (loop);
  struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
  if (prolog_peeling)
    {
      e = loop_preheader_edge (loop);
      if (!slpeel_can_duplicate_loop_p (loop, e))
	{
	  dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
			   "loop can't be duplicated to preheader edge.\n");
	  gcc_unreachable ();
	}
      /* Peel prolog and put it on preheader edge of loop.  */
      prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
      if (!prolog)
	{
	  dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
			   "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
	  gcc_unreachable ();
	}
      slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
      first_loop = prolog;
      reset_original_copy_tables ();

      /* Update the number of iterations for prolog loop.  */
      tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
      vect_set_loop_condition (prolog, NULL, niters_prolog,
			       step_prolog, NULL_TREE, false);

      /* Skip the prolog loop.  */
      if (skip_prolog)
	{
	  guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
				    niters_prolog, build_int_cst (type, 0));
	  guard_bb = loop_preheader_edge (prolog)->src;
	  basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
	  guard_to = split_edge (loop_preheader_edge (loop));
	  guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
					   guard_to, guard_bb,
					   prob_prolog.invert (),
					   irred_flag);
	  e = EDGE_PRED (guard_to, 0);
	  e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
	  slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);

	  scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
	  scale_loop_profile (prolog, prob_prolog, bound_prolog);
	}
      /* Update init address of DRs.  */
      vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
      /* Update niters for vector loop.  */
      LOOP_VINFO_NITERS (loop_vinfo)
	= fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
      LOOP_VINFO_NITERSM1 (loop_vinfo)
	= fold_build2 (MINUS_EXPR, type,
		       LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
      bool new_var_p = false;
      niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
      /* It's guaranteed that vector loop bound before vectorization is at
	 least VF, so set range information for newly generated var.  */
      if (new_var_p)
	set_range_info (niters, VR_RANGE,
			wi::to_wide (build_int_cst (type, vf)),
			wi::to_wide (TYPE_MAX_VALUE (type)));

      /* Prolog iterates at most bound_prolog times, latch iterates at
	 most bound_prolog - 1 times.  */
      record_niter_bound (prolog, bound_prolog - 1, false, true);
      delete_update_ssa ();
      adjust_vec_debug_stmts ();
      scev_reset ();
    }

  if (epilog_peeling)
    {
      e = single_exit (loop);
      if (!slpeel_can_duplicate_loop_p (loop, e))
	{
	  dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
			   "loop can't be duplicated to exit edge.\n");
	  gcc_unreachable ();
	}
      /* Peel epilog and put it on exit edge of loop.  */
      epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
      if (!epilog)
	{
	  dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
			   "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
	  gcc_unreachable ();
	}
      slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);

      /* Scalar version loop may be preferred.  In this case, add guard
	 and skip to epilog.  Note this only happens when the number of
	 iterations of loop is unknown at compile time, otherwise this
	 won't be vectorized.  */
      if (skip_vector)
	{
	  /* Additional epilogue iteration is peeled if gap exists.  */
	  tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
						bound_prolog, bound_epilog,
						th, &bound_scalar,
						check_profitability);
	  /* Build guard against NITERSM1 since NITERS may overflow.  */
	  guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
	  guard_bb = anchor;
	  guard_to = split_edge (loop_preheader_edge (epilog));
	  guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
					   guard_to, guard_bb,
					   prob_vector.invert (),
					   irred_flag);
	  e = EDGE_PRED (guard_to, 0);
	  e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
	  slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);

	  /* Simply propagate profile info from guard_bb to guard_to which is
	     a merge point of control flow.  */
	  guard_to->count = guard_bb->count;

	  /* Scale probability of epilog loop back.
	     FIXME: We should avoid scaling down and back up.  Profile may
	     get lost if we scale down to 0.  */
	  basic_block *bbs = get_loop_body (epilog);
	  for (unsigned int i = 0; i < epilog->num_nodes; i++)
	    bbs[i]->count = bbs[i]->count.apply_scale
				 (bbs[i]->count,
				  bbs[i]->count.apply_probability
				    (prob_vector));
	  free (bbs);
	}

      basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
      tree niters_vector_mult_vf;
      /* If loop is peeled for non-zero constant times, now niters refers to
	 orig_niters - prolog_peeling, it won't overflow even the orig_niters
	 overflows.  */
      niters_no_overflow |= (prolog_peeling > 0);
      vect_gen_vector_loop_niters (loop_vinfo, niters,
				   niters_vector, step_vector,
				   niters_no_overflow);
      if (!integer_onep (*step_vector))
	{
	  /* On exit from the loop we will have an easy way of calcalating
	     NITERS_VECTOR / STEP * STEP.  Install a dummy definition
	     until then.  */
	  niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
	  SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
	  *niters_vector_mult_vf_var = niters_vector_mult_vf;
	}
      else
	vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
					     &niters_vector_mult_vf);
      /* Update IVs of original loop as if they were advanced by
	 niters_vector_mult_vf steps.  */
      gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
      edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
      vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
					update_e);

      if (skip_epilog)
	{
	  guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
				    niters, niters_vector_mult_vf);
	  guard_bb = single_exit (loop)->dest;
	  guard_to = split_edge (single_exit (epilog));
	  guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
					   skip_vector ? anchor : guard_bb,
					   prob_epilog.invert (),
					   irred_flag);
	  slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
					      single_exit (epilog));
	  /* Only need to handle basic block before epilog loop if it's not
	     the guard_bb, which is the case when skip_vector is true.  */
	  if (guard_bb != bb_before_epilog)
	    {
	      prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();

	      scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
	    }
	  scale_loop_profile (epilog, prob_epilog, 0);
	}
      else
	slpeel_update_phi_nodes_for_lcssa (epilog);

      unsigned HOST_WIDE_INT bound;
      if (bound_scalar.is_constant (&bound))
	{
	  gcc_assert (bound != 0);
	  /* -1 to convert loop iterations to latch iterations.  */
	  record_niter_bound (epilog, bound - 1, false, true);
	}

      delete_update_ssa ();
      adjust_vec_debug_stmts ();
      scev_reset ();
    }
  adjust_vec.release ();
  free_original_copy_tables ();

  return epilog;
}

/* Function vect_create_cond_for_niters_checks.

   Create a conditional expression that represents the run-time checks for
   loop's niter.  The loop is guaranteed to terminate if the run-time
   checks hold.

   Input:
   COND_EXPR  - input conditional expression.  New conditions will be chained
		with logical AND operation.  If it is NULL, then the function
		is used to return the number of alias checks.
   LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
		to be checked.

   Output:
   COND_EXPR - conditional expression.

   The returned COND_EXPR is the conditional expression to be used in the
   if statement that controls which version of the loop gets executed at
   runtime.  */

static void
vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
{
  tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);

  if (*cond_expr)
    *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
			      *cond_expr, part_cond_expr);
  else
    *cond_expr = part_cond_expr;
}

/* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
   and PART_COND_EXPR are true.  Treat a null *COND_EXPR as "true".  */

static void
chain_cond_expr (tree *cond_expr, tree part_cond_expr)
{
  if (*cond_expr)
    *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
			      *cond_expr, part_cond_expr);
  else
    *cond_expr = part_cond_expr;
}

/* Function vect_create_cond_for_align_checks.

   Create a conditional expression that represents the alignment checks for
   all of data references (array element references) whose alignment must be
   checked at runtime.

   Input:
   COND_EXPR  - input conditional expression.  New conditions will be chained
                with logical AND operation.
   LOOP_VINFO - two fields of the loop information are used.
                LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
                LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.

   Output:
   COND_EXPR_STMT_LIST - statements needed to construct the conditional
                         expression.
   The returned value is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.

   The algorithm makes two assumptions:
     1) The number of bytes "n" in a vector is a power of 2.
     2) An address "a" is aligned if a%n is zero and that this
        test can be done as a&(n-1) == 0.  For example, for 16
        byte vectors the test is a&0xf == 0.  */

static void
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                   tree *cond_expr,
				   gimple_seq *cond_expr_stmt_list)
{
  vec<stmt_vec_info> may_misalign_stmts
    = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
  stmt_vec_info stmt_info;
  int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
  tree mask_cst;
  unsigned int i;
  tree int_ptrsize_type;
  char tmp_name[20];
  tree or_tmp_name = NULL_TREE;
  tree and_tmp_name;
  gimple *and_stmt;
  tree ptrsize_zero;
  tree part_cond_expr;

  /* Check that mask is one less than a power of 2, i.e., mask is
     all zeros followed by all ones.  */
  gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));

  int_ptrsize_type = signed_type_for (ptr_type_node);

  /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
     of the first vector of the i'th data reference. */

  FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
    {
      gimple_seq new_stmt_list = NULL;
      tree addr_base;
      tree addr_tmp_name;
      tree new_or_tmp_name;
      gimple *addr_stmt, *or_stmt;
      tree vectype = STMT_VINFO_VECTYPE (stmt_info);
      bool negative = tree_int_cst_compare
	(DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
      tree offset = negative
	? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;

      /* create: addr_tmp = (int)(address_of_first_vector) */
      addr_base =
	vect_create_addr_base_for_vector_ref (stmt_info, &new_stmt_list,
					      offset);
      if (new_stmt_list != NULL)
	gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);

      sprintf (tmp_name, "addr2int%d", i);
      addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
      addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
      gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);

      /* The addresses are OR together.  */

      if (or_tmp_name != NULL_TREE)
        {
          /* create: or_tmp = or_tmp | addr_tmp */
          sprintf (tmp_name, "orptrs%d", i);
	  new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
	  or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
					 or_tmp_name, addr_tmp_name);
	  gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
          or_tmp_name = new_or_tmp_name;
        }
      else
        or_tmp_name = addr_tmp_name;

    } /* end for i */

  mask_cst = build_int_cst (int_ptrsize_type, mask);

  /* create: and_tmp = or_tmp & mask  */
  and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");

  and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
				  or_tmp_name, mask_cst);
  gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);

  /* Make and_tmp the left operand of the conditional test against zero.
     if and_tmp has a nonzero bit then some address is unaligned.  */
  ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
  part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
				and_tmp_name, ptrsize_zero);
  chain_cond_expr (cond_expr, part_cond_expr);
}

/* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
   create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
   Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
   and this new condition are true.  Treat a null *COND_EXPR as "true".  */

static void
vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
{
  vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
  unsigned int i;
  vec_object_pair *pair;
  FOR_EACH_VEC_ELT (pairs, i, pair)
    {
      tree addr1 = build_fold_addr_expr (pair->first);
      tree addr2 = build_fold_addr_expr (pair->second);
      tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
					 addr1, addr2);
      chain_cond_expr (cond_expr, part_cond_expr);
    }
}

/* Create an expression that is true when all lower-bound conditions for
   the vectorized loop are met.  Chain this condition with *COND_EXPR.  */

static void
vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
{
  vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
  for (unsigned int i = 0; i < lower_bounds.length (); ++i)
    {
      tree expr = lower_bounds[i].expr;
      tree type = unsigned_type_for (TREE_TYPE (expr));
      expr = fold_convert (type, expr);
      poly_uint64 bound = lower_bounds[i].min_value;
      if (!lower_bounds[i].unsigned_p)
	{
	  expr = fold_build2 (PLUS_EXPR, type, expr,
			      build_int_cstu (type, bound - 1));
	  bound += bound - 1;
	}
      tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
					 build_int_cstu (type, bound));
      chain_cond_expr (cond_expr, part_cond_expr);
    }
}

/* Function vect_create_cond_for_alias_checks.

   Create a conditional expression that represents the run-time checks for
   overlapping of address ranges represented by a list of data references
   relations passed as input.

   Input:
   COND_EXPR  - input conditional expression.  New conditions will be chained
                with logical AND operation.  If it is NULL, then the function
                is used to return the number of alias checks.
   LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
	        to be checked.

   Output:
   COND_EXPR - conditional expression.

   The returned COND_EXPR is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.
*/

void
vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
{
  vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
    LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);

  if (comp_alias_ddrs.is_empty ())
    return;

  create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
			       &comp_alias_ddrs, cond_expr);
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "created %u versioning for alias checks.\n",
		     comp_alias_ddrs.length ());
}


/* Function vect_loop_versioning.

   If the loop has data references that may or may not be aligned or/and
   has data reference relations whose independence was not proven then
   two versions of the loop need to be generated, one which is vectorized
   and one which isn't.  A test is then generated to control which of the
   loops is executed.  The test checks for the alignment of all of the
   data references that may or may not be aligned.  An additional
   sequence of runtime tests is generated for each pairs of DDRs whose
   independence was not proven.  The vectorized version of loop is
   executed only if both alias and alignment tests are passed.

   The test generated to check which version of loop is executed
   is modified to also check for profitability as indicated by the
   cost model threshold TH.

   The versioning precondition(s) are placed in *COND_EXPR and
   *COND_EXPR_STMT_LIST.  */

void
vect_loop_versioning (loop_vec_info loop_vinfo,
		      unsigned int th, bool check_profitability,
		      poly_uint64 versioning_threshold)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
  struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
  basic_block condition_bb;
  gphi_iterator gsi;
  gimple_stmt_iterator cond_exp_gsi;
  basic_block merge_bb;
  basic_block new_exit_bb;
  edge new_exit_e, e;
  gphi *orig_phi, *new_phi;
  tree cond_expr = NULL_TREE;
  gimple_seq cond_expr_stmt_list = NULL;
  tree arg;
  profile_probability prob = profile_probability::likely ();
  gimple_seq gimplify_stmt_list = NULL;
  tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
  bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
  bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
  bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);

  if (check_profitability)
    cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
			     build_int_cst (TREE_TYPE (scalar_loop_iters),
					    th - 1));
  if (maybe_ne (versioning_threshold, 0U))
    {
      tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
			       build_int_cst (TREE_TYPE (scalar_loop_iters),
					      versioning_threshold - 1));
      if (cond_expr)
	cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
				 expr, cond_expr);
      else
	cond_expr = expr;
    }

  if (version_niter)
    vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);

  if (cond_expr)
    cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
					is_gimple_condexpr, NULL_TREE);

  if (version_align)
    vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
				       &cond_expr_stmt_list);

  if (version_alias)
    {
      vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
      vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
      vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
    }

  cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
				      &gimplify_stmt_list,
				      is_gimple_condexpr, NULL_TREE);
  gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);

  initialize_original_copy_tables ();
  if (scalar_loop)
    {
      edge scalar_e;
      basic_block preheader, scalar_preheader;

      /* We don't want to scale SCALAR_LOOP's frequencies, we need to
	 scale LOOP's frequencies instead.  */
      nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
			    prob, prob.invert (), prob, prob.invert (), true);
      scale_loop_frequencies (loop, prob);
      /* CONDITION_BB was created above SCALAR_LOOP's preheader,
	 while we need to move it above LOOP's preheader.  */
      e = loop_preheader_edge (loop);
      scalar_e = loop_preheader_edge (scalar_loop);
      /* The vector loop preheader might not be empty, since new
	 invariants could have been created while analyzing the loop.  */
      gcc_assert (single_pred_p (e->src));
      gcc_assert (empty_block_p (scalar_e->src)
		  && single_pred_p (scalar_e->src));
      gcc_assert (single_pred_p (condition_bb));
      preheader = e->src;
      scalar_preheader = scalar_e->src;
      scalar_e = find_edge (condition_bb, scalar_preheader);
      e = single_pred_edge (preheader);
      redirect_edge_and_branch_force (single_pred_edge (condition_bb),
				      scalar_preheader);
      redirect_edge_and_branch_force (scalar_e, preheader);
      redirect_edge_and_branch_force (e, condition_bb);
      set_immediate_dominator (CDI_DOMINATORS, condition_bb,
			       single_pred (condition_bb));
      set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
			       single_pred (scalar_preheader));
      set_immediate_dominator (CDI_DOMINATORS, preheader,
			       condition_bb);
    }
  else
    nloop = loop_version (loop, cond_expr, &condition_bb,
			  prob, prob.invert (), prob, prob.invert (), true);

  if (version_niter)
    {
      /* The versioned loop could be infinite, we need to clear existing
	 niter information which is copied from the original loop.  */
      gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
      vect_free_loop_info_assumptions (nloop);
      /* And set constraint LOOP_C_INFINITE for niter analyzer.  */
      loop_constraint_set (loop, LOOP_C_INFINITE);
    }

  if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
      && dump_enabled_p ())
    {
      if (version_alias)
        dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
			 vect_location,
                         "loop versioned for vectorization because of "
			 "possible aliasing\n");
      if (version_align)
        dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
			 vect_location,
                         "loop versioned for vectorization to enhance "
			 "alignment\n");

    }
  free_original_copy_tables ();

  /* Loop versioning violates an assumption we try to maintain during
     vectorization - that the loop exit block has a single predecessor.
     After versioning, the exit block of both loop versions is the same
     basic block (i.e. it has two predecessors). Just in order to simplify
     following transformations in the vectorizer, we fix this situation
     here by adding a new (empty) block on the exit-edge of the loop,
     with the proper loop-exit phis to maintain loop-closed-form.
     If loop versioning wasn't done from loop, but scalar_loop instead,
     merge_bb will have already just a single successor.  */

  merge_bb = single_exit (loop)->dest;
  if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
    {
      gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
      new_exit_bb = split_edge (single_exit (loop));
      new_exit_e = single_exit (loop);
      e = EDGE_SUCC (new_exit_bb, 0);

      for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree new_res;
	  orig_phi = gsi.phi ();
	  new_res = copy_ssa_name (PHI_RESULT (orig_phi));
	  new_phi = create_phi_node (new_res, new_exit_bb);
	  arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
	  add_phi_arg (new_phi, arg, new_exit_e,
		       gimple_phi_arg_location_from_edge (orig_phi, e));
	  adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
	}
    }

  /* End loop-exit-fixes after versioning.  */

  if (cond_expr_stmt_list)
    {
      cond_exp_gsi = gsi_last_bb (condition_bb);
      gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
			     GSI_SAME_STMT);
    }
  update_ssa (TODO_update_ssa);
}